--- a/ChengsongTanPhdThesis/Chapters/Inj.tex Thu Jun 09 22:08:06 2022 +0100
+++ b/ChengsongTanPhdThesis/Chapters/Inj.tex Sun Jun 12 17:03:09 2022 +0100
@@ -10,29 +10,33 @@
In this chapter, we define the basic notions
for regular languages and regular expressions.
+This is essentially a description in "English"
+of your formalisation in Isabelle/HOL.
We also give the definition of what $\POSIX$ lexing means.
\section{Basic Concepts}
-Usually in formal language theory there is an alphabet
+Usually formal language theory starts with an alphabet
denoting a set of characters.
-Here we only use the datatype of characters from Isabelle,
-which roughly corresponds to the ASCII character.
-Then using the usual $[]$ notation for lists,
-we can define strings using chars:
+Here we just use the datatype of characters from Isabelle,
+which roughly corresponds to the ASCII characters.
+In what follows we shall leave the information about the alphabet
+implicit.
+Then using the usual bracket notation for lists,
+we can define strings made up of characters:
\begin{center}
\begin{tabular}{lcl}
-$\textit{string}$ & $\dn$ & $[] | c :: cs$\\
-& & $(c\; \text{has char type})$
+$\textit{s}$ & $\dn$ & $[] \; |\; c :: s$
\end{tabular}
\end{center}
-And strings can be concatenated to form longer strings,
-in the same way as we concatenate two lists,
-which we denote as $@$. We omit the precise
+Where $c$ is a variable ranging over characters.
+Strings can be concatenated to form longer strings in the same
+way as we concatenate two lists, which we write as @.
+We omit the precise
recursive definition here.
We overload this concatenation operator for two sets of strings:
\begin{center}
\begin{tabular}{lcl}
-$A @ B $ & $\dn$ & $\{s_A @ s_B \mid s_A \in A; s_B \in B \}$\\
+$A @ B $ & $\dn$ & $\{s_A @ s_B \mid s_A \in A \land s_B \in B \}$\\
\end{tabular}
\end{center}
We also call the above \emph{language concatenation}.
@@ -41,11 +45,11 @@
\begin{center}
\begin{tabular}{lcl}
$A^0 $ & $\dn$ & $\{ [] \}$\\
-$A^{n+1}$ & $\dn$ & $A^n @ A$
+$A^{n+1}$ & $\dn$ & $A @ A^n$
\end{tabular}
\end{center}
The union of all the natural number powers of a language
-is defined as the Kleene star operator:
+is usually defined as the Kleene star operator:
\begin{center}
\begin{tabular}{lcl}
$A*$ & $\dn$ & $\bigcup_{i \geq 0} A^i$ \\
@@ -65,28 +69,28 @@
\inferrule{\\s_1 \in A \land \; s_2 \in A*}{s_1 @ s_2 \in A*}
\end{mathpar}
\end{center}
-
-We also define an operation of "chopping of" a character from
-a language, which we call $\Der$, meaning "Derivative for a language":
+\ChristianComment{Yes, used the inferrule command in mathpar}
+We also define an operation of "chopping off" a character from
+a language, which we call $\Der$, meaning \emph{Derivative} (for a language):
\begin{center}
\begin{tabular}{lcl}
$\textit{Der} \;c \;A$ & $\dn$ & $\{ s \mid c :: s \in A \}$\\
\end{tabular}
\end{center}
\noindent
-This can be generalised to "chopping off" a string from all strings within set $A$,
-with the help of the concatenation operator:
+This can be generalised to "chopping off" a string from all strings within set $A$,
+namely:
\begin{center}
\begin{tabular}{lcl}
-$\textit{Ders} \;w \;A$ & $\dn$ & $\{ s \mid w@s \in A \}$\\
+$\textit{Ders} \;s \;A$ & $\dn$ & $\{ s' \mid s@s' \in A \}$\\
\end{tabular}
\end{center}
\noindent
-which is essentially the left quotient $A \backslash L'$ of $A$ against
-the singleton language $L' = \{w\}$
+which is essentially the left quotient $A \backslash L$ of $A$ against
+the singleton language with $L = \{w\}$
in formal language theory.
-For this dissertation the $\textit{Ders}$ definition with
-a single string suffices.
+However for the purposes here, the $\textit{Ders}$ definition with
+a single string is sufficient.
