--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/thys2/Journal/Paper.tex Tue Jan 11 23:58:39 2022 +0000
@@ -0,0 +1,3369 @@
+%
+\begin{isabellebody}%
+\setisabellecontext{Paper}%
+%
+\isadelimtheory
+%
+\endisadelimtheory
+%
+\isatagtheory
+%
+\endisatagtheory
+{\isafoldtheory}%
+%
+\isadelimtheory
+%
+\endisadelimtheory
+%
+\isadelimproof
+%
+\endisadelimproof
+%
+\isatagproof
+%
+\endisatagproof
+{\isafoldproof}%
+%
+\isadelimproof
+%
+\endisadelimproof
+%
+\isadelimproof
+%
+\endisadelimproof
+%
+\isatagproof
+%
+\endisatagproof
+{\isafoldproof}%
+%
+\isadelimproof
+%
+\endisadelimproof
+%
+\isadelimdocument
+%
+\endisadelimdocument
+%
+\isatagdocument
+%
+\isamarkupsection{Core of the proof%
+}
+\isamarkuptrue%
+%
+\endisatagdocument
+{\isafolddocument}%
+%
+\isadelimdocument
+%
+\endisadelimdocument
+%
+\begin{isamarkuptext}%
+This paper builds on previous work by Ausaf and Urban using
+regular expression'd bit-coded derivatives to do lexing that
+is both fast and satisfies the POSIX specification.
+In their work, a bit-coded algorithm introduced by Sulzmann and Lu
+was formally verified in Isabelle, by a very clever use of
+flex function and retrieve to carefully mimic the way a value is
+built up by the injection funciton.
+
+In the previous work, Ausaf and Urban established the below equality:
+\begin{lemma}
+\isa{{\normalsize{}If\,}\ v\ {\isacharcolon}{\kern0pt}\ r{\isacharbackslash}{\kern0pt}s\ {\normalsize \,then\,}\ Some\ {\isacharparenleft}{\kern0pt}flex\ r\ id\ s\ v{\isacharparenright}{\kern0pt}\ {\isacharequal}{\kern0pt}\ decode\ {\isacharparenleft}{\kern0pt}retrieve\ {\isacharparenleft}{\kern0pt}r\mbox{$^\uparrow$}\mbox{$\bbslash$}s{\isacharparenright}{\kern0pt}\ v{\isacharparenright}{\kern0pt}\ r{\isachardot}{\kern0pt}}
+\end{lemma}
+
+This lemma establishes a link with the lexer without bit-codes.
+
+With it we get the correctness of bit-coded algorithm.
+\begin{lemma}
+\isa{lexer\mbox{$_b$}\ r\ s\ {\isacharequal}{\kern0pt}\ lexer\ r\ s}
+\end{lemma}
+
+However what is not certain is whether we can add simplification
+to the bit-coded algorithm, without breaking the correct lexing output.
+
+
+The reason that we do need to add a simplification phase
+after each derivative step of $\textit{blexer}$ is
+because it produces intermediate
+regular expressions that can grow exponentially.
+For example, the regular expression $(a+aa)^*$ after taking
+derivative against just 10 $a$s will have size 8192.
+
+%TODO: add figure for this?
+
+
+Therefore, we insert a simplification phase
+after each derivation step, as defined below:
+\begin{lemma}
+\isa{blexer{\isacharunderscore}{\kern0pt}simp\ r\ s\ {\isasymequiv}\ \textrm{if}\ nullable\mbox{$_b$}\ {\isacharparenleft}{\kern0pt}bders{\isacharunderscore}{\kern0pt}simp\ {\isacharparenleft}{\kern0pt}r\mbox{$^\uparrow$}{\isacharparenright}{\kern0pt}\ s{\isacharparenright}{\kern0pt}\ \textrm{then}\ decode\ {\isacharparenleft}{\kern0pt}mkeps\mbox{$_b$}\ {\isacharparenleft}{\kern0pt}bders{\isacharunderscore}{\kern0pt}simp\ {\isacharparenleft}{\kern0pt}r\mbox{$^\uparrow$}{\isacharparenright}{\kern0pt}\ s{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}\ r\ \textrm{else}\ None}
+\end{lemma}
+
+The simplification function is given as follows:
+
+\begin{center}
+ \begin{tabular}{lcl}
+ \isa{bsimp\ {\isacharparenleft}{\kern0pt}ASEQ\ bs\ r\isactrlsub {\isadigit{1}}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}} & $\dn$ & \isa{bsimp{\isacharunderscore}{\kern0pt}ASEQ\ bs\ {\isacharparenleft}{\kern0pt}bsimp\ r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}bsimp\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}}\\
+ \isa{bsimp\ {\isacharparenleft}{\kern0pt}AALTs\ bs{\isadigit{1}}{\isachardot}{\kern0pt}{\isadigit{0}}\ rs{\isacharparenright}{\kern0pt}} & $\dn$ & \isa{bsimp{\isacharunderscore}{\kern0pt}AALTs\ bs{\isadigit{1}}{\isachardot}{\kern0pt}{\isadigit{0}}\ {\isacharparenleft}{\kern0pt}distinctBy\ {\isacharparenleft}{\kern0pt}flts\ {\isacharparenleft}{\kern0pt}map\ bsimp\ rs{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}\ erase\ {\isasymemptyset}{\isacharparenright}{\kern0pt}}\\
+ \isa{bsimp\ AZERO} & $\dn$ & \isa{AZERO}\\
+
+\end{tabular}
+\end{center}
+
+And the two helper functions are:
+\begin{center}
+ \begin{tabular}{lcl}
+ \isa{bsimp{\isacharunderscore}{\kern0pt}AALTs\ bs\isactrlsub {\isadigit{1}}\ {\isacharbrackleft}{\kern0pt}r{\isacharbrackright}{\kern0pt}} & $\dn$ & \isa{bsimp{\isacharunderscore}{\kern0pt}ASEQ\ bs\isactrlsub {\isadigit{1}}\ {\isacharparenleft}{\kern0pt}bsimp\ r{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}bsimp\ r{\isadigit{2}}{\isachardot}{\kern0pt}{\isadigit{0}}{\isacharparenright}{\kern0pt}}\\
+ \isa{bsimp{\isacharunderscore}{\kern0pt}AALTs\ bs{\isadigit{1}}{\isachardot}{\kern0pt}{\isadigit{0}}\ {\isacharbrackleft}{\kern0pt}r{\isacharbrackright}{\kern0pt}} & $\dn$ & \isa{bsimp{\isacharunderscore}{\kern0pt}AALTs\ bs{\isadigit{1}}{\isachardot}{\kern0pt}{\isadigit{0}}\ {\isacharparenleft}{\kern0pt}distinctBy\ {\isacharparenleft}{\kern0pt}flts\ {\isacharparenleft}{\kern0pt}map\ bsimp\ rs{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}\ erase\ {\isasymemptyset}{\isacharparenright}{\kern0pt}}\\
+ \isa{bsimp{\isacharunderscore}{\kern0pt}AALTs\ bs{\isadigit{1}}{\isachardot}{\kern0pt}{\isadigit{0}}\ {\isacharparenleft}{\kern0pt}v\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}vb\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}vc{\isacharparenright}{\kern0pt}} & $\dn$ & \isa{AZERO}\\
+
+\end{tabular}
+\end{center}
+
+
+This might sound trivial in the case of producing a YES/NO answer,
+but once we require a lexing output to be produced (which is required
+in applications like compiler front-end, malicious attack domain extraction,
+etc.), it is not straightforward if we still extract what is needed according
+to the POSIX standard.
+
+
+
+
+
+By simplification, we mean specifically the following rules:
+
+\begin{center}
+ \begin{tabular}{lcl}
+ \isa{\mbox{}\inferrule{\mbox{}}{\mbox{ASEQ\ bs\ AZERO\ r\isactrlsub {\isadigit{2}}\ {\isasymleadsto}\ AZERO}}}\\
+ \isa{\mbox{}\inferrule{\mbox{}}{\mbox{ASEQ\ bs\ r\isactrlsub {\isadigit{1}}\ AZERO\ {\isasymleadsto}\ AZERO}}}\\
+ \isa{\mbox{}\inferrule{\mbox{}}{\mbox{ASEQ\ bs\ {\isacharparenleft}{\kern0pt}AONE\ bs\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ r\isactrlsub {\isadigit{1}}\ {\isasymleadsto}\ fuse\ {\isacharparenleft}{\kern0pt}bs\ {\isacharat}{\kern0pt}\ bs\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ r\isactrlsub {\isadigit{1}}}}}\\
+ \isa{\mbox{}\inferrule{\mbox{r\isactrlsub {\isadigit{1}}\ {\isasymleadsto}\ r\isactrlsub {\isadigit{2}}}}{\mbox{ASEQ\ bs\ r\isactrlsub {\isadigit{1}}\ r\isactrlsub {\isadigit{3}}\ {\isasymleadsto}\ ASEQ\ bs\ r\isactrlsub {\isadigit{2}}\ r\isactrlsub {\isadigit{3}}}}}\\
+ \isa{\mbox{}\inferrule{\mbox{r\isactrlsub {\isadigit{3}}\ {\isasymleadsto}\ r\isactrlsub {\isadigit{4}}}}{\mbox{ASEQ\ bs\ r\isactrlsub {\isadigit{1}}\ r\isactrlsub {\isadigit{3}}\ {\isasymleadsto}\ ASEQ\ bs\ r\isactrlsub {\isadigit{1}}\ r\isactrlsub {\isadigit{4}}}}}\\
+ \isa{\mbox{}\inferrule{\mbox{r\ {\isasymleadsto}\ r{\isacharprime}{\kern0pt}}}{\mbox{AALTs\ bs\ {\isacharparenleft}{\kern0pt}rs\isactrlsub {\isadigit{1}}\ {\isacharat}{\kern0pt}\ {\isacharbrackleft}{\kern0pt}r{\isacharbrackright}{\kern0pt}\ {\isacharat}{\kern0pt}\ rs\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}\ {\isasymleadsto}\ AALTs\ bs\ {\isacharparenleft}{\kern0pt}rs\isactrlsub {\isadigit{1}}\ {\isacharat}{\kern0pt}\ {\isacharbrackleft}{\kern0pt}r{\isacharprime}{\kern0pt}{\isacharbrackright}{\kern0pt}\ {\isacharat}{\kern0pt}\ rs\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}}}}\\
+ \isa{\mbox{}\inferrule{\mbox{}}{\mbox{AALTs\ bs\ {\isacharparenleft}{\kern0pt}rs\isactrlsub a\ {\isacharat}{\kern0pt}\ {\isacharbrackleft}{\kern0pt}AZERO{\isacharbrackright}{\kern0pt}\ {\isacharat}{\kern0pt}\ rs\isactrlsub b{\isacharparenright}{\kern0pt}\ {\isasymleadsto}\ AALTs\ bs\ {\isacharparenleft}{\kern0pt}rs\isactrlsub a\ {\isacharat}{\kern0pt}\ rs\isactrlsub b{\isacharparenright}{\kern0pt}}}}\\
+ \isa{\mbox{}\inferrule{\mbox{}}{\mbox{AALTs\ bs\ {\isacharparenleft}{\kern0pt}rs\isactrlsub a\ {\isacharat}{\kern0pt}\ {\isacharbrackleft}{\kern0pt}AALTs\ bs\isactrlsub {\isadigit{1}}\ rs\isactrlsub {\isadigit{1}}{\isacharbrackright}{\kern0pt}\ {\isacharat}{\kern0pt}\ rs\isactrlsub b{\isacharparenright}{\kern0pt}\ {\isasymleadsto}\ AALTs\ bs\ {\isacharparenleft}{\kern0pt}rs\isactrlsub a\ {\isacharat}{\kern0pt}\ map\ {\isacharparenleft}{\kern0pt}fuse\ bs\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ rs\isactrlsub {\isadigit{1}}\ {\isacharat}{\kern0pt}\ rs\isactrlsub b{\isacharparenright}{\kern0pt}}}}\\
+ \isa{\mbox{}\inferrule{\mbox{}}{\mbox{AALTs\ {\isacharparenleft}{\kern0pt}bs\ {\isacharat}{\kern0pt}\ bs\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ rs\ {\isasymleadsto}\ AALTs\ bs\ {\isacharparenleft}{\kern0pt}map\ {\isacharparenleft}{\kern0pt}fuse\ bs\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ rs{\isacharparenright}{\kern0pt}}}}\\
+ \isa{\mbox{}\inferrule{\mbox{}}{\mbox{AALTs\ bs\ {\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}\ {\isasymleadsto}\ AZERO}}}\\
+ \isa{\mbox{}\inferrule{\mbox{}}{\mbox{AALTs\ bs\ {\isacharbrackleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharbrackright}{\kern0pt}\ {\isasymleadsto}\ fuse\ bs\ r\isactrlsub {\isadigit{1}}}}}\\
+ \isa{\mbox{}\inferrule{\mbox{a\isactrlsub {\isadigit{1}}\mbox{$^\downarrow$}\ {\isacharequal}{\kern0pt}\ a\isactrlsub {\isadigit{2}}\mbox{$^\downarrow$}}}{\mbox{AALTs\ bs\ {\isacharparenleft}{\kern0pt}rs\isactrlsub a\ {\isacharat}{\kern0pt}\ {\isacharbrackleft}{\kern0pt}a\isactrlsub {\isadigit{1}}{\isacharbrackright}{\kern0pt}\ {\isacharat}{\kern0pt}\ rs\isactrlsub b\ {\isacharat}{\kern0pt}\ {\isacharbrackleft}{\kern0pt}a\isactrlsub {\isadigit{2}}{\isacharbrackright}{\kern0pt}\ {\isacharat}{\kern0pt}\ rs\isactrlsub c{\isacharparenright}{\kern0pt}\ {\isasymleadsto}\ AALTs\ bs\ {\isacharparenleft}{\kern0pt}rs\isactrlsub a\ {\isacharat}{\kern0pt}\ {\isacharbrackleft}{\kern0pt}a\isactrlsub {\isadigit{1}}{\isacharbrackright}{\kern0pt}\ {\isacharat}{\kern0pt}\ rs\isactrlsub b\ {\isacharat}{\kern0pt}\ rs\isactrlsub c{\isacharparenright}{\kern0pt}}}}\\
+
+ \end{tabular}
+\end{center}
+
+
+And these can be made compact by the following simplification function:
+
+where the function $\mathit{bsimp_AALTs}$
+
+The core idea of the proof is that two regular expressions,
+if "isomorphic" up to a finite number of rewrite steps, will
+remain "isomorphic" when we take the same sequence of
+derivatives on both of them.
+This can be expressed by the following rewrite relation lemma:
+\begin{lemma}
+\isa{{\isacharparenleft}{\kern0pt}r\mbox{$\bbslash$}s{\isacharparenright}{\kern0pt}\ {\isasymleadsto}{\isacharasterisk}{\kern0pt}\ bders{\isacharunderscore}{\kern0pt}simp\ r\ s}
+\end{lemma}
+
+This isomorphic relation implies a property that leads to the
+correctness result:
+if two (nullable) regular expressions are "rewritable" in many steps
+from one another,
+then a call to function $\textit{bmkeps}$ gives the same
+bit-sequence :
+\begin{lemma}
+\isa{{\normalsize{}If\,}\ \mbox{r{\isadigit{1}}{\isachardot}{\kern0pt}{\isadigit{0}}\ {\isasymleadsto}{\isacharasterisk}{\kern0pt}\ r{\isadigit{2}}{\isachardot}{\kern0pt}{\isadigit{0}}}\ {\normalsize \,and\,}\ \mbox{nullable\mbox{$_b$}\ r{\isadigit{1}}{\isachardot}{\kern0pt}{\isadigit{0}}}\ {\normalsize \,then\,}\ mkeps\mbox{$_b$}\ r{\isadigit{1}}{\isachardot}{\kern0pt}{\isadigit{0}}\ {\isacharequal}{\kern0pt}\ mkeps\mbox{$_b$}\ r{\isadigit{2}}{\isachardot}{\kern0pt}{\isadigit{0}}{\isachardot}{\kern0pt}}
+\end{lemma}
+
+Given the same bit-sequence, the decode function
+will give out the same value, which is the output
+of both lexers:
+\begin{lemma}
+\isa{lexer\mbox{$_b$}\ r\ s\ {\isasymequiv}\ \textrm{if}\ nullable\mbox{$_b$}\ {\isacharparenleft}{\kern0pt}r\mbox{$^\uparrow$}\mbox{$\bbslash$}s{\isacharparenright}{\kern0pt}\ \textrm{then}\ decode\ {\isacharparenleft}{\kern0pt}mkeps\mbox{$_b$}\ {\isacharparenleft}{\kern0pt}r\mbox{$^\uparrow$}\mbox{$\bbslash$}s{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}\ r\ \textrm{else}\ None}
+\end{lemma}
+
+\begin{lemma}
+\isa{blexer{\isacharunderscore}{\kern0pt}simp\ r\ s\ {\isasymequiv}\ \textrm{if}\ nullable\mbox{$_b$}\ {\isacharparenleft}{\kern0pt}bders{\isacharunderscore}{\kern0pt}simp\ {\isacharparenleft}{\kern0pt}r\mbox{$^\uparrow$}{\isacharparenright}{\kern0pt}\ s{\isacharparenright}{\kern0pt}\ \textrm{then}\ decode\ {\isacharparenleft}{\kern0pt}mkeps\mbox{$_b$}\ {\isacharparenleft}{\kern0pt}bders{\isacharunderscore}{\kern0pt}simp\ {\isacharparenleft}{\kern0pt}r\mbox{$^\uparrow$}{\isacharparenright}{\kern0pt}\ s{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}\ r\ \textrm{else}\ None}
+\end{lemma}
+
+And that yields the correctness result:
+\begin{lemma}
+\isa{lexer\ r\ s\ {\isacharequal}{\kern0pt}\ blexer{\isacharunderscore}{\kern0pt}simp\ r\ s}
+\end{lemma}
+
+The nice thing about the above%
+\end{isamarkuptext}\isamarkuptrue%
+%
+\isadelimdocument
+%
+\endisadelimdocument
+%
+\isatagdocument
+%
+\isamarkupsection{Additional Simp Rules?%
+}
+\isamarkuptrue%
+%
+\endisatagdocument
+{\isafolddocument}%
+%
+\isadelimdocument
+%
+\endisadelimdocument
+%
+\begin{isamarkuptext}%
+One question someone would ask is:
+can we add more "atomic" simplification/rewriting rules,
+so the simplification is even more aggressive, making
+the intermediate results smaller, and therefore more space-efficient?
+For example, one might want to do open up alternatives who is a child
+of a sequence:
+
+\begin{center}
+ \begin{tabular}{lcl}
+ \isa{ASEQ\ bs\ {\isacharparenleft}{\kern0pt}AALTs\ bs{\isadigit{1}}\ rs{\isacharparenright}{\kern0pt}\ r\ {\isasymleadsto}{\isacharquery}{\kern0pt}\ AALTs\ {\isacharparenleft}{\kern0pt}bs\ {\isacharat}{\kern0pt}\ bs{\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}map\ {\isacharparenleft}{\kern0pt}{\isasymlambda}r{\isacharprime}{\kern0pt}{\isachardot}{\kern0pt}\ ASEQ\ {\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}\ r{\isacharprime}{\kern0pt}\ r{\isacharparenright}{\kern0pt}\ rs{\isacharparenright}{\kern0pt}}\\
+ \end{tabular}
+\end{center}
+
+This rule allows us to simplify \mbox{\isa{a\ {\isacharplus}{\kern0pt}\ b\ {\isasymcdot}\ c\ {\isacharplus}{\kern0pt}\ a\ {\isasymcdot}\ c}}%
+\end{isamarkuptext}\isamarkuptrue%
+%
+\isadelimdocument
+%
+\endisadelimdocument
+%
+\isatagdocument
+%
+\isamarkupsection{Introduction%
+}
+\isamarkuptrue%
+%
+\endisatagdocument
+{\isafolddocument}%
+%
+\isadelimdocument
+%
+\endisadelimdocument
+%
+\begin{isamarkuptext}%
+Brzozowski \cite{Brzozowski1964} introduced the notion of the {\em
+derivative} \isa{r{\isacharbackslash}{\kern0pt}c} of a regular expression \isa{r} w.r.t.\
+a character~\isa{c}, and showed that it gave a simple solution to the
+problem of matching a string \isa{s} with a regular expression \isa{r}: if the derivative of \isa{r} w.r.t.\ (in succession) all the
+characters of the string matches the empty string, then \isa{r}
+matches \isa{s} (and {\em vice versa}). The derivative has the
+property (which may almost be regarded as its specification) that, for
+every string \isa{s} and regular expression \isa{r} and character
+\isa{c}, one has \isa{cs\ {\isasymin}\ L{\isacharparenleft}{\kern0pt}r{\isacharparenright}{\kern0pt}} if and only if \mbox{\isa{s\ {\isasymin}\ L{\isacharparenleft}{\kern0pt}r{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}}}.
+The beauty of Brzozowski's derivatives is that
+they are neatly expressible in any functional language, and easily
+definable and reasoned about in theorem provers---the definitions just
+consist of inductive datatypes and simple recursive functions. A
+mechanised correctness proof of Brzozowski's matcher in for example HOL4
+has been mentioned by Owens and Slind~\cite{Owens2008}. Another one in
+Isabelle/HOL is part of the work by Krauss and Nipkow \cite{Krauss2011}.
+And another one in Coq is given by Coquand and Siles \cite{Coquand2012}.
+
+If a regular expression matches a string, then in general there is more
+than one way of how the string is matched. There are two commonly used
+disambiguation strategies to generate a unique answer: one is called
+GREEDY matching \cite{Frisch2004} and the other is POSIX
+matching~\cite{POSIX,Kuklewicz,OkuiSuzuki2010,Sulzmann2014,Vansummeren2006}.
+For example consider the string \isa{xy} and the regular expression
+\mbox{\isa{{\isacharparenleft}{\kern0pt}x\ {\isacharplus}{\kern0pt}\ y\ {\isacharplus}{\kern0pt}\ xy{\isacharparenright}{\kern0pt}\isactrlsup {\isasymstar}}}. Either the string can be
+matched in two `iterations' by the single letter-regular expressions
+\isa{x} and \isa{y}, or directly in one iteration by \isa{xy}. The
+first case corresponds to GREEDY matching, which first matches with the
+left-most symbol and only matches the next symbol in case of a mismatch
+(this is greedy in the sense of preferring instant gratification to
+delayed repletion). The second case is POSIX matching, which prefers the
+longest match.
+
+In the context of lexing, where an input string needs to be split up
+into a sequence of tokens, POSIX is the more natural disambiguation
+strategy for what programmers consider basic syntactic building blocks
+in their programs. These building blocks are often specified by some
+regular expressions, say \isa{r\isactrlbsub key\isactrlesub } and \isa{r\isactrlbsub id\isactrlesub } for recognising keywords and identifiers,
+respectively. There are a few underlying (informal) rules behind
+tokenising a string in a POSIX \cite{POSIX} fashion:
+
+\begin{itemize}
+\item[$\bullet$] \emph{The Longest Match Rule} (or \emph{``{M}aximal {M}unch {R}ule''}):
+The longest initial substring matched by any regular expression is taken as
+next token.\smallskip
+
+\item[$\bullet$] \emph{Priority Rule:}
+For a particular longest initial substring, the first (leftmost) regular expression
+that can match determines the token.\smallskip
+
+\item[$\bullet$] \emph{Star Rule:} A subexpression repeated by ${}^\star$ shall
+not match an empty string unless this is the only match for the repetition.\smallskip
+
+\item[$\bullet$] \emph{Empty String Rule:} An empty string shall be considered to
+be longer than no match at all.
+\end{itemize}
+
+\noindent Consider for example a regular expression \isa{r\isactrlbsub key\isactrlesub } for recognising keywords such as \isa{if},
+\isa{then} and so on; and \isa{r\isactrlbsub id\isactrlesub }
+recognising identifiers (say, a single character followed by
+characters or numbers). Then we can form the regular expression
+\isa{{\isacharparenleft}{\kern0pt}r\isactrlbsub key\isactrlesub \ {\isacharplus}{\kern0pt}\ r\isactrlbsub id\isactrlesub {\isacharparenright}{\kern0pt}\isactrlsup {\isasymstar}}
+and use POSIX matching to tokenise strings, say \isa{iffoo} and
+\isa{if}. For \isa{iffoo} we obtain by the Longest Match Rule
+a single identifier token, not a keyword followed by an
+identifier. For \isa{if} we obtain by the Priority Rule a keyword
+token, not an identifier token---even if \isa{r\isactrlbsub id\isactrlesub }
+matches also. By the Star Rule we know \isa{{\isacharparenleft}{\kern0pt}r\isactrlbsub key\isactrlesub \ {\isacharplus}{\kern0pt}\ r\isactrlbsub id\isactrlesub {\isacharparenright}{\kern0pt}\isactrlsup {\isasymstar}} matches \isa{iffoo},
+respectively \isa{if}, in exactly one `iteration' of the star. The
+Empty String Rule is for cases where, for example, the regular expression
+\isa{{\isacharparenleft}{\kern0pt}a\isactrlsup {\isasymstar}{\isacharparenright}{\kern0pt}\isactrlsup {\isasymstar}} matches against the
+string \isa{bc}. Then the longest initial matched substring is the
+empty string, which is matched by both the whole regular expression
+and the parenthesised subexpression.
+
+
+One limitation of Brzozowski's matcher is that it only generates a
+YES/NO answer for whether a string is being matched by a regular
+expression. Sulzmann and Lu~\cite{Sulzmann2014} extended this matcher
+to allow generation not just of a YES/NO answer but of an actual
+matching, called a [lexical] {\em value}. Assuming a regular
+expression matches a string, values encode the information of
+\emph{how} the string is matched by the regular expression---that is,
+which part of the string is matched by which part of the regular
+expression. For this consider again the string \isa{xy} and
+the regular expression \mbox{\isa{{\isacharparenleft}{\kern0pt}x\ {\isacharplus}{\kern0pt}\ {\isacharparenleft}{\kern0pt}y\ {\isacharplus}{\kern0pt}\ xy{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}\isactrlsup {\isasymstar}}}
+(this time fully parenthesised). We can view this regular expression
+as tree and if the string \isa{xy} is matched by two Star
+`iterations', then the \isa{x} is matched by the left-most
+alternative in this tree and the \isa{y} by the right-left alternative. This
+suggests to record this matching as
+
+\begin{center}
+\isa{Stars\ {\isacharbrackleft}{\kern0pt}Left\ {\isacharparenleft}{\kern0pt}Char\ x{\isacharparenright}{\kern0pt}{\isacharcomma}{\kern0pt}\ Right\ {\isacharparenleft}{\kern0pt}Left\ {\isacharparenleft}{\kern0pt}Char\ y{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}{\isacharbrackright}{\kern0pt}}
+\end{center}
+
+\noindent where \isa{Stars}, \isa{Left}, \isa{Right} and \isa{Char} are constructors for values. \isa{Stars} records how many
+iterations were used; \isa{Left}, respectively \isa{Right}, which
+alternative is used. This `tree view' leads naturally to the idea that
+regular expressions act as types and values as inhabiting those types
+(see, for example, \cite{HosoyaVouillonPierce2005}). The value for
+matching \isa{xy} in a single `iteration', i.e.~the POSIX value,
+would look as follows
+
+\begin{center}
+\isa{Stars\ {\isacharbrackleft}{\kern0pt}Seq\ {\isacharparenleft}{\kern0pt}Char\ x{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}Char\ y{\isacharparenright}{\kern0pt}{\isacharbrackright}{\kern0pt}}
+\end{center}
+
+\noindent where \isa{Stars} has only a single-element list for the
+single iteration and \isa{Seq} indicates that \isa{xy} is matched
+by a sequence regular expression.
+
+%, which we will in what follows
+%write more formally as \isa{x\ {\isasymcdot}\ y}.
+
+
+Sulzmann and Lu give a simple algorithm to calculate a value that
+appears to be the value associated with POSIX matching. The challenge
+then is to specify that value, in an algorithm-independent fashion,
+and to show that Sulzmann and Lu's derivative-based algorithm does
+indeed calculate a value that is correct according to the
+specification. The answer given by Sulzmann and Lu
+\cite{Sulzmann2014} is to define a relation (called an ``order
+relation'') on the set of values of \isa{r}, and to show that (once
+a string to be matched is chosen) there is a maximum element and that
+it is computed by their derivative-based algorithm. This proof idea is
+inspired by work of Frisch and Cardelli \cite{Frisch2004} on a GREEDY
+regular expression matching algorithm. However, we were not able to
+establish transitivity and totality for the ``order relation'' by
+Sulzmann and Lu. There are some inherent problems with their approach
+(of which some of the proofs are not published in
+\cite{Sulzmann2014}); perhaps more importantly, we give in this paper
+a simple inductive (and algorithm-independent) definition of what we
+call being a {\em POSIX value} for a regular expression \isa{r} and
+a string \isa{s}; we show that the algorithm by Sulzmann and Lu
+computes such a value and that such a value is unique. Our proofs are
+both done by hand and checked in Isabelle/HOL. The experience of
+doing our proofs has been that this mechanical checking was absolutely
+essential: this subject area has hidden snares. This was also noted by
+Kuklewicz \cite{Kuklewicz} who found that nearly all POSIX matching
+implementations are ``buggy'' \cite[Page 203]{Sulzmann2014} and by
+Grathwohl et al \cite[Page 36]{CrashCourse2014} who wrote:
+
+\begin{quote}
+\it{}``The POSIX strategy is more complicated than the greedy because of
+the dependence on information about the length of matched strings in the
+various subexpressions.''
