--- a/thys3/Paper.thy Mon May 02 00:24:01 2022 +0100
+++ b/thys3/Paper.thy Tue May 03 13:11:41 2022 +0100
@@ -1353,7 +1353,7 @@
% tell Chengsong about Indian paper of closed forms of derivatives
\noindent
-where in (1) the $\textit{Suffix}(@{text "r"}_1, s)$ are the all the suffixes of $s$ where @{term "bders_simp r\<^sub>1 s'"} is nullable ($s'$ being a suffix of $s$).
+where in (1) the $\textit{Suffix}(@{text "r"}_1, s)$ are all the suffixes of $s$ where @{term "bders_simp r\<^sub>1 s'"} is nullable ($s'$ being a suffix of $s$).
In (3) we know that $\llbracket@{term "ASEQ [] (bders_simp r\<^sub>1 s) r\<^sub>2"}\rrbracket$ is
bounded by $N_1 + \llbracket{}r_2\rrbracket + 1$. In (5) we know the list comprehension contains only regular expressions of size smaller
than $N_2$. The list length after @{text distinctWith} is bounded by a number, which we call $l_{N_2}$. It stands