--- a/thys/Paper/Paper.thy Mon Mar 07 03:23:28 2016 +0000
+++ b/thys/Paper/Paper.thy Mon Mar 07 18:56:41 2016 +0000
@@ -83,7 +83,7 @@
correct according to the specification.
The answer given by Sulzmann and Lu \cite{Sulzmann2014} is to define a
-relation (called an ``Order Relation'') on the set of values of @{term r},
+relation (called an ``order relation'') on the set of values of @{term r},
and to show that (once a string to be matched is chosen) there is a maximum
element and that it is computed by their derivative-based algorithm. This
proof idea is inspired by work of Frisch and Cardelli \cite{Frisch2004} on a
@@ -152,7 +152,7 @@
POSIX matching to tokenise strings, say @{text "iffoo"} and @{text "if"}.
For @{text "iffoo"} we obtain by the longest match rule a single identifier
token, not a keyword followed by an identifier. For @{text "if"} we obtain by
-rule priority a keyword token, not an identifier token---even if @{text
+the priority rule a keyword token, not an identifier token---even if @{text
"r\<^bsub>id\<^esub>"} matches also.\bigskip
\noindent {\bf Contributions:} (NOT DONE YET) We have implemented in
@@ -213,17 +213,17 @@
recursive function @{term L} with the clauses:
\begin{center}
- \begin{tabular}{rcl}
- @{thm (lhs) L.simps(1)} & $\dn$ & @{thm (rhs) L.simps(1)}\\
- @{thm (lhs) L.simps(2)} & $\dn$ & @{thm (rhs) L.simps(2)}\\
- @{thm (lhs) L.simps(3)} & $\dn$ & @{thm (rhs) L.simps(3)}\\
- @{thm (lhs) L.simps(4)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) L.simps(4)[of "r\<^sub>1" "r\<^sub>2"]}\\
- @{thm (lhs) L.simps(5)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) L.simps(5)[of "r\<^sub>1" "r\<^sub>2"]}\\
- @{thm (lhs) L.simps(6)} & $\dn$ & @{thm (rhs) L.simps(6)}\\
+ \begin{tabular}{l@ {\hspace{5mm}}rcl}
+ (1) & @{thm (lhs) L.simps(1)} & $\dn$ & @{thm (rhs) L.simps(1)}\\
+ (2) & @{thm (lhs) L.simps(2)} & $\dn$ & @{thm (rhs) L.simps(2)}\\
+ (3) & @{thm (lhs) L.simps(3)} & $\dn$ & @{thm (rhs) L.simps(3)}\\
+ (4) & @{thm (lhs) L.simps(4)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) L.simps(4)[of "r\<^sub>1" "r\<^sub>2"]}\\
+ (5) & @{thm (lhs) L.simps(5)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) L.simps(5)[of "r\<^sub>1" "r\<^sub>2"]}\\
+ (6) & @{thm (lhs) L.simps(6)} & $\dn$ & @{thm (rhs) L.simps(6)}\\
\end{tabular}
\end{center}
- \noindent In the fourth clause we use the operation @{term "DUMMY ;;
+ \noindent In clause (4) we use the operation @{term "DUMMY ;;
DUMMY"} for the concatenation of two languages (it is also list-append for
strings). We use the star-notation for regular expressions and for
languages (in the last clause above). The star for languages is defined
@@ -310,11 +310,11 @@
\noindent gives a positive answer if and only if @{term "s \<in> L r"}.
Consequently, this regular expression matching algorithm satisfies the
- usual specification. While the matcher above calculates a provably correct
- YES/NO answer for whether a regular expression matches a string, the novel
- idea of Sulzmann and Lu \cite{Sulzmann2014} is to append another phase to
- this algorithm in order to calculate a [lexical] value. We will explain
- the details next.
+ usual specification for regular expression matching. While the matcher
+ above calculates a provably correct YES/NO answer for whether a regular
+ expression matches a string or not, the novel idea of Sulzmann and Lu
+ \cite{Sulzmann2014} is to append another phase to this algorithm in order
+ to calculate a [lexical] value. We will explain the details next.
*}
@@ -338,11 +338,11 @@
@{term "Stars vs"}
\end{center}
- \noindent where we use @{term vs} standing for a list of values. (This is
+ \noindent where we use @{term vs} to stand for a list of values. (This is
similar to the approach taken by Frisch and Cardelli for GREEDY matching
- \cite{Frisch2004}, and Sulzmann and Lu \cite{Sulzmann2014} for POSIX matching).