+\end{quote}
+
+
+
+\noindent {\bf Contributions:} We have implemented in Isabelle/HOL the
+derivative-based regular expression matching algorithm of
+Sulzmann and Lu \cite{Sulzmann2014}. We have proved the correctness of this
+algorithm according to our specification of what a POSIX value is (inspired
+by work of Vansummeren \cite{Vansummeren2006}). Sulzmann
+and Lu sketch in \cite{Sulzmann2014} an informal correctness proof: but to
+us it contains unfillable gaps.\footnote{An extended version of
+\cite{Sulzmann2014} is available at the website of its first author; this
+extended version already includes remarks in the appendix that their
+informal proof contains gaps, and possible fixes are not fully worked out.}
+Our specification of a POSIX value consists of a simple inductive definition
+that given a string and a regular expression uniquely determines this value.
+We also show that our definition is equivalent to an ordering
+of values based on positions by Okui and Suzuki \cite{OkuiSuzuki2010}.
+
+%Derivatives as calculated by Brzozowski's method are usually more complex
+%regular expressions than the initial one; various optimisations are
+%possible. We prove the correctness when simplifications of \isa{\isactrlbold {\isadigit{0}}\ {\isacharplus}{\kern0pt}\ r},
+%\isa{r\ {\isacharplus}{\kern0pt}\ \isactrlbold {\isadigit{0}}}, \isa{\isactrlbold {\isadigit{1}}\ {\isasymcdot}\ r} and \isa{r\ {\isasymcdot}\ \isactrlbold {\isadigit{1}}} to
+%\isa{r} are applied.
+
+We extend our results to ??? Bitcoded version??%
+\end{isamarkuptext}\isamarkuptrue%
+%
+\isadelimdocument
+%
+\endisadelimdocument
+%
+\isatagdocument
+%
+\isamarkupsection{Preliminaries%
+}
+\isamarkuptrue%
+%
+\endisatagdocument
+{\isafolddocument}%
+%
+\isadelimdocument
+%
+\endisadelimdocument
+%
+\begin{isamarkuptext}%
+\noindent Strings in Isabelle/HOL are lists of characters with
+the empty string being represented by the empty list, written \isa{{\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}}, and list-cons being written as \isa{\underline{\hspace{2mm}}\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}\underline{\hspace{2mm}}}. Often
+we use the usual bracket notation for lists also for strings; for
+example a string consisting of just a single character \isa{c} is
+written \isa{{\isacharbrackleft}{\kern0pt}c{\isacharbrackright}{\kern0pt}}. We use the usual definitions for
+\emph{prefixes} and \emph{strict prefixes} of strings. By using the
+type \isa{char} for characters we have a supply of finitely many
+characters roughly corresponding to the ASCII character set. Regular
+expressions are defined as usual as the elements of the following
+inductive datatype:
+
+ \begin{center}
+ \isa{r\ {\isacharcolon}{\kern0pt}{\isacharequal}{\kern0pt}}
+ \isa{\isactrlbold {\isadigit{0}}} $\mid$
+ \isa{\isactrlbold {\isadigit{1}}} $\mid$
+ \isa{c} $\mid$
+ \isa{r\isactrlsub {\isadigit{1}}\ {\isacharplus}{\kern0pt}\ r\isactrlsub {\isadigit{2}}} $\mid$
+ \isa{r\isactrlsub {\isadigit{1}}\ {\isasymcdot}\ r\isactrlsub {\isadigit{2}}} $\mid$
+ \isa{r\isactrlsup {\isasymstar}}
+ \end{center}
+
+ \noindent where \isa{\isactrlbold {\isadigit{0}}} stands for the regular expression that does
+ not match any string, \isa{\isactrlbold {\isadigit{1}}} for the regular expression that matches
+ only the empty string and \isa{c} for matching a character literal. The
+ language of a regular expression is also defined as usual by the
+ recursive function \isa{L} with the six clauses:
+
+ \begin{center}
+ \begin{tabular}{l@ {\hspace{4mm}}rcl}
+ \textit{(1)} & \isa{L{\isacharparenleft}{\kern0pt}\isactrlbold {\isadigit{0}}{\isacharparenright}{\kern0pt}} & $\dn$ & \isa{{\isasymemptyset}}\\
+ \textit{(2)} & \isa{L{\isacharparenleft}{\kern0pt}\isactrlbold {\isadigit{1}}{\isacharparenright}{\kern0pt}} & $\dn$ & \isa{{\isacharbraceleft}{\kern0pt}{\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}}\\
+ \textit{(3)} & \isa{L{\isacharparenleft}{\kern0pt}c{\isacharparenright}{\kern0pt}} & $\dn$ & \isa{{\isacharbraceleft}{\kern0pt}{\isacharbrackleft}{\kern0pt}c{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}}\\
+ \textit{(4)} & \isa{L{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}\ {\isasymcdot}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}} & $\dn$ &
+ \isa{L{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isacharat}{\kern0pt}\ L{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}}\\
+ \textit{(5)} & \isa{L{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}\ {\isacharplus}{\kern0pt}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}} & $\dn$ &
+ \isa{L{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isasymunion}\ L{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}}\\
+ \textit{(6)} & \isa{L{\isacharparenleft}{\kern0pt}r\isactrlsup {\isasymstar}{\isacharparenright}{\kern0pt}} & $\dn$ & \isa{{\isacharparenleft}{\kern0pt}L{\isacharparenleft}{\kern0pt}r{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}{\isasymstar}}\\
+ \end{tabular}
+ \end{center}
+
+ \noindent In clause \textit{(4)} we use the operation \isa{\underline{\hspace{2mm}}\ {\isacharat}{\kern0pt}\ \underline{\hspace{2mm}}} for the concatenation of two languages (it is also list-append for
+ strings). We use the star-notation for regular expressions and for
+ languages (in the last clause above). The star for languages is defined
+ inductively by two clauses: \isa{{\isacharparenleft}{\kern0pt}i{\isacharparenright}{\kern0pt}} the empty string being in
+ the star of a language and \isa{{\isacharparenleft}{\kern0pt}ii{\isacharparenright}{\kern0pt}} if \isa{s\isactrlsub {\isadigit{1}}} is in a
+ language and \isa{s\isactrlsub {\isadigit{2}}} in the star of this language, then also \isa{s\isactrlsub {\isadigit{1}}\ {\isacharat}{\kern0pt}\ s\isactrlsub {\isadigit{2}}} is in the star of this language. It will also be convenient
+ to use the following notion of a \emph{semantic derivative} (or \emph{left
+ quotient}) of a language defined as
+ %
+ \begin{center}
+ \isa{Der\ c\ A\ {\isasymequiv}\ {\isacharbraceleft}{\kern0pt}s\ \mbox{\boldmath$\mid$}\ c\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}s\ {\isasymin}\ A{\isacharbraceright}{\kern0pt}}\;.
+ \end{center}
+
+ \noindent
+ For semantic derivatives we have the following equations (for example
+ mechanically proved in \cite{Krauss2011}):
+ %
+ \begin{equation}\label{SemDer}
+ \begin{array}{lcl}
+ \isa{Der\ c\ {\isasymemptyset}} & \dn & \isa{{\isasymemptyset}}\\
+ \isa{Der\ c\ {\isacharbraceleft}{\kern0pt}{\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}} & \dn & \isa{{\isasymemptyset}}\\
+ \isa{Der\ c\ {\isacharbraceleft}{\kern0pt}{\isacharbrackleft}{\kern0pt}d{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}} & \dn & \isa{\textrm{if}\ c\ {\isacharequal}{\kern0pt}\ d\ \textrm{then}\ {\isacharbraceleft}{\kern0pt}{\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ \textrm{else}\ {\isasymemptyset}}\\
+ \isa{Der\ c\ {\isacharparenleft}{\kern0pt}A\ {\isasymunion}\ B{\isacharparenright}{\kern0pt}} & \dn & \isa{Der\ c\ A\ {\isasymunion}\ Der\ c\ B}\\
+ \isa{Der\ c\ {\isacharparenleft}{\kern0pt}A\ {\isacharat}{\kern0pt}\ B{\isacharparenright}{\kern0pt}} & \dn & \isa{{\isacharparenleft}{\kern0pt}Der\ c\ A\ {\isacharat}{\kern0pt}\ B{\isacharparenright}{\kern0pt}\ {\isasymunion}\ {\isacharparenleft}{\kern0pt}\textrm{if}\ {\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}\ {\isasymin}\ A\ \textrm{then}\ Der\ c\ B\ \textrm{else}\ {\isasymemptyset}{\isacharparenright}{\kern0pt}}\\
+ \isa{Der\ c\ {\isacharparenleft}{\kern0pt}A{\isasymstar}{\isacharparenright}{\kern0pt}} & \dn & \isa{Der\ c\ A\ {\isacharat}{\kern0pt}\ A{\isasymstar}}
+ \end{array}
+ \end{equation}
+
+
+ \noindent \emph{\Brz's derivatives} of regular expressions
+ \cite{Brzozowski1964} can be easily defined by two recursive functions:
+ the first is from regular expressions to booleans (implementing a test
+ when a regular expression can match the empty string), and the second
+ takes a regular expression and a character to a (derivative) regular
+ expression:
+
+ \begin{center}
+ \begin{tabular}{lcl}
+ \isa{nullable\ {\isacharparenleft}{\kern0pt}\isactrlbold {\isadigit{0}}{\isacharparenright}{\kern0pt}} & $\dn$ & \isa{False}\\
+ \isa{nullable\ {\isacharparenleft}{\kern0pt}\isactrlbold {\isadigit{1}}{\isacharparenright}{\kern0pt}} & $\dn$ & \isa{True}\\
+ \isa{nullable\ {\isacharparenleft}{\kern0pt}c{\isacharparenright}{\kern0pt}} & $\dn$ & \isa{False}\\
+ \isa{nullable\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}\ {\isacharplus}{\kern0pt}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}} & $\dn$ & \isa{nullable\ r\isactrlsub {\isadigit{1}}\ {\isasymor}\ nullable\ r\isactrlsub {\isadigit{2}}}\\
+ \isa{nullable\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}\ {\isasymcdot}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}} & $\dn$ & \isa{nullable\ r\isactrlsub {\isadigit{1}}\ {\isasymand}\ nullable\ r\isactrlsub {\isadigit{2}}}\\
+ \isa{nullable\ {\isacharparenleft}{\kern0pt}r\isactrlsup {\isasymstar}{\isacharparenright}{\kern0pt}} & $\dn$ & \isa{True}\medskip\\
+
+% \end{tabular}
+% \end{center}
+
+% \begin{center}
+% \begin{tabular}{lcl}
+
+ \isa{\isactrlbold {\isadigit{0}}{\isacharbackslash}{\kern0pt}c} & $\dn$ & \isa{\isactrlbold {\isadigit{0}}}\\
+ \isa{\isactrlbold {\isadigit{1}}{\isacharbackslash}{\kern0pt}c} & $\dn$ & \isa{\isactrlbold {\isadigit{0}}}\\
+ \isa{d{\isacharbackslash}{\kern0pt}c} & $\dn$ & \isa{\textrm{if}\ c\ {\isacharequal}{\kern0pt}\ d\ \textrm{then}\ \isactrlbold {\isadigit{1}}\ \textrm{else}\ \isactrlbold {\isadigit{0}}}\\
+ \isa{{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}\ {\isacharplus}{\kern0pt}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}{\isacharbackslash}{\kern0pt}c} & $\dn$ & \isa{{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}\ {\isacharplus}{\kern0pt}\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}}\\
+ \isa{{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}\ {\isasymcdot}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}{\isacharbackslash}{\kern0pt}c} & $\dn$ & \isa{\textrm{if}\ nullable\ r\isactrlsub {\isadigit{1}}\ \textrm{then}\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}\ {\isasymcdot}\ r\isactrlsub {\isadigit{2}}\ {\isacharplus}{\kern0pt}\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}\ \textrm{else}\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}\ {\isasymcdot}\ r\isactrlsub {\isadigit{2}}}\\
+ \isa{{\isacharparenleft}{\kern0pt}r\isactrlsup {\isasymstar}{\isacharparenright}{\kern0pt}{\isacharbackslash}{\kern0pt}c} & $\dn$ & \isa{{\isacharparenleft}{\kern0pt}r{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}\ {\isasymcdot}\ r\isactrlsup {\isasymstar}}
+ \end{tabular}
+ \end{center}
+
+ \noindent
+ We may extend this definition to give derivatives w.r.t.~strings:
+
+ \begin{center}
+ \begin{tabular}{lcl}
+ \isa{r{\isacharbackslash}{\kern0pt}{\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}} & $\dn$ & \isa{r}\\
+ \isa{r{\isacharbackslash}{\kern0pt}{\isacharparenleft}{\kern0pt}c\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}s{\isacharparenright}{\kern0pt}} & $\dn$ & \isa{{\isacharparenleft}{\kern0pt}r{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}{\isacharbackslash}{\kern0pt}s}\\
+ \end{tabular}
+ \end{center}
+
+ \noindent Given the equations in \eqref{SemDer}, it is a relatively easy
+ exercise in mechanical reasoning to establish that
+
+ \begin{proposition}\label{derprop}\mbox{}\\
+ \begin{tabular}{ll}
+ \textit{(1)} & \isa{nullable\ r} if and only if
+ \isa{{\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}\ {\isasymin}\ L{\isacharparenleft}{\kern0pt}r{\isacharparenright}{\kern0pt}}, and \\
+ \textit{(2)} & \isa{L{\isacharparenleft}{\kern0pt}r{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}\ {\isacharequal}{\kern0pt}\ Der\ c\ {\isacharparenleft}{\kern0pt}L{\isacharparenleft}{\kern0pt}r{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}}.
+ \end{tabular}
+ \end{proposition}
+
+ \noindent With this in place it is also very routine to prove that the
+ regular expression matcher defined as
+ %
+ \begin{center}
+ \isa{match\ r\ s\ {\isasymequiv}\ nullable\ {\isacharparenleft}{\kern0pt}r{\isacharbackslash}{\kern0pt}s{\isacharparenright}{\kern0pt}}
+ \end{center}
+
+ \noindent gives a positive answer if and only if \isa{s\ {\isasymin}\ L{\isacharparenleft}{\kern0pt}r{\isacharparenright}{\kern0pt}}.
+ Consequently, this regular expression matching algorithm satisfies the
+ usual specification for regular expression matching. While the matcher
+ above calculates a provably correct YES/NO answer for whether a regular
+ expression matches a string or not, the novel idea of Sulzmann and Lu
+ \cite{Sulzmann2014} is to append another phase to this algorithm in order
+ to calculate a [lexical] value. We will explain the details next.%
+\end{isamarkuptext}\isamarkuptrue%
+%
+\isadelimdocument
+%
+\endisadelimdocument
+%
+\isatagdocument
+%
+\isamarkupsection{POSIX Regular Expression Matching\label{posixsec}%
+}
+\isamarkuptrue%
+%
+\endisatagdocument
+{\isafolddocument}%
+%
+\isadelimdocument
+%
+\endisadelimdocument
+%
+\begin{isamarkuptext}%
+There have been many previous works that use values for encoding
+ \emph{how} a regular expression matches a string.
+ The clever idea by Sulzmann and Lu \cite{Sulzmann2014} is to
+ define a function on values that mirrors (but inverts) the
+ construction of the derivative on regular expressions. \emph{Values}
+ are defined as the inductive datatype
+
+ \begin{center}
+ \isa{v\ {\isacharcolon}{\kern0pt}{\isacharequal}{\kern0pt}}
+ \isa{Empty} $\mid$
+ \isa{Char\ c} $\mid$
+ \isa{Left\ v} $\mid$
+ \isa{Right\ v} $\mid$
+ \isa{Seq\ v\isactrlsub {\isadigit{1}}\ v\isactrlsub {\isadigit{2}}} $\mid$
+ \isa{Stars\ vs}
+ \end{center}
+
+ \noindent where we use \isa{vs} to stand for a list of
+ values. (This is similar to the approach taken by Frisch and
+ Cardelli for GREEDY matching \cite{Frisch2004}, and Sulzmann and Lu
+ for POSIX matching \cite{Sulzmann2014}). The string underlying a
+ value can be calculated by the \isa{flat} function, written
+ \isa{{\isacharbar}{\kern0pt}\underline{\hspace{2mm}}{\isacharbar}{\kern0pt}} and defined as:
+
+ \begin{center}
+ \begin{tabular}[t]{lcl}
+ \isa{{\isacharbar}{\kern0pt}Empty{\isacharbar}{\kern0pt}} & $\dn$ & \isa{{\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}}\\
+ \isa{{\isacharbar}{\kern0pt}Char\ c{\isacharbar}{\kern0pt}} & $\dn$ & \isa{{\isacharbrackleft}{\kern0pt}c{\isacharbrackright}{\kern0pt}}\\
+ \isa{{\isacharbar}{\kern0pt}Left\ v{\isacharbar}{\kern0pt}} & $\dn$ & \isa{{\isacharbar}{\kern0pt}v{\isacharbar}{\kern0pt}}\\
+ \isa{{\isacharbar}{\kern0pt}Right\ v{\isacharbar}{\kern0pt}} & $\dn$ & \isa{{\isacharbar}{\kern0pt}v{\isacharbar}{\kern0pt}}
+ \end{tabular}\hspace{14mm}
+ \begin{tabular}[t]{lcl}
+ \isa{{\isacharbar}{\kern0pt}Seq\ v\isactrlsub {\isadigit{1}}\ v\isactrlsub {\isadigit{2}}{\isacharbar}{\kern0pt}} & $\dn$ & \isa{{\isacharbar}{\kern0pt}v\isactrlsub {\isadigit{1}}{\isacharbar}{\kern0pt}\ {\isacharat}{\kern0pt}\ {\isacharbar}{\kern0pt}v\isactrlsub {\isadigit{2}}{\isacharbar}{\kern0pt}}\\
+ \isa{{\isacharbar}{\kern0pt}Stars\ {\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbar}{\kern0pt}} & $\dn$ & \isa{{\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}}\\
+ \isa{{\isacharbar}{\kern0pt}Stars\ {\isacharparenleft}{\kern0pt}v\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}vs{\isacharparenright}{\kern0pt}{\isacharbar}{\kern0pt}} & $\dn$ & \isa{{\isacharbar}{\kern0pt}v{\isacharbar}{\kern0pt}\ {\isacharat}{\kern0pt}\ {\isacharbar}{\kern0pt}Stars\ vs{\isacharbar}{\kern0pt}}\\
+ \end{tabular}
+ \end{center}
+
+ \noindent We will sometimes refer to the underlying string of a
+ value as \emph{flattened value}. We will also overload our notation and
+ use \isa{{\isacharbar}{\kern0pt}vs{\isacharbar}{\kern0pt}} for flattening a list of values and concatenating
+ the resulting strings.
+
+ Sulzmann and Lu define
+ inductively an \emph{inhabitation relation} that associates values to
+ regular expressions. We define this relation as
+ follows:\footnote{Note that the rule for \isa{Stars} differs from
+ our earlier paper \cite{AusafDyckhoffUrban2016}. There we used the
+ original definition by Sulzmann and Lu which does not require that
+ the values \isa{v\ {\isasymin}\ vs} flatten to a non-empty
+ string. The reason for introducing the more restricted version of
+ lexical values is convenience later on when reasoning about an
+ ordering relation for values.}
+
+ \begin{center}
+ \begin{tabular}{c@ {\hspace{12mm}}c}\label{prfintros}
+ \\[-8mm]
+ \isa{\mbox{}\inferrule{\mbox{}}{\mbox{Empty\ {\isacharcolon}{\kern0pt}\ \isactrlbold {\isadigit{1}}}}} &
+ \isa{\mbox{}\inferrule{\mbox{}}{\mbox{Char\ c\ {\isacharcolon}{\kern0pt}\ c}}}\\[4mm]
+ \isa{\mbox{}\inferrule{\mbox{v\isactrlsub {\isadigit{1}}\ {\isacharcolon}{\kern0pt}\ r\isactrlsub {\isadigit{1}}}}{\mbox{Left\ v\isactrlsub {\isadigit{1}}\ {\isacharcolon}{\kern0pt}\ r\isactrlsub {\isadigit{1}}\ {\isacharplus}{\kern0pt}\ r\isactrlsub {\isadigit{2}}}}} &
+ \isa{\mbox{}\inferrule{\mbox{v\isactrlsub {\isadigit{2}}\ {\isacharcolon}{\kern0pt}\ r\isactrlsub {\isadigit{1}}}}{\mbox{Right\ v\isactrlsub {\isadigit{2}}\ {\isacharcolon}{\kern0pt}\ r\isactrlsub {\isadigit{2}}\ {\isacharplus}{\kern0pt}\ r\isactrlsub {\isadigit{1}}}}}\\[4mm]
+ \isa{\mbox{}\inferrule{\mbox{v\isactrlsub {\isadigit{1}}\ {\isacharcolon}{\kern0pt}\ r\isactrlsub {\isadigit{1}}}\\\ \mbox{v\isactrlsub {\isadigit{2}}\ {\isacharcolon}{\kern0pt}\ r\isactrlsub {\isadigit{2}}}}{\mbox{Seq\ v\isactrlsub {\isadigit{1}}\ v\isactrlsub {\isadigit{2}}\ {\isacharcolon}{\kern0pt}\ r\isactrlsub {\isadigit{1}}\ {\isasymcdot}\ r\isactrlsub {\isadigit{2}}}}} &
+ \isa{\mbox{}\inferrule{\mbox{{\isasymforall}v{\isasymin}vs{\isachardot}{\kern0pt}\ v\ {\isacharcolon}{\kern0pt}\ r\ {\isasymand}\ {\isacharbar}{\kern0pt}v{\isacharbar}{\kern0pt}\ {\isasymnoteq}\ {\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}}}{\mbox{Stars\ vs\ {\isacharcolon}{\kern0pt}\ r\isactrlsup {\isasymstar}}}}
+ \end{tabular}
+ \end{center}
+
+ \noindent where in the clause for \isa{Stars} we use the
+ notation \isa{v\ {\isasymin}\ vs} for indicating that \isa{v} is a
+ member in the list \isa{vs}. We require in this rule that every
+ value in \isa{vs} flattens to a non-empty string. The idea is that
+ \isa{Stars}-values satisfy the informal Star Rule (see Introduction)
+ where the $^\star$ does not match the empty string unless this is
+ the only match for the repetition. Note also that no values are
+ associated with the regular expression \isa{\isactrlbold {\isadigit{0}}}, and that the
+ only value associated with the regular expression \isa{\isactrlbold {\isadigit{1}}} is
+ \isa{Empty}. It is routine to establish how values ``inhabiting''
+ a regular expression correspond to the language of a regular
+ expression, namely
+
+ \begin{proposition}\label{inhabs}
+ \isa{L{\isacharparenleft}{\kern0pt}r{\isacharparenright}{\kern0pt}\ {\isacharequal}{\kern0pt}\ {\isacharbraceleft}{\kern0pt}{\isacharbar}{\kern0pt}v{\isacharbar}{\kern0pt}\ \mbox{\boldmath$\mid$}\ v\ {\isacharcolon}{\kern0pt}\ r{\isacharbraceright}{\kern0pt}}
+ \end{proposition}
+
+ \noindent
+ Given a regular expression \isa{r} and a string \isa{s}, we define the
+ set of all \emph{Lexical Values} inhabited by \isa{r} with the underlying string
+ being \isa{s}:\footnote{Okui and Suzuki refer to our lexical values
+ as \emph{canonical values} in \cite{OkuiSuzuki2010}. The notion of \emph{non-problematic
+ values} by Cardelli and Frisch \cite{Frisch2004} is related, but not identical
+ to our lexical values.}
+
+ \begin{center}
+ \isa{LV\ r\ s\ {\isasymequiv}\ {\isacharbraceleft}{\kern0pt}v\ \mbox{\boldmath$\mid$}\ v\ {\isacharcolon}{\kern0pt}\ r\ {\isasymand}\ {\isacharbar}{\kern0pt}v{\isacharbar}{\kern0pt}\ {\isacharequal}{\kern0pt}\ s{\isacharbraceright}{\kern0pt}}
+ \end{center}
+
+ \noindent The main property of \isa{LV\ r\ s} is that it is alway finite.
+
+ \begin{proposition}
+ \isa{finite\ {\isacharparenleft}{\kern0pt}LV\ r\ s{\isacharparenright}{\kern0pt}}
+ \end{proposition}
+
+ \noindent This finiteness property does not hold in general if we
+ remove the side-condition about \isa{{\isacharbar}{\kern0pt}v{\isacharbar}{\kern0pt}\ {\isasymnoteq}\ {\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}} in the
+ \isa{Stars}-rule above. For example using Sulzmann and Lu's
+ less restrictive definition, \isa{LV\ {\isacharparenleft}{\kern0pt}\isactrlbold {\isadigit{1}}\isactrlsup {\isasymstar}{\isacharparenright}{\kern0pt}\ {\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}} would contain
+ infinitely many values, but according to our more restricted
+ definition only a single value, namely \isa{LV\ {\isacharparenleft}{\kern0pt}\isactrlbold {\isadigit{1}}\isactrlsup {\isasymstar}{\isacharparenright}{\kern0pt}\ {\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}\ {\isacharequal}{\kern0pt}\ {\isacharbraceleft}{\kern0pt}Stars\ {\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}}.
+
+ If a regular expression \isa{r} matches a string \isa{s}, then
+ generally the set \isa{LV\ r\ s} is not just a singleton set. In
+ case of POSIX matching the problem is to calculate the unique lexical value
+ that satisfies the (informal) POSIX rules from the Introduction.
+ Graphically the POSIX value calculation algorithm by Sulzmann and Lu
+ can be illustrated by the picture in Figure~\ref{Sulz} where the
+ path from the left to the right involving \isa{derivatives}/\isa{nullable} is the first phase of the algorithm
+ (calculating successive \Brz's derivatives) and \isa{mkeps}/\isa{inj}, the path from right to left, the second
+ phase. This picture shows the steps required when a regular
+ expression, say \isa{r\isactrlsub {\isadigit{1}}}, matches the string \isa{{\isacharbrackleft}{\kern0pt}a{\isacharcomma}{\kern0pt}\ b{\isacharcomma}{\kern0pt}\ c{\isacharbrackright}{\kern0pt}}. We first build the three derivatives (according to
+ \isa{a}, \isa{b} and \isa{c}). We then use \isa{nullable}
+ to find out whether the resulting derivative regular expression
+ \isa{r\isactrlsub {\isadigit{4}}} can match the empty string. If yes, we call the
+ function \isa{mkeps} that produces a value \isa{v\isactrlsub {\isadigit{4}}}
+ for how \isa{r\isactrlsub {\isadigit{4}}} can match the empty string (taking into
+ account the POSIX constraints in case there are several ways). This
+ function is defined by the clauses:
+
+\begin{figure}[t]
+\begin{center}
+\begin{tikzpicture}[scale=2,node distance=1.3cm,
+ every node/.style={minimum size=6mm}]
+\node (r1) {\isa{r\isactrlsub {\isadigit{1}}}};
+\node (r2) [right=of r1]{\isa{r\isactrlsub {\isadigit{2}}}};
+\draw[->,line width=1mm](r1)--(r2) node[above,midway] {\isa{\underline{\hspace{2mm}}{\isacharbackslash}{\kern0pt}a}};
+\node (r3) [right=of r2]{\isa{r\isactrlsub {\isadigit{3}}}};
+\draw[->,line width=1mm](r2)--(r3) node[above,midway] {\isa{\underline{\hspace{2mm}}{\isacharbackslash}{\kern0pt}b}};
+\node (r4) [right=of r3]{\isa{r\isactrlsub {\isadigit{4}}}};
+\draw[->,line width=1mm](r3)--(r4) node[above,midway] {\isa{\underline{\hspace{2mm}}{\isacharbackslash}{\kern0pt}c}};
+\draw (r4) node[anchor=west] {\;\raisebox{3mm}{\isa{nullable}}};
+\node (v4) [below=of r4]{\isa{v\isactrlsub {\isadigit{4}}}};
+\draw[->,line width=1mm](r4) -- (v4);
+\node (v3) [left=of v4] {\isa{v\isactrlsub {\isadigit{3}}}};
+\draw[->,line width=1mm](v4)--(v3) node[below,midway] {\isa{inj\ r\isactrlsub {\isadigit{3}}\ c}};
+\node (v2) [left=of v3]{\isa{v\isactrlsub {\isadigit{2}}}};
+\draw[->,line width=1mm](v3)--(v2) node[below,midway] {\isa{inj\ r\isactrlsub {\isadigit{2}}\ b}};
+\node (v1) [left=of v2] {\isa{v\isactrlsub {\isadigit{1}}}};
+\draw[->,line width=1mm](v2)--(v1) node[below,midway] {\isa{inj\ r\isactrlsub {\isadigit{1}}\ a}};
+\draw (r4) node[anchor=north west] {\;\raisebox{-8mm}{\isa{mkeps}}};
+\end{tikzpicture}
+\end{center}
+\mbox{}\\[-13mm]
+
+\caption{The two phases of the algorithm by Sulzmann \& Lu \cite{Sulzmann2014},
+matching the string \isa{{\isacharbrackleft}{\kern0pt}a{\isacharcomma}{\kern0pt}\ b{\isacharcomma}{\kern0pt}\ c{\isacharbrackright}{\kern0pt}}. The first phase (the arrows from
+left to right) is \Brz's matcher building successive derivatives. If the
+last regular expression is \isa{nullable}, then the functions of the
+second phase are called (the top-down and right-to-left arrows): first
+\isa{mkeps} calculates a value \isa{v\isactrlsub {\isadigit{4}}} witnessing
+how the empty string has been recognised by \isa{r\isactrlsub {\isadigit{4}}}. After
+that the function \isa{inj} ``injects back'' the characters of the string into
+the values.
