--- a/exps/both.scala Mon Feb 04 13:10:26 2019 +0000
+++ b/exps/both.scala Thu Feb 07 10:52:41 2019 +0000
@@ -31,7 +31,7 @@
abstract class Rexp
case object ZERO extends Rexp
case object ONE extends Rexp
-case class PRED(f: Char => Boolean) extends Rexp
+case class PRED(f: Char => Boolean, s: String = "_") extends Rexp
case class ALTS(rs: List[Rexp]) extends Rexp
case class SEQ(r1: Rexp, r2: Rexp) extends Rexp
case class STAR(r: Rexp) extends Rexp
@@ -39,7 +39,7 @@
// abbreviations
-def CHAR(c: Char) = PRED(_ == c)
+def CHAR(c: Char) = PRED(_ == c, c.toString)
def ALT(r1: Rexp, r2: Rexp) = ALTS(List(r1, r2))
def PLUS(r: Rexp) = SEQ(r, STAR(r))
@@ -47,7 +47,7 @@
abstract class ARexp
case object AZERO extends ARexp
case class AONE(bs: Bits) extends ARexp
-case class APRED(bs: Bits, f: Char => Boolean) extends ARexp
+case class APRED(bs: Bits, f: Char => Boolean, s: String = "_") extends ARexp
case class AALTS(bs: Bits, rs: List[ARexp]) extends ARexp
case class ASEQ(bs: Bits, r1: ARexp, r2: ARexp) extends ARexp
case class ASTAR(bs: Bits, r: ARexp) extends ARexp
@@ -92,15 +92,27 @@
// string of a regular expressions - for testing purposes
- def string(r: Rexp): String = r match {
- case ZERO => "0"
- case ONE => "1"
- case PRED(_) => "_"
- case ALTS(rs) => rs.map(string).mkString("[", "|", "]")
- case SEQ(r1, r2) => s"(${string(r1)} ~ ${string(r2)})"
- case STAR(r) => s"{${string(r)}}*"
- case RECD(x, r) => s"(${x}! ${string(r)})"
- }
+def string(r: Rexp): String = r match {
+ case ZERO => "0"
+ case ONE => "1"
+ case PRED(_, s) => s
+ case ALTS(rs) => rs.map(string).mkString("[", "|", "]")
+ case SEQ(r1, r2) => s"(${string(r1)} ~ ${string(r2)})"
+ case STAR(r) => s"{${string(r)}}*"
+ case RECD(x, r) => s"(${x}! ${string(r)})"
+}
+
+// string of an annotated regular expressions - for testing purposes
+
+def astring(a: ARexp): String = a match {
+ case AZERO => "0"
+ case AONE(_) => "1"
+ case APRED(_, _, s) => s
+ case AALTS(_, rs) => rs.map(astring).mkString("[", "|", "]")
+ case ASEQ(_, r1, r2) => s"(${astring(r1)} ~ ${astring(r2)})"
+ case ASTAR(_, r) => s"{${astring(r)}}*"
+}
+
//--------------------------------------------------------------------------------------------------------
// START OF NON-BITCODE PART
@@ -111,7 +123,7 @@
def nullable (r: Rexp) : Boolean = r match {
case ZERO => false
case ONE => true
- case PRED(_) => false
+ case PRED(_, _) => false
case ALTS(rs) => rs.exists(nullable)
case SEQ(r1, r2) => nullable(r1) && nullable(r2)
case STAR(_) => true
@@ -122,7 +134,7 @@
def der (c: Char, r: Rexp) : Rexp = r match {
case ZERO => ZERO
case ONE => ZERO
- case PRED(f) => if (f(c)) ONE else ZERO
+ case PRED(f, _) => if (f(c)) ONE else ZERO
case ALTS(List(r1, r2)) => ALTS(List(der(c, r1), der(c, r2)))
case SEQ(r1, r2) =>
if (nullable(r1)) ALTS(List(SEQ(der(c, r1), r2), der(c, r2)))
@@ -171,7 +183,7 @@
case (SEQ(r1, r2), Right(v2)) => Sequ(mkeps(r1), inj(r2, c, v2))
case (ALTS(List(r1, r2)), Left(v1)) => Left(inj(r1, c, v1))
case (ALTS(List(r1, r2)), Right(v2)) => Right(inj(r2, c, v2))
- case (PRED(_), Empty) => Chr(c)
+ case (PRED(_, _), Empty) => Chr(c)
case (RECD(x, r1), _) => Rec(x, inj(r1, c, v))