- The string underlying a value can be calculated by the @{const flat}
- function, written @{term "flat DUMMY"} and defined as:
+ \cite{Frisch2004}, and Sulzmann and Lu \cite{Sulzmann2014} for POSIX
+ matching). The string underlying a value can be calculated by the @{const
+ flat} function, written @{term "flat DUMMY"} and defined as:
\begin{center}
\begin{tabular}{lcl}
@@ -422,14 +422,15 @@
\draw (r4) node[anchor=north west] {\;\raisebox{-8mm}{@{term "mkeps"}}};
\end{tikzpicture}
\end{center}
-\caption{The two phases of the algorithm by Sulzmann \& Lu \cite{Sulzmann2014}
+\caption{The two phases of the algorithm by Sulzmann \& Lu \cite{Sulzmann2014},
matching the string @{term "[a,b,c]"}. The first phase (the arrows from
-left to right) is \Brz's matcher building succesive derivatives. If at the
-last regular expression is @{term nullable}, then functions of the
-second phase are called: first @{term mkeps} calculates a value witnessing
+left to right) is \Brz's matcher building succesive derivatives. If the
+last regular expression is @{term nullable}, then the functions of the
+second phase are called (the top-down and right-to-left arrows): first
+@{term mkeps} calculates a value witnessing
how the empty string has been recognised by @{term "r\<^sub>4"}. After
that the function @{term inj} `injects back' the characters of the string into
-the values (the arrows from right to left).
+the values.
\label{Sulz}}
\end{figure}
@@ -450,9 +451,10 @@
alternative regular expression, say @{term "ALT r\<^sub>1 r\<^sub>2"}, can
match the empty string and furthermore @{term "r\<^sub>1"} can match the
empty string, then we return a @{text Left}-value. The @{text
- Right}-value will only be returned if @{term "r\<^sub>1"} is not nullable.
+ Right}-value will only be returned if @{term "r\<^sub>1"} cannot match the empty
+ string.
- The most interesting novelty from Sulzmann and Lu \cite{Sulzmann2014} is
+ The most interesting idea from Sulzmann and Lu \cite{Sulzmann2014} is
the construction of a value for how @{term "r\<^sub>1"} can match the
string @{term "[a,b,c]"} from the value how the last derivative, @{term
"r\<^sub>4"} in Fig~\ref{Sulz}, can match the empty string. Sulzmann and
@@ -510,9 +512,9 @@
we match in the clause (5) is @{term "Left (Seq v\<^sub>1 v\<^sub>2)"},
while in (6) it is just @{term "Right v\<^sub>2"}. One more interesting
point is in the right-hand side of clause (6): since in this case the
- regular expression @{text "r\<^sub>1"} does not ``contribute'' for
- matching the string, that is only matches the empty string, we need to
- call @{const mkeps} in order to construct a value how @{term "r\<^sub>1"}
+ regular expression @{text "r\<^sub>1"} does not ``contribute'' to
+ matching the string, that means it only matches the empty string, we need to
+ call @{const mkeps} in order to construct a value for how @{term "r\<^sub>1"}
can match this empty string. A similar argument applies for why we can
expect in the left-hand side of clause (7) that the value is of the form
@{term "Seq v (Stars vs)"}---the derivative of a star is @{term "SEQ r
@@ -524,6 +526,18 @@
injval.simps(1)[of "c" "c"]} $\dn$ @{thm (rhs) injval.simps(1)[of "c"]},
but our deviation is harmless.}
+ The idea of @{term inj} to ``inject back'' a character into a value can
+ be made precise by the first part of the following lemma; the second
+ part shows that the underlying string of an @{const mkeps}-value is
+ the empty string.