+\label{Sulz}}
+\end{figure}
+
+ \begin{center}
+ \begin{tabular}{lcl}
+ \isa{mkeps\ \isactrlbold {\isadigit{1}}} & $\dn$ & \isa{Empty}\\
+ \isa{mkeps\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}\ {\isasymcdot}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}} & $\dn$ & \isa{Seq\ {\isacharparenleft}{\kern0pt}mkeps\ r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}mkeps\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}}\\
+ \isa{mkeps\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}\ {\isacharplus}{\kern0pt}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}} & $\dn$ & \isa{\textrm{if}\ nullable\ r\isactrlsub {\isadigit{1}}\ \textrm{then}\ Left\ {\isacharparenleft}{\kern0pt}mkeps\ r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ \textrm{else}\ Right\ {\isacharparenleft}{\kern0pt}mkeps\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}}\\
+ \isa{mkeps\ {\isacharparenleft}{\kern0pt}r\isactrlsup {\isasymstar}{\isacharparenright}{\kern0pt}} & $\dn$ & \isa{Stars\ {\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}}\\
+ \end{tabular}
+ \end{center}
+
+ \noindent Note that this function needs only to be partially defined,
+ namely only for regular expressions that are nullable. In case \isa{nullable} fails, the string \isa{{\isacharbrackleft}{\kern0pt}a{\isacharcomma}{\kern0pt}\ b{\isacharcomma}{\kern0pt}\ c{\isacharbrackright}{\kern0pt}} cannot be matched by \isa{r\isactrlsub {\isadigit{1}}} and the null value \isa{None} is returned. Note also how this function
+ makes some subtle choices leading to a POSIX value: for example if an
+ alternative regular expression, say \isa{r\isactrlsub {\isadigit{1}}\ {\isacharplus}{\kern0pt}\ r\isactrlsub {\isadigit{2}}}, can
+ match the empty string and furthermore \isa{r\isactrlsub {\isadigit{1}}} can match the
+ empty string, then we return a \isa{Left}-value. The \isa{Right}-value will only be returned if \isa{r\isactrlsub {\isadigit{1}}} cannot match the empty
+ string.
+
+ The most interesting idea from Sulzmann and Lu \cite{Sulzmann2014} is
+ the construction of a value for how \isa{r\isactrlsub {\isadigit{1}}} can match the
+ string \isa{{\isacharbrackleft}{\kern0pt}a{\isacharcomma}{\kern0pt}\ b{\isacharcomma}{\kern0pt}\ c{\isacharbrackright}{\kern0pt}} from the value how the last derivative, \isa{r\isactrlsub {\isadigit{4}}} in Fig.~\ref{Sulz}, can match the empty string. Sulzmann and
+ Lu achieve this by stepwise ``injecting back'' the characters into the
+ values thus inverting the operation of building derivatives, but on the level
+ of values. The corresponding function, called \isa{inj}, takes three
+ arguments, a regular expression, a character and a value. For example in
+ the first (or right-most) \isa{inj}-step in Fig.~\ref{Sulz} the regular
+ expression \isa{r\isactrlsub {\isadigit{3}}}, the character \isa{c} from the last
+ derivative step and \isa{v\isactrlsub {\isadigit{4}}}, which is the value corresponding
+ to the derivative regular expression \isa{r\isactrlsub {\isadigit{4}}}. The result is
+ the new value \isa{v\isactrlsub {\isadigit{3}}}. The final result of the algorithm is
+ the value \isa{v\isactrlsub {\isadigit{1}}}. The \isa{inj} function is defined by recursion on regular
+ expressions and by analysing the shape of values (corresponding to
+ the derivative regular expressions).
+ %
+ \begin{center}
+ \begin{tabular}{l@ {\hspace{5mm}}lcl}
+ \textit{(1)} & \isa{inj\ d\ c\ {\isacharparenleft}{\kern0pt}Empty{\isacharparenright}{\kern0pt}} & $\dn$ & \isa{Char\ d}\\
+ \textit{(2)} & \isa{inj\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}\ {\isacharplus}{\kern0pt}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}\ c\ {\isacharparenleft}{\kern0pt}Left\ v\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}} & $\dn$ &
+ \isa{Left\ {\isacharparenleft}{\kern0pt}inj\ r\isactrlsub {\isadigit{1}}\ c\ v\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}}\\
+ \textit{(3)} & \isa{inj\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}\ {\isacharplus}{\kern0pt}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}\ c\ {\isacharparenleft}{\kern0pt}Right\ v\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}} & $\dn$ &
+ \isa{Right\ {\isacharparenleft}{\kern0pt}inj\ r\isactrlsub {\isadigit{2}}\ c\ v\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}}\\
+ \textit{(4)} & \isa{inj\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}\ {\isasymcdot}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}\ c\ {\isacharparenleft}{\kern0pt}Seq\ v\isactrlsub {\isadigit{1}}\ v\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}} & $\dn$
+ & \isa{Seq\ {\isacharparenleft}{\kern0pt}inj\ r\isactrlsub {\isadigit{1}}\ c\ v\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ v\isactrlsub {\isadigit{2}}}\\
+ \textit{(5)} & \isa{inj\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}\ {\isasymcdot}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}\ c\ {\isacharparenleft}{\kern0pt}Left\ {\isacharparenleft}{\kern0pt}Seq\ v\isactrlsub {\isadigit{1}}\ v\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}} & $\dn$
+ & \isa{Seq\ {\isacharparenleft}{\kern0pt}inj\ r\isactrlsub {\isadigit{1}}\ c\ v\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ v\isactrlsub {\isadigit{2}}}\\
+ \textit{(6)} & \isa{inj\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}\ {\isasymcdot}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}\ c\ {\isacharparenleft}{\kern0pt}Right\ v\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}} & $\dn$
+ & \isa{Seq\ {\isacharparenleft}{\kern0pt}mkeps\ r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}inj\ r\isactrlsub {\isadigit{2}}\ c\ v\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}}\\
+ \textit{(7)} & \isa{inj\ {\isacharparenleft}{\kern0pt}r\isactrlsup {\isasymstar}{\isacharparenright}{\kern0pt}\ c\ {\isacharparenleft}{\kern0pt}Seq\ v\ {\isacharparenleft}{\kern0pt}Stars\ vs{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}} & $\dn$
+ & \isa{Stars\ {\isacharparenleft}{\kern0pt}inj\ r\ c\ v\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}vs{\isacharparenright}{\kern0pt}}\\
+ \end{tabular}
+ \end{center}
+
+ \noindent To better understand what is going on in this definition it
+ might be instructive to look first at the three sequence cases (clauses
+ \textit{(4)} -- \textit{(6)}). In each case we need to construct an ``injected value'' for
+ \isa{r\isactrlsub {\isadigit{1}}\ {\isasymcdot}\ r\isactrlsub {\isadigit{2}}}. This must be a value of the form \isa{Seq\ \underline{\hspace{2mm}}\ \underline{\hspace{2mm}}}\,. Recall the clause of the \isa{derivative}-function
+ for sequence regular expressions:
+
+ \begin{center}
+ \isa{{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}\ {\isasymcdot}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}{\isacharbackslash}{\kern0pt}c} $\dn$ \isa{\textrm{if}\ nullable\ r\isactrlsub {\isadigit{1}}\ \textrm{then}\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}\ {\isasymcdot}\ r\isactrlsub {\isadigit{2}}\ {\isacharplus}{\kern0pt}\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}\ \textrm{else}\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}\ {\isasymcdot}\ r\isactrlsub {\isadigit{2}}}
+ \end{center}
+
+ \noindent Consider first the \isa{else}-branch where the derivative is \isa{{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}\ {\isasymcdot}\ r\isactrlsub {\isadigit{2}}}. The corresponding value must therefore
+ be of the form \isa{Seq\ v\isactrlsub {\isadigit{1}}\ v\isactrlsub {\isadigit{2}}}, which matches the left-hand
+ side in clause~\textit{(4)} of \isa{inj}. In the \isa{if}-branch the derivative is an
+ alternative, namely \isa{{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}\ {\isasymcdot}\ r\isactrlsub {\isadigit{2}}\ {\isacharplus}{\kern0pt}\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}}. This means we either have to consider a \isa{Left}- or
+ \isa{Right}-value. In case of the \isa{Left}-value we know further it
+ must be a value for a sequence regular expression. Therefore the pattern
+ we match in the clause \textit{(5)} is \isa{Left\ {\isacharparenleft}{\kern0pt}Seq\ v\isactrlsub {\isadigit{1}}\ v\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}},
+ while in \textit{(6)} it is just \isa{Right\ v\isactrlsub {\isadigit{2}}}. One more interesting
+ point is in the right-hand side of clause \textit{(6)}: since in this case the
+ regular expression \isa{r\isactrlsub {\isadigit{1}}} does not ``contribute'' to
+ matching the string, that means it only matches the empty string, we need to
+ call \isa{mkeps} in order to construct a value for how \isa{r\isactrlsub {\isadigit{1}}}
+ can match this empty string. A similar argument applies for why we can
+ expect in the left-hand side of clause \textit{(7)} that the value is of the form
+ \isa{Seq\ v\ {\isacharparenleft}{\kern0pt}Stars\ vs{\isacharparenright}{\kern0pt}}---the derivative of a star is \isa{{\isacharparenleft}{\kern0pt}r{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}\ {\isasymcdot}\ r\isactrlsup {\isasymstar}}. Finally, the reason for why we can ignore the second argument
+ in clause \textit{(1)} of \isa{inj} is that it will only ever be called in cases
+ where \isa{c\ {\isacharequal}{\kern0pt}\ d}, but the usual linearity restrictions in patterns do
+ not allow us to build this constraint explicitly into our function
+ definition.\footnote{Sulzmann and Lu state this clause as \isa{inj\ c\ c\ {\isacharparenleft}{\kern0pt}Empty{\isacharparenright}{\kern0pt}} $\dn$ \isa{Char\ c},
+ but our deviation is harmless.}
+
+ The idea of the \isa{inj}-function to ``inject'' a character, say
+ \isa{c}, into a value can be made precise by the first part of the
+ following lemma, which shows that the underlying string of an injected
+ value has a prepended character \isa{c}; the second part shows that
+ the underlying string of an \isa{mkeps}-value is always the empty
+ string (given the regular expression is nullable since otherwise
+ \isa{mkeps} might not be defined).
+
+ \begin{lemma}\mbox{}\smallskip\\\label{Prf_injval_flat}
+ \begin{tabular}{ll}
+ (1) & \isa{{\normalsize{}If\,}\ v\ {\isacharcolon}{\kern0pt}\ r{\isacharbackslash}{\kern0pt}c\ {\normalsize \,then\,}\ {\isacharbar}{\kern0pt}inj\ r\ c\ v{\isacharbar}{\kern0pt}\ {\isacharequal}{\kern0pt}\ c\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}{\isacharbar}{\kern0pt}v{\isacharbar}{\kern0pt}{\isachardot}{\kern0pt}}\\
+ (2) & \isa{{\normalsize{}If\,}\ nullable\ r\ {\normalsize \,then\,}\ {\isacharbar}{\kern0pt}mkeps\ r{\isacharbar}{\kern0pt}\ {\isacharequal}{\kern0pt}\ {\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isachardot}{\kern0pt}}
+ \end{tabular}
+ \end{lemma}
+
+ \begin{proof}
+ Both properties are by routine inductions: the first one can, for example,
+ be proved by induction over the definition of \isa{derivatives}; the second by
+ an induction on \isa{r}. There are no interesting cases.\qed
+ \end{proof}
+
+ Having defined the \isa{mkeps} and \isa{inj} function we can extend
+ \Brz's matcher so that a value is constructed (assuming the
+ regular expression matches the string). The clauses of the Sulzmann and Lu lexer are
+
+ \begin{center}
+ \begin{tabular}{lcl}
+ \isa{lexer\ r\ {\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}} & $\dn$ & \isa{\textrm{if}\ nullable\ r\ \textrm{then}\ Some\ {\isacharparenleft}{\kern0pt}mkeps\ r{\isacharparenright}{\kern0pt}\ \textrm{else}\ None}\\
+ \isa{lexer\ r\ {\isacharparenleft}{\kern0pt}c\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}s{\isacharparenright}{\kern0pt}} & $\dn$ & \isa{case} \isa{lexer\ {\isacharparenleft}{\kern0pt}r{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}\ s} \isa{of}\\
+ & & \phantom{$|$} \isa{None} \isa{{\isasymRightarrow}} \isa{None}\\
+ & & $|$ \isa{Some\ v} \isa{{\isasymRightarrow}} \isa{Some\ {\isacharparenleft}{\kern0pt}inj\ r\ c\ v{\isacharparenright}{\kern0pt}}
+ \end{tabular}
+ \end{center}
+
+ \noindent If the regular expression does not match the string, \isa{None} is
+ returned. If the regular expression \emph{does}
+ match the string, then \isa{Some} value is returned. One important
+ virtue of this algorithm is that it can be implemented with ease in any
+ functional programming language and also in Isabelle/HOL. In the remaining
+ part of this section we prove that this algorithm is correct.
+
+ The well-known idea of POSIX matching is informally defined by some
+ rules such as the Longest Match and Priority Rules (see
+ Introduction); as correctly argued in \cite{Sulzmann2014}, this
+ needs formal specification. Sulzmann and Lu define an ``ordering
+ relation'' between values and argue that there is a maximum value,
+ as given by the derivative-based algorithm. In contrast, we shall
+ introduce a simple inductive definition that specifies directly what
+ a \emph{POSIX value} is, incorporating the POSIX-specific choices
+ into the side-conditions of our rules. Our definition is inspired by
+ the matching relation given by Vansummeren~\cite{Vansummeren2006}.
+ The relation we define is ternary and
+ written as \mbox{\isa{{\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v}}, relating
+ strings, regular expressions and values; the inductive rules are given in
+ Figure~\ref{POSIXrules}.
+ We can prove that given a string \isa{s} and regular expression \isa{r}, the POSIX value \isa{v} is uniquely determined by \isa{{\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v}.
+
+ %
+ \begin{figure}[t]
+ \begin{center}
+ \begin{tabular}{c}
+ \isa{\mbox{}\inferrule{\mbox{}}{\mbox{{\isacharparenleft}{\kern0pt}{\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharcomma}{\kern0pt}\ \isactrlbold {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ Empty}}}\isa{P}\isa{\isactrlbold {\isadigit{1}}} \qquad
+ \isa{\mbox{}\inferrule{\mbox{}}{\mbox{{\isacharparenleft}{\kern0pt}{\isacharbrackleft}{\kern0pt}c{\isacharbrackright}{\kern0pt}{\isacharcomma}{\kern0pt}\ c{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ Char\ c}}}\isa{P}\isa{c}\medskip\\
+ \isa{\mbox{}\inferrule{\mbox{{\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v}}{\mbox{{\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{1}}\ {\isacharplus}{\kern0pt}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ Left\ v}}}\isa{P{\isacharplus}{\kern0pt}L}\qquad
+ \isa{\mbox{}\inferrule{\mbox{{\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v}\\\ \mbox{s\ {\isasymnotin}\ L{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}}}{\mbox{{\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{1}}\ {\isacharplus}{\kern0pt}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ Right\ v}}}\isa{P{\isacharplus}{\kern0pt}R}\medskip\\
+ $\mprset{flushleft}
+ \inferrule
+ {\isa{{\isacharparenleft}{\kern0pt}s\isactrlsub {\isadigit{1}}{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v\isactrlsub {\isadigit{1}}} \qquad
+ \isa{{\isacharparenleft}{\kern0pt}s\isactrlsub {\isadigit{2}}{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v\isactrlsub {\isadigit{2}}} \\\\
+ \isa{{\isasymnexists}s\isactrlsub {\isadigit{3}}\ s\isactrlsub {\isadigit{4}}{\isachardot}{\kern0pt}a{\isachardot}{\kern0pt}\ s\isactrlsub {\isadigit{3}}\ {\isasymnoteq}\ {\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}\ {\isasymand}\ s\isactrlsub {\isadigit{3}}\ {\isacharat}{\kern0pt}\ s\isactrlsub {\isadigit{4}}\ {\isacharequal}{\kern0pt}\ s\isactrlsub {\isadigit{2}}\ {\isasymand}\ s\isactrlsub {\isadigit{1}}\ {\isacharat}{\kern0pt}\ s\isactrlsub {\isadigit{3}}\ {\isasymin}\ L{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isasymand}\ s\isactrlsub {\isadigit{4}}\ {\isasymin}\ L{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}}}
+ {\isa{{\isacharparenleft}{\kern0pt}s\isactrlsub {\isadigit{1}}\ {\isacharat}{\kern0pt}\ s\isactrlsub {\isadigit{2}}{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{1}}\ {\isasymcdot}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ Seq\ v\isactrlsub {\isadigit{1}}\ v\isactrlsub {\isadigit{2}}}}$\isa{PS}\\
+ \isa{\mbox{}\inferrule{\mbox{}}{\mbox{{\isacharparenleft}{\kern0pt}{\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharcomma}{\kern0pt}\ r\isactrlsup {\isasymstar}{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ Stars\ {\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}}}}\isa{P{\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}}\medskip\\
+ $\mprset{flushleft}
+ \inferrule
+ {\isa{{\isacharparenleft}{\kern0pt}s\isactrlsub {\isadigit{1}}{\isacharcomma}{\kern0pt}\ r{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v} \qquad
+ \isa{{\isacharparenleft}{\kern0pt}s\isactrlsub {\isadigit{2}}{\isacharcomma}{\kern0pt}\ r\isactrlsup {\isasymstar}{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ Stars\ vs} \qquad
+ \isa{{\isacharbar}{\kern0pt}v{\isacharbar}{\kern0pt}\ {\isasymnoteq}\ {\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}} \\\\
+ \isa{{\isasymnexists}s\isactrlsub {\isadigit{3}}\ s\isactrlsub {\isadigit{4}}{\isachardot}{\kern0pt}a{\isachardot}{\kern0pt}\ s\isactrlsub {\isadigit{3}}\ {\isasymnoteq}\ {\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}\ {\isasymand}\ s\isactrlsub {\isadigit{3}}\ {\isacharat}{\kern0pt}\ s\isactrlsub {\isadigit{4}}\ {\isacharequal}{\kern0pt}\ s\isactrlsub {\isadigit{2}}\ {\isasymand}\ s\isactrlsub {\isadigit{1}}\ {\isacharat}{\kern0pt}\ s\isactrlsub {\isadigit{3}}\ {\isasymin}\ L{\isacharparenleft}{\kern0pt}r{\isacharparenright}{\kern0pt}\ {\isasymand}\ s\isactrlsub {\isadigit{4}}\ {\isasymin}\ L{\isacharparenleft}{\kern0pt}r\isactrlsup {\isasymstar}{\isacharparenright}{\kern0pt}}}
+ {\isa{{\isacharparenleft}{\kern0pt}s\isactrlsub {\isadigit{1}}\ {\isacharat}{\kern0pt}\ s\isactrlsub {\isadigit{2}}{\isacharcomma}{\kern0pt}\ r\isactrlsup {\isasymstar}{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ Stars\ {\isacharparenleft}{\kern0pt}v\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}vs{\isacharparenright}{\kern0pt}}}$\isa{P{\isasymstar}}
+ \end{tabular}
+ \end{center}
+ \caption{Our inductive definition of POSIX values.}\label{POSIXrules}
+ \end{figure}
+
+
+
+ \begin{theorem}\mbox{}\smallskip\\\label{posixdeterm}
+ \begin{tabular}{ll}
+ (1) & If \isa{{\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v} then \isa{s\ {\isasymin}\ L{\isacharparenleft}{\kern0pt}r{\isacharparenright}{\kern0pt}} and \isa{{\isacharbar}{\kern0pt}v{\isacharbar}{\kern0pt}\ {\isacharequal}{\kern0pt}\ s}.\\
+ (2) & \isa{{\normalsize{}If\,}\ \mbox{{\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v}\ {\normalsize \,and\,}\ \mbox{{\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v{\isacharprime}{\kern0pt}}\ {\normalsize \,then\,}\ v\ {\isacharequal}{\kern0pt}\ v{\isacharprime}{\kern0pt}{\isachardot}{\kern0pt}}
+ \end{tabular}
+ \end{theorem}
+
+ \begin{proof} Both by induction on the definition of \isa{{\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v}.
+ The second parts follows by a case analysis of \isa{{\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v{\isacharprime}{\kern0pt}} and
+ the first part.\qed
+ \end{proof}
+
+ \noindent
+ We claim that our \isa{{\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v} relation captures the idea behind the four
+ informal POSIX rules shown in the Introduction: Consider for example the
+ rules \isa{P{\isacharplus}{\kern0pt}L} and \isa{P{\isacharplus}{\kern0pt}R} where the POSIX value for a string
+ and an alternative regular expression, that is \isa{{\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{1}}\ {\isacharplus}{\kern0pt}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}},
+ is specified---it is always a \isa{Left}-value, \emph{except} when the
+ string to be matched is not in the language of \isa{r\isactrlsub {\isadigit{1}}}; only then it
+ is a \isa{Right}-value (see the side-condition in \isa{P{\isacharplus}{\kern0pt}R}).
+ Interesting is also the rule for sequence regular expressions (\isa{PS}). The first two premises state that \isa{v\isactrlsub {\isadigit{1}}} and \isa{v\isactrlsub {\isadigit{2}}}
+ are the POSIX values for \isa{{\isacharparenleft}{\kern0pt}s\isactrlsub {\isadigit{1}}{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}} and \isa{{\isacharparenleft}{\kern0pt}s\isactrlsub {\isadigit{2}}{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}}
+ respectively. Consider now the third premise and note that the POSIX value
+ of this rule should match the string \mbox{\isa{s\isactrlsub {\isadigit{1}}\ {\isacharat}{\kern0pt}\ s\isactrlsub {\isadigit{2}}}}. According to the
+ Longest Match Rule, we want that the \isa{s\isactrlsub {\isadigit{1}}} is the longest initial
+ split of \mbox{\isa{s\isactrlsub {\isadigit{1}}\ {\isacharat}{\kern0pt}\ s\isactrlsub {\isadigit{2}}}} such that \isa{s\isactrlsub {\isadigit{2}}} is still recognised
+ by \isa{r\isactrlsub {\isadigit{2}}}. Let us assume, contrary to the third premise, that there
+ \emph{exist} an \isa{s\isactrlsub {\isadigit{3}}} and \isa{s\isactrlsub {\isadigit{4}}} such that \isa{s\isactrlsub {\isadigit{2}}}
+ can be split up into a non-empty string \isa{s\isactrlsub {\isadigit{3}}} and a possibly empty
+ string \isa{s\isactrlsub {\isadigit{4}}}. Moreover the longer string \isa{s\isactrlsub {\isadigit{1}}\ {\isacharat}{\kern0pt}\ s\isactrlsub {\isadigit{3}}} can be
+ matched by \isa{r\isactrlsub {\isadigit{1}}} and the shorter \isa{s\isactrlsub {\isadigit{4}}} can still be
+ matched by \isa{r\isactrlsub {\isadigit{2}}}. In this case \isa{s\isactrlsub {\isadigit{1}}} would \emph{not} be the
+ longest initial split of \mbox{\isa{s\isactrlsub {\isadigit{1}}\ {\isacharat}{\kern0pt}\ s\isactrlsub {\isadigit{2}}}} and therefore \isa{Seq\ v\isactrlsub {\isadigit{1}}\ v\isactrlsub {\isadigit{2}}} cannot be a POSIX value for \isa{{\isacharparenleft}{\kern0pt}s\isactrlsub {\isadigit{1}}\ {\isacharat}{\kern0pt}\ s\isactrlsub {\isadigit{2}}{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{1}}\ {\isasymcdot}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}}.
+ The main point is that our side-condition ensures the Longest
+ Match Rule is satisfied.
+
+ A similar condition is imposed on the POSIX value in the \isa{P{\isasymstar}}-rule. Also there we want that \isa{s\isactrlsub {\isadigit{1}}} is the longest initial
+ split of \isa{s\isactrlsub {\isadigit{1}}\ {\isacharat}{\kern0pt}\ s\isactrlsub {\isadigit{2}}} and furthermore the corresponding value
+ \isa{v} cannot be flattened to the empty string. In effect, we require
+ that in each ``iteration'' of the star, some non-empty substring needs to
+ be ``chipped'' away; only in case of the empty string we accept \isa{Stars\ {\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}} as the POSIX value. Indeed we can show that our POSIX values
+ are lexical values which exclude those \isa{Stars} that contain subvalues
+ that flatten to the empty string.
+
+ \begin{lemma}\label{LVposix}
+ \isa{{\normalsize{}If\,}\ {\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v\ {\normalsize \,then\,}\ v\ {\isasymin}\ LV\ r\ s{\isachardot}{\kern0pt}}
+ \end{lemma}
+
+ \begin{proof}
+ By routine induction on \isa{{\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v}.\qed
+ \end{proof}
+
+ \noindent
+ Next is the lemma that shows the function \isa{mkeps} calculates
+ the POSIX value for the empty string and a nullable regular expression.
+
+ \begin{lemma}\label{lemmkeps}
+ \isa{{\normalsize{}If\,}\ nullable\ r\ {\normalsize \,then\,}\ {\isacharparenleft}{\kern0pt}{\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharcomma}{\kern0pt}\ r{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ mkeps\ r{\isachardot}{\kern0pt}}
+ \end{lemma}
+
+ \begin{proof}
+ By routine induction on \isa{r}.\qed
+ \end{proof}
+
+ \noindent
+ The central lemma for our POSIX relation is that the \isa{inj}-function
+ preserves POSIX values.
+
+ \begin{lemma}\label{Posix2}
+ \isa{{\normalsize{}If\,}\ {\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v\ {\normalsize \,then\,}\ {\isacharparenleft}{\kern0pt}c\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}s{\isacharcomma}{\kern0pt}\ r{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ inj\ r\ c\ v{\isachardot}{\kern0pt}}
+ \end{lemma}
+
+ \begin{proof}
+ By induction on \isa{r}. We explain two cases.
