--- a/thys2/Paper/Paper.thy Sun Jan 30 01:03:26 2022 +0000
+++ b/thys2/Paper/Paper.thy Sun Jan 30 21:21:24 2022 +0000
@@ -26,7 +26,43 @@
CH ("_" [1000] 80) and
ALT ("_ + _" [77,77] 78) and
SEQ ("_ \<cdot> _" [77,77] 78) and
- STAR ("_\<^sup>\<star>" [79] 78)
+ STAR ("_\<^sup>\<star>" [79] 78) and
+
+ val.Void ("Empty" 78) and
+ val.Char ("Char _" [1000] 78) and
+ val.Left ("Left _" [79] 78) and
+ val.Right ("Right _" [1000] 78) and
+ val.Seq ("Seq _ _" [79,79] 78) and
+ val.Stars ("Stars _" [79] 78) and
+
+ Posix ("'(_, _') \<rightarrow> _" [63,75,75] 75) and
+
+ flat ("|_|" [75] 74) and
+ flats ("|_|" [72] 74) and
+ injval ("inj _ _ _" [79,77,79] 76) and
+ mkeps ("mkeps _" [79] 76) and
+ length ("len _" [73] 73) and
+ set ("_" [73] 73) and
+
+ AZERO ("ZERO" 81) and
+ AONE ("ONE _" [79] 81) and
+ ACHAR ("CHAR _ _" [79, 79] 80) and
+ AALTs ("ALTs _ _" [77,77] 78) and
+ ASEQ ("SEQ _ _ _" [79, 77,77] 78) and
+ ASTAR ("STAR _ _" [79, 79] 78) and
+
+ code ("code _" [79] 74) and
+ intern ("_\<^latex>\<open>\\mbox{$^\\uparrow$}\<close>" [900] 80) and
+ erase ("_\<^latex>\<open>\\mbox{$^\\downarrow$}\<close>" [1000] 74) and
+ bnullable ("nullable\<^latex>\<open>\\mbox{$_b$}\<close> _" [1000] 80) and
+ bmkeps ("mkeps\<^latex>\<open>\\mbox{$_b$}\<close> _" [1000] 80)
+
+
+lemma better_retrieve:
+ shows "rs \<noteq> Nil ==> retrieve (AALTs bs (r#rs)) (Left v) = bs @ retrieve r v"
+ and "rs \<noteq> Nil ==> retrieve (AALTs bs (r#rs)) (Right v) = bs @ retrieve (AALTs [] rs) v"
+ apply (metis list.exhaust retrieve.simps(4))
+ by (metis list.exhaust retrieve.simps(5))
(*>*)
@@ -76,6 +112,31 @@
longest match.
+\begin{center}
+\begin{tabular}{cc}
+ \begin{tabular}{r@ {\hspace{2mm}}c@ {\hspace{2mm}}l}
+ @{thm (lhs) der.simps(1)} & $\dn$ & @{thm (rhs) der.simps(1)}\\
+ @{thm (lhs) der.simps(2)} & $\dn$ & @{thm (rhs) der.simps(2)}\\
+ @{thm (lhs) der.simps(3)} & $\dn$ & @{thm (rhs) der.simps(3)}\\
+ @{thm (lhs) der.simps(4)[of c "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) der.simps(4)[of c "r\<^sub>1" "r\<^sub>2"]}\\
+ @{thm (lhs) der.simps(5)[of c "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{text "if"} @{term "nullable(r\<^sub>1)"}\\
+ & & @{text "then"} @{term "ALT (SEQ (der c r\<^sub>1) r\<^sub>2) (der c r\<^sub>2)"}\\
+ & & @{text "else"} @{term "SEQ (der c r\<^sub>1) r\<^sub>2"}\\
+ % & & @{thm (rhs) der.simps(5)[of c "r\<^sub>1" "r\<^sub>2"]}\\
+ @{thm (lhs) der.simps(6)} & $\dn$ & @{thm (rhs) der.simps(6)}
+ \end{tabular}
+ &
+ \begin{tabular}{l@ {\hspace{1mm}}c@ {\hspace{1mm}}l}
+ @{thm (lhs) nullable.simps(1)} & $\dn$ & @{thm (rhs) nullable.simps(1)}\\
+ @{thm (lhs) nullable.simps(2)} & $\dn$ & @{thm (rhs) nullable.simps(2)}\\
+ @{thm (lhs) nullable.simps(3)} & $\dn$ & @{thm (rhs) nullable.simps(3)}\\
+ @{thm (lhs) nullable.simps(4)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) nullable.simps(4)[of "r\<^sub>1" "r\<^sub>2"]}\\
+ @{thm (lhs) nullable.simps(5)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) nullable.simps(5)[of "r\<^sub>1" "r\<^sub>2"]}\\