}
@@ -264,7 +276,7 @@
def fuse(bs: Bits, r: ARexp) : ARexp = r match {
case AZERO => AZERO
case AONE(cs) => AONE(bs ++ cs)
- case APRED(cs, f) => APRED(bs ++ cs, f)
+ case APRED(cs, f, s) => APRED(bs ++ cs, f, s)
case AALTS(cs, rs) => AALTS(bs ++ cs, rs)
case ASEQ(cs, r1, r2) => ASEQ(bs ++ cs, r1, r2)
case ASTAR(cs, r) => ASTAR(bs ++ cs, r)
@@ -274,7 +286,7 @@
def internalise(r: Rexp) : ARexp = r match {
case ZERO => AZERO
case ONE => AONE(Nil)
- case PRED(f) => APRED(Nil, f)
+ case PRED(f, s) => APRED(Nil, f, s)
case ALTS(List(r1, r2)) =>
AALTS(Nil, List(fuse(List(Z), internalise(r1)), fuse(List(S), internalise(r2))))
case ALTS(r1::rs) => {
@@ -291,7 +303,7 @@
// decoding of values from bit sequences
def decode_aux(r: Rexp, bs: Bits) : (Val, Bits) = (r, bs) match {
case (ONE, bs) => (Empty, bs)
- case (PRED(f), C(c)::bs) => (Chr(c), bs)
+ case (PRED(f, _), C(c)::bs) => (Chr(c), bs)
case (ALTS(r::Nil), bs) => decode_aux(r, bs)
case (ALTS(rs), bs) => bs match {
case Z::bs1 => {
@@ -330,7 +342,7 @@
def erase(r: ARexp) : Rexp = r match{
case AZERO => ZERO
case AONE(_) => ONE
- case APRED(bs, f) => PRED(f)
+ case APRED(bs, f, s) => PRED(f, s)
case AALTS(bs, rs) => ALTS(rs.map(erase(_)))
case ASEQ(bs, r1, r2) => SEQ (erase(r1), erase(r2))
case ASTAR(cs, r)=> STAR(erase(r))
@@ -342,7 +354,7 @@
def bnullable (r: ARexp) : Boolean = r match {
case AZERO => false
case AONE(_) => true
- case APRED(_,_) => false
+ case APRED(_,_,_) => false
case AALTS(_, rs) => rs.exists(bnullable)
case ASEQ(_, r1, r2) => bnullable(r1) && bnullable(r2)
case ASTAR(_, _) => true
@@ -362,7 +374,7 @@
def bder(c: Char, r: ARexp) : ARexp = r match {
case AZERO => AZERO
case AONE(_) => AZERO
- case APRED(bs, f) => if (f(c)) AONE(bs:::List(C(c))) else AZERO
+ case APRED(bs, f, _) => if (f(c)) AONE(bs:::List(C(c))) else AZERO
case AALTS(bs, rs) => AALTS(bs, rs.map(bder(c, _)))
case ASEQ(bs, r1, r2) =>
if (bnullable(r1)) AALT(bs, ASEQ(Nil, bder(c, r1), r2), fuse(bmkeps(r1), bder(c, r2)))
@@ -378,7 +390,6 @@
case c::s => bders(s, bder(c, r))
}
-
def flats(rs: List[ARexp]): List[ARexp] = rs match {
case Nil => Nil
case AZERO :: rs1 => flats(rs1)
@@ -404,6 +415,7 @@
+
def bders_simp (s: List[Char], r: ARexp) : ARexp = s match {
case Nil => r
case c::s => bders_simp(s, bsimp(bder(c, r)))
@@ -485,7 +497,7 @@
def size(r: Rexp) : Int = r match {
case ZERO => 1
case ONE => 1
- case PRED(_) => 1
+ case PRED(_,_) => 1
case SEQ(r1, r2) => 1 + size(r1) + size(r2)
case ALTS(rs) => 1 + rs.map(size).sum
case STAR(r) => 1 + size(r)
@@ -498,9 +510,9 @@
// Lexing Rules for a Small While Language
//symbols
-val SYM = PRED("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ".contains(_))
+val SYM = PRED("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ".contains(_), "SYM")
//digits
-val DIGIT = PRED("0123456789".contains(_))
+val DIGIT = PRED("0123456789".contains(_), "NUM")
//identifiers
val ID = SYM ~ (SYM | DIGIT).%
//numbers
@@ -578,13 +590,14 @@
println(" Bit full simp: " + time(btokenise_simp_full(WHILE_REGS, fib_prog * i)))
}
+
println("Original " + size(WHILE_REGS))
-println("Size Bit " + asize(bders_simp((fib_prog * 10).toList, internalise(WHILE_REGS))))