With the sequencing, Kleene star, and $\textit{Der}$ operator on languages,
we have a few properties of how the language derivative can be defined using
@@ -510,7 +514,12 @@
For instance, when lexing a code snippet
$\textit{iffoo} = 3$ with the regular expression $\textit{keyword} + \textit{identifier}$, we want $\textit{iffoo}$ to be recognized
as an identifier rather than a keyword.
-
+\ChristianComment{Do I also introduce lexical values $LV$ here?}
+We know that $\POSIX$ values are also part of the normal values:
+\begin{lemma}
+$(r, s) \rightarrow v \implies \vdash v: r$
+\end{lemma}
+\noindent
The good property about a $\POSIX$ value is that
given the same regular expression $r$ and string $s$,
one can always uniquely determine the $\POSIX$ value for it:
@@ -659,12 +668,12 @@
\noindent
The central property of the $\lexer$ is that it gives the correct result by
$\POSIX$ standards:
- \begin{lemma}
+ \begin{theorem}
\begin{tabular}{l}
- $s \in L(r) \Longleftrightarrow (\exists v. \; r \; s = \Some(v) \land (r, \; s) \rightarrow v)$\\
- $s \notin L(r) \Longleftrightarrow (\lexer \; r\; s = \None)$
+ $\lexer \; r \; s = \Some(v) \Longleftrightarrow (r, \; s) \rightarrow v$\\
+ $\lexer \;r \; s = \None \Longleftrightarrow \neg(\exists v. (r, s) \rightarrow v)$
\end{tabular}
- \end{lemma}
+ \end{theorem}
\begin{proof}
@@ -674,7 +683,7 @@
\end{proof}
-Pictorially, the algorithm is as follows (
+We now give a pictorial view of the algorithm (
For convenience, we employ the following notations: the regular
expression we start with is $r_0$, and the given string $s$ is composed
of characters $c_0 c_1 \ldots c_{n-1}$. The
@@ -735,7 +744,7 @@
\end{figure}\label{fig:BetterWaterloo}
That is because our lexing algorithm currently keeps a lot of
-"useless values that will never not be used.
+"useless" values that will not be used.
These different ways of matching will grow exponentially with the string length.
For $r= (a^*\cdot a^*)^*$ and
@@ -744,10 +753,10 @@
there will be $n - 1$ "splitting points" on $s$ we can independently choose to
split or not so that each sub-string
segmented by those chosen splitting points will form different iterations.
-For example when $n=4$,
+For example when $n=4$, we give out a few of the many possibilities of splitting:
\begin{center}
\begin{tabular}{lcr}
-$aaaa $ & $\rightarrow$ & $\Stars\, [v_{iteration \,aaaa}]$ (1 iteration, this iteration will be divided between the inner sequence $a^*\cdot a^*$)\\
+$aaaa $ & $\rightarrow$ & $\Stars\, [v_{iteration \,aaaa}]$ (1 iteration)\\
$a \mid aaa $ & $\rightarrow$ & $\Stars\, [v_{iteration \,a},\, v_{iteration \,aaa}]$ (two iterations)\\
$aa \mid aa $ & $\rightarrow$ & $\Stars\, [v_{iteration \, aa},\, v_{iteration \, aa}]$ (two iterations)\\
$a \mid aa\mid a $ & $\rightarrow$ & $\Stars\, [v_{iteration \, a},\, v_{iteration \, aa}, \, v_{iteration \, a}]$ (three iterations)\\