+ @{thm (lhs) nullable.simps(6)} & $\dn$ & @{thm (rhs) nullable.simps(6)}\medskip\\
+ \end{tabular}
+\end{tabular}
+\end{center}
+
\begin{figure}[t]
\begin{center}
@@ -151,14 +212,90 @@
\end{figure}
+ \begin{center}
+ \begin{tabular}{lcl}
+ @{thm (lhs) mkeps.simps(1)} & $\dn$ & @{thm (rhs) mkeps.simps(1)}\\
+ @{thm (lhs) mkeps.simps(2)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) mkeps.simps(2)[of "r\<^sub>1" "r\<^sub>2"]}\\
+ @{thm (lhs) mkeps.simps(3)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) mkeps.simps(3)[of "r\<^sub>1" "r\<^sub>2"]}\\
+ @{thm (lhs) mkeps.simps(4)} & $\dn$ & @{thm (rhs) mkeps.simps(4)}\\
+ \end{tabular}
+ \end{center}
+
+ \begin{center}
+ \begin{tabular}{l@ {\hspace{5mm}}lcl}
+ \textit{(1)} & @{thm (lhs) injval.simps(1)} & $\dn$ & @{thm (rhs) injval.simps(1)}\\
+ \textit{(2)} & @{thm (lhs) injval.simps(2)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1"]} & $\dn$ &
+ @{thm (rhs) injval.simps(2)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1"]}\\
+ \textit{(3)} & @{thm (lhs) injval.simps(3)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>2"]} & $\dn$ &
+ @{thm (rhs) injval.simps(3)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>2"]}\\
+ \textit{(4)} & @{thm (lhs) injval.simps(4)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1" "v\<^sub>2"]} & $\dn$
+ & @{thm (rhs) injval.simps(4)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1" "v\<^sub>2"]}\\
+ \textit{(5)} & @{thm (lhs) injval.simps(5)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1" "v\<^sub>2"]} & $\dn$
+ & @{thm (rhs) injval.simps(5)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1" "v\<^sub>2"]}\\
+ \textit{(6)} & @{thm (lhs) injval.simps(6)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>2"]} & $\dn$
+ & @{thm (rhs) injval.simps(6)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>2"]}\\
+ \textit{(7)} & @{thm (lhs) injval.simps(7)[of "r" "c" "v" "vs"]} & $\dn$
+ & @{thm (rhs) injval.simps(7)[of "r" "c" "v" "vs"]}\\
+ \end{tabular}
+ \end{center}
+
*}
-section {* Bitcoded Derivatives *}
+section {* Bitcoded Regular Expressions and Derivatives *}
text {*
bitcoded regexes / decoding / bmkeps
gets rid of the second phase (only single phase)
correctness
+
+
+ \begin{center}
+ \begin{tabular}{lcl}
+ @{thm (lhs) code.simps(1)} & $\dn$ & @{thm (rhs) code.simps(1)}\\
+ @{thm (lhs) code.simps(2)} & $\dn$ & @{thm (rhs) code.simps(2)}\\
+ @{thm (lhs) code.simps(3)} & $\dn$ & @{thm (rhs) code.simps(3)}\\
+ @{thm (lhs) code.simps(4)} & $\dn$ & @{thm (rhs) code.simps(4)}\\
+ @{thm (lhs) code.simps(5)[of "v\<^sub>1" "v\<^sub>2"]} & $\dn$ & @{thm (rhs) code.simps(5)[of "v\<^sub>1" "v\<^sub>2"]}\\
+ @{thm (lhs) code.simps(6)} & $\dn$ & @{thm (rhs) code.simps(6)}\\
+ @{thm (lhs) code.simps(7)} & $\dn$ & @{thm (rhs) code.simps(7)}
+ \end{tabular}
+ \end{center}
+
+
+ The idea of the bitcodes is to annotate them to regular expressions and generate values
+ incrementally. The bitcodes can be read off from the @{text breg} and then decoded into a value.