-println("Size Bitf " + asize(bders_simp_full((fib_prog * 10).toList, internalise(WHILE_REGS))))
-println("Size Old " + size(ders_simp((fib_prog * 10).toList, WHILE_REGS)))
+println("Size Bit " + asize(bders_simp((fib_prog * 1).toList, internalise(WHILE_REGS))))
+println("Size Bitf " + asize(bders_simp_full((fib_prog * 1).toList, internalise(WHILE_REGS))))
+println("Size Old " + size(ders_simp((fib_prog * 1).toList, WHILE_REGS)))
-//System.exit(0)
+System.exit(0)
println("Internal sizes test OK or strange")
@@ -662,3 +675,4 @@
+
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/exps/profile.scala Thu Feb 07 10:52:41 2019 +0000
@@ -0,0 +1,637 @@
+
+import scala.language.implicitConversions
+import scala.language.reflectiveCalls
+import scala.annotation.tailrec
+import scala.util.Try
+
+def escape(raw: String) : String = {
+ import scala.reflect.runtime.universe._
+ Literal(Constant(raw)).toString
+}
+
+def esc2(r: (String, String)) = (escape(r._1), escape(r._2))
+
+def distinctBy[B, C](xs: List[B], f: B => C, acc: List[C] = Nil): List[B] = xs match {
+ case Nil => Nil
+ case (x::xs) => {
+ val res = f(x)
+ if (acc.contains(res)) distinctBy(xs, f, acc)
+ else x::distinctBy(xs, f, res::acc)
+ }
+}
+
+abstract class Bit
+case object Z extends Bit
+case object S extends Bit
+case class C(c: Char) extends Bit
+
+type Bits = List[Bit]
+
+// usual regular expressions
+abstract class Rexp
+case object ZERO extends Rexp
+case object ONE extends Rexp
+case class PRED(f: Char => Boolean, s: String = "_") extends Rexp
+case class ALTS(rs: List[Rexp]) extends Rexp
+case class SEQ(r1: Rexp, r2: Rexp) extends Rexp
+case class STAR(r: Rexp) extends Rexp
+case class RECD(x: String, r: Rexp) extends Rexp
+
+
+// abbreviations
+def CHAR(c: Char) = PRED(_ == c, c.toString)
+def ALT(r1: Rexp, r2: Rexp) = ALTS(List(r1, r2))
+def PLUS(r: Rexp) = SEQ(r, STAR(r))
+
+// annotated regular expressions
+abstract class ARexp
+case object AZERO extends ARexp
+case class AONE(bs: Bits) extends ARexp
+case class APRED(bs: Bits, f: Char => Boolean, s: String = "_") extends ARexp
+case class AALTS(bs: Bits, rs: List[ARexp]) extends ARexp
+case class ASEQ(bs: Bits, r1: ARexp, r2: ARexp) extends ARexp
+case class ASTAR(bs: Bits, r: ARexp) extends ARexp
+
+// abbreviations
+def AALT(bs: Bits, r1: ARexp, r2: ARexp) = AALTS(bs, List(r1, r2))
+
+// values
+abstract class Val
+case object Empty extends Val
+case class Chr(c: Char) extends Val
+case class Sequ(v1: Val, v2: Val) extends Val
+case class Left(v: Val) extends Val
+case class Right(v: Val) extends Val
+case class Stars(vs: List[Val]) extends Val
+case class Rec(x: String, v: Val) extends Val
+
+
+
+// some convenience for typing in regular expressions
+def charlist2rexp(s : List[Char]): Rexp = s match {
+ case Nil => ONE
+ case c::Nil => CHAR(c)
+ case c::s => SEQ(CHAR(c), charlist2rexp(s))
+}
+implicit def string2rexp(s : String) : Rexp = charlist2rexp(s.toList)
+
+implicit def RexpOps(r: Rexp) = new {
+ def | (s: Rexp) = ALT(r, s)
+ def % = STAR(r)
+ def ~ (s: Rexp) = SEQ(r, s)
+}
+
+implicit def stringOps(s: String) = new {
+ def | (r: Rexp) = ALT(s, r)