--- a/thys2/blexer2.sc Thu Jun 09 22:08:06 2022 +0100
+++ b/thys2/blexer2.sc Sun Jun 12 17:03:09 2022 +0100
@@ -915,6 +915,11 @@
res.toSet
}
+def attachCtxcc(r: Rexp, ctx: List[Rexp]) : Set[Rexp] = {
+ val res = turnIntoTerms((L(r, ctx))).map(oneSimp)
+ res.toSet
+}
+
def ABIncludedByC[A, B, C](a: A, b: B, c: C, f: (A, B) => C, subseteqPred: (C, C) => Boolean) : Boolean = {
subseteqPred(f(a, b), c)
}
@@ -923,7 +928,9 @@
res
}
def prune6(acc: Set[Rexp], r: ARexp, ctx: List[Rexp]) : ARexp = {
- if (ABIncludedByC(r, ctx, acc, attachCtx, rs1_subseteq_rs2)) {//acc.flatMap(breakIntoTerms
+ if (ABIncludedByC(a = r, b = ctx, c = acc,
+ f = attachCtx, subseteqPred = rs1_subseteq_rs2))
+ {//acc.flatMap(breakIntoTerms
AZERO
}
else{
@@ -951,6 +958,36 @@
}
}
+def prune6cc(acc: Set[Rexp], r: Rexp, ctx: List[Rexp]) : Rexp = {
+ if (ABIncludedByC(a = r, b = ctx, c = acc,
+ f = attachCtxcc, subseteqPred = rs1_subseteq_rs2))
+ {//acc.flatMap(breakIntoTerms
+ ZERO
+ }
+ else{
+ r match {
+ case SEQ(r1, r2) =>
+ (prune6cc(acc, r1, r2 :: ctx)) match{
+ case ZERO =>
+ ZERO
+ case ONE =>
+ r2
+ case r1p =>
+ SEQ(r1p, r2)
+ }
+ case ALTS(r1, r2) =>
+ List(r1, r2).map(r => prune6cc(acc, r, ctx)).filter(_ != AZERO) match {
+ case Nil =>
+ ZERO
+ case r :: Nil =>
+ r
+ case ra :: rb :: Nil =>
+ ALTS(ra, rb)
+ }
+ case r => r
+ }
+ }
+}
def distinctBy6(xs: List[ARexp], acc: Set[Rexp] = Set()) : List[ARexp] = xs match {
case Nil =>
@@ -973,6 +1010,26 @@
}
}
+def distinctByacc(xs: List[Rexp], acc: Set[Rexp] = Set()) : Set[Rexp] = xs match {
+ case Nil =>
+ acc
+ case x :: xs => {
+ if(acc.contains(x)){
+ distinctByacc(xs, acc)
+ }
+ else{
+ val pruned = prune6cc(acc, x, Nil)
+ val newTerms = turnIntoTerms(pruned)
+ pruned match {
+ case ZERO =>
+ distinctByacc(xs, acc)
+ case xPrime =>
+ distinctByacc(xs, newTerms.map(oneSimp) ++: acc)//distinctBy5(xs, addToAcc.map(oneSimp(_)) ::: acc)
+ }
+ }
+ }
+}
+
def breakIntoTerms(r: Rexp) : List[Rexp] = r match {
case SEQ(r1, r2) => breakIntoTerms(r1).map(r11 => SEQ(r11, r2))
case ALTS(r1, r2) => breakIntoTerms(r1) ::: breakIntoTerms(r2)
@@ -1380,21 +1437,23 @@
// }
}
-naive_matcher()
+// naive_matcher()
def generator_test() {
- test(rexp(4), 1000000) { (r: Rexp) =>
+ test(single(SEQ(SEQ(STAR(CHAR('b')),STAR(STAR(SEQ(CHAR('a'),CHAR('b'))))),
+ SEQ(SEQ(CHAR('b'),STAR(ALTS(CHAR('a'),ONE))),ONE))), 1) { (r: Rexp) =>
// ALTS(SEQ(SEQ(ONE,CHAR('a')),STAR(CHAR('a'))),SEQ(ALTS(CHAR('c'),ONE),STAR(ZERO))))))), 1) { (r: Rexp) =>
- val ss = Set("b")//stringsFromRexp(r)
- val boolList = ss.filter(s => s != "").map(s => {
+ val ss = stringsFromRexp(r)
+ val boolList = ss.map(s => {
//val bdStrong = bdersStrong(s.toList, internalise(r))
- val bdStrong6 = bdersStrong7(s.toList, internalise(r))
+ val bdStrong6 = bdersStrong6(s.toList, internalise(r))