+
+ \begin{center}
+ \begin{tabular}{lcl}
+ @{term breg} & $::=$ & @{term "AZERO"}\\
+ & $\mid$ & @{term "AONE bs"}\\
+ & $\mid$ & @{term "ACHAR bs c"}\\
+ & $\mid$ & @{term "AALTs bs rs"}\\
+ & $\mid$ & @{term "ASEQ bs r\<^sub>1 r\<^sub>2"}\\
+ & $\mid$ & @{term "ASTAR bs r"}
+ \end{tabular}
+ \end{center}
+
+
+
+ \begin{center}
+ \begin{tabular}{lcl}
+ @{thm (lhs) retrieve.simps(1)} & $\dn$ & @{thm (rhs) retrieve.simps(1)}\\
+ @{thm (lhs) retrieve.simps(2)} & $\dn$ & @{thm (rhs) retrieve.simps(2)}\\
+ @{thm (lhs) retrieve.simps(3)} & $\dn$ & @{thm (rhs) retrieve.simps(3)}\\
+ @{thm (lhs) better_retrieve(1)} & $\dn$ & @{thm (rhs) better_retrieve(1)}\\
+ @{thm (lhs) better_retrieve(2)} & $\dn$ & @{thm (rhs) better_retrieve(2)}\\
+ @{thm (lhs) retrieve.simps(6)[of _ "r\<^sub>1" "r\<^sub>2" "v\<^sub>1" "v\<^sub>2"]}
+ & $\dn$ & @{thm (rhs) retrieve.simps(6)[of _ "r\<^sub>1" "r\<^sub>2" "v\<^sub>1" "v\<^sub>2"]}\\
+ @{thm (lhs) retrieve.simps(7)} & $\dn$ & @{thm (rhs) retrieve.simps(7)}\\
+ @{thm (lhs) retrieve.simps(8)} & $\dn$ & @{thm (rhs) retrieve.simps(8)}
+ \end{tabular}
+ \end{center}
+
+
+ \begin{theorem}
+ @{thm blexer_correctness}
+ \end{theorem}
*}
@@ -166,31 +303,34 @@
text {*
Sulzmann \& Lu apply simplification via a fixpoint operation; also does not use erase to filter out duplicates.
-
+
not direct correspondence with PDERs, because of example
problem with retrieve
correctness
+
+
+
\begin{figure}[t]
\begin{center}
\begin{tabular}{c}
- @{thm[mode=Axiom] bs1}\qquad
- @{thm[mode=Axiom] bs2}\qquad
- @{thm[mode=Axiom] bs3}\\
- @{thm[mode=Rule] bs4}\qquad
- @{thm[mode=Rule] bs5}\\
- @{thm[mode=Rule] bs6}\qquad
- @{thm[mode=Rule] bs7}\\
- @{thm[mode=Rule] bs8}\\
+ @{thm[mode=Axiom] bs1[of _ "r\<^sub>2"]}\qquad
+ @{thm[mode=Axiom] bs2[of _ "r\<^sub>1"]}\qquad
+ @{thm[mode=Axiom] bs3[of "bs\<^sub>1" "bs\<^sub>2"]}\\
+ @{thm[mode=Rule] bs4[of "r\<^sub>1" "r\<^sub>2" _ "r\<^sub>3"]}\qquad
+ @{thm[mode=Rule] bs5[of "r\<^sub>3" "r\<^sub>4" _ "r\<^sub>1"]}\\
+ @{thm[mode=Axiom] bs6}\qquad
+ @{thm[mode=Axiom] bs7}\\
+ @{thm[mode=Rule] bs8[of "rs\<^sub>1" "rs\<^sub>2"]}\\
@{thm[mode=Axiom] ss1}\qquad
- @{thm[mode=Rule] ss2}\qquad
- @{thm[mode=Rule] ss3}\\
+ @{thm[mode=Rule] ss2[of "rs\<^sub>1" "rs\<^sub>2"]}\qquad
+ @{thm[mode=Rule] ss3[of "r\<^sub>1" "r\<^sub>2"]}\\
@{thm[mode=Axiom] ss4}\qquad
- @{thm[mode=Axiom] ss5}\qquad
- @{thm[mode=Rule] ss6}\\
+ @{thm[mode=Axiom] ss5[of "bs" "rs\<^sub>1" "rs\<^sub>2"]}\\
+ @{thm[mode=Rule] ss6[of "r\<^sub>1" "r\<^sub>2" "rs\<^sub>1" "rs\<^sub>2" "rs\<^sub>3"]}\\
\end{tabular}
\end{center}
\caption{???}\label{SimpRewrites}