+ def | (r: String) = ALT(s, r)
+ def % = STAR(s)
+ def ~ (r: Rexp) = SEQ(s, r)
+ def ~ (r: String) = SEQ(s, r)
+ def $ (r: Rexp) = RECD(s, r)
+}
+
+
+// string of a regular expressions - for testing purposes
+def string(r: Rexp): String = r match {
+ case ZERO => "0"
+ case ONE => "1"
+ case PRED(_, s) => s
+ case ALTS(rs) => rs.map(string).mkString("[", "|", "]")
+ case SEQ(r1, r2) => s"(${string(r1)} ~ ${string(r2)})"
+ case STAR(r) => s"{${string(r)}}*"
+ case RECD(x, r) => s"(${x}! ${string(r)})"
+}
+
+// string of an annotated regular expressions - for testing purposes
+
+def astring(a: ARexp): String = a match {
+ case AZERO => "0"
+ case AONE(_) => "1"
+ case APRED(_, _, s) => s
+ case AALTS(_, rs) => rs.map(astring).mkString("[", "|", "]")
+ case ASEQ(_, r1, r2) => s"(${astring(r1)} ~ ${astring(r2)})"
+ case ASTAR(_, r) => s"{${astring(r)}}*"
+}
+
+
+//--------------------------------------------------------------------------------------------------------
+// START OF NON-BITCODE PART
+//
+
+// nullable function: tests whether the regular
+// expression can recognise the empty string
+def nullable (r: Rexp) : Boolean = r match {
+ case ZERO => false
+ case ONE => true
+ case PRED(_, _) => false
+ case ALTS(rs) => rs.exists(nullable)
+ case SEQ(r1, r2) => nullable(r1) && nullable(r2)
+ case STAR(_) => true
+ case RECD(_, r) => nullable(r)
+}
+
+// derivative of a regular expression w.r.t. a character
+def der (c: Char, r: Rexp) : Rexp = r match {
+ case ZERO => ZERO
+ case ONE => ZERO
+ case PRED(f, _) => if (f(c)) ONE else ZERO
+ case ALTS(List(r1, r2)) => ALTS(List(der(c, r1), der(c, r2)))
+ case SEQ(r1, r2) =>
+ if (nullable(r1)) ALTS(List(SEQ(der(c, r1), r2), der(c, r2)))
+ else SEQ(der(c, r1), r2)
+ case STAR(r) => SEQ(der(c, r), STAR(r))
+ case RECD(_, r1) => der(c, r1)
+}
+
+
+def flatten(v: Val) : String = v match {
+ case Empty => ""
+ case Chr(c) => c.toString
+ case Left(v) => flatten(v)
+ case Right(v) => flatten(v)
+ case Sequ(v1, v2) => flatten(v1) + flatten(v2)
+ case Stars(vs) => vs.map(flatten).mkString
+ case Rec(_, v) => flatten(v)
+}
+
+// extracts an environment from a value
+def env(v: Val) : List[(String, String)] = v match {
+ case Empty => Nil
+ case Chr(c) => Nil
+ case Left(v) => env(v)
+ case Right(v) => env(v)
+ case Sequ(v1, v2) => env(v1) ::: env(v2)
+ case Stars(vs) => vs.flatMap(env)
+ case Rec(x, v) => (x, flatten(v))::env(v)
+}
+
+
+// injection part
+def mkeps(r: Rexp) : Val = r match {
+ case ONE => Empty
+ case ALTS(List(r1, r2)) =>
+ if (nullable(r1)) Left(mkeps(r1)) else Right(mkeps(r2))
+ case SEQ(r1, r2) => Sequ(mkeps(r1), mkeps(r2))
+ case STAR(r) => Stars(Nil)
+ case RECD(x, r) => Rec(x, mkeps(r))
+}
+
+def inj(r: Rexp, c: Char, v: Val) : Val = (r, v) match {
+ case (STAR(r), Sequ(v1, Stars(vs))) => Stars(inj(r, c, v1)::vs)
+ case (SEQ(r1, r2), Sequ(v1, v2)) => Sequ(inj(r1, c, v1), v2)
+ case (SEQ(r1, r2), Left(Sequ(v1, v2))) => Sequ(inj(r1, c, v1), v2)
+ case (SEQ(r1, r2), Right(v2)) => Sequ(mkeps(r1), inj(r2, c, v2))
+ case (ALTS(List(r1, r2)), Left(v1)) => Left(inj(r1, c, v1))
+ case (ALTS(List(r1, r2)), Right(v2)) => Right(inj(r2, c, v2))