+
+ \begin{itemize}
+ \item[$\bullet$] Case \isa{r\ {\isacharequal}{\kern0pt}\ r\isactrlsub {\isadigit{1}}\ {\isacharplus}{\kern0pt}\ r\isactrlsub {\isadigit{2}}}. There are
+ two subcases, namely \isa{{\isacharparenleft}{\kern0pt}a{\isacharparenright}{\kern0pt}} \mbox{\isa{v\ {\isacharequal}{\kern0pt}\ Left\ v{\isacharprime}{\kern0pt}}} and \isa{{\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{1}}{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v{\isacharprime}{\kern0pt}}; and \isa{{\isacharparenleft}{\kern0pt}b{\isacharparenright}{\kern0pt}} \isa{v\ {\isacharequal}{\kern0pt}\ Right\ v{\isacharprime}{\kern0pt}}, \isa{s\ {\isasymnotin}\ L{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}} and \isa{{\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{2}}{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v{\isacharprime}{\kern0pt}}. In \isa{{\isacharparenleft}{\kern0pt}a{\isacharparenright}{\kern0pt}} we
+ know \isa{{\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{1}}{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v{\isacharprime}{\kern0pt}}, from which we can infer \isa{{\isacharparenleft}{\kern0pt}c\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}s{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ inj\ r\isactrlsub {\isadigit{1}}\ c\ v{\isacharprime}{\kern0pt}} by induction hypothesis and hence \isa{{\isacharparenleft}{\kern0pt}c\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}s{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{1}}\ {\isacharplus}{\kern0pt}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ inj\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}\ {\isacharplus}{\kern0pt}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}\ c\ {\isacharparenleft}{\kern0pt}Left\ v{\isacharprime}{\kern0pt}{\isacharparenright}{\kern0pt}} as needed. Similarly
+ in subcase \isa{{\isacharparenleft}{\kern0pt}b{\isacharparenright}{\kern0pt}} where, however, in addition we have to use
+ Proposition~\ref{derprop}(2) in order to infer \isa{c\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}s\ {\isasymnotin}\ L{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}} from \isa{s\ {\isasymnotin}\ L{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}}.\smallskip
+
+ \item[$\bullet$] Case \isa{r\ {\isacharequal}{\kern0pt}\ r\isactrlsub {\isadigit{1}}\ {\isasymcdot}\ r\isactrlsub {\isadigit{2}}}. There are three subcases:
+
+ \begin{quote}
+ \begin{description}
+ \item[\isa{{\isacharparenleft}{\kern0pt}a{\isacharparenright}{\kern0pt}}] \isa{v\ {\isacharequal}{\kern0pt}\ Left\ {\isacharparenleft}{\kern0pt}Seq\ v\isactrlsub {\isadigit{1}}\ v\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}} and \isa{nullable\ r\isactrlsub {\isadigit{1}}}
+ \item[\isa{{\isacharparenleft}{\kern0pt}b{\isacharparenright}{\kern0pt}}] \isa{v\ {\isacharequal}{\kern0pt}\ Right\ v\isactrlsub {\isadigit{1}}} and \isa{nullable\ r\isactrlsub {\isadigit{1}}}
+ \item[\isa{{\isacharparenleft}{\kern0pt}c{\isacharparenright}{\kern0pt}}] \isa{v\ {\isacharequal}{\kern0pt}\ Seq\ v\isactrlsub {\isadigit{1}}\ v\isactrlsub {\isadigit{2}}} and \isa{{\isasymnot}\ nullable\ r\isactrlsub {\isadigit{1}}}
+ \end{description}
+ \end{quote}
+
+ \noindent For \isa{{\isacharparenleft}{\kern0pt}a{\isacharparenright}{\kern0pt}} we know \isa{{\isacharparenleft}{\kern0pt}s\isactrlsub {\isadigit{1}}{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{1}}{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v\isactrlsub {\isadigit{1}}} and
+ \isa{{\isacharparenleft}{\kern0pt}s\isactrlsub {\isadigit{2}}{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v\isactrlsub {\isadigit{2}}} as well as
+ %
+ \[\isa{{\isasymnexists}s\isactrlsub {\isadigit{3}}\ s\isactrlsub {\isadigit{4}}{\isachardot}{\kern0pt}a{\isachardot}{\kern0pt}\ s\isactrlsub {\isadigit{3}}\ {\isasymnoteq}\ {\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}\ {\isasymand}\ s\isactrlsub {\isadigit{3}}\ {\isacharat}{\kern0pt}\ s\isactrlsub {\isadigit{4}}\ {\isacharequal}{\kern0pt}\ s\isactrlsub {\isadigit{2}}\ {\isasymand}\ s\isactrlsub {\isadigit{1}}\ {\isacharat}{\kern0pt}\ s\isactrlsub {\isadigit{3}}\ {\isasymin}\ L{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}\ {\isasymand}\ s\isactrlsub {\isadigit{4}}\ {\isasymin}\ L{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}}\]
+
+ \noindent From the latter we can infer by Proposition~\ref{derprop}(2):
+ %
+ \[\isa{{\isasymnexists}s\isactrlsub {\isadigit{3}}\ s\isactrlsub {\isadigit{4}}{\isachardot}{\kern0pt}a{\isachardot}{\kern0pt}\ s\isactrlsub {\isadigit{3}}\ {\isasymnoteq}\ {\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}\ {\isasymand}\ s\isactrlsub {\isadigit{3}}\ {\isacharat}{\kern0pt}\ s\isactrlsub {\isadigit{4}}\ {\isacharequal}{\kern0pt}\ s\isactrlsub {\isadigit{2}}\ {\isasymand}\ c\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}s\isactrlsub {\isadigit{1}}\ {\isacharat}{\kern0pt}\ s\isactrlsub {\isadigit{3}}\ {\isasymin}\ L{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isasymand}\ s\isactrlsub {\isadigit{4}}\ {\isasymin}\ L{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}}\]
+
+ \noindent We can use the induction hypothesis for \isa{r\isactrlsub {\isadigit{1}}} to obtain
+ \isa{{\isacharparenleft}{\kern0pt}c\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}s\isactrlsub {\isadigit{1}}{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ inj\ r\isactrlsub {\isadigit{1}}\ c\ v\isactrlsub {\isadigit{1}}}. Putting this all together allows us to infer
+ \isa{{\isacharparenleft}{\kern0pt}c\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}s\isactrlsub {\isadigit{1}}\ {\isacharat}{\kern0pt}\ s\isactrlsub {\isadigit{2}}{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{1}}\ {\isasymcdot}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ Seq\ {\isacharparenleft}{\kern0pt}inj\ r\isactrlsub {\isadigit{1}}\ c\ v\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ v\isactrlsub {\isadigit{2}}}. The case \isa{{\isacharparenleft}{\kern0pt}c{\isacharparenright}{\kern0pt}}
+ is similar.
+
+ For \isa{{\isacharparenleft}{\kern0pt}b{\isacharparenright}{\kern0pt}} we know \isa{{\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{2}}{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v\isactrlsub {\isadigit{1}}} and
+ \isa{s\isactrlsub {\isadigit{1}}\ {\isacharat}{\kern0pt}\ s\isactrlsub {\isadigit{2}}\ {\isasymnotin}\ L{\isacharparenleft}{\kern0pt}{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}\ {\isasymcdot}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}}. From the former
+ we have \isa{{\isacharparenleft}{\kern0pt}c\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}s{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ inj\ r\isactrlsub {\isadigit{2}}\ c\ v\isactrlsub {\isadigit{1}}} by induction hypothesis
+ for \isa{r\isactrlsub {\isadigit{2}}}. From the latter we can infer
+ %
+ \[\isa{{\isasymnexists}s\isactrlsub {\isadigit{3}}\ s\isactrlsub {\isadigit{4}}{\isachardot}{\kern0pt}a{\isachardot}{\kern0pt}\ s\isactrlsub {\isadigit{3}}\ {\isasymnoteq}\ {\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}\ {\isasymand}\ s\isactrlsub {\isadigit{3}}\ {\isacharat}{\kern0pt}\ s\isactrlsub {\isadigit{4}}\ {\isacharequal}{\kern0pt}\ c\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}s\ {\isasymand}\ s\isactrlsub {\isadigit{3}}\ {\isasymin}\ L{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isasymand}\ s\isactrlsub {\isadigit{4}}\ {\isasymin}\ L{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}}\]
+
+ \noindent By Lemma~\ref{lemmkeps} we know \isa{{\isacharparenleft}{\kern0pt}{\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ mkeps\ r\isactrlsub {\isadigit{1}}}
+ holds. Putting this all together, we can conclude with \isa{{\isacharparenleft}{\kern0pt}c\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}s{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{1}}\ {\isasymcdot}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ Seq\ {\isacharparenleft}{\kern0pt}mkeps\ r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}inj\ r\isactrlsub {\isadigit{2}}\ c\ v\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}}, as required.
+
+ Finally suppose \isa{r\ {\isacharequal}{\kern0pt}\ r\isactrlsub {\isadigit{1}}\isactrlsup {\isasymstar}}. This case is very similar to the
+ sequence case, except that we need to also ensure that \isa{{\isacharbar}{\kern0pt}inj\ r\isactrlsub {\isadigit{1}}\ c\ v\isactrlsub {\isadigit{1}}{\isacharbar}{\kern0pt}\ {\isasymnoteq}\ {\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}}. This follows from \isa{{\isacharparenleft}{\kern0pt}c\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}s\isactrlsub {\isadigit{1}}{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ inj\ r\isactrlsub {\isadigit{1}}\ c\ v\isactrlsub {\isadigit{1}}} (which in turn follows from \isa{{\isacharparenleft}{\kern0pt}s\isactrlsub {\isadigit{1}}{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{1}}{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v\isactrlsub {\isadigit{1}}} and the induction hypothesis).\qed
+ \end{itemize}
+ \end{proof}
+
+ \noindent
+ With Lemma~\ref{Posix2} in place, it is completely routine to establish
+ that the Sulzmann and Lu lexer satisfies our specification (returning
+ the null value \isa{None} iff the string is not in the language of the regular expression,
+ and returning a unique POSIX value iff the string \emph{is} in the language):
+
+ \begin{theorem}\mbox{}\smallskip\\\label{lexercorrect}
+ \begin{tabular}{ll}
+ (1) & \isa{s\ {\isasymnotin}\ L{\isacharparenleft}{\kern0pt}r{\isacharparenright}{\kern0pt}} if and only if \isa{lexer\ r\ s\ {\isacharequal}{\kern0pt}\ None}\\
+ (2) & \isa{s\ {\isasymin}\ L{\isacharparenleft}{\kern0pt}r{\isacharparenright}{\kern0pt}} if and only if \isa{{\isasymexists}v{\isachardot}{\kern0pt}\ lexer\ r\ s\ {\isacharequal}{\kern0pt}\ Some\ v\ {\isasymand}\ {\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v}\\
+ \end{tabular}
+ \end{theorem}
+
+ \begin{proof}
+ By induction on \isa{s} using Lemma~\ref{lemmkeps} and \ref{Posix2}.\qed
+ \end{proof}
+
+ \noindent In \textit{(2)} we further know by Theorem~\ref{posixdeterm} that the
+ value returned by the lexer must be unique. A simple corollary
+ of our two theorems is:
+
+ \begin{corollary}\mbox{}\smallskip\\\label{lexercorrectcor}
+ \begin{tabular}{ll}
+ (1) & \isa{lexer\ r\ s\ {\isacharequal}{\kern0pt}\ None} if and only if \isa{{\isasymnexists}v{\isachardot}{\kern0pt}a{\isachardot}{\kern0pt}\ {\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v}\\
+ (2) & \isa{lexer\ r\ s\ {\isacharequal}{\kern0pt}\ Some\ v} if and only if \isa{{\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v}\\
+ \end{tabular}
+ \end{corollary}
+
+ \noindent This concludes our correctness proof. Note that we have
+ not changed the algorithm of Sulzmann and Lu,\footnote{All
+ deviations we introduced are harmless.} but introduced our own
+ specification for what a correct result---a POSIX value---should be.
+ In the next section we show that our specification coincides with
+ another one given by Okui and Suzuki using a different technique.%
+\end{isamarkuptext}\isamarkuptrue%
+%
+\isadelimdocument
+%
+\endisadelimdocument
+%
+\isatagdocument
+%
+\isamarkupsection{Ordering of Values according to Okui and Suzuki%
+}
+\isamarkuptrue%
+%
+\endisatagdocument
+{\isafolddocument}%
+%
+\isadelimdocument
+%
+\endisadelimdocument
+%
+\begin{isamarkuptext}%
+While in the previous section we have defined POSIX values directly
+ in terms of a ternary relation (see inference rules in Figure~\ref{POSIXrules}),
+ Sulzmann and Lu took a different approach in \cite{Sulzmann2014}:
+ they introduced an ordering for values and identified POSIX values
+ as the maximal elements. An extended version of \cite{Sulzmann2014}
+ is available at the website of its first author; this includes more
+ details of their proofs, but which are evidently not in final form
+ yet. Unfortunately, we were not able to verify claims that their
+ ordering has properties such as being transitive or having maximal
+ elements.
+
+ Okui and Suzuki \cite{OkuiSuzuki2010,OkuiSuzukiTech} described
+ another ordering of values, which they use to establish the
+ correctness of their automata-based algorithm for POSIX matching.
+ Their ordering resembles some aspects of the one given by Sulzmann
+ and Lu, but overall is quite different. To begin with, Okui and
+ Suzuki identify POSIX values as minimal, rather than maximal,
+ elements in their ordering. A more substantial difference is that
+ the ordering by Okui and Suzuki uses \emph{positions} in order to
+ identify and compare subvalues. Positions are lists of natural
+ numbers. This allows them to quite naturally formalise the Longest
+ Match and Priority rules of the informal POSIX standard. Consider
+ for example the value \isa{v}
+
+ \begin{center}
+ \isa{v\ {\isasymequiv}\ Stars\ {\isacharbrackleft}{\kern0pt}Seq\ {\isacharparenleft}{\kern0pt}Char\ x{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}Char\ y{\isacharparenright}{\kern0pt}{\isacharcomma}{\kern0pt}\ Char\ z{\isacharbrackright}{\kern0pt}}
+ \end{center}
+
+ \noindent
+ At position \isa{{\isacharbrackleft}{\kern0pt}{\isadigit{0}}{\isacharcomma}{\kern0pt}{\isadigit{1}}{\isacharbrackright}{\kern0pt}} of this value is the
+ subvalue \isa{Char\ y} and at position \isa{{\isacharbrackleft}{\kern0pt}{\isadigit{1}}{\isacharbrackright}{\kern0pt}} the
+ subvalue \isa{Char\ z}. At the `root' position, or empty list
+ \isa{{\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}}, is the whole value \isa{v}. Positions such as \isa{{\isacharbrackleft}{\kern0pt}{\isadigit{0}}{\isacharcomma}{\kern0pt}{\isadigit{1}}{\isacharcomma}{\kern0pt}{\isadigit{0}}{\isacharbrackright}{\kern0pt}} or \isa{{\isacharbrackleft}{\kern0pt}{\isadigit{2}}{\isacharbrackright}{\kern0pt}} are outside of \isa{v}. If it exists, the subvalue of \isa{v} at a position \isa{p}, written \isa{v\mbox{$\downharpoonleft$}\isactrlbsub p\isactrlesub }, can be recursively defined by
+
+ \begin{center}
+ \begin{tabular}{r@ {\hspace{0mm}}lcl}
+ \isa{v} & \isa{{\isasymdownharpoonleft}\isactrlbsub {\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}\isactrlesub } & \isa{{\isasymequiv}}& \isa{v}\\
+ \isa{Left\ v} & \isa{{\isasymdownharpoonleft}\isactrlbsub {\isadigit{0}}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}ps\isactrlesub } & \isa{{\isasymequiv}}& \isa{v\mbox{$\downharpoonleft$}\isactrlbsub ps\isactrlesub }\\
+ \isa{Right\ v} & \isa{{\isasymdownharpoonleft}\isactrlbsub {\isadigit{1}}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}ps\isactrlesub } & \isa{{\isasymequiv}} &
+ \isa{v\mbox{$\downharpoonleft$}\isactrlbsub ps\isactrlesub }\\
+ \isa{Seq\ v\isactrlsub {\isadigit{1}}\ v\isactrlsub {\isadigit{2}}} & \isa{{\isasymdownharpoonleft}\isactrlbsub {\isadigit{0}}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}ps\isactrlesub } & \isa{{\isasymequiv}} &
+ \isa{v\isactrlsub {\isadigit{1}}\mbox{$\downharpoonleft$}\isactrlbsub ps\isactrlesub } \\
+ \isa{Seq\ v\isactrlsub {\isadigit{1}}\ v\isactrlsub {\isadigit{2}}} & \isa{{\isasymdownharpoonleft}\isactrlbsub {\isadigit{1}}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}ps\isactrlesub }
+ & \isa{{\isasymequiv}} &
+ \isa{v\isactrlsub {\isadigit{2}}\mbox{$\downharpoonleft$}\isactrlbsub ps\isactrlesub } \\
+ \isa{Stars\ vs} & \isa{{\isasymdownharpoonleft}\isactrlbsub n{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}ps\isactrlesub } & \isa{{\isasymequiv}}& \isa{vs\ensuremath{_{[\mathit{n}]}}\mbox{$\downharpoonleft$}\isactrlbsub ps\isactrlesub }\\
+ \end{tabular}
+ \end{center}
+
+ \noindent In the last clause we use Isabelle's notation \isa{vs\ensuremath{_{[\mathit{n}]}}} for the
+ \isa{n}th element in a list. The set of positions inside a value \isa{v},
+ written \isa{Pos\ v}, is given by
+
+ \begin{center}
+ \begin{tabular}{lcl}
+ \isa{Pos\ {\isacharparenleft}{\kern0pt}Empty{\isacharparenright}{\kern0pt}} & \isa{{\isasymequiv}} & \isa{{\isacharbraceleft}{\kern0pt}{\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}}\\
+ \isa{Pos\ {\isacharparenleft}{\kern0pt}Char\ c{\isacharparenright}{\kern0pt}} & \isa{{\isasymequiv}} & \isa{{\isacharbraceleft}{\kern0pt}{\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}}\\
+ \isa{Pos\ {\isacharparenleft}{\kern0pt}Left\ v{\isacharparenright}{\kern0pt}} & \isa{{\isasymequiv}} & \isa{{\isacharbraceleft}{\kern0pt}{\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isasymunion}\ {\isacharbraceleft}{\kern0pt}{\isadigit{0}}\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}ps\ \mbox{\boldmath$\mid$}\ ps\ {\isasymin}\ Pos\ v{\isacharbraceright}{\kern0pt}}\\
+ \isa{Pos\ {\isacharparenleft}{\kern0pt}Right\ v{\isacharparenright}{\kern0pt}} & \isa{{\isasymequiv}} & \isa{{\isacharbraceleft}{\kern0pt}{\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isasymunion}\ {\isacharbraceleft}{\kern0pt}{\isadigit{1}}\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}ps\ \mbox{\boldmath$\mid$}\ ps\ {\isasymin}\ Pos\ v{\isacharbraceright}{\kern0pt}}\\
+ \isa{Pos\ {\isacharparenleft}{\kern0pt}Seq\ v\isactrlsub {\isadigit{1}}\ v\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}}
+ & \isa{{\isasymequiv}}
+ & \isa{{\isacharbraceleft}{\kern0pt}{\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isasymunion}\ {\isacharbraceleft}{\kern0pt}{\isadigit{0}}\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}ps\ \mbox{\boldmath$\mid$}\ ps\ {\isasymin}\ Pos\ v\isactrlsub {\isadigit{1}}{\isacharbraceright}{\kern0pt}\ {\isasymunion}\ {\isacharbraceleft}{\kern0pt}{\isadigit{1}}\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}ps\ \mbox{\boldmath$\mid$}\ ps\ {\isasymin}\ Pos\ v\isactrlsub {\isadigit{2}}{\isacharbraceright}{\kern0pt}}\\
+ \isa{Pos\ {\isacharparenleft}{\kern0pt}Stars\ vs{\isacharparenright}{\kern0pt}} & \isa{{\isasymequiv}} & \isa{{\isacharbraceleft}{\kern0pt}{\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isasymunion}\ {\isacharparenleft}{\kern0pt}{\isasymUnion}n\ {\isacharless}{\kern0pt}\ len\ vs\ {\isacharbraceleft}{\kern0pt}n\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}ps\ \mbox{\boldmath$\mid$}\ ps\ {\isasymin}\ Pos\ vs\ensuremath{_{[\mathit{n}]}}{\isacharbraceright}{\kern0pt}{\isacharparenright}{\kern0pt}}\\
+ \end{tabular}
+ \end{center}
+
+ \noindent
+ whereby \isa{len} in the last clause stands for the length of a list. Clearly
+ for every position inside a value there exists a subvalue at that position.
+
+
+ To help understanding the ordering of Okui and Suzuki, consider again
+ the earlier value
+ \isa{v} and compare it with the following \isa{w}:
+
+ \begin{center}
+ \begin{tabular}{l}
+ \isa{v\ {\isasymequiv}\ Stars\ {\isacharbrackleft}{\kern0pt}Seq\ {\isacharparenleft}{\kern0pt}Char\ x{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}Char\ y{\isacharparenright}{\kern0pt}{\isacharcomma}{\kern0pt}\ Char\ z{\isacharbrackright}{\kern0pt}}\\
+ \isa{w\ {\isasymequiv}\ Stars\ {\isacharbrackleft}{\kern0pt}Char\ x{\isacharcomma}{\kern0pt}\ Char\ y{\isacharcomma}{\kern0pt}\ Char\ z{\isacharbrackright}{\kern0pt}}
+ \end{tabular}
+ \end{center}
+
+ \noindent Both values match the string \isa{xyz}, that means if
+ we flatten these values at their respective root position, we obtain
+ \isa{xyz}. However, at position \isa{{\isacharbrackleft}{\kern0pt}{\isadigit{0}}{\isacharbrackright}{\kern0pt}}, \isa{v} matches
+ \isa{xy} whereas \isa{w} matches only the shorter \isa{x}. So
+ according to the Longest Match Rule, we should prefer \isa{v},
+ rather than \isa{w} as POSIX value for string \isa{xyz} (and
+ corresponding regular expression). In order to
+ formalise this idea, Okui and Suzuki introduce a measure for
+ subvalues at position \isa{p}, called the \emph{norm} of \isa{v}
+ at position \isa{p}. We can define this measure in Isabelle as an
+ integer as follows
+
+ \begin{center}
+ \isa{{\isasymparallel}v{\isasymparallel}\isactrlbsub p\isactrlesub \ {\isasymequiv}\ \textrm{if}\ p\ {\isasymin}\ Pos\ v\ \textrm{then}\ len\ {\isacharbar}{\kern0pt}v\mbox{$\downharpoonleft$}\isactrlbsub p\isactrlesub {\isacharbar}{\kern0pt}\ \textrm{else}\ {\isacharminus}{\kern0pt}\ {\isadigit{1}}}
+ \end{center}
+
+ \noindent where we take the length of the flattened value at
+ position \isa{p}, provided the position is inside \isa{v}; if
+ not, then the norm is \isa{{\isacharminus}{\kern0pt}{\isadigit{1}}}. The default for outside
+ positions is crucial for the POSIX requirement of preferring a
+ \isa{Left}-value over a \isa{Right}-value (if they can match the
+ same string---see the Priority Rule from the Introduction). For this
+ consider
+
+ \begin{center}
+ \isa{v\ {\isasymequiv}\ Left\ {\isacharparenleft}{\kern0pt}Char\ x{\isacharparenright}{\kern0pt}} \qquad and \qquad \isa{w\ {\isasymequiv}\ Right\ {\isacharparenleft}{\kern0pt}Char\ x{\isacharparenright}{\kern0pt}}
+ \end{center}
+
+ \noindent Both values match \isa{x}. At position \isa{{\isacharbrackleft}{\kern0pt}{\isadigit{0}}{\isacharbrackright}{\kern0pt}}
+ the norm of \isa{v} is \isa{{\isadigit{1}}} (the subvalue matches \isa{x}),
+ but the norm of \isa{w} is \isa{{\isacharminus}{\kern0pt}{\isadigit{1}}} (the position is outside
+ \isa{w} according to how we defined the `inside' positions of
+ \isa{Left}- and \isa{Right}-values). Of course at position
+ \isa{{\isacharbrackleft}{\kern0pt}{\isadigit{1}}{\isacharbrackright}{\kern0pt}}, the norms \isa{{\isasymparallel}v{\isasymparallel}\isactrlbsub {\isacharbrackleft}{\kern0pt}{\isadigit{1}}{\isacharbrackright}{\kern0pt}\isactrlesub } and \isa{{\isasymparallel}w{\isasymparallel}\isactrlbsub {\isacharbrackleft}{\kern0pt}{\isadigit{1}}{\isacharbrackright}{\kern0pt}\isactrlesub } are reversed, but the point is that subvalues
+ will be analysed according to lexicographically ordered
+ positions. According to this ordering, the position \isa{{\isacharbrackleft}{\kern0pt}{\isadigit{0}}{\isacharbrackright}{\kern0pt}}
+ takes precedence over \isa{{\isacharbrackleft}{\kern0pt}{\isadigit{1}}{\isacharbrackright}{\kern0pt}} and thus also \isa{v} will be
+ preferred over \isa{w}. The lexicographic ordering of positions, written
+ \isa{\underline{\hspace{2mm}}\ {\isasymprec}\isactrlbsub lex\isactrlesub \ \underline{\hspace{2mm}}}, can be conveniently formalised
+ by three inference rules
+
+ \begin{center}
+ \begin{tabular}{ccc}
+ \isa{\mbox{}\inferrule{\mbox{}}{\mbox{{\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}\ {\isasymprec}\isactrlbsub lex\isactrlesub \ p\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}ps}}}\hspace{1cm} &
+ \isa{\mbox{}\inferrule{\mbox{p\isactrlsub {\isadigit{1}}\ {\isacharless}{\kern0pt}\ p\isactrlsub {\isadigit{2}}}}{\mbox{p\isactrlsub {\isadigit{1}}\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}ps\isactrlsub {\isadigit{1}}\ {\isasymprec}\isactrlbsub lex\isactrlesub \ p\isactrlsub {\isadigit{2}}\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}ps\isactrlsub {\isadigit{2}}}}}\hspace{1cm} &
+ \isa{\mbox{}\inferrule{\mbox{ps\isactrlsub {\isadigit{1}}\ {\isasymprec}\isactrlbsub lex\isactrlesub \ ps\isactrlsub {\isadigit{2}}}}{\mbox{p\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}ps\isactrlsub {\isadigit{1}}\ {\isasymprec}\isactrlbsub lex\isactrlesub \ p\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}ps\isactrlsub {\isadigit{2}}}}}
+ \end{tabular}
+ \end{center}
+
+ With the norm and lexicographic order in place,
+ we can state the key definition of Okui and Suzuki
+ \cite{OkuiSuzuki2010}: a value \isa{v\isactrlsub {\isadigit{1}}} is \emph{smaller at position \isa{p}} than
+ \isa{v\isactrlsub {\isadigit{2}}}, written \isa{v\isactrlsub {\isadigit{1}}\ {\isasymprec}\isactrlbsub p\isactrlesub \ v\isactrlsub {\isadigit{2}}},
+ if and only if $(i)$ the norm at position \isa{p} is
+ greater in \isa{v\isactrlsub {\isadigit{1}}} (that is the string \isa{{\isacharbar}{\kern0pt}v\isactrlsub {\isadigit{1}}\mbox{$\downharpoonleft$}\isactrlbsub p\isactrlesub {\isacharbar}{\kern0pt}} is longer
+ than \isa{{\isacharbar}{\kern0pt}v\isactrlsub {\isadigit{2}}\mbox{$\downharpoonleft$}\isactrlbsub p\isactrlesub {\isacharbar}{\kern0pt}}) and $(ii)$ all subvalues at
+ positions that are inside \isa{v\isactrlsub {\isadigit{1}}} or \isa{v\isactrlsub {\isadigit{2}}} and that are
+ lexicographically smaller than \isa{p}, we have the same norm, namely
+
+ \begin{center}
+ \begin{tabular}{c}
+ \isa{v\isactrlsub {\isadigit{1}}\ {\isasymprec}\isactrlbsub p\isactrlesub \ v\isactrlsub {\isadigit{2}}}
+ \isa{{\isasymequiv}}
+ $\begin{cases}
+ (i) & \isa{{\isasymparallel}v\isactrlsub {\isadigit{2}}{\isasymparallel}\isactrlbsub p\isactrlesub \ {\isacharless}{\kern0pt}\ {\isasymparallel}v\isactrlsub {\isadigit{1}}{\isasymparallel}\isactrlbsub p\isactrlesub } \quad\text{and}\smallskip \\
+ (ii) & \isa{{\isasymforall}q{\isasymin}Pos\ v\isactrlsub {\isadigit{1}}\ {\isasymunion}\ Pos\ v\isactrlsub {\isadigit{2}}{\isachardot}{\kern0pt}\ q\ {\isasymprec}\isactrlbsub lex\isactrlesub \ p\ {\isasymlongrightarrow}\ {\isasymparallel}v\isactrlsub {\isadigit{1}}{\isasymparallel}\isactrlbsub q\isactrlesub \ {\isacharequal}{\kern0pt}\ {\isasymparallel}v\isactrlsub {\isadigit{2}}{\isasymparallel}\isactrlbsub q\isactrlesub }
+ \end{cases}$
+ \end{tabular}
+ \end{center}
+
+ \noindent The position \isa{p} in this definition acts as the
+ \emph{first distinct position} of \isa{v\isactrlsub {\isadigit{1}}} and \isa{v\isactrlsub {\isadigit{2}}}, where both values match strings of different length
+ \cite{OkuiSuzuki2010}. Since at \isa{p} the values \isa{v\isactrlsub {\isadigit{1}}} and \isa{v\isactrlsub {\isadigit{2}}} match different strings, the
+ ordering is irreflexive. Derived from the definition above
+ are the following two orderings:
+
+ \begin{center}
+ \begin{tabular}{l}
+ \isa{v\isactrlsub {\isadigit{1}}\ {\isasymprec}\ v\isactrlsub {\isadigit{2}}\ {\isasymequiv}\ {\isasymexists}p{\isachardot}{\kern0pt}\ v\isactrlsub {\isadigit{1}}\ {\isasymprec}\isactrlbsub p\isactrlesub \ v\isactrlsub {\isadigit{2}}}\\
+ \isa{v\isactrlsub {\isadigit{1}}\ \mbox{$\preccurlyeq$}\ v\isactrlsub {\isadigit{2}}\ {\isasymequiv}\ v\isactrlsub {\isadigit{1}}\ {\isasymprec}\ v\isactrlsub {\isadigit{2}}\ {\isasymor}\ v\isactrlsub {\isadigit{1}}\ {\isacharequal}{\kern0pt}\ v\isactrlsub {\isadigit{2}}}
+ \end{tabular}
+ \end{center}
+
+ While we encountered a number of obstacles for establishing properties like
+ transitivity for the ordering of Sulzmann and Lu (and which we failed
+ to overcome), it is relatively straightforward to establish this
+ property for the orderings
+ \isa{\underline{\hspace{2mm}}\ {\isasymprec}\ \underline{\hspace{2mm}}} and \isa{\underline{\hspace{2mm}}\ \mbox{$\preccurlyeq$}\ \underline{\hspace{2mm}}}
+ by Okui and Suzuki.