+
+ \begin{lemma}\mbox{}\\\label{Prf_injval_flat}
+ \begin{tabular}{ll}
+ (1) & @{thm[mode=IfThen] Prf_injval_flat}\\
+ (2) & @{thm[mode=IfThen] mkeps_flat}
+ \end{tabular}
+ \end{lemma}
+
Having defined the @{const mkeps} and @{text inj} function we can extend
\Brz's matcher so that a [lexical] value is constructed (assuming the
regular expression matches the string). The clauses of the lexer are
@@ -599,9 +613,7 @@
@{thm[mode=IfThen] PMatch_mkeps}
\end{lemma}
- \begin{lemma}
- @{thm[mode=IfThen] Prf_injval_flat}
- \end{lemma}
+
\begin{lemma}
@{thm[mode=IfThen] PMatch2_roy_version}
--- a/thys/ReStar.thy Mon Mar 07 03:23:28 2016 +0000
+++ b/thys/ReStar.thy Mon Mar 07 18:56:41 2016 +0000
@@ -582,131 +582,158 @@
apply(clarify)
by (metis PMatch1(2))
-
-
-
(* a proof that does not need proj *)
lemma PMatch2_roy_version:
assumes "s \<in> (der c r) \<rightarrow> v"
shows "(c#s) \<in> r \<rightarrow> (injval r c v)"
using assms
-apply(induct r arbitrary: s v c rule: rexp.induct)
-apply(auto)
-(* ZERO case *)
-apply(erule PMatch.cases)
-apply(simp_all)[7]
-(* ONE case *)
-apply(erule PMatch.cases)
-apply(simp_all)[7]
-(* CHAR case *)
-apply(case_tac "c = x")
-apply(simp)
-apply(erule PMatch.cases)
-apply(simp_all)[7]
-apply (metis PMatch.intros(2))
-apply(simp)
-apply(erule PMatch.cases)
-apply(simp_all)[7]
-(* ALT case *)
-prefer 2
-apply(erule PMatch.cases)
-apply(simp_all)[7]
-apply (metis PMatch.intros(3))
-apply(clarify)
-apply(rule PMatch.intros)
-apply metis
-apply(simp add: der_correctness Der_def)
-(* SEQ case *)
-apply(case_tac "nullable x1")
-apply(simp)
-prefer 2
-(* not-nullbale case *)
-apply(simp)
-apply(erule PMatch.cases)
-apply(simp_all)[7]
-apply(clarify)
-apply(subst append.simps(2)[symmetric])
-apply(rule PMatch.intros)
-apply metis
-apply metis
-apply(auto)[1]
-apply(simp add: der_correctness Der_def)
-apply(auto)[1]
-(* nullable case *)
-apply(erule PMatch.cases)
-apply(simp_all)[7]
-(* left case *)
-apply(clarify)
-apply(erule PMatch.cases)
-apply(simp_all)[4]
-prefer 2
-apply(clarify)
-prefer 2
-apply(clarify)
-apply(clarify)
-apply(simp (no_asm))
-apply(subst append.simps(2)[symmetric])
-apply(rule PMatch.intros)
-apply metis
-apply metis
-apply(erule contrapos_nn)
-apply(erule exE)+
-apply(auto)[1]
-apply(simp add: der_correctness Der_def)
-apply metis
-(* right interesting case *)
-apply(clarify)
-apply(subst append.simps(1)[symmetric])
-apply(rule PMatch.intros)
-apply (metis PMatch_mkeps)
-apply metis
-apply(rule notI)
-apply(clarify)
-apply(simp)
-apply(simp add: der_correctness)
-apply(simp only: Der_def Sequ_def)
-apply(simp)
-apply (metis Cons_eq_append_conv)
-(* Stars case *)
-apply(erule PMatch.cases)
-apply(simp_all)[7]
-apply(clarify)
-apply(rotate_tac 2)
-apply(frule_tac PMatch1)
-apply(erule PMatch.cases)
-apply(simp_all)[7]
-apply(subst append.simps(2)[symmetric])
-apply(rule PMatch.intros)
-apply metis
-apply(auto)[1]
-apply(rule PMatch.intros)
-apply(simp)
-apply(simp)
-apply(simp)
-apply (metis L.simps(6))
-apply(subst Prf_injval_flat)
-apply (metis PMatch1)
-apply(simp)
-apply(auto)[1]
-apply(drule_tac x="s\<^sub>3" in spec)
-apply(drule mp)
-defer
-apply metis
-apply(clarify)
-apply(drule_tac x="s1" in meta_spec)
-apply(drule_tac x="v1" in meta_spec)
-apply(drule_tac x="c" in meta_spec)
-apply(simp)
-apply(rotate_tac 2)
-apply(drule PMatch.intros(6))
-apply(rule PMatch.intros(7))
-(* HERE *)
-apply (metis PMatch1(1) list.distinct(1) Prf_injval_flat)
-apply (metis Nil_is_append_conv)
-apply(simp)
-apply(subst der_correctness)
-apply(simp add: Der_def)
-done
+proof(induct r arbitrary: s v rule: rexp.induct)
+ case ZERO
+ have "s \<in> der c ZERO \<rightarrow> v" by fact