+ case (PRED(_, _), Empty) => Chr(c)
+ case (RECD(x, r1), _) => Rec(x, inj(r1, c, v))
+}
+
+// lexing without simplification
+def lex(r: Rexp, s: List[Char]) : Val = s match {
+ case Nil => if (nullable(r)) mkeps(r) else throw new Exception("Not matched")
+ case c::cs => inj(r, c, lex(der(c, r), cs))
+}
+
+def lexing(r: Rexp, s: String) : Val = lex(r, s.toList)
+
+//println(lexing(("ab" | "ab") ~ ("b" | ONE), "ab"))
+
+// some "rectification" functions for simplification
+def F_ID(v: Val): Val = v
+def F_RIGHT(f: Val => Val) = (v:Val) => Right(f(v))
+def F_LEFT(f: Val => Val) = (v:Val) => Left(f(v))
+def F_ALT(f1: Val => Val, f2: Val => Val) = (v:Val) => v match {
+ case Right(v) => Right(f2(v))
+ case Left(v) => Left(f1(v))
+}
+def F_SEQ(f1: Val => Val, f2: Val => Val) = (v:Val) => v match {
+ case Sequ(v1, v2) => Sequ(f1(v1), f2(v2))
+}
+def F_SEQ_Empty1(f1: Val => Val, f2: Val => Val) =
+ (v:Val) => Sequ(f1(Empty), f2(v))
+def F_SEQ_Empty2(f1: Val => Val, f2: Val => Val) =
+ (v:Val) => Sequ(f1(v), f2(Empty))
+def F_RECD(f: Val => Val) = (v:Val) => v match {
+ case Rec(x, v) => Rec(x, f(v))
+}
+def F_ERROR(v: Val): Val = throw new Exception("error")
+
+// simplification of regular expressions returning also an
+// rectification function; no simplification under STAR
+
+var profile_simp : Int = 0
+
+def simp(r: Rexp): (Rexp, Val => Val) = {
+ profile_simp = profile_simp + 1
+ r match {
+ case ALTS(List(r1, r2)) => {
+ val (r1s, f1s) = simp(r1)
+ val (r2s, f2s) = simp(r2)
+ (r1s, r2s) match {
+ case (ZERO, _) => (r2s, F_RIGHT(f2s))
+ case (_, ZERO) => (r1s, F_LEFT(f1s))
+ case _ => if (r1s == r2s) (r1s, F_LEFT(f1s))
+ else (ALTS(List(r1s, r2s)), F_ALT(f1s, f2s))
+ }
+ }
+ case SEQ(r1, r2) => {
+ val (r1s, f1s) = simp(r1)
+ val (r2s, f2s) = simp(r2)
+ (r1s, r2s) match {
+ case (ZERO, _) => (ZERO, F_ERROR)
+ case (_, ZERO) => (ZERO, F_ERROR)
+ case (ONE, _) => (r2s, F_SEQ_Empty1(f1s, f2s))
+ case (_, ONE) => (r1s, F_SEQ_Empty2(f1s, f2s))
+ case _ => (SEQ(r1s,r2s), F_SEQ(f1s, f2s))
+ }
+ }
+ case RECD(x, r1) => {
+ val (r1s, f1s) = simp(r1)
+ (RECD(x, r1s), F_RECD(f1s))
+ }
+ case r => (r, F_ID)
+}}
+
+def ders_simp(s: List[Char], r: Rexp) : Rexp = s match {
+ case Nil => r
+ case c::s => ders_simp(s, simp(der(c, r))._1)
+}
+
+
+def lex_simp(r: Rexp, s: List[Char]) : Val = s match {
+ case Nil => if (nullable(r)) mkeps(r) else throw new Exception("Not matched")
+ case c::cs => {
+ val (r_simp, f_simp) = simp(der(c, r))
+ inj(r, c, f_simp(lex_simp(r_simp, cs)))
+ }
+}
+
+def lexing_simp(r: Rexp, s: String) : Val = lex_simp(r, s.toList)
+
+println(lexing_simp(("a" | "ab") ~ ("b" | ""), "ab"))
+
+
+def tokenise_simp(r: Rexp, s: String) = env(lexing_simp(r, s)).map(esc2)
+
+//--------------------------------------------------------------------------------------------------------
+// BITCODED PART
+
+
+def fuse(bs: Bits, r: ARexp) : ARexp = r match {
+ case AZERO => AZERO
+ case AONE(cs) => AONE(bs ++ cs)
+ case APRED(cs, f, s) => APRED(bs ++ cs, f, s)
+ case AALTS(cs, rs) => AALTS(bs ++ cs, rs)
+ case ASEQ(cs, r1, r2) => ASEQ(bs ++ cs, r1, r2)
+ case ASTAR(cs, r) => ASTAR(bs ++ cs, r)
+}
+
+// translation into ARexps