+
+ \begin{lemma}[Transitivity]\label{transitivity}
+ \isa{{\normalsize{}If\,}\ \mbox{v\isactrlsub {\isadigit{1}}\ {\isasymprec}\ v\isactrlsub {\isadigit{2}}}\ {\normalsize \,and\,}\ \mbox{v\isactrlsub {\isadigit{2}}\ {\isasymprec}\ v\isactrlsub {\isadigit{3}}}\ {\normalsize \,then\,}\ v\isactrlsub {\isadigit{1}}\ {\isasymprec}\ v\isactrlsub {\isadigit{3}}{\isachardot}{\kern0pt}}
+ \end{lemma}
+
+ \begin{proof} From the assumption we obtain two positions \isa{p}
+ and \isa{q}, where the values \isa{v\isactrlsub {\isadigit{1}}} and \isa{v\isactrlsub {\isadigit{2}}} (respectively \isa{v\isactrlsub {\isadigit{2}}} and \isa{v\isactrlsub {\isadigit{3}}}) are `distinct'. Since \isa{{\isasymprec}\isactrlbsub lex\isactrlesub } is trichotomous, we need to consider
+ three cases, namely \isa{p\ {\isacharequal}{\kern0pt}\ q}, \isa{p\ {\isasymprec}\isactrlbsub lex\isactrlesub \ q} and
+ \isa{q\ {\isasymprec}\isactrlbsub lex\isactrlesub \ p}. Let us look at the first case. Clearly
+ \isa{{\isasymparallel}v\isactrlsub {\isadigit{2}}{\isasymparallel}\isactrlbsub p\isactrlesub \ {\isacharless}{\kern0pt}\ {\isasymparallel}v\isactrlsub {\isadigit{1}}{\isasymparallel}\isactrlbsub p\isactrlesub } and \isa{{\isasymparallel}v\isactrlsub {\isadigit{3}}{\isasymparallel}\isactrlbsub p\isactrlesub \ {\isacharless}{\kern0pt}\ {\isasymparallel}v\isactrlsub {\isadigit{2}}{\isasymparallel}\isactrlbsub p\isactrlesub } imply \isa{{\isasymparallel}v\isactrlsub {\isadigit{3}}{\isasymparallel}\isactrlbsub p\isactrlesub \ {\isacharless}{\kern0pt}\ {\isasymparallel}v\isactrlsub {\isadigit{1}}{\isasymparallel}\isactrlbsub p\isactrlesub }. It remains to show
+ that for a \isa{p{\isacharprime}{\kern0pt}\ {\isasymin}\ Pos\ v\isactrlsub {\isadigit{1}}\ {\isasymunion}\ Pos\ v\isactrlsub {\isadigit{3}}}
+ with \isa{p{\isacharprime}{\kern0pt}\ {\isasymprec}\isactrlbsub lex\isactrlesub \ p} that \isa{{\isasymparallel}v\isactrlsub {\isadigit{1}}{\isasymparallel}\isactrlbsub p{\isacharprime}{\kern0pt}\isactrlesub \ {\isacharequal}{\kern0pt}\ {\isasymparallel}v\isactrlsub {\isadigit{3}}{\isasymparallel}\isactrlbsub p{\isacharprime}{\kern0pt}\isactrlesub } holds. Suppose \isa{p{\isacharprime}{\kern0pt}\ {\isasymin}\ Pos\ v\isactrlsub {\isadigit{1}}}, then we can infer from the first assumption that \isa{{\isasymparallel}v\isactrlsub {\isadigit{1}}{\isasymparallel}\isactrlbsub p{\isacharprime}{\kern0pt}\isactrlesub \ {\isacharequal}{\kern0pt}\ {\isasymparallel}v\isactrlsub {\isadigit{2}}{\isasymparallel}\isactrlbsub p{\isacharprime}{\kern0pt}\isactrlesub }. But this means
+ that \isa{p{\isacharprime}{\kern0pt}} must be in \isa{Pos\ v\isactrlsub {\isadigit{2}}} too (the norm
+ cannot be \isa{{\isacharminus}{\kern0pt}{\isadigit{1}}} given \isa{p{\isacharprime}{\kern0pt}\ {\isasymin}\ Pos\ v\isactrlsub {\isadigit{1}}}).
+ Hence we can use the second assumption and
+ infer \isa{{\isasymparallel}v\isactrlsub {\isadigit{2}}{\isasymparallel}\isactrlbsub p{\isacharprime}{\kern0pt}\isactrlesub \ {\isacharequal}{\kern0pt}\ {\isasymparallel}v\isactrlsub {\isadigit{3}}{\isasymparallel}\isactrlbsub p{\isacharprime}{\kern0pt}\isactrlesub },
+ which concludes this case with \isa{v\isactrlsub {\isadigit{1}}\ {\isasymprec}\ v\isactrlsub {\isadigit{3}}}. The reasoning in the other cases is similar.\qed
+ \end{proof}
+
+ \noindent
+ The proof for $\preccurlyeq$ is similar and omitted.
+ It is also straightforward to show that \isa{{\isasymprec}} and
+ $\preccurlyeq$ are partial orders. Okui and Suzuki furthermore show that they
+ are linear orderings for lexical values \cite{OkuiSuzuki2010} of a given
+ regular expression and given string, but we have not formalised this in Isabelle. It is
+ not essential for our results. What we are going to show below is
+ that for a given \isa{r} and \isa{s}, the orderings have a unique
+ minimal element on the set \isa{LV\ r\ s}, which is the POSIX value
+ we defined in the previous section. We start with two properties that
+ show how the length of a flattened value relates to the \isa{{\isasymprec}}-ordering.
+
+ \begin{proposition}\mbox{}\smallskip\\\label{ordlen}
+ \begin{tabular}{@ {}ll}
+ (1) &
+ \isa{{\normalsize{}If\,}\ v\isactrlsub {\isadigit{1}}\ {\isasymprec}\ v\isactrlsub {\isadigit{2}}\ {\normalsize \,then\,}\ len\ {\isacharbar}{\kern0pt}v\isactrlsub {\isadigit{2}}{\isacharbar}{\kern0pt}\ {\isasymle}\ len\ {\isacharbar}{\kern0pt}v\isactrlsub {\isadigit{1}}{\isacharbar}{\kern0pt}{\isachardot}{\kern0pt}}\\
+ (2) &
+ \isa{{\normalsize{}If\,}\ len\ {\isacharbar}{\kern0pt}v\isactrlsub {\isadigit{2}}{\isacharbar}{\kern0pt}\ {\isacharless}{\kern0pt}\ len\ {\isacharbar}{\kern0pt}v\isactrlsub {\isadigit{1}}{\isacharbar}{\kern0pt}\ {\normalsize \,then\,}\ v\isactrlsub {\isadigit{1}}\ {\isasymprec}\ v\isactrlsub {\isadigit{2}}{\isachardot}{\kern0pt}}
+ \end{tabular}
+ \end{proposition}
+
+ \noindent Both properties follow from the definition of the ordering. Note that
+ \textit{(2)} entails that a value, say \isa{v\isactrlsub {\isadigit{2}}}, whose underlying
+ string is a strict prefix of another flattened value, say \isa{v\isactrlsub {\isadigit{1}}}, then
+ \isa{v\isactrlsub {\isadigit{1}}} must be smaller than \isa{v\isactrlsub {\isadigit{2}}}. For our proofs it
+ will be useful to have the following properties---in each case the underlying strings
+ of the compared values are the same:
+
+ \begin{proposition}\mbox{}\smallskip\\\label{ordintros}
+ \begin{tabular}{ll}
+ \textit{(1)} &
+ \isa{{\normalsize{}If\,}\ {\isacharbar}{\kern0pt}v\isactrlsub {\isadigit{1}}{\isacharbar}{\kern0pt}\ {\isacharequal}{\kern0pt}\ {\isacharbar}{\kern0pt}v\isactrlsub {\isadigit{2}}{\isacharbar}{\kern0pt}\ {\normalsize \,then\,}\ Left\ v\isactrlsub {\isadigit{1}}\ {\isasymprec}\ Right\ v\isactrlsub {\isadigit{2}}{\isachardot}{\kern0pt}}\\
+ \textit{(2)} & If
+ \isa{{\isacharbar}{\kern0pt}v\isactrlsub {\isadigit{1}}{\isacharbar}{\kern0pt}\ {\isacharequal}{\kern0pt}\ {\isacharbar}{\kern0pt}v\isactrlsub {\isadigit{2}}{\isacharbar}{\kern0pt}} \;then\;
+ \isa{Left\ v\isactrlsub {\isadigit{1}}\ {\isasymprec}\ Left\ v\isactrlsub {\isadigit{2}}} \;iff\;
+ \isa{v\isactrlsub {\isadigit{1}}\ {\isasymprec}\ v\isactrlsub {\isadigit{2}}}\\
+ \textit{(3)} & If
+ \isa{{\isacharbar}{\kern0pt}v\isactrlsub {\isadigit{1}}{\isacharbar}{\kern0pt}\ {\isacharequal}{\kern0pt}\ {\isacharbar}{\kern0pt}v\isactrlsub {\isadigit{2}}{\isacharbar}{\kern0pt}} \;then\;
+ \isa{Right\ v\isactrlsub {\isadigit{1}}\ {\isasymprec}\ Right\ v\isactrlsub {\isadigit{2}}} \;iff\;
+ \isa{v\isactrlsub {\isadigit{1}}\ {\isasymprec}\ v\isactrlsub {\isadigit{2}}}\\
+ \textit{(4)} & If
+ \isa{{\isacharbar}{\kern0pt}v\isactrlsub {\isadigit{2}}{\isacharbar}{\kern0pt}\ {\isacharequal}{\kern0pt}\ {\isacharbar}{\kern0pt}w\isactrlsub {\isadigit{2}}{\isacharbar}{\kern0pt}} \;then\;
+ \isa{Seq\ v\ v\isactrlsub {\isadigit{2}}\ {\isasymprec}\ Seq\ v\ w\isactrlsub {\isadigit{2}}} \;iff\;
+ \isa{v\isactrlsub {\isadigit{2}}\ {\isasymprec}\ w\isactrlsub {\isadigit{2}}}\\
+ \textit{(5)} & If
+ \isa{{\isacharbar}{\kern0pt}v\isactrlsub {\isadigit{1}}{\isacharbar}{\kern0pt}\ {\isacharat}{\kern0pt}\ {\isacharbar}{\kern0pt}v\isactrlsub {\isadigit{2}}{\isacharbar}{\kern0pt}\ {\isacharequal}{\kern0pt}\ {\isacharbar}{\kern0pt}w\isactrlsub {\isadigit{1}}{\isacharbar}{\kern0pt}\ {\isacharat}{\kern0pt}\ {\isacharbar}{\kern0pt}w\isactrlsub {\isadigit{2}}{\isacharbar}{\kern0pt}} \;and\;
+ \isa{v\isactrlsub {\isadigit{1}}\ {\isasymprec}\ w\isactrlsub {\isadigit{1}}} \;then\;
+ \isa{Seq\ v\isactrlsub {\isadigit{1}}\ v\isactrlsub {\isadigit{2}}\ {\isasymprec}\ Seq\ w\isactrlsub {\isadigit{1}}\ w\isactrlsub {\isadigit{2}}}\\
+ \textit{(6)} & If
+ \isa{{\isacharbar}{\kern0pt}vs\isactrlsub {\isadigit{1}}{\isacharbar}{\kern0pt}\ {\isacharequal}{\kern0pt}\ {\isacharbar}{\kern0pt}vs\isactrlsub {\isadigit{2}}{\isacharbar}{\kern0pt}} \;then\;
+ \isa{Stars\ {\isacharparenleft}{\kern0pt}vs\ {\isacharat}{\kern0pt}\ vs\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isasymprec}\ Stars\ {\isacharparenleft}{\kern0pt}vs\ {\isacharat}{\kern0pt}\ vs\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}} \;iff\;
+ \isa{Stars\ vs\isactrlsub {\isadigit{1}}\ {\isasymprec}\ Stars\ vs\isactrlsub {\isadigit{2}}}\\
+
+ \textit{(7)} & If
+ \isa{{\isacharbar}{\kern0pt}v\isactrlsub {\isadigit{1}}\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}vs\isactrlsub {\isadigit{1}}{\isacharbar}{\kern0pt}\ {\isacharequal}{\kern0pt}\ {\isacharbar}{\kern0pt}v\isactrlsub {\isadigit{2}}\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}vs\isactrlsub {\isadigit{2}}{\isacharbar}{\kern0pt}} \;and\;
+ \isa{v\isactrlsub {\isadigit{1}}\ {\isasymprec}\ v\isactrlsub {\isadigit{2}}} \;then\;
+ \isa{Stars\ {\isacharparenleft}{\kern0pt}v\isactrlsub {\isadigit{1}}\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}vs\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isasymprec}\ Stars\ {\isacharparenleft}{\kern0pt}v\isactrlsub {\isadigit{2}}\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}vs\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}}\\
+ \end{tabular}
+ \end{proposition}
+
+ \noindent One might prefer that statements \textit{(4)} and \textit{(5)}
+ (respectively \textit{(6)} and \textit{(7)})
+ are combined into a single \textit{iff}-statement (like the ones for \isa{Left} and \isa{Right}). Unfortunately this cannot be done easily: such
+ a single statement would require an additional assumption about the
+ two values \isa{Seq\ v\isactrlsub {\isadigit{1}}\ v\isactrlsub {\isadigit{2}}} and \isa{Seq\ w\isactrlsub {\isadigit{1}}\ w\isactrlsub {\isadigit{2}}}
+ being inhabited by the same regular expression. The
+ complexity of the proofs involved seems to not justify such a
+ `cleaner' single statement. The statements given are just the properties that
+ allow us to establish our theorems without any difficulty. The proofs
+ for Proposition~\ref{ordintros} are routine.
+
+
+ Next we establish how Okui and Suzuki's orderings relate to our
+ definition of POSIX values. Given a \isa{POSIX} value \isa{v\isactrlsub {\isadigit{1}}}
+ for \isa{r} and \isa{s}, then any other lexical value \isa{v\isactrlsub {\isadigit{2}}} in \isa{LV\ r\ s} is greater or equal than \isa{v\isactrlsub {\isadigit{1}}}, namely:
+
+
+ \begin{theorem}\label{orderone}
+ \isa{{\normalsize{}If\,}\ \mbox{{\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v\isactrlsub {\isadigit{1}}}\ {\normalsize \,and\,}\ \mbox{v\isactrlsub {\isadigit{2}}\ {\isasymin}\ LV\ r\ s}\ {\normalsize \,then\,}\ v\isactrlsub {\isadigit{1}}\ \mbox{$\preccurlyeq$}\ v\isactrlsub {\isadigit{2}}{\isachardot}{\kern0pt}}
+ \end{theorem}
+
+ \begin{proof} By induction on our POSIX rules. By
+ Theorem~\ref{posixdeterm} and the definition of \isa{LV}, it is clear
+ that \isa{v\isactrlsub {\isadigit{1}}} and \isa{v\isactrlsub {\isadigit{2}}} have the same
+ underlying string \isa{s}. The three base cases are
+ straightforward: for example for \isa{v\isactrlsub {\isadigit{1}}\ {\isacharequal}{\kern0pt}\ Empty}, we have
+ that \isa{v\isactrlsub {\isadigit{2}}\ {\isasymin}\ LV\ \isactrlbold {\isadigit{1}}\ {\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}} must also be of the form
+ \mbox{\isa{v\isactrlsub {\isadigit{2}}\ {\isacharequal}{\kern0pt}\ Empty}}. Therefore we have \isa{v\isactrlsub {\isadigit{1}}\ \mbox{$\preccurlyeq$}\ v\isactrlsub {\isadigit{2}}}. The inductive cases for
+ \isa{r} being of the form \isa{r\isactrlsub {\isadigit{1}}\ {\isacharplus}{\kern0pt}\ r\isactrlsub {\isadigit{2}}} and
+ \isa{r\isactrlsub {\isadigit{1}}\ {\isasymcdot}\ r\isactrlsub {\isadigit{2}}} are as follows:
+
+
+ \begin{itemize}
+
+ \item[$\bullet$] Case \isa{P{\isacharplus}{\kern0pt}L} with \isa{{\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{1}}\ {\isacharplus}{\kern0pt}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ Left\ w\isactrlsub {\isadigit{1}}}: In this case the value
+ \isa{v\isactrlsub {\isadigit{2}}} is either of the
+ form \isa{Left\ w\isactrlsub {\isadigit{2}}} or \isa{Right\ w\isactrlsub {\isadigit{2}}}. In the
+ latter case we can immediately conclude with \mbox{\isa{v\isactrlsub {\isadigit{1}}\ \mbox{$\preccurlyeq$}\ v\isactrlsub {\isadigit{2}}}} since a \isa{Left}-value with the
+ same underlying string \isa{s} is always smaller than a
+ \isa{Right}-value by Proposition~\ref{ordintros}\textit{(1)}.
+ In the former case we have \isa{w\isactrlsub {\isadigit{2}}\ {\isasymin}\ LV\ r\isactrlsub {\isadigit{1}}\ s} and can use the induction hypothesis to infer
+ \isa{w\isactrlsub {\isadigit{1}}\ \mbox{$\preccurlyeq$}\ w\isactrlsub {\isadigit{2}}}. Because \isa{w\isactrlsub {\isadigit{1}}} and \isa{w\isactrlsub {\isadigit{2}}} have the same underlying string
+ \isa{s}, we can conclude with \isa{Left\ w\isactrlsub {\isadigit{1}}\ \mbox{$\preccurlyeq$}\ Left\ w\isactrlsub {\isadigit{2}}} using
+ Proposition~\ref{ordintros}\textit{(2)}.\smallskip
+
+ \item[$\bullet$] Case \isa{P{\isacharplus}{\kern0pt}R} with \isa{{\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{1}}\ {\isacharplus}{\kern0pt}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ Right\ w\isactrlsub {\isadigit{1}}}: This case similar to the previous
+ case, except that we additionally know \isa{s\ {\isasymnotin}\ L{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}}. This is needed when \isa{v\isactrlsub {\isadigit{2}}} is of the form
+ \mbox{\isa{Left\ w\isactrlsub {\isadigit{2}}}}. Since \mbox{\isa{{\isacharbar}{\kern0pt}v\isactrlsub {\isadigit{2}}{\isacharbar}{\kern0pt}\ {\isacharequal}{\kern0pt}\ {\isacharbar}{\kern0pt}w\isactrlsub {\isadigit{2}}{\isacharbar}{\kern0pt}} \isa{{\isacharequal}{\kern0pt}\ s}} and \isa{w\isactrlsub {\isadigit{2}}\ {\isacharcolon}{\kern0pt}\ r\isactrlsub {\isadigit{1}}}, we can derive a contradiction for \mbox{\isa{s\ {\isasymnotin}\ L{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}}} using
+ Proposition~\ref{inhabs}. So also in this case \mbox{\isa{v\isactrlsub {\isadigit{1}}\ \mbox{$\preccurlyeq$}\ v\isactrlsub {\isadigit{2}}}}.\smallskip
+
+ \item[$\bullet$] Case \isa{PS} with \isa{{\isacharparenleft}{\kern0pt}s\isactrlsub {\isadigit{1}}\ {\isacharat}{\kern0pt}\ s\isactrlsub {\isadigit{2}}{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{1}}\ {\isasymcdot}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ Seq\ w\isactrlsub {\isadigit{1}}\ w\isactrlsub {\isadigit{2}}}: We can assume \isa{v\isactrlsub {\isadigit{2}}\ {\isacharequal}{\kern0pt}\ Seq\ u\isactrlsub {\isadigit{1}}\ u\isactrlsub {\isadigit{2}}} with \isa{u\isactrlsub {\isadigit{1}}\ {\isacharcolon}{\kern0pt}\ r\isactrlsub {\isadigit{1}}} and \mbox{\isa{u\isactrlsub {\isadigit{2}}\ {\isacharcolon}{\kern0pt}\ r\isactrlsub {\isadigit{2}}}}. We have \isa{s\isactrlsub {\isadigit{1}}\ {\isacharat}{\kern0pt}\ s\isactrlsub {\isadigit{2}}\ {\isacharequal}{\kern0pt}\ {\isacharbar}{\kern0pt}u\isactrlsub {\isadigit{1}}{\isacharbar}{\kern0pt}\ {\isacharat}{\kern0pt}\ {\isacharbar}{\kern0pt}u\isactrlsub {\isadigit{2}}{\isacharbar}{\kern0pt}}. By the side-condition of the
+ \isa{PS}-rule we know that either \isa{s\isactrlsub {\isadigit{1}}\ {\isacharequal}{\kern0pt}\ {\isacharbar}{\kern0pt}u\isactrlsub {\isadigit{1}}{\isacharbar}{\kern0pt}} or that \isa{{\isacharbar}{\kern0pt}u\isactrlsub {\isadigit{1}}{\isacharbar}{\kern0pt}} is a strict prefix of
+ \isa{s\isactrlsub {\isadigit{1}}}. In the latter case we can infer \isa{w\isactrlsub {\isadigit{1}}\ {\isasymprec}\ u\isactrlsub {\isadigit{1}}} by
+ Proposition~\ref{ordlen}\textit{(2)} and from this \isa{v\isactrlsub {\isadigit{1}}\ \mbox{$\preccurlyeq$}\ v\isactrlsub {\isadigit{2}}} by Proposition~\ref{ordintros}\textit{(5)}
+ (as noted above \isa{v\isactrlsub {\isadigit{1}}} and \isa{v\isactrlsub {\isadigit{2}}} must have the
+ same underlying string).
+ In the former case we know
+ \isa{u\isactrlsub {\isadigit{1}}\ {\isasymin}\ LV\ r\isactrlsub {\isadigit{1}}\ s\isactrlsub {\isadigit{1}}} and \isa{u\isactrlsub {\isadigit{2}}\ {\isasymin}\ LV\ r\isactrlsub {\isadigit{2}}\ s\isactrlsub {\isadigit{2}}}. With this we can use the
+ induction hypotheses to infer \isa{w\isactrlsub {\isadigit{1}}\ \mbox{$\preccurlyeq$}\ u\isactrlsub {\isadigit{1}}} and \isa{w\isactrlsub {\isadigit{2}}\ \mbox{$\preccurlyeq$}\ u\isactrlsub {\isadigit{2}}}. By
+ Proposition~\ref{ordintros}\textit{(4,5)} we can again infer
+ \isa{v\isactrlsub {\isadigit{1}}\ \mbox{$\preccurlyeq$}\ v\isactrlsub {\isadigit{2}}}.
+
+ \end{itemize}
+
+ \noindent The case for \isa{P{\isasymstar}} is similar to the \isa{PS}-case and omitted.\qed
+ \end{proof}
+
+ \noindent This theorem shows that our \isa{POSIX} value for a
+ regular expression \isa{r} and string \isa{s} is in fact a
+ minimal element of the values in \isa{LV\ r\ s}. By
+ Proposition~\ref{ordlen}\textit{(2)} we also know that any value in
+ \isa{LV\ r\ s{\isacharprime}{\kern0pt}}, with \isa{s{\isacharprime}{\kern0pt}} being a strict prefix, cannot be
+ smaller than \isa{v\isactrlsub {\isadigit{1}}}. The next theorem shows the
+ opposite---namely any minimal element in \isa{LV\ r\ s} must be a
+ \isa{POSIX} value. This can be established by induction on \isa{r}, but the proof can be drastically simplified by using the fact
+ from the previous section about the existence of a \isa{POSIX} value
+ whenever a string \isa{s\ {\isasymin}\ L{\isacharparenleft}{\kern0pt}r{\isacharparenright}{\kern0pt}}.
+
+
+ \begin{theorem}
+ \isa{{\normalsize{}If\,}\ \mbox{v\isactrlsub {\isadigit{1}}\ {\isasymin}\ LV\ r\ s}\ {\normalsize \,and\,}\ \mbox{{\isasymforall}v\isactrlsub {\isadigit{2}}{\isasymin}LV\ r\ s{\isachardot}{\kern0pt}\ v\isactrlsub {\isadigit{2}}\ \mbox{$\not\prec$}\ v\isactrlsub {\isadigit{1}}}\ {\normalsize \,then\,}\ {\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v\isactrlsub {\isadigit{1}}{\isachardot}{\kern0pt}}
+ \end{theorem}
+
+ \begin{proof}
+ If \isa{v\isactrlsub {\isadigit{1}}\ {\isasymin}\ LV\ r\ s} then
+ \isa{s\ {\isasymin}\ L{\isacharparenleft}{\kern0pt}r{\isacharparenright}{\kern0pt}} by Proposition~\ref{inhabs}. Hence by Theorem~\ref{lexercorrect}(2)
+ there exists a
+ \isa{POSIX} value \isa{v\isactrlsub P} with \isa{{\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v\isactrlsub P}
+ and by Lemma~\ref{LVposix} we also have \mbox{\isa{v\isactrlsub P\ {\isasymin}\ LV\ r\ s}}.
+ By Theorem~\ref{orderone} we therefore have
+ \isa{v\isactrlsub P\ \mbox{$\preccurlyeq$}\ v\isactrlsub {\isadigit{1}}}. If \isa{v\isactrlsub P\ {\isacharequal}{\kern0pt}\ v\isactrlsub {\isadigit{1}}} then
+ we are done. Otherwise we have \isa{v\isactrlsub P\ {\isasymprec}\ v\isactrlsub {\isadigit{1}}}, which
+ however contradicts the second assumption about \isa{v\isactrlsub {\isadigit{1}}} being the smallest
+ element in \isa{LV\ r\ s}. So we are done in this case too.\qed
+ \end{proof}
+
+ \noindent
+ From this we can also show
+ that if \isa{LV\ r\ s} is non-empty (or equivalently \isa{s\ {\isasymin}\ L{\isacharparenleft}{\kern0pt}r{\isacharparenright}{\kern0pt}}) then
+ it has a unique minimal element:
+
+ \begin{corollary}
+ \isa{{\normalsize{}If\,}\ LV\ r\ s\ {\isasymnoteq}\ {\isasymemptyset}\ {\normalsize \,then\,}\ {\isasymexists}{\isacharbang}{\kern0pt}vmin{\isachardot}{\kern0pt}\ vmin\ {\isasymin}\ LV\ r\ s\ {\isasymand}\ {\isacharparenleft}{\kern0pt}{\isasymforall}v{\isasymin}LV\ r\ s{\isachardot}{\kern0pt}\ vmin\ \mbox{$\preccurlyeq$}\ v{\isacharparenright}{\kern0pt}{\isachardot}{\kern0pt}}
+ \end{corollary}
+
+
+
+ \noindent To sum up, we have shown that the (unique) minimal elements
+ of the ordering by Okui and Suzuki are exactly the \isa{POSIX}
+ values we defined inductively in Section~\ref{posixsec}. This provides
+ an independent confirmation that our ternary relation formalises the
+ informal POSIX rules.%
+\end{isamarkuptext}\isamarkuptrue%
+%
+\isadelimdocument
+%
+\endisadelimdocument
+%
+\isatagdocument
+%
+\isamarkupsection{Bitcoded Lexing%
+}
+\isamarkuptrue%
+%
+\endisatagdocument
+{\isafolddocument}%
+%
+\isadelimdocument
+%
+\endisadelimdocument
+%
+\begin{isamarkuptext}%
+Incremental calculation of the value. To simplify the proof we first define the function
+\isa{flex} which calculates the ``iterated'' injection function. With this we can
+rewrite the lexer as
+
+\begin{center}
+\isa{lexer\ r\ s\ {\isacharequal}{\kern0pt}\ {\isacharparenleft}{\kern0pt}\textrm{if}\ nullable\ {\isacharparenleft}{\kern0pt}r{\isacharbackslash}{\kern0pt}s{\isacharparenright}{\kern0pt}\ \textrm{then}\ Some\ {\isacharparenleft}{\kern0pt}flex\ r\ id\ s\ {\isacharparenleft}{\kern0pt}mkeps\ {\isacharparenleft}{\kern0pt}r{\isacharbackslash}{\kern0pt}s{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}\ \textrm{else}\ None{\isacharparenright}{\kern0pt}}
+\end{center}%
+\end{isamarkuptext}\isamarkuptrue%
+%
+\isadelimdocument
+%
+\endisadelimdocument
+%
+\isatagdocument
+%
+\isamarkupsection{Optimisations%
+}
+\isamarkuptrue%
+%
+\endisatagdocument
+{\isafolddocument}%
+%
+\isadelimdocument
+%
+\endisadelimdocument
+%
+\begin{isamarkuptext}%
+Derivatives as calculated by \Brz's method are usually more complex
+ regular expressions than the initial one; the result is that the
+ derivative-based matching and lexing algorithms are often abysmally slow.
+ However, various optimisations are possible, such as the simplifications
+ of \isa{\isactrlbold {\isadigit{0}}\ {\isacharplus}{\kern0pt}\ r}, \isa{r\ {\isacharplus}{\kern0pt}\ \isactrlbold {\isadigit{0}}}, \isa{\isactrlbold {\isadigit{1}}\ {\isasymcdot}\ r} and
+ \isa{r\ {\isasymcdot}\ \isactrlbold {\isadigit{1}}} to \isa{r}. These simplifications can speed up the
+ algorithms considerably, as noted in \cite{Sulzmann2014}. One of the
+ advantages of having a simple specification and correctness proof is that
+ the latter can be refined to prove the correctness of such simplification
+ steps. While the simplification of regular expressions according to
+ rules like
+
+ \begin{equation}\label{Simpl}
+ \begin{array}{lcllcllcllcl}
+ \isa{\isactrlbold {\isadigit{0}}\ {\isacharplus}{\kern0pt}\ r} & \isa{{\isasymRightarrow}} & \isa{r} \hspace{8mm}%\\
+ \isa{r\ {\isacharplus}{\kern0pt}\ \isactrlbold {\isadigit{0}}} & \isa{{\isasymRightarrow}} & \isa{r} \hspace{8mm}%\\
+ \isa{\isactrlbold {\isadigit{1}}\ {\isasymcdot}\ r} & \isa{{\isasymRightarrow}} & \isa{r} \hspace{8mm}%\\
+ \isa{r\ {\isasymcdot}\ \isactrlbold {\isadigit{1}}} & \isa{{\isasymRightarrow}} & \isa{r}
+ \end{array}
+ \end{equation}
+
+ \noindent is well understood, there is an obstacle with the POSIX value
+ calculation algorithm by Sulzmann and Lu: if we build a derivative regular
+ expression and then simplify it, we will calculate a POSIX value for this
+ simplified derivative regular expression, \emph{not} for the original (unsimplified)
+ derivative regular expression. Sulzmann and Lu \cite{Sulzmann2014} overcome this obstacle by
+ not just calculating a simplified regular expression, but also calculating
+ a \emph{rectification function} that ``repairs'' the incorrect value.