--- a/thys2/Paper/document/root.tex Sun Jan 30 01:03:26 2022 +0000
+++ b/thys2/Paper/document/root.tex Sun Jan 30 21:21:24 2022 +0000
@@ -63,20 +63,19 @@
expressions. Their algorithm generates POSIX values which encode
the information of \emph{how} a regular expression matches a
string---that is, which part of the string is matched by which part
- of the regular expression. The purpose of the bitcodes in Sulzmann
- and Lu's algorithm is to generate POSIX values incrementally while
- derivatives are calculated. However they also help with designing
- `aggressive' simplification functions that keep the size of
+ of the regular expression. The purpose of the bitcodes is to generate POSIX values incrementally while
+ derivatives are calculated. They also help with designing
+ an `aggressive' simplification function that keeps the size of
derivatives small. Without simplification derivatives can grow
exponentially resulting in an extremely slow lexing algorithm. In this
paper we describe a variant of Sulzmann and Lu's algorithm: Our
- algorithm is a small, recursive functional program, whereas Sulzmann
+ algorithm is a recursive functional program, whereas Sulzmann
and Lu's version involves a fixpoint construction. We \textit{(i)}
prove in Isabelle/HOL that our program is correct and generates
unique POSIX values; we also \textit{(ii)} establish a polynomial
bound for the size of the derivatives. The size can be seen as a
- proxy measure for the efficiency of the lexing algorithm---that means
- because of the polynomial bound our algorithm does not suffer from
+ proxy measure for the efficiency of the lexing algorithm: because of
+ the polynomial bound our algorithm does not suffer from
the exponential blowup in earlier works.
% Brzozowski introduced the notion of derivatives for regular
--- a/thys2/SizeBound4.thy Sun Jan 30 01:03:26 2022 +0000
+++ b/thys2/SizeBound4.thy Sun Jan 30 21:21:24 2022 +0000
@@ -146,7 +146,7 @@
fun retrieve :: "arexp \<Rightarrow> val \<Rightarrow> bit list" where
"retrieve (AONE bs) Void = bs"
| "retrieve (ACHAR bs c) (Char d) = bs"
-| "retrieve (AALTs bs [r]) v = bs @ retrieve r v"
+| "retrieve (AALTs bs [r]) v = bs @ retrieve r v"
| "retrieve (AALTs bs (r#rs)) (Left v) = bs @ retrieve r v"
| "retrieve (AALTs bs (r#rs)) (Right v) = bs @ retrieve (AALTs [] rs) v"
| "retrieve (ASEQ bs r1 r2) (Seq v1 v2) = bs @ retrieve r1 v1 @ retrieve r2 v2"
@@ -457,7 +457,7 @@
(if (f x) \<in> acc then distinctBy xs f acc
else x # (distinctBy xs f ({f x} \<union> acc)))"
-
+
fun flts :: "arexp list \<Rightarrow> arexp list"
where
Binary file thys2/paper.pdf has changed