+def internalise(r: Rexp) : ARexp = r match {
+ case ZERO => AZERO
+ case ONE => AONE(Nil)
+ case PRED(f, s) => APRED(Nil, f, s)
+ case ALTS(List(r1, r2)) =>
+ AALTS(Nil, List(fuse(List(Z), internalise(r1)), fuse(List(S), internalise(r2))))
+ case ALTS(r1::rs) => {
+ val AALTS(Nil, rs2) = internalise(ALTS(rs))
+ AALTS(Nil, fuse(List(Z), internalise(r1)) :: rs2.map(fuse(List(S), _)))
+ }
+ case SEQ(r1, r2) => ASEQ(Nil, internalise(r1), internalise(r2))
+ case STAR(r) => ASTAR(Nil, internalise(r))
+ case RECD(x, r) => internalise(r)
+}
+
+internalise(("a" | "ab") ~ ("b" | ""))
+
+// decoding of values from bit sequences
+def decode_aux(r: Rexp, bs: Bits) : (Val, Bits) = (r, bs) match {
+ case (ONE, bs) => (Empty, bs)
+ case (PRED(f, _), C(c)::bs) => (Chr(c), bs)
+ case (ALTS(r::Nil), bs) => decode_aux(r, bs)
+ case (ALTS(rs), bs) => bs match {
+ case Z::bs1 => {
+ val (v, bs2) = decode_aux(rs.head, bs1)
+ (Left(v), bs2)
+ }
+ case S::bs1 => {
+ val (v, bs2) = decode_aux(ALTS(rs.tail), bs1)
+ (Right(v), bs2)
+ }
+ }
+ case (SEQ(r1, r2), bs) => {
+ val (v1, bs1) = decode_aux(r1, bs)
+ val (v2, bs2) = decode_aux(r2, bs1)
+ (Sequ(v1, v2), bs2)
+ }
+ case (STAR(r1), S::bs) => {
+ val (v, bs1) = decode_aux(r1, bs)
+ val (Stars(vs), bs2) = decode_aux(STAR(r1), bs1)
+ (Stars(v::vs), bs2)
+ }
+ case (STAR(_), Z::bs) => (Stars(Nil), bs)
+ case (RECD(x, r1), bs) => {
+ val (v, bs1) = decode_aux(r1, bs)
+ (Rec(x, v), bs1)
+ }
+}
+
+def decode(r: Rexp, bs: Bits) = decode_aux(r, bs) match {
+ case (v, Nil) => v
+ case _ => throw new Exception("Not decodable")
+}
+
+
+//erase function: extracts a Rexp from Arexp
+def erase(r: ARexp) : Rexp = r match{
+ case AZERO => ZERO
+ case AONE(_) => ONE
+ case APRED(bs, f, s) => PRED(f, s)
+ case AALTS(bs, rs) => ALTS(rs.map(erase(_)))
+ case ASEQ(bs, r1, r2) => SEQ (erase(r1), erase(r2))
+ case ASTAR(cs, r)=> STAR(erase(r))
+}
+
+
+// bnullable function: tests whether the aregular
+// expression can recognise the empty string
+def bnullable (r: ARexp) : Boolean = r match {
+ case AZERO => false
+ case AONE(_) => true
+ case APRED(_,_,_) => false
+ case AALTS(_, rs) => rs.exists(bnullable)
+ case ASEQ(_, r1, r2) => bnullable(r1) && bnullable(r2)
+ case ASTAR(_, _) => true
+}
+
+def bmkeps(r: ARexp) : Bits = r match {
+ case AONE(bs) => bs
+ case AALTS(bs, rs) => {
+ val n = rs.indexWhere(bnullable)
+ bs ++ bmkeps(rs(n))
+ }
+ case ASEQ(bs, r1, r2) => bs ++ bmkeps(r1) ++ bmkeps(r2)
+ case ASTAR(bs, r) => bs ++ List(Z)
+}
+
+// derivative of a regular expression w.r.t. a character
+def bder(c: Char, r: ARexp) : ARexp = r match {
+ case AZERO => AZERO
+ case AONE(_) => AZERO
+ case APRED(bs, f, _) => if (f(c)) AONE(bs:::List(C(c))) else AZERO
+ case AALTS(bs, rs) => AALTS(bs, rs.map(bder(c, _)))
+ case ASEQ(bs, r1, r2) =>
+ if (bnullable(r1)) AALT(bs, ASEQ(Nil, bder(c, r1), r2), fuse(bmkeps(r1), bder(c, r2)))
+ else ASEQ(bs, bder(c, r1), r2)
+ case ASTAR(bs, r) => ASEQ(bs, fuse(List(S), bder(c, r)), ASTAR(Nil, r))
+}
+
+
+// derivative w.r.t. a string (iterates bder)
+@tailrec
+def bders (s: List[Char], r: ARexp) : ARexp = s match {
+ case Nil => r
+ case c::s => bders(s, bder(c, r))