val bdStrong6Set = turnIntoTerms(erase(bdStrong6))
val pdersSet = pderUNIV(r)//.flatMap(r => turnIntoTerms(r))
val pdersSetBroken = pdersSet.flatMap(r => turnIntoTerms(r))
- bdStrong6Set.size <= pdersSet.size || bdStrong6Set.size <= pdersSetBroken.size
+ rs1_subseteq_rs2(bdStrong6Set.toSet, distinctByacc(pdersSet.toList))
+ //bdStrong6Set.size <= pdersSet.size || bdStrong6Set.size <= pdersSetBroken.size ||
+ //rs1_subseteq_rs2(bdStrong6Set.toSet, pdersSet union pdersSetBroken)//|| bdStrong6Set.size <= pdersSetBroken.size
})
- //println(boolList)
//!boolList.exists(b => b == false)
!boolList.exists(b => b == false)
}
@@ -1408,13 +1467,19 @@
// CHAR('c')))))//SEQ(STAR(CHAR('c')),STAR(SEQ(STAR(CHAR('c')),ONE)))//STAR(SEQ(ALTS(STAR(CHAR('c')),CHAR('c')),SEQ(ALTS(CHAR('c'),ONE),ONE)))
//counterexample1: STAR(SEQ(ALTS(STAR(ZERO),ALTS(CHAR(a),CHAR(b))),SEQ(ONE,ALTS(CHAR(a),CHAR(b)))))
//counterexample2: SEQ(ALTS(SEQ(CHAR(a),STAR(ONE)),STAR(ONE)),ALTS(CHAR(a),SEQ(ALTS(CHAR(c),CHAR(a)),CHAR(b))))
+
+//new ce1 : STAR(SEQ(ALTS(ALTS(ONE,CHAR(a)),SEQ(ONE,CHAR(b))),ALTS(CHAR(a),ALTS(CHAR(b),CHAR(a)))))
+//new ce2 : ALTS(CHAR(b),SEQ(ALTS(ZERO,ALTS(CHAR(b),CHAR(b))),ALTS(ALTS(CHAR(a),CHAR(b)),SEQ(CHAR(c),ONE))))
+//new ce3 : SEQ(CHAR(b),ALTS(ALTS(ALTS(ONE,CHAR(a)),SEQ(CHAR(c),ONE)),SEQ(STAR(ZERO),SEQ(ONE,CHAR(b)))))
def counterexample_check() {
- val r = SEQ(SEQ(STAR(ALTS(CHAR('a'),CHAR('b'))),
- ALTS(ALTS(CHAR('c'),CHAR('b')),STAR(ONE))),STAR(CHAR('b')))
+ val r = SEQ(SEQ(STAR(CHAR('b')),STAR(STAR(SEQ(CHAR('a'),CHAR('b'))))),
+ SEQ(SEQ(CHAR('b'),STAR(ALTS(CHAR('a'),ONE))),ONE))//SEQ(SEQ(STAR(ALTS(CHAR('a'),CHAR('b'))),
+ //ALTS(ALTS(CHAR('c'),CHAR('b')),STAR(ONE))),STAR(CHAR('b')))
val s = "b"
val bdStrong5 = bdersStrong7(s.toList, internalise(r))
- val bdStrong5Set = breakIntoTerms(erase(bdStrong5))
+ val bdStrong5Set = turnIntoTerms(erase(bdStrong5))
val pdersSet = pderUNIV(r)//.map(r => erase(bsimp(internalise(r))))//.flatMap(r => turnIntoTerms(r))//.map(oneSimp).flatMap(r => breakIntoTerms(r))
+ val apdersSet = pdersSet.map(internalise)
println("original regex ")
rprint(r)
println("after strong bsimp")
@@ -1423,9 +1488,23 @@
rsprint(bdStrong5Set)
println("after pderUNIV")
rsprint(pdersSet.toList)
+ println("pderUNIV distinctBy6")
+ //asprint(distinctBy6(apdersSet.toList))
+ rsprint(distinctByacc(pdersSet.toList))
+ // rsprint(turnIntoTerms(pdersSet.toList(3)))
+ // println("NO 3 not into terms")
+ // rprint((pdersSet.toList()))
+ // println("after pderUNIV broken")
+ // rsprint(pdersSet.flatMap(r => turnIntoTerms(r)).toList)
}
-// counterexample_check()
+counterexample_check()
+
+def breakable(r: Rexp) : Boolean = r match {
+ case SEQ(ALTS(_, _), _) => true
+ case SEQ(r1, r2) => breakable(r1)
+ case _ => false
+}
def linform_test() {
val r = STAR(SEQ(STAR(CHAR('c')),ONE))//SEQ(STAR(CHAR('c')),STAR(SEQ(STAR(CHAR('c')),ONE))) //