+ then have "s \<in> ZERO \<rightarrow> v" by simp
+ then have "False" by cases
+ then show "(c#s) \<in> ZERO \<rightarrow> (injval ZERO c v)" by simp
+next
+ case ONE
+ have "s \<in> der c ONE \<rightarrow> v" by fact
+ then have "s \<in> ZERO \<rightarrow> v" by simp
+ then have "False" by cases
+ then show "(c#s) \<in> ONE \<rightarrow> (injval ONE c v)" by simp
+next
+ case (CHAR d)
+ consider (eq) "c = d" | (ineq) "c \<noteq> d" by blast
+ then show "(c#s) \<in> (CHAR d) \<rightarrow> (injval (CHAR d) c v)"
+ proof (cases)
+ case eq
+ have "s \<in> der c (CHAR d) \<rightarrow> v" by fact
+ then have "s \<in> ONE \<rightarrow> v" using eq by simp
+ then have eqs: "s = [] \<and> v = Void" by cases simp
+ show "(c # s) \<in> CHAR d \<rightarrow> injval (CHAR d) c v" using eq eqs by (auto intro: PMatch.intros)
+ next
+ case ineq
+ have "s \<in> der c (CHAR d) \<rightarrow> v" by fact
+ then have "s \<in> ZERO \<rightarrow> v" using ineq by simp
+ then have "False" by cases
+ then show "(c # s) \<in> CHAR d \<rightarrow> injval (CHAR d) c v" by simp
+ qed
+next
+ case (ALT r1 r2)
+ have IH1: "\<And>s v. s \<in> der c r1 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r1 \<rightarrow> injval r1 c v" by fact
+ have IH2: "\<And>s v. s \<in> der c r2 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r2 \<rightarrow> injval r2 c v" by fact
+ have "s \<in> der c (ALT r1 r2) \<rightarrow> v" by fact
+ then have "s \<in> ALT (der c r1) (der c r2) \<rightarrow> v" by simp
+ then consider (left) v' where "v = Left v'" "s \<in> der c r1 \<rightarrow> v'"
+ | (right) v' where "v = Right v'" "s \<notin> L (der c r1)" "s \<in> der c r2 \<rightarrow> v'"
+ by cases auto
+ then show "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c v"
+ proof (cases)
+ case left
+ have "s \<in> der c r1 \<rightarrow> v'" by fact
+ then have "(c # s) \<in> r1 \<rightarrow> injval r1 c v'" using IH1 by simp
+ then have "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c (Left v')" by (auto intro: PMatch.intros)
+ then show "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c v" using left by simp
+ next
+ case right
+ have "s \<notin> L (der c r1)" by fact
+ then have "c # s \<notin> L r1" by (simp add: der_correctness Der_def)
+ moreover
+ have "s \<in> der c r2 \<rightarrow> v'" by fact
+ then have "(c # s) \<in> r2 \<rightarrow> injval r2 c v'" using IH2 by simp
+ ultimately have "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c (Right v')"
+ by (auto intro: PMatch.intros)
+ then show "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c v" using right by simp
+ qed
+next
+ case (SEQ r1 r2)
+ have IH1: "\<And>s v. s \<in> der c r1 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r1 \<rightarrow> injval r1 c v" by fact
+ have IH2: "\<And>s v. s \<in> der c r2 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r2 \<rightarrow> injval r2 c v" by fact
+ have "s \<in> der c (SEQ r1 r2) \<rightarrow> v" by fact
+ then consider
+ (left_nullable) v1 v2 s1 s2 where
+ "v = Left (Seq v1 v2)" "s = s1 @ s2"
+ "s1 \<in> der c r1 \<rightarrow> v1" "s2 \<in> r2 \<rightarrow> v2" "nullable r1"
+ "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)"
+ | (right_nullable) v1 s1 s2 where
+ "v = Right v1" "s = s1 @ s2"
+ "s \<in> der c r2 \<rightarrow> v1" "nullable r1" "s1 @ s2 \<notin> L (SEQ (der c r1) r2)"
+ | (not_nullable) v1 v2 s1 s2 where
+ "v = Seq v1 v2" "s = s1 @ s2"
+ "s1 \<in> der c r1 \<rightarrow> v1" "s2 \<in> r2 \<rightarrow> v2" "\<not>nullable r1"
+ "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)"
+ apply(auto split: if_splits simp add: Sequ_def) apply(erule PMatch.cases)