+}
+
+
+def inc_profile(m: Map[ARexp, Int], a: ARexp) : Map[ARexp, Int] = {
+ val current = m.getOrElse(a, 0)
+ m + (a -> (current + 1))
+}
+
+var profile_bsimp_args : Map[ARexp, Int] = Map()
+var profile_bsimp : Int = 0
+var profile_flats : Int = 0
+
+
+def flats(rs: List[ARexp]): List[ARexp] = {
+ profile_flats = profile_flats + 1
+ rs match {
+ case Nil => Nil
+ case AZERO :: rs1 => flats(rs1)
+ case AALTS(bs, rs1) :: rs2 => rs1.map(fuse(bs, _)) ::: flats(rs2)
+ case r1 :: rs2 => r1 :: flats(rs2)
+}}
+
+def bsimp(r: ARexp): ARexp = {
+ //profile_bsimp = inc_profile(profile_bsimp, r)
+ profile_bsimp = profile_bsimp + 1
+ r match {
+ case ASEQ(bs1, r1, r2) => (bsimp(r1), bsimp(r2)) match {
+ case (AZERO, _) => AZERO
+ case (_, AZERO) => AZERO
+ case (AONE(bs2), r2s) => fuse(bs1 ++ bs2, r2s)
+ case (r1s, r2s) => ASEQ(bs1, r1s, r2s)
+ }
+ case AALTS(bs1, rs) => distinctBy(flats(rs.map(bsimp)), erase) match {
+ case Nil => AZERO
+ case r :: Nil => fuse(bs1, r)
+ case rs => AALTS(bs1, rs)
+ }
+ //case ASTAR(bs1, r1) => ASTAR(bs1, bsimp(r1))
+ case r => r
+ }
+}
+
+
+
+
+def bders_simp (s: List[Char], r: ARexp) : ARexp = s match {
+ case Nil => r
+ case c::s => bders_simp(s, bsimp(bder(c, r)))
+}
+
+def blex_simp(r: ARexp, s: List[Char]) : Bits = s match {
+ case Nil => if (bnullable(r)) bmkeps(r)
+ else throw new Exception("Not matched")
+ case c::cs => blex_simp(bsimp(bder(c, r)), cs)
+}
+
+
+def blexing_simp(r: Rexp, s: String) : Val =
+ decode(r, blex_simp(internalise(r), s.toList))
+
+
+def btokenise_simp(r: Rexp, s: String) = env(blexing_simp(r, s)).map(esc2)
+
+
+
+// INCLUDING SIMPLIFICATION UNDER STARS
+
+def bsimp_full(r: ARexp): ARexp = r match {
+ case ASEQ(bs1, r1, r2) => (bsimp_full(r1), bsimp_full(r2)) match {
+ case (AZERO, _) => AZERO
+ case (_, AZERO) => AZERO
+ case (AONE(bs2), r2s) => fuse(bs1 ++ bs2, r2s)
+ case (r1s, r2s) => ASEQ(bs1, r1s, r2s)
+ }
+ case AALTS(bs1, rs) => distinctBy(flats(rs.map(bsimp_full)), erase) match {
+ case Nil => AZERO
+ case r :: Nil => fuse(bs1, r)
+ case rs => AALTS(bs1, rs)
+ }
+ case ASTAR(bs1, r1) => ASTAR(bs1, bsimp_full(r1))
+ case r => r
+}
+
+def bders_simp_full(s: List[Char], r: ARexp) : ARexp = s match {
+ case Nil => r
+ case c::s => bders_simp_full(s, bsimp_full(bder(c, r)))
+}
+
+def blex_simp_full(r: ARexp, s: List[Char]) : Bits = s match {
+ case Nil => if (bnullable(r)) bmkeps(r)
+ else throw new Exception("Not matched")
+ case c::cs => blex_simp_full(bsimp_full(bder(c, r)), cs)
+}
+
+
+def blexing_simp_full(r: Rexp, s: String) : Val =
+ decode(r, blex_simp_full(internalise(r), s.toList))
+
+
+def btokenise_simp_full(r: Rexp, s: String) = env(blexing_simp_full(r, s)).map(esc2)
+
+
+
+// Testing
+//============
+
+def time[T](code: => T) = {
+ val start = System.nanoTime()
+ val result = code
+ val end = System.nanoTime()
+ ((end - start)/1.0e9).toString
+ //result
+}
+
+def timeR[T](code: => T) = {
+ val start = System.nanoTime()
+ for (i <- 1 to 10) code
+ val result = code
+ val end = System.nanoTime()
+ (result, (end - start))
+}
+
+//size: of a Aregx for testing purposes
+def size(r: Rexp) : Int = r match {
+ case ZERO => 1