+
+ The rectification functions can be (slightly clumsily) implemented in
+ Isabelle/HOL as follows using some auxiliary functions:
+
+ \begin{center}
+ \begin{tabular}{lcl}
+ \isa{F\isactrlbsub Right\isactrlesub \ f\ v} & $\dn$ & \isa{Right\ {\isacharparenleft}{\kern0pt}f\ v{\isacharparenright}{\kern0pt}}\\
+ \isa{F\isactrlbsub Left\isactrlesub \ f\ v} & $\dn$ & \isa{Left\ {\isacharparenleft}{\kern0pt}f\ v{\isacharparenright}{\kern0pt}}\\
+
+ \isa{F\isactrlbsub Alt\isactrlesub \ f\isactrlsub {\isadigit{1}}\ f\isactrlsub {\isadigit{2}}\ {\isacharparenleft}{\kern0pt}Right\ v{\isacharparenright}{\kern0pt}} & $\dn$ & \isa{Right\ {\isacharparenleft}{\kern0pt}f\isactrlsub {\isadigit{2}}\ v{\isacharparenright}{\kern0pt}}\\
+ \isa{F\isactrlbsub Alt\isactrlesub \ f\isactrlsub {\isadigit{1}}\ f\isactrlsub {\isadigit{2}}\ {\isacharparenleft}{\kern0pt}Left\ v{\isacharparenright}{\kern0pt}} & $\dn$ & \isa{Left\ {\isacharparenleft}{\kern0pt}f\isactrlsub {\isadigit{1}}\ v{\isacharparenright}{\kern0pt}}\\
+
+ \isa{F\isactrlbsub Seq{\isadigit{1}}\isactrlesub \ f\isactrlsub {\isadigit{1}}\ f\isactrlsub {\isadigit{2}}\ v} & $\dn$ & \isa{Seq\ {\isacharparenleft}{\kern0pt}f\isactrlsub {\isadigit{1}}\ {\isacharparenleft}{\kern0pt}{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}f\isactrlsub {\isadigit{2}}\ v{\isacharparenright}{\kern0pt}}\\
+ \isa{F\isactrlbsub Seq{\isadigit{2}}\isactrlesub \ f\isactrlsub {\isadigit{1}}\ f\isactrlsub {\isadigit{2}}\ v} & $\dn$ & \isa{Seq\ {\isacharparenleft}{\kern0pt}f\isactrlsub {\isadigit{1}}\ v{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}f\isactrlsub {\isadigit{2}}\ {\isacharparenleft}{\kern0pt}{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}}\\
+ \isa{F\isactrlbsub Seq\isactrlesub \ f\isactrlsub {\isadigit{1}}\ f\isactrlsub {\isadigit{2}}\ {\isacharparenleft}{\kern0pt}Seq\ v\isactrlsub {\isadigit{1}}\ v\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}} & $\dn$ & \isa{Seq\ {\isacharparenleft}{\kern0pt}f\isactrlsub {\isadigit{1}}\ v\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}f\isactrlsub {\isadigit{2}}\ v\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}}\medskip\\
+ %\end{tabular}
+ %
+ %\begin{tabular}{lcl}
+ \isa{simp\isactrlbsub Alt\isactrlesub \ {\isacharparenleft}{\kern0pt}\isactrlbold {\isadigit{0}}{\isacharcomma}{\kern0pt}\ \underline{\hspace{2mm}}{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isacharcomma}{\kern0pt}\ f\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}} & $\dn$ & \isa{{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isacharcomma}{\kern0pt}\ F\isactrlbsub Right\isactrlesub \ f\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}}\\
+ \isa{simp\isactrlbsub Alt\isactrlesub \ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharcomma}{\kern0pt}\ f\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}\isactrlbold {\isadigit{0}}{\isacharcomma}{\kern0pt}\ \underline{\hspace{2mm}}{\isacharparenright}{\kern0pt}} & $\dn$ & \isa{{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharcomma}{\kern0pt}\ F\isactrlbsub Left\isactrlesub \ f\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}}\\
+ \isa{simp\isactrlbsub Alt\isactrlesub \ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharcomma}{\kern0pt}\ f\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isacharcomma}{\kern0pt}\ f\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}} & $\dn$ & \isa{{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}\ {\isacharplus}{\kern0pt}\ r\isactrlsub {\isadigit{2}}{\isacharcomma}{\kern0pt}\ F\isactrlbsub Alt\isactrlesub \ f\isactrlsub {\isadigit{1}}\ f\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}}\\
+ \isa{simp\isactrlbsub Seq\isactrlesub \ {\isacharparenleft}{\kern0pt}\isactrlbold {\isadigit{1}}{\isacharcomma}{\kern0pt}\ f\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isacharcomma}{\kern0pt}\ f\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}} & $\dn$ & \isa{{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isacharcomma}{\kern0pt}\ F\isactrlbsub Seq{\isadigit{1}}\isactrlesub \ f\isactrlsub {\isadigit{1}}\ f\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}}\\
+ \isa{simp\isactrlbsub Seq\isactrlesub \ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharcomma}{\kern0pt}\ f\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}\isactrlbold {\isadigit{1}}{\isacharcomma}{\kern0pt}\ f\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}} & $\dn$ & \isa{{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharcomma}{\kern0pt}\ F\isactrlbsub Seq{\isadigit{2}}\isactrlesub \ f\isactrlsub {\isadigit{1}}\ f\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}}\\
+ \isa{simp\isactrlbsub Seq\isactrlesub \ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharcomma}{\kern0pt}\ f\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isacharcomma}{\kern0pt}\ f\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}} & $\dn$ & \isa{{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}\ {\isasymcdot}\ r\isactrlsub {\isadigit{2}}{\isacharcomma}{\kern0pt}\ F\isactrlbsub Seq\isactrlesub \ f\isactrlsub {\isadigit{1}}\ f\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}}\\
+ \end{tabular}
+ \end{center}
+
+ \noindent
+ The functions \isa{simp\isactrlbsub Alt\isactrlesub } and \isa{simp\isactrlbsub Seq\isactrlesub } encode the simplification rules
+ in \eqref{Simpl} and compose the rectification functions (simplifications can occur
+ deep inside the regular expression). The main simplification function is then
+
+ \begin{center}
+ \begin{tabular}{lcl}
+ \isa{simp\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}\ {\isacharplus}{\kern0pt}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}} & $\dn$ & \isa{simp\isactrlbsub Alt\isactrlesub \ {\isacharparenleft}{\kern0pt}simp\ r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}simp\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}}\\
+ \isa{simp\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}\ {\isasymcdot}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}} & $\dn$ & \isa{simp\isactrlbsub Seq\isactrlesub \ {\isacharparenleft}{\kern0pt}simp\ r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}simp\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}}\\
+ \isa{simp\ r} & $\dn$ & \isa{{\isacharparenleft}{\kern0pt}r{\isacharcomma}{\kern0pt}\ id{\isacharparenright}{\kern0pt}}\\
+ \end{tabular}
+ \end{center}
+
+ \noindent where \isa{id} stands for the identity function. The
+ function \isa{simp} returns a simplified regular expression and a corresponding
+ rectification function. Note that we do not simplify under stars: this
+ seems to slow down the algorithm, rather than speed it up. The optimised
+ lexer is then given by the clauses:
+
+ \begin{center}
+ \begin{tabular}{lcl}
+ \isa{lexer\isactrlsup {\isacharplus}{\kern0pt}\ r\ {\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}} & $\dn$ & \isa{\textrm{if}\ nullable\ r\ \textrm{then}\ Some\ {\isacharparenleft}{\kern0pt}mkeps\ r{\isacharparenright}{\kern0pt}\ \textrm{else}\ None}\\
+ \isa{lexer\isactrlsup {\isacharplus}{\kern0pt}\ r\ {\isacharparenleft}{\kern0pt}c\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}s{\isacharparenright}{\kern0pt}} & $\dn$ &
+ \isa{let\ {\isacharparenleft}{\kern0pt}r\isactrlsub s{\isacharcomma}{\kern0pt}\ f\isactrlsub r{\isacharparenright}{\kern0pt}\ {\isacharequal}{\kern0pt}\ simp\ {\isacharparenleft}{\kern0pt}r}$\backslash$\isa{c{\isacharparenright}{\kern0pt}\ in}\\
+ & & \isa{case} \isa{lexer\isactrlsup {\isacharplus}{\kern0pt}\ r\isactrlsub s\ s} \isa{of}\\
+ & & \phantom{$|$} \isa{None} \isa{{\isasymRightarrow}} \isa{None}\\
+ & & $|$ \isa{Some\ v} \isa{{\isasymRightarrow}} \isa{Some\ {\isacharparenleft}{\kern0pt}inj\ r\ c\ {\isacharparenleft}{\kern0pt}f\isactrlsub r\ v{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}}
+ \end{tabular}
+ \end{center}
+
+ \noindent
+ In the second clause we first calculate the derivative \isa{r{\isacharbackslash}{\kern0pt}c}
+ and then simpli
+
+text \isa{\ \ Incremental\ calculation\ of\ the\ value{\isachardot}{\kern0pt}\ To\ simplify\ the\ proof\ we\ first\ define\ the\ function\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}const\ flex{\isacharbraceright}{\kern0pt}\ which\ calculates\ the\ {\isacharbackquote}{\kern0pt}{\isacharbackquote}{\kern0pt}iterated{\isacharprime}{\kern0pt}{\isacharprime}{\kern0pt}\ injection\ function{\isachardot}{\kern0pt}\ With\ this\ we\ can\ rewrite\ the\ lexer\ as\ \ {\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}center{\isacharbraceright}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ lexer{\isacharunderscore}{\kern0pt}flex{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}center{\isacharbraceright}{\kern0pt}\ \ {\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}center{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}tabular{\isacharbraceright}{\kern0pt}{\isacharbraceleft}{\kern0pt}lcl{\isacharbraceright}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ code{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{1}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ code{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{1}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ code{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{2}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ code{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{2}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ code{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{3}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ code{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{3}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ code{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{4}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ code{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{4}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ code{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{5}}{\isacharparenright}{\kern0pt}{\isacharbrackleft}{\kern0pt}of\ {\isachardoublequote}{\kern0pt}v\isactrlsub {\isadigit{1}}{\isachardoublequote}{\kern0pt}\ {\isachardoublequote}{\kern0pt}v\isactrlsub {\isadigit{2}}{\isachardoublequote}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ code{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{5}}{\isacharparenright}{\kern0pt}{\isacharbrackleft}{\kern0pt}of\ {\isachardoublequote}{\kern0pt}v\isactrlsub {\isadigit{1}}{\isachardoublequote}{\kern0pt}\ {\isachardoublequote}{\kern0pt}v\isactrlsub {\isadigit{2}}{\isachardoublequote}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ code{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{6}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ code{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{6}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ code{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{7}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ code{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{7}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}tabular{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}center{\isacharbraceright}{\kern0pt}\ \ {\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}center{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}tabular{\isacharbraceright}{\kern0pt}{\isacharbraceleft}{\kern0pt}lcl{\isacharbraceright}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ areg{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}{\isacharequal}{\kern0pt}{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}AZERO{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}mid{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}AONE\ bs{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}mid{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}ACHAR\ bs\ c{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}mid{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}AALT\ bs\ r{\isadigit{1}}\ r{\isadigit{2}}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}mid{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}ASEQ\ bs\ r\isactrlsub {\isadigit{1}}\ r\isactrlsub {\isadigit{2}}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}mid{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}ASTAR\ bs\ r{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}tabular{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}center{\isacharbraceright}{\kern0pt}\ \ \ {\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}center{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}tabular{\isacharbraceright}{\kern0pt}{\isacharbraceleft}{\kern0pt}lcl{\isacharbraceright}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ intern{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{1}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ intern{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{1}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ intern{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{2}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ intern{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{2}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ intern{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{3}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ intern{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{3}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ intern{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{4}}{\isacharparenright}{\kern0pt}{\isacharbrackleft}{\kern0pt}of\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isachardoublequote}{\kern0pt}\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isachardoublequote}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ intern{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{4}}{\isacharparenright}{\kern0pt}{\isacharbrackleft}{\kern0pt}of\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isachardoublequote}{\kern0pt}\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isachardoublequote}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ intern{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{5}}{\isacharparenright}{\kern0pt}{\isacharbrackleft}{\kern0pt}of\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isachardoublequote}{\kern0pt}\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isachardoublequote}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ intern{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{5}}{\isacharparenright}{\kern0pt}{\isacharbrackleft}{\kern0pt}of\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isachardoublequote}{\kern0pt}\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isachardoublequote}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ intern{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{6}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ intern{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{6}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}tabular{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}center{\isacharbraceright}{\kern0pt}\ \ {\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}center{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}tabular{\isacharbraceright}{\kern0pt}{\isacharbraceleft}{\kern0pt}lcl{\isacharbraceright}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ erase{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{1}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ erase{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{1}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ erase{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{2}}{\isacharparenright}{\kern0pt}{\isacharbrackleft}{\kern0pt}of\ bs{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ erase{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{2}}{\isacharparenright}{\kern0pt}{\isacharbrackleft}{\kern0pt}of\ bs{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ erase{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{3}}{\isacharparenright}{\kern0pt}{\isacharbrackleft}{\kern0pt}of\ bs{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ erase{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{3}}{\isacharparenright}{\kern0pt}{\isacharbrackleft}{\kern0pt}of\ bs{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ erase{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{4}}{\isacharparenright}{\kern0pt}{\isacharbrackleft}{\kern0pt}of\ bs\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isachardoublequote}{\kern0pt}\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isachardoublequote}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ erase{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{4}}{\isacharparenright}{\kern0pt}{\isacharbrackleft}{\kern0pt}of\ bs\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isachardoublequote}{\kern0pt}\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isachardoublequote}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ erase{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{5}}{\isacharparenright}{\kern0pt}{\isacharbrackleft}{\kern0pt}of\ bs\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isachardoublequote}{\kern0pt}\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isachardoublequote}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ erase{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{5}}{\isacharparenright}{\kern0pt}{\isacharbrackleft}{\kern0pt}of\ bs\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isachardoublequote}{\kern0pt}\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isachardoublequote}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ erase{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{6}}{\isacharparenright}{\kern0pt}{\isacharbrackleft}{\kern0pt}of\ bs{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ erase{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{6}}{\isacharparenright}{\kern0pt}{\isacharbrackleft}{\kern0pt}of\ bs{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}tabular{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}center{\isacharbraceright}{\kern0pt}\ \ Some\ simple\ facts\ about\ erase\ \ {\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}lemma{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}mbox{\isacharbraceleft}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ erase{\isacharunderscore}{\kern0pt}bder{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ erase{\isacharunderscore}{\kern0pt}intern{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}lemma{\isacharbraceright}{\kern0pt}\ \ {\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}center{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}tabular{\isacharbraceright}{\kern0pt}{\isacharbraceleft}{\kern0pt}lcl{\isacharbraceright}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ bnullable{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{1}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ bnullable{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{1}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ bnullable{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{2}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ bnullable{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{2}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ bnullable{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{3}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ bnullable{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{3}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ bnullable{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{4}}{\isacharparenright}{\kern0pt}{\isacharbrackleft}{\kern0pt}of\ bs\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isachardoublequote}{\kern0pt}\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isachardoublequote}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ bnullable{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{4}}{\isacharparenright}{\kern0pt}{\isacharbrackleft}{\kern0pt}of\ bs\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isachardoublequote}{\kern0pt}\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isachardoublequote}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ bnullable{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{5}}{\isacharparenright}{\kern0pt}{\isacharbrackleft}{\kern0pt}of\ bs\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isachardoublequote}{\kern0pt}\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isachardoublequote}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ bnullable{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{5}}{\isacharparenright}{\kern0pt}{\isacharbrackleft}{\kern0pt}of\ bs\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isachardoublequote}{\kern0pt}\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isachardoublequote}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ bnullable{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{6}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ bnullable{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{6}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}medskip{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ \ {\isacharpercent}{\kern0pt}\ \ {\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}tabular{\isacharbraceright}{\kern0pt}\ {\isacharpercent}{\kern0pt}\ \ {\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}center{\isacharbraceright}{\kern0pt}\ \ {\isacharpercent}{\kern0pt}\ \ {\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}center{\isacharbraceright}{\kern0pt}\ {\isacharpercent}{\kern0pt}\ \ {\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}tabular{\isacharbraceright}{\kern0pt}{\isacharbraceleft}{\kern0pt}lcl{\isacharbraceright}{\kern0pt}\ \ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ bder{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{1}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ bder{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{1}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ bder{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{2}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ bder{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{2}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ bder{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{3}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ bder{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{3}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ bder{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{4}}{\isacharparenright}{\kern0pt}{\isacharbrackleft}{\kern0pt}of\ bs\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isachardoublequote}{\kern0pt}\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isachardoublequote}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ bder{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{4}}{\isacharparenright}{\kern0pt}{\isacharbrackleft}{\kern0pt}of\ bs\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isachardoublequote}{\kern0pt}\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isachardoublequote}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ bder{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{5}}{\isacharparenright}{\kern0pt}{\isacharbrackleft}{\kern0pt}of\ bs\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isachardoublequote}{\kern0pt}\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isachardoublequote}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ bder{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{5}}{\isacharparenright}{\kern0pt}{\isacharbrackleft}{\kern0pt}of\ bs\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isachardoublequote}{\kern0pt}\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isachardoublequote}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ bder{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{6}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ bder{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{6}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}tabular{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}center{\isacharbraceright}{\kern0pt}\ \ \ {\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}center{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}tabular{\isacharbraceright}{\kern0pt}{\isacharbraceleft}{\kern0pt}lcl{\isacharbraceright}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ bmkeps{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{1}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ bmkeps{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{1}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ bmkeps{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{2}}{\isacharparenright}{\kern0pt}{\isacharbrackleft}{\kern0pt}of\ bs\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isachardoublequote}{\kern0pt}\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isachardoublequote}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ bmkeps{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{2}}{\isacharparenright}{\kern0pt}{\isacharbrackleft}{\kern0pt}of\ bs\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isachardoublequote}{\kern0pt}\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isachardoublequote}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ bmkeps{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{3}}{\isacharparenright}{\kern0pt}{\isacharbrackleft}{\kern0pt}of\ bs\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isachardoublequote}{\kern0pt}\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isachardoublequote}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ bmkeps{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{3}}{\isacharparenright}{\kern0pt}{\isacharbrackleft}{\kern0pt}of\ bs\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isachardoublequote}{\kern0pt}\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isachardoublequote}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ bmkeps{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{4}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ bmkeps{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{4}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}medskip{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}tabular{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}center{\isacharbraceright}{\kern0pt}\ \ \ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharbrackleft}{\kern0pt}mode{\isacharequal}{\kern0pt}IfThen{\isacharbrackright}{\kern0pt}\ bder{\isacharunderscore}{\kern0pt}retrieve{\isacharbraceright}{\kern0pt}\ \ By\ induction\ on\ {\isasymopen}r{\isasymclose}\ \ {\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}theorem{\isacharbraceright}{\kern0pt}{\isacharbrackleft}{\kern0pt}Main\ Lemma{\isacharbrackright}{\kern0pt}{\isacharbackslash}{\kern0pt}mbox{\isacharbraceleft}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharbrackleft}{\kern0pt}mode{\isacharequal}{\kern0pt}IfThen{\isacharbrackright}{\kern0pt}\ MAIN{\isacharunderscore}{\kern0pt}decode{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}theorem{\isacharbraceright}{\kern0pt}\ \ {\isacharbackslash}{\kern0pt}noindent\ Definition\ of\ the\ bitcoded\ lexer\ \ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ blexer{\isacharunderscore}{\kern0pt}def{\isacharbraceright}{\kern0pt}\ \ \ {\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}theorem{\isacharbraceright}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ blexer{\isacharunderscore}{\kern0pt}correctness{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}theorem{\isacharbraceright}{\kern0pt}\ \ }
+
+section \isa{Optimisations}
+
+text \isa{\ \ Derivatives\ as\ calculated\ by\ {\isacharbackslash}{\kern0pt}Brz{\isacharprime}{\kern0pt}s\ method\ are\ usually\ more\ complex\ regular\ expressions\ than\ the\ initial\ one{\isacharsemicolon}{\kern0pt}\ the\ result\ is\ that\ the\ derivative{\isacharminus}{\kern0pt}based\ matching\ and\ lexing\ algorithms\ are\ often\ abysmally\ slow{\isachardot}{\kern0pt}\ However{\isacharcomma}{\kern0pt}\ various\ optimisations\ are\ possible{\isacharcomma}{\kern0pt}\ such\ as\ the\ simplifications\ of\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}ALT\ ZERO\ r{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharcomma}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}ALT\ r\ ZERO{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharcomma}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}SEQ\ ONE\ r{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ and\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}SEQ\ r\ ONE{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ to\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ r{\isacharbraceright}{\kern0pt}{\isachardot}{\kern0pt}\ These\ simplifications\ can\ speed\ up\ the\ algorithms\ considerably{\isacharcomma}{\kern0pt}\ as\ noted\ in\ {\isacharbackslash}{\kern0pt}cite{\isacharbraceleft}{\kern0pt}Sulzmann{\isadigit{2}}{\isadigit{0}}{\isadigit{1}}{\isadigit{4}}{\isacharbraceright}{\kern0pt}{\isachardot}{\kern0pt}\ One\ of\ the\ advantages\ of\ having\ a\ simple\ specification\ and\ correctness\ proof\ is\ that\ the\ latter\ can\ be\ refined\ to\ prove\ the\ correctness\ of\ such\ simplification\ steps{\isachardot}{\kern0pt}\ While\ the\ simplification\ of\ regular\ expressions\ according\ to\ rules\ like\ \ {\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}equation{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}label{\isacharbraceleft}{\kern0pt}Simpl{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}array{\isacharbraceright}{\kern0pt}{\isacharbraceleft}{\kern0pt}lcllcllcllcl{\isacharbraceright}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}ALT\ ZERO\ r{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isasymopen}{\isasymRightarrow}{\isasymclose}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ r{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}hspace{\isacharbraceleft}{\kern0pt}{\isadigit{8}}mm{\isacharbraceright}{\kern0pt}{\isacharpercent}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}ALT\ r\ ZERO{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isasymopen}{\isasymRightarrow}{\isasymclose}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ r{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}hspace{\isacharbraceleft}{\kern0pt}{\isadigit{8}}mm{\isacharbraceright}{\kern0pt}{\isacharpercent}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}SEQ\ ONE\ r{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ \ {\isacharampersand}{\kern0pt}\ {\isasymopen}{\isasymRightarrow}{\isasymclose}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ r{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}hspace{\isacharbraceleft}{\kern0pt}{\isadigit{8}}mm{\isacharbraceright}{\kern0pt}{\isacharpercent}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}SEQ\ r\ ONE{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ \ {\isacharampersand}{\kern0pt}\ {\isasymopen}{\isasymRightarrow}{\isasymclose}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ r{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}array{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}equation{\isacharbraceright}{\kern0pt}\ \ {\isacharbackslash}{\kern0pt}noindent\ is\ well\ understood{\isacharcomma}{\kern0pt}\ there\ is\ an\ obstacle\ with\ the\ POSIX\ value\ calculation\ algorithm\ by\ Sulzmann\ and\ Lu{\isacharcolon}{\kern0pt}\ if\ we\ build\ a\ derivative\ regular\ expression\ and\ then\ simplify\ it{\isacharcomma}{\kern0pt}\ we\ will\ calculate\ a\ POSIX\ value\ for\ this\ simplified\ derivative\ regular\ expression{\isacharcomma}{\kern0pt}\ {\isacharbackslash}{\kern0pt}emph{\isacharbraceleft}{\kern0pt}not{\isacharbraceright}{\kern0pt}\ for\ the\ original\ {\isacharparenleft}{\kern0pt}unsimplified{\isacharparenright}{\kern0pt}\ derivative\ regular\ expression{\isachardot}{\kern0pt}\ Sulzmann\ and\ Lu\ {\isacharbackslash}{\kern0pt}cite{\isacharbraceleft}{\kern0pt}Sulzmann{\isadigit{2}}{\isadigit{0}}{\isadigit{1}}{\isadigit{4}}{\isacharbraceright}{\kern0pt}\ overcome\ this\ obstacle\ by\ not\ just\ calculating\ a\ simplified\ regular\ expression{\isacharcomma}{\kern0pt}\ but\ also\ calculating\ a\ {\isacharbackslash}{\kern0pt}emph{\isacharbraceleft}{\kern0pt}rectification\ function{\isacharbraceright}{\kern0pt}\ that\ {\isacharbackquote}{\kern0pt}{\isacharbackquote}{\kern0pt}repairs{\isacharprime}{\kern0pt}{\isacharprime}{\kern0pt}\ the\ incorrect\ value{\isachardot}{\kern0pt}\ \ The\ rectification\ functions\ can\ be\ {\isacharparenleft}{\kern0pt}slightly\ clumsily{\isacharparenright}{\kern0pt}\ implemented\ \ in\ Isabelle{\isacharslash}{\kern0pt}HOL\ as\ follows\ using\ some\ auxiliary\ functions{\isacharcolon}{\kern0pt}\ \ {\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}center{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}tabular{\isacharbraceright}{\kern0pt}{\isacharbraceleft}{\kern0pt}lcl{\isacharbraceright}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ F{\isacharunderscore}{\kern0pt}RIGHT{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{1}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isasymopen}Right\ {\isacharparenleft}{\kern0pt}f\ v{\isacharparenright}{\kern0pt}{\isasymclose}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ F{\isacharunderscore}{\kern0pt}LEFT{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{1}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isasymopen}Left\ {\isacharparenleft}{\kern0pt}f\ v{\isacharparenright}{\kern0pt}{\isasymclose}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ \ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ F{\isacharunderscore}{\kern0pt}ALT{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{1}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isasymopen}Right\ {\isacharparenleft}{\kern0pt}f\isactrlsub {\isadigit{2}}\ v{\isacharparenright}{\kern0pt}{\isasymclose}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ F{\isacharunderscore}{\kern0pt}ALT{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{2}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isasymopen}Left\ {\isacharparenleft}{\kern0pt}f\isactrlsub {\isadigit{1}}\ v{\isacharparenright}{\kern0pt}{\isasymclose}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ \ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ F{\isacharunderscore}{\kern0pt}SEQ{\isadigit{1}}{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{1}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isasymopen}Seq\ {\isacharparenleft}{\kern0pt}f\isactrlsub {\isadigit{1}}\ {\isacharparenleft}{\kern0pt}{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}f\isactrlsub {\isadigit{2}}\ v{\isacharparenright}{\kern0pt}{\isasymclose}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ F{\isacharunderscore}{\kern0pt}SEQ{\isadigit{2}}{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{1}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isasymopen}Seq\ {\isacharparenleft}{\kern0pt}f\isactrlsub {\isadigit{1}}\ v{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}f\isactrlsub {\isadigit{2}}\ {\isacharparenleft}{\kern0pt}{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}{\isasymclose}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ F{\isacharunderscore}{\kern0pt}SEQ{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{1}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isasymopen}Seq\ {\isacharparenleft}{\kern0pt}f\isactrlsub {\isadigit{1}}\ v\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}f\isactrlsub {\isadigit{2}}\ v\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}{\isasymclose}{\isacharbackslash}{\kern0pt}medskip{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharpercent}{\kern0pt}{\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}tabular{\isacharbraceright}{\kern0pt}\ {\isacharpercent}{\kern0pt}\ {\isacharpercent}{\kern0pt}{\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}tabular{\isacharbraceright}{\kern0pt}{\isacharbraceleft}{\kern0pt}lcl{\isacharbraceright}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}simp{\isacharunderscore}{\kern0pt}ALT\ {\isacharparenleft}{\kern0pt}ZERO{\isacharcomma}{\kern0pt}\ DUMMY{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isacharcomma}{\kern0pt}\ f\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isacharcomma}{\kern0pt}\ F{\isacharunderscore}{\kern0pt}RIGHT\ f\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}simp{\isacharunderscore}{\kern0pt}ALT\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharcomma}{\kern0pt}\ f\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}ZERO{\isacharcomma}{\kern0pt}\ DUMMY{\isacharparenright}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharcomma}{\kern0pt}\ F{\isacharunderscore}{\kern0pt}LEFT\ f\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}simp{\isacharunderscore}{\kern0pt}ALT\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharcomma}{\kern0pt}\ f\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isacharcomma}{\kern0pt}\ f\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}{\isacharparenleft}{\kern0pt}ALT\ r\isactrlsub {\isadigit{1}}\ r\isactrlsub {\isadigit{2}}{\isacharcomma}{\kern0pt}\ F{\isacharunderscore}{\kern0pt}ALT\ f\isactrlsub {\isadigit{1}}\ f\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}simp{\isacharunderscore}{\kern0pt}SEQ\ {\isacharparenleft}{\kern0pt}ONE{\isacharcomma}{\kern0pt}\ f\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isacharcomma}{\kern0pt}\ f\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isacharcomma}{\kern0pt}\ F{\isacharunderscore}{\kern0pt}SEQ{\isadigit{1}}\ f\isactrlsub {\isadigit{1}}\ f\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}simp{\isacharunderscore}{\kern0pt}SEQ\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharcomma}{\kern0pt}\ f\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}ONE{\isacharcomma}{\kern0pt}\ f\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharcomma}{\kern0pt}\ F{\isacharunderscore}{\kern0pt}SEQ{\isadigit{2}}\ f\isactrlsub {\isadigit{1}}\ f\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}simp{\isacharunderscore}{\kern0pt}SEQ\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharcomma}{\kern0pt}\ f\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isacharcomma}{\kern0pt}\ f\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}{\isacharparenleft}{\kern0pt}SEQ\ r\isactrlsub {\isadigit{1}}\ r\isactrlsub {\isadigit{2}}{\isacharcomma}{\kern0pt}\ F{\isacharunderscore}{\kern0pt}SEQ\ f\isactrlsub {\isadigit{1}}\ f\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}tabular{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}center{\isacharbraceright}{\kern0pt}\ \ {\isacharbackslash}{\kern0pt}noindent\ The\ functions\ {\isasymopen}simp\isactrlbsub Alt\isactrlesub {\isasymclose}\ and\ {\isasymopen}simp\isactrlbsub Seq\isactrlesub {\isasymclose}\ encode\ the\ simplification\ rules\ in\ {\isacharbackslash}{\kern0pt}eqref{\isacharbraceleft}{\kern0pt}Simpl{\isacharbraceright}{\kern0pt}\ and\ compose\ the\ rectification\ functions\ {\isacharparenleft}{\kern0pt}simplifications\ can\ occur\ deep\ inside\ the\ regular\ expression{\isacharparenright}{\kern0pt}{\isachardot}{\kern0pt}\ The\ main\ simplification\ function\ is\ then\ \ {\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}center{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}tabular{\isacharbraceright}{\kern0pt}{\isacharbraceleft}{\kern0pt}lcl{\isacharbraceright}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}simp\ {\isacharparenleft}{\kern0pt}ALT\ r\isactrlsub {\isadigit{1}}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}simp{\isacharunderscore}{\kern0pt}ALT\ {\isacharparenleft}{\kern0pt}simp\ r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}simp\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}simp\ {\isacharparenleft}{\kern0pt}SEQ\ r\isactrlsub {\isadigit{1}}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}simp{\isacharunderscore}{\kern0pt}SEQ\ {\isacharparenleft}{\kern0pt}simp\ r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}simp\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}simp\ r{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}{\isacharparenleft}{\kern0pt}r{\isacharcomma}{\kern0pt}\ id{\isacharparenright}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}tabular{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}center{\isacharbraceright}{\kern0pt}\ \ {\isacharbackslash}{\kern0pt}noindent\ where\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}id{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ stands\ for\ the\ identity\ function{\isachardot}{\kern0pt}\ The\ function\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}const\ simp{\isacharbraceright}{\kern0pt}\ returns\ a\ simplified\ regular\ expression\ and\ a\ corresponding\ rectification\ function{\isachardot}{\kern0pt}\ Note\ that\ we\ do\ not\ simplify\ under\ stars{\isacharcolon}{\kern0pt}\ this\ seems\ to\ slow\ down\ the\ algorithm{\isacharcomma}{\kern0pt}\ rather\ than\ speed\ it\ up{\isachardot}{\kern0pt}\ The\ optimised\ lexer\ is\ then\ given\ by\ the\ clauses{\isacharcolon}{\kern0pt}\ \ {\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}center{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}tabular{\isacharbraceright}{\kern0pt}{\isacharbraceleft}{\kern0pt}lcl{\isacharbraceright}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ slexer{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{1}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ slexer{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{1}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ slexer{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{2}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isasymopen}let\ {\isacharparenleft}{\kern0pt}r\isactrlsub s{\isacharcomma}{\kern0pt}\ f\isactrlsub r{\isacharparenright}{\kern0pt}\ {\isacharequal}{\kern0pt}\ simp\ {\isacharparenleft}{\kern0pt}r\ {\isasymclose}{\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}backslash{\isachardollar}{\kern0pt}{\isasymopen}\ c{\isacharparenright}{\kern0pt}\ in{\isasymclose}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isasymopen}case{\isasymclose}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}slexer\ r\isactrlsub s\ s{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isasymopen}of{\isasymclose}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharbackslash}{\kern0pt}phantom{\isacharbraceleft}{\kern0pt}{\isachardollar}{\kern0pt}{\isacharbar}{\kern0pt}{\isachardollar}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}None{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ \ {\isasymopen}{\isasymRightarrow}{\isasymclose}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ None{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbar}{\kern0pt}{\isachardollar}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}Some\ v{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isasymopen}{\isasymRightarrow}{\isasymclose}\ {\isasymopen}Some\ {\isacharparenleft}{\kern0pt}inj\ r\ c\ {\isacharparenleft}{\kern0pt}f\isactrlsub r\ v{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}{\isasymclose}\ {\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}tabular{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}center{\isacharbraceright}{\kern0pt}\ \ {\isacharbackslash}{\kern0pt}noindent\ In\ the\ second\ clause\ we\ first\ calculate\ the\ derivative\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}der\ c\ r{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ and\ then\ simplify\ the\ result{\isachardot}{\kern0pt}\ This\ gives\ us\ a\ simplified\ derivative\ {\isasymopen}r\isactrlsub s{\isasymclose}\ and\ a\ rectification\ function\ {\isasymopen}f\isactrlsub r{\isasymclose}{\isachardot}{\kern0pt}\ The\ lexer\ is\ then\ recursively\ called\ with\ the\ simplified\ derivative{\isacharcomma}{\kern0pt}\ but\ before\ we\ inject\ the\ character\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ c{\isacharbraceright}{\kern0pt}\ into\ the\ value\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ v{\isacharbraceright}{\kern0pt}{\isacharcomma}{\kern0pt}\ we\ need\ to\ rectify\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ v{\isacharbraceright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}that\ is\ construct\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}f\isactrlsub r\ v{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharparenright}{\kern0pt}{\isachardot}{\kern0pt}\ Before\ we\ can\ establish\ the\ correctness\ of\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}slexer{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharcomma}{\kern0pt}\ we\ need\ to\ show\ that\ simplification\ preserves\ the\ language\ and\ simplification\ preserves\ our\ POSIX\ relation\ once\ the\ value\ is\ rectified\ {\isacharparenleft}{\kern0pt}recall\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}const\ {\isachardoublequote}{\kern0pt}simp{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ generates\ a\ {\isacharparenleft}{\kern0pt}regular\ expression{\isacharcomma}{\kern0pt}\ rectification\ function{\isacharparenright}{\kern0pt}\ pair{\isacharparenright}{\kern0pt}{\isacharcolon}{\kern0pt}\ \ {\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}lemma{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}mbox{\isacharbraceleft}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}smallskip{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}label{\isacharbraceleft}{\kern0pt}slexeraux{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}tabular{\isacharbraceright}{\kern0pt}{\isacharbraceleft}{\kern0pt}ll{\isacharbraceright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}{\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ L{\isacharunderscore}{\kern0pt}fst{\isacharunderscore}{\kern0pt}simp{\isacharbrackleft}{\kern0pt}symmetric{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharparenleft}{\kern0pt}{\isadigit{2}}{\isacharparenright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm{\isacharbrackleft}{\kern0pt}mode{\isacharequal}{\kern0pt}IfThen{\isacharbrackright}{\kern0pt}\ Posix{\isacharunderscore}{\kern0pt}simp{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}tabular{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}lemma{\isacharbraceright}{\kern0pt}\ \ {\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}proof{\isacharbraceright}{\kern0pt}\ Both\ are\ by\ induction\ on\ {\isasymopen}r{\isasymclose}{\isachardot}{\kern0pt}\ There\ is\ no\ interesting\ case\ for\ the\ first\ statement{\isachardot}{\kern0pt}\ For\ the\ second\ statement{\isacharcomma}{\kern0pt}\ of\ interest\ are\ the\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}r\ {\isacharequal}{\kern0pt}\ ALT\ r\isactrlsub {\isadigit{1}}\ r\isactrlsub {\isadigit{2}}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ and\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}r\ {\isacharequal}{\kern0pt}\ SEQ\ r\isactrlsub {\isadigit{1}}\ r\isactrlsub {\isadigit{2}}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ cases{\isachardot}{\kern0pt}\ In\ each\ case\ we\ have\ to\ analyse\ four\ subcases\ whether\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}fst\ {\isacharparenleft}{\kern0pt}simp\ r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ and\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}fst\ {\isacharparenleft}{\kern0pt}simp\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ equals\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}const\ ZERO{\isacharbraceright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}respectively\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}const\ ONE{\isacharbraceright}{\kern0pt}{\isacharparenright}{\kern0pt}{\isachardot}{\kern0pt}\ For\ example\ for\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}r\ {\isacharequal}{\kern0pt}\ ALT\ r\isactrlsub {\isadigit{1}}\ r\isactrlsub {\isadigit{2}}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharcomma}{\kern0pt}\ consider\ the\ subcase\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}fst\ {\isacharparenleft}{\kern0pt}simp\ r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isacharequal}{\kern0pt}\ ZERO{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ and\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}fst\ {\isacharparenleft}{\kern0pt}simp\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}\ {\isasymnoteq}\ ZERO{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isachardot}{\kern0pt}\ By\ assumption\ we\ know\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}s\ {\isasymin}\ fst\ {\isacharparenleft}{\kern0pt}simp\ {\isacharparenleft}{\kern0pt}ALT\ r\isactrlsub {\isadigit{1}}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isachardot}{\kern0pt}\ From\ this\ we\ can\ infer\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}s\ {\isasymin}\ fst\ {\isacharparenleft}{\kern0pt}simp\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ and\ by\ IH\ also\ {\isacharparenleft}{\kern0pt}{\isacharasterisk}{\kern0pt}{\isacharparenright}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}s\ {\isasymin}\ r\isactrlsub {\isadigit{2}}\ {\isasymrightarrow}\ {\isacharparenleft}{\kern0pt}snd\ {\isacharparenleft}{\kern0pt}simp\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}\ v{\isacharparenright}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isachardot}{\kern0pt}\ Given\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}fst\ {\isacharparenleft}{\kern0pt}simp\ r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isacharequal}{\kern0pt}\ ZERO{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ we\ know\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}L\ {\isacharparenleft}{\kern0pt}fst\ {\isacharparenleft}{\kern0pt}simp\ r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}\ {\isacharequal}{\kern0pt}\ {\isacharbraceleft}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isachardot}{\kern0pt}\ By\ the\ first\ statement\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}L\ r\isactrlsub {\isadigit{1}}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ is\ the\ empty\ set{\isacharcomma}{\kern0pt}\ meaning\ {\isacharparenleft}{\kern0pt}{\isacharasterisk}{\kern0pt}{\isacharasterisk}{\kern0pt}{\isacharparenright}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}s\ {\isasymnotin}\ L\ r\isactrlsub {\isadigit{1}}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isachardot}{\kern0pt}\ Taking\ {\isacharparenleft}{\kern0pt}{\isacharasterisk}{\kern0pt}{\isacharparenright}{\kern0pt}\ and\ {\isacharparenleft}{\kern0pt}{\isacharasterisk}{\kern0pt}{\isacharasterisk}{\kern0pt}{\isacharparenright}{\kern0pt}\ together\ gives\ by\ the\ {\isacharbackslash}{\kern0pt}mbox{\isacharbraceleft}{\kern0pt}{\isasymopen}P{\isacharplus}{\kern0pt}R{\isasymclose}{\isacharbraceright}{\kern0pt}{\isacharminus}{\kern0pt}rule\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}s\ {\isasymin}\ ALT\ r\isactrlsub {\isadigit{1}}\ r\isactrlsub {\isadigit{2}}\ {\isasymrightarrow}\ Right\ {\isacharparenleft}{\kern0pt}snd\ {\isacharparenleft}{\kern0pt}simp\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}\ v{\isacharparenright}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isachardot}{\kern0pt}\ In\ turn\ this\ gives\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}s\ {\isasymin}\ ALT\ r\isactrlsub {\isadigit{1}}\ r\isactrlsub {\isadigit{2}}\ {\isasymrightarrow}\ snd\ {\isacharparenleft}{\kern0pt}simp\ {\isacharparenleft}{\kern0pt}ALT\ r\isactrlsub {\isadigit{1}}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}\ v{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ as\ we\ need\ to\ show{\isachardot}{\kern0pt}\ The\ other\ cases\ are\ similar{\isachardot}{\kern0pt}{\isacharbackslash}{\kern0pt}qed\ {\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}proof{\isacharbraceright}{\kern0pt}\ \ {\isacharbackslash}{\kern0pt}noindent\ We\ can\ now\ prove\ relatively\ straightforwardly\ that\ the\ optimised\ lexer\ produces\ the\ expected\ result{\isacharcolon}{\kern0pt}\ \ {\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}theorem{\isacharbraceright}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ slexer{\isacharunderscore}{\kern0pt}correctness{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}theorem{\isacharbraceright}{\kern0pt}\ \ {\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}proof{\isacharbraceright}{\kern0pt}\ By\ induction\ on\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ s{\isacharbraceright}{\kern0pt}\ generalising\ over\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ r{\isacharbraceright}{\kern0pt}{\isachardot}{\kern0pt}\ The\ case\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}{\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ is\ trivial{\isachardot}{\kern0pt}\ For\ the\ cons{\isacharminus}{\kern0pt}case\ suppose\ the\ string\ is\ of\ the\ form\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}c\ {\isacharhash}{\kern0pt}\ s{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isachardot}{\kern0pt}\ By\ induction\ hypothesis\ we\ know\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}slexer\ r\ s\ {\isacharequal}{\kern0pt}\ lexer\ r\ s{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ holds\ for\ all\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ r{\isacharbraceright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}in\ particular\ for\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}r{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ being\ the\ derivative\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}der\ c\ r{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharparenright}{\kern0pt}{\isachardot}{\kern0pt}\ Let\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}r\isactrlsub s{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ be\ the\ simplified\ derivative\ regular\ expression{\isacharcomma}{\kern0pt}\ that\ is\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}fst\ {\isacharparenleft}{\kern0pt}simp\ {\isacharparenleft}{\kern0pt}der\ c\ r{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharcomma}{\kern0pt}\ and\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}f\isactrlsub r{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ be\ the\ rectification\ function{\isacharcomma}{\kern0pt}\ that\ is\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}snd\ {\isacharparenleft}{\kern0pt}simp\ {\isacharparenleft}{\kern0pt}der\ c\ r{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isachardot}{\kern0pt}\ \ We\ distinguish\ the\ cases\ whether\ {\isacharparenleft}{\kern0pt}{\isacharasterisk}{\kern0pt}{\isacharparenright}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}s\ {\isasymin}\ L\ {\isacharparenleft}{\kern0pt}der\ c\ r{\isacharparenright}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ or\ not{\isachardot}{\kern0pt}\ In\ the\ first\ case\ we\ have\ by\ Theorem{\isachartilde}{\kern0pt}{\isacharbackslash}{\kern0pt}ref{\isacharbraceleft}{\kern0pt}lexercorrect{\isacharbraceright}{\kern0pt}{\isacharparenleft}{\kern0pt}{\isadigit{2}}{\isacharparenright}{\kern0pt}\ a\ value\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}v{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ so\ that\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}lexer\ {\isacharparenleft}{\kern0pt}der\ c\ r{\isacharparenright}{\kern0pt}\ s\ {\isacharequal}{\kern0pt}\ Some\ v{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ and\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}s\ {\isasymin}\ der\ c\ r\ {\isasymrightarrow}\ v{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ hold{\isachardot}{\kern0pt}\ By\ Lemma{\isachartilde}{\kern0pt}{\isacharbackslash}{\kern0pt}ref{\isacharbraceleft}{\kern0pt}slexeraux{\isacharbraceright}{\kern0pt}{\isacharparenleft}{\kern0pt}{\isadigit{1}}{\isacharparenright}{\kern0pt}\ we\ can\ also\ infer\ from{\isachartilde}{\kern0pt}{\isacharparenleft}{\kern0pt}{\isacharasterisk}{\kern0pt}{\isacharparenright}{\kern0pt}\ that\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}s\ {\isasymin}\ L\ r\isactrlsub s{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ holds{\isachardot}{\kern0pt}\ \ Hence\ we\ know\ by\ Theorem{\isachartilde}{\kern0pt}{\isacharbackslash}{\kern0pt}ref{\isacharbraceleft}{\kern0pt}lexercorrect{\isacharbraceright}{\kern0pt}{\isacharparenleft}{\kern0pt}{\isadigit{2}}{\isacharparenright}{\kern0pt}\ that\ there\ exists\ a\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}v{\isacharprime}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ with\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}lexer\ r\isactrlsub s\ s\ {\isacharequal}{\kern0pt}\ Some\ v{\isacharprime}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ and\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}s\ {\isasymin}\ r\isactrlsub s\ {\isasymrightarrow}\ v{\isacharprime}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isachardot}{\kern0pt}\ From\ the\ latter\ we\ know\ by\ Lemma{\isachartilde}{\kern0pt}{\isacharbackslash}{\kern0pt}ref{\isacharbraceleft}{\kern0pt}slexeraux{\isacharbraceright}{\kern0pt}{\isacharparenleft}{\kern0pt}{\isadigit{2}}{\isacharparenright}{\kern0pt}\ that\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}s\ {\isasymin}\ der\ c\ r\ {\isasymrightarrow}\ {\isacharparenleft}{\kern0pt}f\isactrlsub r\ v{\isacharprime}{\kern0pt}{\isacharparenright}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ holds{\isachardot}{\kern0pt}\ By\ the\ uniqueness\ of\ the\ POSIX\ relation\ {\isacharparenleft}{\kern0pt}Theorem{\isachartilde}{\kern0pt}{\isacharbackslash}{\kern0pt}ref{\isacharbraceleft}{\kern0pt}posixdeterm{\isacharbraceright}{\kern0pt}{\isacharparenright}{\kern0pt}\ we\ can\ infer\ that\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ v{\isacharbraceright}{\kern0pt}\ is\ equal\ to\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}f\isactrlsub r\ v{\isacharprime}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharminus}{\kern0pt}{\isacharminus}{\kern0pt}{\isacharminus}{\kern0pt}that\ is\ the\ rectification\ function\ applied\ to\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}v{\isacharprime}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ produces\ the\ original\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}v{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isachardot}{\kern0pt}\ \ Now\ the\ case\ follows\ by\ the\ definitions\ of\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}const\ lexer{\isacharbraceright}{\kern0pt}\ and\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}const\ slexer{\isacharbraceright}{\kern0pt}{\isachardot}{\kern0pt}\ \ In\ the\ second\ case\ where\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}s\ {\isasymnotin}\ L\ {\isacharparenleft}{\kern0pt}der\ c\ r{\isacharparenright}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ we\ have\ that\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}lexer\ {\isacharparenleft}{\kern0pt}der\ c\ r{\isacharparenright}{\kern0pt}\ s\ {\isacharequal}{\kern0pt}\ None{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ by\ Theorem{\isachartilde}{\kern0pt}{\isacharbackslash}{\kern0pt}ref{\isacharbraceleft}{\kern0pt}lexercorrect{\isacharbraceright}{\kern0pt}{\isacharparenleft}{\kern0pt}{\isadigit{1}}{\isacharparenright}{\kern0pt}{\isachardot}{\kern0pt}\ \ We\ also\ know\ by\ Lemma{\isachartilde}{\kern0pt}{\isacharbackslash}{\kern0pt}ref{\isacharbraceleft}{\kern0pt}slexeraux{\isacharbraceright}{\kern0pt}{\isacharparenleft}{\kern0pt}{\isadigit{1}}{\isacharparenright}{\kern0pt}\ that\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}s\ {\isasymnotin}\ L\ r\isactrlsub s{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isachardot}{\kern0pt}\ Hence\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}lexer\ r\isactrlsub s\ s\ {\isacharequal}{\kern0pt}\ None{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ by\ Theorem{\isachartilde}{\kern0pt}{\isacharbackslash}{\kern0pt}ref{\isacharbraceleft}{\kern0pt}lexercorrect{\isacharbraceright}{\kern0pt}{\isacharparenleft}{\kern0pt}{\isadigit{1}}{\isacharparenright}{\kern0pt}\ and\ by\ IH\ then\ also\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}slexer\ r\isactrlsub s\ s\ {\isacharequal}{\kern0pt}\ None{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isachardot}{\kern0pt}\ With\ this\ we\ can\ conclude\ in\ this\ case\ too{\isachardot}{\kern0pt}{\isacharbackslash}{\kern0pt}qed\ \ {\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}proof{\isacharbraceright}{\kern0pt}\ \ }
+fy the result. This gives us a simplified derivative
+ \isa{r\isactrlsub s} and a rectification function \isa{f\isactrlsub r}. The lexer
+ is then recursively called with the simplified derivative, but before
+ we inject the character \isa{c} into the value \isa{v}, we need to rectify
+ \isa{v} (that is construct \isa{f\isactrlsub r\ v}). Before we can establish the correctness
+ of \isa{lexer\isactrlsup {\isacharplus}{\kern0pt}}, we need to show that simplification preserves the language
+ and simplification preserves our POSIX relation once the value is rectified
+ (recall \isa{simp} generates a (regular expression, rectification function) pair):
+
+ \begin{lemma}\mbox{}\smallskip\\\label{slexeraux}
+ \begin{tabular}{ll}
+ (1) & \isa{L{\isacharparenleft}{\kern0pt}fst\ {\isacharparenleft}{\kern0pt}simp\ r{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}\ {\isacharequal}{\kern0pt}\ L{\isacharparenleft}{\kern0pt}r{\isacharparenright}{\kern0pt}}\\
+ (2) & \isa{{\normalsize{}If\,}\ {\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ fst\ {\isacharparenleft}{\kern0pt}simp\ r{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v\ {\normalsize \,then\,}\ {\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ snd\ {\isacharparenleft}{\kern0pt}simp\ r{\isacharparenright}{\kern0pt}\ v{\isachardot}{\kern0pt}}
+ \end{tabular}
+ \end{lemma}
+
+ \begin{proof} Both are by induction on \isa{r}. There is no
+ interesting case for the first statement. For the second statement,
+ of interest are the \isa{r\ {\isacharequal}{\kern0pt}\ r\isactrlsub {\isadigit{1}}\ {\isacharplus}{\kern0pt}\ r\isactrlsub {\isadigit{2}}} and \isa{r\ {\isacharequal}{\kern0pt}\ r\isactrlsub {\isadigit{1}}\ {\isasymcdot}\ r\isactrlsub {\isadigit{2}}} cases. In each case we have to analyse four subcases whether
+ \isa{fst\ {\isacharparenleft}{\kern0pt}simp\ r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}} and \isa{fst\ {\isacharparenleft}{\kern0pt}simp\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}} equals \isa{\isactrlbold {\isadigit{0}}} (respectively \isa{\isactrlbold {\isadigit{1}}}). For example for \isa{r\ {\isacharequal}{\kern0pt}\ r\isactrlsub {\isadigit{1}}\ {\isacharplus}{\kern0pt}\ r\isactrlsub {\isadigit{2}}}, consider the subcase \isa{fst\ {\isacharparenleft}{\kern0pt}simp\ r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isacharequal}{\kern0pt}\ \isactrlbold {\isadigit{0}}} and
+ \isa{fst\ {\isacharparenleft}{\kern0pt}simp\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}\ {\isasymnoteq}\ \isactrlbold {\isadigit{0}}}. By assumption we know \isa{{\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ fst\ {\isacharparenleft}{\kern0pt}simp\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}\ {\isacharplus}{\kern0pt}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v}. From this we can infer \isa{{\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ fst\ {\isacharparenleft}{\kern0pt}simp\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v}
+ and by IH also (*) \isa{{\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ snd\ {\isacharparenleft}{\kern0pt}simp\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}\ v}. Given \isa{fst\ {\isacharparenleft}{\kern0pt}simp\ r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isacharequal}{\kern0pt}\ \isactrlbold {\isadigit{0}}}
+ we know \isa{L{\isacharparenleft}{\kern0pt}fst\ {\isacharparenleft}{\kern0pt}simp\ r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}\ {\isacharequal}{\kern0pt}\ {\isasymemptyset}}. By the first statement
+ \isa{L{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}} is the empty set, meaning (**) \isa{s\ {\isasymnotin}\ L{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}}.
+ Taking (*) and (**) together gives by the \mbox{\isa{P{\isacharplus}{\kern0pt}R}}-rule
+ \isa{{\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{1}}\ {\isacharplus}{\kern0pt}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ Right\ {\isacharparenleft}{\kern0pt}snd\ {\isacharparenleft}{\kern0pt}simp\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}\ v{\isacharparenright}{\kern0pt}}. In turn this
+ gives \isa{{\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{1}}\ {\isacharplus}{\kern0pt}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ snd\ {\isacharparenleft}{\kern0pt}simp\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}\ {\isacharplus}{\kern0pt}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}\ v} as we need to show.
+ The other cases are similar.\qed
+ \end{proof}
+
+ \noindent We can now prove relatively straightforwardly that the
+ optimised lexer produces the expected result:
+
+ \begin{theorem}
+ \isa{lexer\isactrlsup {\isacharplus}{\kern0pt}\ r\ s\ {\isacharequal}{\kern0pt}\ lexer\ r\ s}
+ \end{theorem}
+
+ \begin{proof} By induction on \isa{s} generalising over \isa{r}. The case \isa{{\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}} is trivial. For the cons-case suppose the
+ string is of the form \isa{c\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}s}. By induction hypothesis we
+ know \isa{lexer\isactrlsup {\isacharplus}{\kern0pt}\ r\ s\ {\isacharequal}{\kern0pt}\ lexer\ r\ s} holds for all \isa{r} (in
+ particular for \isa{r} being the derivative \isa{r{\isacharbackslash}{\kern0pt}c}). Let \isa{r\isactrlsub s} be the simplified derivative regular expression, that is \isa{fst\ {\isacharparenleft}{\kern0pt}simp\ {\isacharparenleft}{\kern0pt}r{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}}, and \isa{f\isactrlsub r} be the rectification
+ function, that is \isa{snd\ {\isacharparenleft}{\kern0pt}simp\ {\isacharparenleft}{\kern0pt}r{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}}. We distinguish the cases
+ whether (*) \isa{s\ {\isasymin}\ L{\isacharparenleft}{\kern0pt}r{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}} or not. In the first case we
+ have by Theorem~\ref{lexercorrect}(2) a value \isa{v} so that \isa{lexer\ {\isacharparenleft}{\kern0pt}r{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}\ s\ {\isacharequal}{\kern0pt}\ Some\ v} and \isa{{\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v} hold.
+ By Lemma~\ref{slexeraux}(1) we can also infer from~(*) that \isa{s\ {\isasymin}\ L{\isacharparenleft}{\kern0pt}r\isactrlsub s{\isacharparenright}{\kern0pt}} holds. Hence we know by Theorem~\ref{lexercorrect}(2) that
+ there exists a \isa{v{\isacharprime}{\kern0pt}} with \isa{lexer\ r\isactrlsub s\ s\ {\isacharequal}{\kern0pt}\ Some\ v{\isacharprime}{\kern0pt}} and
+ \isa{{\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r\isactrlsub s{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v{\isacharprime}{\kern0pt}}. From the latter we know by
+ Lemma~\ref{slexeraux}(2) that \isa{{\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ f\isactrlsub r\ v{\isacharprime}{\kern0pt}} holds.
+ By the uniqueness of the POSIX relation (Theorem~\ref{posixdeterm}) we
+ can infer that \isa{v} is equal to \isa{f\isactrlsub r\ v{\isacharprime}{\kern0pt}}---that is the
+ rectification function applied to \isa{v{\isacharprime}{\kern0pt}}
+ produces the original \isa{v}. Now the case follows by the
+ definitions of \isa{lexer} and \isa{lexer\isactrlsup {\isacharplus}{\kern0pt}}.