+ apply(auto elim: PMatch.cases simp add: Sequ_def der_correctness Der_def)
+ by fastforce
+ then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v"
+ proof (cases)
+ case left_nullable
+ have "s1 \<in> der c r1 \<rightarrow> v1" by fact
+ then have "(c # s1) \<in> r1 \<rightarrow> injval r1 c v1" using IH1 by simp
+ moreover
+ have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)" by fact
+ then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" by (simp add: der_correctness Der_def)
+ ultimately have "((c # s1) @ s2) \<in> SEQ r1 r2 \<rightarrow> Seq (injval r1 c v1) v2" using left_nullable by (rule_tac PMatch.intros)
+ then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v" using left_nullable by simp
+ next
+ case right_nullable
+ have "nullable r1" by fact
+ then have "[] \<in> r1 \<rightarrow> (mkeps r1)" by (rule PMatch_mkeps)
+ moreover
+ have "s \<in> der c r2 \<rightarrow> v1" by fact
+ then have "(c # s) \<in> r2 \<rightarrow> (injval r2 c v1)" using IH2 by simp
+ moreover
+ have "s1 @ s2 \<notin> L (SEQ (der c r1) r2)" by fact
+ then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = c # s \<and> [] @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" using right_nullable
+ by(auto simp add: der_correctness Der_def append_eq_Cons_conv Sequ_def)
+ ultimately have "([] @ (c # s)) \<in> SEQ r1 r2 \<rightarrow> Seq (mkeps r1) (injval r2 c v1)"
+ by(rule PMatch.intros)
+ then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v" using right_nullable by simp
+ next
+ case not_nullable
+ have "s1 \<in> der c r1 \<rightarrow> v1" by fact
+ then have "(c # s1) \<in> r1 \<rightarrow> injval r1 c v1" using IH1 by simp
+ moreover
+ have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)" by fact
+ then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" by (simp add: der_correctness Der_def)
+ ultimately have "((c # s1) @ s2) \<in> SEQ r1 r2 \<rightarrow> Seq (injval r1 c v1) v2" using not_nullable
+ by (rule_tac PMatch.intros) (simp_all)
+ then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v" using not_nullable by simp
+ qed
+next
+ case (STAR r)
+ have IH: "\<And>s v. s \<in> der c r \<rightarrow> v \<Longrightarrow> (c # s) \<in> r \<rightarrow> injval r c v" by fact
+ have "s \<in> der c (STAR r) \<rightarrow> v" by fact
+ then consider
+ (cons) v1 vs s1 s2 where
+ "v = Seq v1 (Stars vs)" "s = s1 @ s2"
+ "s1 \<in> der c r \<rightarrow> v1" "s2 \<in> (STAR r) \<rightarrow> (Stars vs)"
+ "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (STAR r))"
+ apply(erule_tac PMatch.cases)
+ apply(auto)
+ apply(rotate_tac 4)
+ apply(erule_tac PMatch.cases)
+ apply(auto)
+ apply (simp add: PMatch.intros(6))
+ using PMatch.intros(7) by blast
+ then show "(c # s) \<in> STAR r \<rightarrow> injval (STAR r) c v"
+ proof (cases)
+ case cons
+ have "s1 \<in> der c r \<rightarrow> v1" by fact
+ then have "(c # s1) \<in> r \<rightarrow> injval r c v1" using IH by simp
+ moreover
+ have "s2 \<in> STAR r \<rightarrow> Stars vs" by fact
+ moreover
+ have "(c # s1) \<in> r \<rightarrow> injval r c v1" by fact
+ then have "flat (injval r c v1) = (c # s1)" by (rule PMatch1)
+ then have "flat (injval r c v1) \<noteq> []" by simp
+ moreover
+ have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (STAR r))" by fact
+ then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))"
+ by (simp add: der_correctness Der_def)
+ ultimately
+ have "((c # s1) @ s2) \<in> STAR r \<rightarrow> Stars (injval r c v1 # vs)" by (rule PMatch.intros)
+ then show "(c # s) \<in> STAR r \<rightarrow> injval (STAR r) c v" using cons by(simp)
+ qed
+qed
lemma lex_correct1:
assumes "s \<notin> L r"
Binary file thys/paper.pdf has changed