+ case ONE => 1
+ case PRED(_,_) => 1
+ case SEQ(r1, r2) => 1 + size(r1) + size(r2)
+ case ALTS(rs) => 1 + rs.map(size).sum
+ case STAR(r) => 1 + size(r)
+ case RECD(_, r) => size(r)
+}
+
+def asize(a: ARexp) = size(erase(a))
+
+
+// Lexing Rules for a Small While Language
+
+//symbols
+val SYM = PRED("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ".contains(_), "SYM")
+//digits
+val DIGIT = PRED("0123456789".contains(_), "NUM")
+//identifiers
+val ID = SYM ~ (SYM | DIGIT).%
+//numbers
+val NUM = STAR(DIGIT)
+//keywords
+val KEYWORD : Rexp = "skip" | "while" | "do" | "if" | "then" | "else" | "read" | "write" | "true" | "false"
+//semicolons
+val SEMI: Rexp = ";"
+//operators
+val OP: Rexp = ":=" | "==" | "-" | "+" | "*" | "!=" | "<" | ">" | "<=" | ">=" | "%" | "/"
+//whitespaces
+val WHITESPACE = PLUS(" " | "\n" | "\t")
+//parentheses
+val RPAREN: Rexp = ")"
+val LPAREN: Rexp = "("
+val BEGIN: Rexp = "{"
+val END: Rexp = "}"
+//strings...but probably needs not
+val STRING: Rexp = "\"" ~ SYM.% ~ "\""
+
+
+
+val WHILE_REGS = (("k" $ KEYWORD) |
+ ("i" $ ID) |
+ ("o" $ OP) |
+ ("n" $ NUM) |
+ ("s" $ SEMI) |
+ ("str" $ STRING) |
+ ("p" $ (LPAREN | RPAREN)) |
+ ("b" $ (BEGIN | END)) |
+ ("w" $ WHITESPACE)).%
+
+// Bigger Tests
+//==============
+
+
+val fib_prog = """
+write "Fib";
+read n;
+minus1 := 0;
+minus2 := 1;
+while n > 0 do {
+ temp := minus2;
+ minus2 := minus1 + minus2;
+ minus1 := temp;
+ n := n - 1
+};
+write "Result";
+write minus2
+"""
+
+
+
+
+profile_simp = 0
+profile_bsimp = 0
+profile_flats = 0
+
+println("Original " + size(WHILE_REGS))
+println("Size Bit " + asize(bders_simp((fib_prog * 20).toList, internalise(WHILE_REGS))) + " " + profile_bsimp + " + " + profile_flats)
+println("Size Old " + size(ders_simp((fib_prog * 20).toList, WHILE_REGS)) + " " + profile_simp)
+
+System.exit(0)
+
+println("Internal sizes test OK or strange")
+
+def perc(p1: Double, p2: Double) : String =
+ f"${(((p1 - p2) / p2) * 100.0) }%5.0f" + "%"
+
+def ders_test(n: Int, s: List[Char], r: Rexp, a: ARexp) : (Rexp, ARexp) = s match {
+ case Nil => (r, a)
+ case c::s => {
+ // derivative
+ val (rd1, tr1) = timeR(der(c, r))
+ val (ad1, ta1) = timeR(bder(c, a))
+ val trs1 = f"${tr1}%.5f"
+ val tas1 = f"${ta1}%.5f"
+ if (tr1 < ta1) println(s"Time strange der (step) ${n} ${perc(ta1, tr1)} sizes der ${size(rd1)} ${asize(ad1)}")
+ //simplification
+ val (rd, tr) = timeR(simp(rd1)._1)
+ val (ad, ta) = timeR(bsimp(ad1))
+ val trs = f"${tr}%.5f"
+ val tas = f"${ta}%.5f"
+ //full simplification
+ val (adf, taf) = timeR(bsimp_full(ad1))
+ if (tr < ta) println(s"Time strange simp (step) ${n} ${perc(ta, tr)} sizes simp ${size(rd)} ${asize(ad)}")
+ if (n == 1749 || n == 1734) {
+ println{s"Aregex before bder (size: ${asize(a)})\n ${string(erase(a))}"}
+ println{s"Aregex after bder (size: ${asize(ad1)})\n ${string(erase(ad1))}"}
+ println{s"Aregex after bsimp (size: ${asize(ad)})\n ${string(erase(ad))}"}
+ println{s"Aregex after bsimp_full (size: ${asize(adf)})\n ${string(erase(adf))}"}
+ }
+ ders_test(n + 1, s, rd, ad)
+ }
+}
+
+val prg = (fib_prog * 10).toList
+ders_test(0, prg, WHILE_REGS, internalise(WHILE_REGS))
+
+