+
+ In the second case where \isa{s\ {\isasymnotin}\ L{\isacharparenleft}{\kern0pt}r{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}} we have that
+ \isa{lexer\ {\isacharparenleft}{\kern0pt}r{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}\ s\ {\isacharequal}{\kern0pt}\ None} by Theorem~\ref{lexercorrect}(1). We
+ also know by Lemma~\ref{slexeraux}(1) that \isa{s\ {\isasymnotin}\ L{\isacharparenleft}{\kern0pt}r\isactrlsub s{\isacharparenright}{\kern0pt}}. Hence
+ \isa{lexer\ r\isactrlsub s\ s\ {\isacharequal}{\kern0pt}\ None} by Theorem~\ref{lexercorrect}(1) and
+ by IH then also \isa{lexer\isactrlsup {\isacharplus}{\kern0pt}\ r\isactrlsub s\ s\ {\isacharequal}{\kern0pt}\ None}. With this we can
+ conclude in this case too.\qed
+
+ \end{proof}%
+\end{isamarkuptext}\isamarkuptrue%
+%
+\isadelimdocument
+%
+\endisadelimdocument
+%
+\isatagdocument
+%
+\isamarkupsection{HERE%
+}
+\isamarkuptrue%
+%
+\endisatagdocument
+{\isafolddocument}%
+%
+\isadelimdocument
+%
+\endisadelimdocument
+%
+\begin{isamarkuptext}%
+\begin{lemma}
+ \isa{{\normalsize{}If\,}\ v\ {\isacharcolon}{\kern0pt}\ {\isacharparenleft}{\kern0pt}r\mbox{$^\downarrow$}{\isacharparenright}{\kern0pt}{\isacharbackslash}{\kern0pt}c\ {\normalsize \,then\,}\ retrieve\ {\isacharparenleft}{\kern0pt}r\mbox{$\bbslash$}c{\isacharparenright}{\kern0pt}\ v\ {\isacharequal}{\kern0pt}\ retrieve\ r\ {\isacharparenleft}{\kern0pt}inj\ {\isacharparenleft}{\kern0pt}r\mbox{$^\downarrow$}{\isacharparenright}{\kern0pt}\ c\ v{\isacharparenright}{\kern0pt}{\isachardot}{\kern0pt}}
+ \end{lemma}
+
+ \begin{proof}
+ By induction on the definition of \isa{r\mbox{$^\downarrow$}}. The cases for rule 1) and 2) are
+ straightforward as \isa{\isactrlbold {\isadigit{0}}{\isacharbackslash}{\kern0pt}c} and \isa{\isactrlbold {\isadigit{1}}{\isacharbackslash}{\kern0pt}c} are both equal to
+ \isa{\isactrlbold {\isadigit{0}}}. This means \isa{v\ {\isacharcolon}{\kern0pt}\ \isactrlbold {\isadigit{0}}} cannot hold. Similarly in case of rule 3)
+ where \isa{r} is of the form \isa{ACHAR\ d} with \isa{c\ {\isacharequal}{\kern0pt}\ d}. Then by assumption
+ we know \isa{v\ {\isacharcolon}{\kern0pt}\ \isactrlbold {\isadigit{1}}}, which implies \isa{v\ {\isacharequal}{\kern0pt}\ Empty}. The equation follows by
+ simplification of left- and right-hand side. In case \isa{c\ {\isasymnoteq}\ d} we have again
+ \isa{v\ {\isacharcolon}{\kern0pt}\ \isactrlbold {\isadigit{0}}}, which cannot hold.
+
+ For rule 4a) we have again \isa{v\ {\isacharcolon}{\kern0pt}\ \isactrlbold {\isadigit{0}}}. The property holds by IH for rule 4b).
+ The induction hypothesis is
+ \[
+ \isa{retrieve\ {\isacharparenleft}{\kern0pt}r\mbox{$\bbslash$}c{\isacharparenright}{\kern0pt}\ v\ {\isacharequal}{\kern0pt}\ retrieve\ r\ {\isacharparenleft}{\kern0pt}inj\ {\isacharparenleft}{\kern0pt}r\mbox{$^\downarrow$}{\isacharparenright}{\kern0pt}\ c\ v{\isacharparenright}{\kern0pt}}
+ \]
+ which is what left- and right-hand side simplify to. The slightly more interesting case
+ is for 4c). By assumption we have
+ \isa{v\ {\isacharcolon}{\kern0pt}\ {\isacharparenleft}{\kern0pt}{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}\mbox{$^\downarrow$}{\isacharparenright}{\kern0pt}{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}\ {\isacharplus}{\kern0pt}\ {\isacharparenleft}{\kern0pt}{\isacharparenleft}{\kern0pt}{\isacharparenleft}{\kern0pt}AALTs\ bs\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{2}}\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}rs{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}\mbox{$^\downarrow$}{\isacharparenright}{\kern0pt}{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}}. This means we
+ have either (*) \isa{v{\isadigit{1}}\ {\isacharcolon}{\kern0pt}\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}\mbox{$^\downarrow$}{\isacharparenright}{\kern0pt}{\isacharbackslash}{\kern0pt}c} with \isa{v\ {\isacharequal}{\kern0pt}\ Left\ v{\isadigit{1}}} or
+ (**) \isa{v{\isadigit{2}}\ {\isacharcolon}{\kern0pt}\ {\isacharparenleft}{\kern0pt}{\isacharparenleft}{\kern0pt}AALTs\ bs\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{2}}\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}rs{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}\mbox{$^\downarrow$}{\isacharparenright}{\kern0pt}{\isacharbackslash}{\kern0pt}c} with \isa{v\ {\isacharequal}{\kern0pt}\ Right\ v{\isadigit{2}}}.
+ The former case is straightforward by simplification. The second case is \ldots TBD.
+
+ Rule 5) TBD.
+
+ Finally for rule 6) the reasoning is as follows: By assumption we have
+ \isa{v\ {\isacharcolon}{\kern0pt}\ {\isacharparenleft}{\kern0pt}{\isacharparenleft}{\kern0pt}r\mbox{$^\downarrow$}{\isacharparenright}{\kern0pt}{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}\ {\isasymcdot}\ {\isacharparenleft}{\kern0pt}r\mbox{$^\downarrow$}{\isacharparenright}{\kern0pt}\isactrlsup {\isasymstar}}. This means we also have
+ \isa{v\ {\isacharequal}{\kern0pt}\ Seq\ v{\isadigit{1}}\ v{\isadigit{2}}}, \isa{v{\isadigit{1}}\ {\isacharcolon}{\kern0pt}\ {\isacharparenleft}{\kern0pt}r\mbox{$^\downarrow$}{\isacharparenright}{\kern0pt}{\isacharbackslash}{\kern0pt}c} and \isa{v{\isadigit{2}}\ {\isacharequal}{\kern0pt}\ Stars\ vs}.
+ We want to prove
+ \begin{align}
+ & \isa{retrieve\ {\isacharparenleft}{\kern0pt}ASEQ\ bs\ {\isacharparenleft}{\kern0pt}fuse\ {\isacharbrackleft}{\kern0pt}Z{\isacharbrackright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}r\mbox{$\bbslash$}c{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}ASTAR\ {\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}\ r{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}\ v}\\
+ &= \isa{retrieve\ {\isacharparenleft}{\kern0pt}ASTAR\ bs\ r{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}inj\ {\isacharparenleft}{\kern0pt}{\isacharparenleft}{\kern0pt}r\mbox{$^\downarrow$}{\isacharparenright}{\kern0pt}\isactrlsup {\isasymstar}{\isacharparenright}{\kern0pt}\ c\ v{\isacharparenright}{\kern0pt}}
+ \end{align}
+ The right-hand side \isa{inj}-expression is equal to
+ \isa{Stars\ {\isacharparenleft}{\kern0pt}inj\ {\isacharparenleft}{\kern0pt}r\mbox{$^\downarrow$}{\isacharparenright}{\kern0pt}\ c\ v{\isadigit{1}}\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}vs{\isacharparenright}{\kern0pt}}, which means the \isa{retrieve}-expression
+ simplifies to
+ \[
+ \isa{bs\ {\isacharat}{\kern0pt}\ {\isacharbrackleft}{\kern0pt}Z{\isacharbrackright}{\kern0pt}\ {\isacharat}{\kern0pt}\ retrieve\ r\ {\isacharparenleft}{\kern0pt}inj\ {\isacharparenleft}{\kern0pt}r\mbox{$^\downarrow$}{\isacharparenright}{\kern0pt}\ c\ v{\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isacharat}{\kern0pt}\ retrieve\ {\isacharparenleft}{\kern0pt}ASTAR\ {\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}\ r{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}Stars\ vs{\isacharparenright}{\kern0pt}}
+ \]
+ The left-hand side (3) above simplifies to
+ \[
+ \isa{bs\ {\isacharat}{\kern0pt}\ retrieve\ {\isacharparenleft}{\kern0pt}fuse\ {\isacharbrackleft}{\kern0pt}Z{\isacharbrackright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}r\mbox{$\bbslash$}c{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}\ v{\isadigit{1}}\ {\isacharat}{\kern0pt}\ retrieve\ {\isacharparenleft}{\kern0pt}ASTAR\ {\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}\ r{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}Stars\ vs{\isacharparenright}{\kern0pt}}
+ \]
+ We can move out the \isa{fuse\ {\isacharbrackleft}{\kern0pt}Z{\isacharbrackright}{\kern0pt}} and then use the IH to show that left-hand side
+ and right-hand side are equal. This completes the proof.
+ \end{proof}
+
+
+
+ \bibliographystyle{plain}
+ \bibliography{root}%
+\end{isamarkuptext}\isamarkuptrue%
+%
+\isadelimtheory
+%
+\endisadelimtheory
+%
+\isatagtheory
+%
+\endisatagtheory
+{\isafoldtheory}%
+%
+\isadelimtheory
+\isanewline
+%
+\endisadelimtheory
+\isanewline
+\isanewline
+%
+\end{isabellebody}%
+\endinput
+%:%file=Paper.tex%:%
+%:%50=134%:%
+%:%62=136%:%
+%:%63=137%:%
+%:%64=138%:%
+%:%65=139%:%
+%:%66=140%:%
+%:%67=141%:%
+%:%68=142%:%
+%:%69=143%:%
+%:%70=144%:%
+%:%71=145%:%
+%:%72=146%:%
+%:%73=147%:%
+%:%74=148%:%
+%:%75=149%:%
+%:%76=150%:%
+%:%77=151%:%
+%:%78=152%:%
+%:%79=153%:%
+%:%80=154%:%
+%:%81=155%:%
+%:%82=156%:%
+%:%83=157%:%
+%:%84=158%:%
+%:%85=159%:%
+%:%86=160%:%
+%:%87=161%:%
+%:%88=162%:%
+%:%89=163%:%
+%:%90=164%:%
+%:%91=165%:%
+%:%92=166%:%
+%:%93=167%:%
+%:%94=168%:%
+%:%95=169%:%
+%:%96=170%:%
+%:%97=171%:%
+%:%98=172%:%
+%:%99=173%:%
+%:%100=174%:%
+%:%101=175%:%
+%:%102=176%:%
+%:%103=177%:%
+%:%104=178%:%
+%:%105=179%:%
+%:%106=180%:%
+%:%107=181%:%
+%:%108=182%:%
+%:%109=183%:%
+%:%110=184%:%
+%:%111=185%:%
+%:%112=186%:%
+%:%113=187%:%
+%:%114=188%:%
+%:%115=189%:%
+%:%116=190%:%
+%:%117=191%:%
+%:%118=192%:%
+%:%119=193%:%
+%:%120=194%:%
+%:%121=195%:%
+%:%122=196%:%
+%:%123=197%:%
+%:%124=198%:%
+%:%125=199%:%
+%:%126=200%:%
+%:%127=201%:%
+%:%128=202%:%
+%:%129=203%:%
+%:%130=204%:%
+%:%131=205%:%
+%:%132=206%:%
+%:%133=207%:%
+%:%134=208%:%
+%:%135=209%:%
+%:%136=210%:%
+%:%137=211%:%
+%:%138=212%:%
+%:%139=213%:%
+%:%140=214%:%
+%:%141=215%:%
+%:%142=216%:%
+%:%143=217%:%
+%:%144=218%:%
+%:%145=219%:%
+%:%146=220%:%
+%:%147=221%:%
+%:%148=222%:%
+%:%149=223%:%
+%:%150=224%:%
+%:%151=225%:%
+%:%152=226%:%
+%:%153=227%:%
+%:%154=228%:%
+%:%155=229%:%
+%:%156=230%:%
+%:%157=231%:%
+%:%158=232%:%
+%:%159=233%:%
+%:%160=234%:%
+%:%161=235%:%
+%:%162=236%:%
+%:%163=237%:%
+%:%164=238%:%
+%:%165=239%:%
+%:%166=240%:%
+%:%167=241%:%
+%:%168=242%:%
+%:%169=243%:%
+%:%170=244%:%
+%:%171=245%:%
+%:%172=246%:%
+%:%173=247%:%
+%:%174=248%:%
+%:%175=249%:%
+%:%176=250%:%
+%:%177=251%:%
+%:%178=252%:%
+%:%179=253%:%
+%:%180=254%:%
+%:%181=255%:%
+%:%182=256%:%
+%:%183=257%:%
+%:%184=258%:%
+%:%185=259%:%
+%:%186=260%:%
+%:%187=261%:%
+%:%188=262%:%
+%:%189=263%:%
+%:%190=264%:%
+%:%191=265%:%
+%:%192=266%:%
+%:%193=267%:%
+%:%194=268%:%
+%:%203=272%:%
+%:%215=276%:%
+%:%216=277%:%
+%:%217=278%:%
+%:%218=279%:%
+%:%219=280%:%
+%:%220=281%:%
+%:%221=282%:%
+%:%222=283%:%
+%:%223=284%:%
+%:%224=285%:%
+%:%225=286%:%
+%:%226=287%:%
+%:%227=288%:%
+%:%228=289%:%
+%:%237=297%:%
+%:%249=303%:%
+%:%250=304%:%
+%:%251=305%:%
+%:%252=306%:%
+%:%252=307%:%
+%:%253=308%:%
+%:%254=309%:%
+%:%255=310%:%
+%:%256=311%:%
+%:%257=312%:%
+%:%258=313%:%
+%:%259=314%:%
+%:%260=315%:%
+%:%261=316%:%
+%:%262=317%:%
+%:%263=318%:%
+%:%264=319%:%
+%:%265=320%:%
+%:%266=321%:%
+%:%267=322%:%
+%:%268=323%:%
+%:%269=324%:%
+%:%270=325%:%
+%:%271=326%:%
+%:%272=327%:%
+%:%273=328%:%
+%:%274=329%:%
+%:%275=330%:%
+%:%276=331%:%
+%:%277=332%:%
+%:%278=333%:%
+%:%279=334%:%
+%:%280=335%:%
+%:%281=336%:%
+%:%282=337%:%
+%:%283=338%:%
+%:%284=339%:%
+%:%285=340%:%
+%:%286=341%:%
+%:%287=342%:%
+%:%288=343%:%
+%:%289=344%:%
+%:%290=345%:%
+%:%291=346%:%
+%:%292=347%:%
+%:%293=348%:%
+%:%294=349%:%
+%:%295=350%:%
+%:%296=351%:%
+%:%297=352%:%
+%:%298=353%:%
+%:%299=354%:%
+%:%300=355%:%
+%:%301=356%:%
+%:%302=357%:%
+%:%303=358%:%
+%:%304=359%:%
+%:%305=360%:%
+%:%306=361%:%
+%:%307=362%:%
+%:%308=363%:%
+%:%309=364%:%
+%:%310=365%:%
+%:%311=366%:%
+%:%312=367%:%
+%:%313=368%:%
+%:%314=369%:%
+%:%315=370%:%
+%:%316=371%:%
+%:%316=372%:%
+%:%317=373%:%
+%:%318=374%:%
+%:%319=375%:%
+%:%320=376%:%
+%:%321=377%:%
+%:%322=378%:%
+%:%323=379%:%
+%:%324=380%:%
+%:%325=381%:%
+%:%326=382%:%
+%:%327=383%:%
+%:%328=384%:%
+%:%329=385%:%
+%:%330=386%:%
+%:%331=387%:%
+%:%332=388%:%
+%:%333=389%:%
+%:%334=390%:%
+%:%335=391%:%
+%:%336=392%:%
+%:%337=393%:%
+%:%338=394%:%
+%:%339=395%:%
+%:%340=396%:%
+%:%341=397%:%
+%:%342=398%:%
+%:%343=399%:%
+%:%344=400%:%
+%:%345=401%:%
+%:%346=402%:%
+%:%347=403%:%
+%:%348=404%:%
+%:%349=405%:%
+%:%350=406%:%
+%:%351=407%:%
+%:%352=408%:%
+%:%353=409%:%
+%:%354=410%:%
+%:%355=411%:%
+%:%356=412%:%
+%:%357=413%:%
+%:%358=414%:%
+%:%359=415%:%
+%:%360=416%:%
+%:%361=417%:%
+%:%362=418%:%
+%:%363=419%:%
+%:%364=420%:%
+%:%365=421%:%
+%:%366=422%:%
+%:%367=423%:%
+%:%368=424%:%
+%:%369=425%:%
+%:%370=426%:%
+%:%371=427%:%
+%:%372=428%:%
+%:%373=429%:%
+%:%374=430%:%
+%:%375=431%:%
+%:%376=432%:%
+%:%377=433%:%
+%:%378=434%:%
+%:%379=435%:%
+%:%380=436%:%
+%:%381=437%:%
+%:%382=438%:%
+%:%383=439%:%
+%:%384=440%:%
+%:%385=441%:%
+%:%386=442%:%
+%:%387=443%:%
+%:%388=444%:%
+%:%389=445%:%
+%:%390=446%:%
+%:%391=447%:%
+%:%392=448%:%
+%:%393=449%:%
+%:%394=450%:%
+%:%395=451%:%
+%:%396=452%:%
+%:%397=453%:%
+%:%398=454%:%
+%:%399=455%:%
+%:%400=456%:%
+%:%401=457%:%
+%:%402=458%:%
+%:%403=459%:%
+%:%404=460%:%
+%:%405=461%:%
+%:%406=462%:%
+%:%407=463%:%
+%:%408=464%:%
+%:%409=465%:%
+%:%410=466%:%
+%:%411=467%:%
+%:%412=468%:%
+%:%413=469%:%
+%:%414=470%:%
+%:%415=471%:%
+%:%416=472%:%
+%:%417=473%:%
+%:%418=474%:%
+%:%419=475%:%
+%:%420=476%:%
+%:%421=477%:%
+%:%430=484%:%
+%:%442=486%:%
+%:%443=487%:%
+%:%443=488%:%
+%:%444=489%:%
+%:%445=490%:%
+%:%446=491%:%
+%:%447=492%:%
+%:%448=493%:%
+%:%449=494%:%
+%:%450=495%:%
+%:%451=496%:%
+%:%452=497%:%
+%:%453=498%:%
+%:%454=499%:%
+%:%455=500%:%
+%:%456=501%:%
+%:%457=502%:%
+%:%458=503%:%
+%:%459=504%:%
+%:%460=505%:%
+%:%461=506%:%
+%:%462=507%:%
+%:%463=508%:%
+%:%464=509%:%
+%:%465=510%:%
+%:%466=511%:%
+%:%467=512%:%
+%:%468=513%:%
+%:%469=514%:%
+%:%470=515%:%
+%:%471=516%:%
+%:%472=517%:%
+%:%473=518%:%
+%:%474=519%:%
+%:%475=520%:%
+%:%476=521%:%
+%:%477=522%:%
+%:%478=523%:%
+%:%479=524%:%
+%:%480=525%:%
+%:%481=526%:%
+%:%482=527%:%
+%:%482=528%:%
+%:%483=529%:%
+%:%484=530%:%
+%:%485=531%:%
+%:%486=532%:%
+%:%487=533%:%
+%:%487=534%:%
+%:%488=535%:%
+%:%489=536%:%
+%:%490=537%:%
+%:%491=538%:%
+%:%492=539%:%
+%:%493=540%:%
+%:%494=541%:%
+%:%495=542%:%
+%:%496=543%:%
+%:%497=544%:%
+%:%498=545%:%
+%:%499=546%:%
+%:%500=547%:%
+%:%501=548%:%
+%:%502=549%:%
+%:%503=550%:%
+%:%504=551%:%
+%:%505=552%:%
+%:%506=553%:%
+%:%507=554%:%
+%:%508=555%:%
+%:%509=556%:%
+%:%510=557%:%
+%:%511=558%:%
+%:%512=559%:%
+%:%513=560%:%
+%:%514=561%:%
+%:%515=562%:%
+%:%516=563%:%
+%:%517=564%:%
+%:%518=565%:%
+%:%519=566%:%
+%:%520=567%:%
+%:%521=568%:%
+%:%522=569%:%
+%:%523=570%:%
+%:%524=571%:%
+%:%525=572%:%
+%:%526=573%:%
+%:%527=574%:%
+%:%528=575%:%
+%:%529=576%:%
+%:%530=577%:%
+%:%531=578%:%
+%:%532=579%:%
+%:%533=580%:%
+%:%534=581%:%
+%:%535=582%:%
+%:%536=583%:%
+%:%537=584%:%
+%:%538=585%:%
+%:%539=586%:%
+%:%540=587%:%
+%:%541=588%:%
+%:%542=589%:%
+%:%543=590%:%
+%:%544=591%:%
+%:%545=592%:%
+%:%546=593%:%
+%:%547=594%:%
+%:%548=595%:%
+%:%549=596%:%
+%:%550=597%:%
+%:%551=598%:%
+%:%552=599%:%
+%:%553=600%:%
+%:%554=601%:%
+%:%555=602%:%
+%:%556=603%:%
+%:%557=604%:%
+%:%558=605%:%
+%:%559=606%:%
+%:%560=607%:%
+%:%561=608%:%
+%:%562=609%:%
+%:%563=610%:%
+%:%564=611%:%
+%:%565=612%:%
+%:%566=613%:%
+%:%567=614%:%
+%:%568=615%:%
+%:%569=616%:%
+%:%570=617%:%
+%:%571=618%:%
+%:%572=619%:%
+%:%573=620%:%
+%:%574=621%:%
+%:%575=622%:%
+%:%576=623%:%
+%:%585=627%:%
+%:%597=631%:%
+%:%598=632%:%
+%:%599=633%:%
+%:%600=634%:%
+%:%601=635%:%
+%:%602=636%:%
+%:%603=637%:%
+%:%604=638%:%
+%:%605=639%:%
+%:%606=640%:%
+%:%607=641%:%
+%:%608=642%:%
+%:%609=643%:%
+%:%610=644%:%
+%:%611=645%:%
+%:%612=646%:%
+%:%613=647%:%
+%:%614=648%:%
+%:%615=649%:%
+%:%616=650%:%
+%:%617=651%:%
+%:%618=652%:%
+%:%619=653%:%
+%:%620=654%:%
+%:%621=655%:%
+%:%622=656%:%
+%:%623=657%:%
+%:%624=658%:%
+%:%625=659%:%
+%:%626=660%:%
+%:%627=661%:%
+%:%628=662%:%
+%:%629=663%:%
+%:%630=664%:%
+%:%631=665%:%
+%:%632=666%:%
+%:%633=667%:%
+%:%634=668%:%
+%:%635=669%:%
+%:%636=670%:%
+%:%637=671%:%
+%:%638=672%:%
+%:%639=673%:%
+%:%640=674%:%
+%:%641=675%:%
+%:%642=676%:%
+%:%643=677%:%
+%:%644=678%:%
+%:%645=679%:%
+%:%646=680%:%
+%:%647=681%:%
+%:%648=682%:%
+%:%649=683%:%
+%:%650=684%:%
+%:%651=685%:%
+%:%652=686%:%
+%:%653=687%:%
+%:%654=688%:%
+%:%655=689%:%
+%:%656=690%:%
+%:%657=691%:%
+%:%658=692%:%
+%:%659=693%:%
+%:%660=694%:%
+%:%661=695%:%
+%:%662=696%:%
+%:%663=697%:%
+%:%664=698%:%
+%:%665=699%:%
+%:%666=700%:%
+%:%667=701%:%
+%:%668=702%:%
+%:%669=703%:%
+%:%670=704%:%
+%:%671=705%:%
+%:%672=706%:%
+%:%673=707%:%
+%:%674=708%:%
+%:%675=709%:%
+%:%676=710%:%
+%:%677=711%:%
+%:%678=712%:%
+%:%679=713%:%
+%:%680=714%:%
+%:%681=715%:%
+%:%682=716%:%
+%:%683=717%:%
+%:%684=718%:%
+%:%685=719%:%
+%:%686=720%:%
+%:%687=721%:%
+%:%688=722%:%
+%:%689=723%:%
+%:%690=724%:%
+%:%691=725%:%
+%:%692=726%:%
+%:%693=727%:%
+%:%694=728%:%
+%:%695=729%:%
+%:%696=730%:%
+%:%697=731%:%
+%:%698=732%:%
+%:%699=733%:%
+%:%700=734%:%
+%:%701=735%:%
+%:%702=736%:%
+%:%703=737%:%
+%:%704=738%:%
+%:%705=739%:%
+%:%706=740%:%
+%:%707=741%:%
+%:%708=742%:%
+%:%709=743%:%
+%:%710=744%:%
+%:%711=745%:%
+%:%711=746%:%
+%:%712=747%:%
+%:%712=748%:%
+%:%713=749%:%
+%:%714=750%:%
+%:%714=751%:%
+%:%715=752%:%
+%:%716=753%:%
+%:%717=754%:%
+%:%718=755%:%
+%:%719=756%:%
+%:%720=757%:%
+%:%721=758%:%
+%:%722=759%:%
+%:%723=760%:%
+%:%724=761%:%
+%:%725=762%:%
+%:%726=763%:%
+%:%727=764%:%
+%:%728=765%:%
+%:%729=766%:%
+%:%730=767%:%
+%:%731=768%:%
+%:%732=769%:%
+%:%733=770%:%
+%:%734=771%:%
+%:%735=772%:%
+%:%736=773%:%
+%:%737=774%:%
+%:%738=775%:%
+%:%739=776%:%
+%:%740=777%:%
+%:%741=778%:%
+%:%742=779%:%
+%:%743=780%:%
+%:%744=781%:%
+%:%745=782%:%
+%:%746=783%:%
+%:%747=784%:%
+%:%748=785%:%
+%:%749=786%:%
+%:%750=787%:%
+%:%751=788%:%
+%:%752=789%:%
+%:%753=790%:%
+%:%754=791%:%
+%:%755=792%:%
+%:%756=793%:%
+%:%757=794%:%
+%:%758=795%:%
+%:%759=796%:%
+%:%760=797%:%
+%:%761=798%:%
+%:%762=799%:%
+%:%763=800%:%
+%:%764=801%:%
+%:%765=802%:%
+%:%766=803%:%
+%:%767=804%:%
+%:%768=805%:%
+%:%769=806%:%
+%:%770=807%:%
+%:%770=808%:%
+%:%770=809%:%
+%:%771=810%:%
+%:%772=811%:%
+%:%773=812%:%
+%:%774=813%:%
+%:%775=814%:%
+%:%776=815%:%
+%:%777=816%:%
+%:%778=817%:%
+%:%779=818%:%
+%:%779=819%:%
+%:%780=820%:%
+%:%781=821%:%
+%:%782=822%:%
+%:%783=823%:%
+%:%784=824%:%
+%:%785=825%:%
+%:%786=826%:%
+%:%787=827%:%
+%:%788=828%:%
+%:%789=829%:%
+%:%790=830%:%
+%:%791=831%:%
+%:%792=832%:%
+%:%793=833%:%
+%:%794=834%:%
+%:%795=835%:%
+%:%796=836%:%
+%:%797=837%:%
+%:%798=838%:%
+%:%799=839%:%
+%:%800=840%:%
+%:%801=841%:%
+%:%802=842%:%
+%:%803=843%:%
+%:%804=844%:%
+%:%805=845%:%
+%:%806=846%:%
+%:%807=847%:%
+%:%808=848%:%
+%:%809=849%:%
+%:%810=850%:%
+%:%811=851%:%
+%:%812=852%:%
+%:%813=853%:%
+%:%814=854%:%
+%:%814=855%:%
+%:%815=856%:%
+%:%816=857%:%
+%:%817=858%:%
+%:%818=859%:%
+%:%819=860%:%
+%:%820=861%:%
+%:%821=862%:%
+%:%821=863%:%
+%:%822=864%:%
+%:%823=865%:%
+%:%824=866%:%
+%:%824=867%:%
+%:%825=868%:%
+%:%826=869%:%
+%:%827=870%:%
+%:%828=871%:%
+%:%829=872%:%
+%:%830=873%:%
+%:%831=874%:%
+%:%832=875%:%
+%:%833=876%:%
+%:%834=877%:%
+%:%835=878%:%
+%:%835=879%:%
+%:%836=880%:%
+%:%837=881%:%
+%:%838=882%:%
+%:%839=883%:%
+%:%839=884%:%
+%:%840=885%:%
+%:%841=886%:%
+%:%842=887%:%
+%:%843=888%:%
+%:%844=889%:%
+%:%845=890%:%
+%:%846=891%:%
+%:%847=892%:%
+%:%848=893%:%
+%:%849=894%:%
+%:%850=895%:%
+%:%851=896%:%
+%:%852=897%:%
+%:%853=898%:%
+%:%854=899%:%
+%:%855=900%:%
+%:%856=901%:%
+%:%857=902%:%
+%:%858=903%:%
+%:%859=904%:%
+%:%860=905%:%
+%:%861=906%:%
+%:%862=907%:%
+%:%863=908%:%
+%:%864=909%:%
+%:%865=910%:%
+%:%866=911%:%
+%:%867=912%:%
+%:%868=913%:%
+%:%869=914%:%
+%:%870=915%:%
+%:%871=916%:%
+%:%872=917%:%
+%:%873=918%:%
+%:%874=919%:%
+%:%875=920%:%
+%:%876=921%:%
+%:%877=922%:%
+%:%878=923%:%
+%:%879=924%:%
+%:%880=925%:%
+%:%881=926%:%
+%:%882=927%:%
+%:%883=928%:%
+%:%884=929%:%
+%:%885=930%:%
+%:%886=931%:%
+%:%887=932%:%
+%:%888=933%:%
+%:%889=934%:%
+%:%890=935%:%
+%:%891=936%:%
+%:%892=937%:%
+%:%893=938%:%
+%:%894=939%:%
+%:%895=940%:%
+%:%896=941%:%
+%:%897=942%:%
+%:%897=943%:%
+%:%898=944%:%
+%:%899=945%:%
+%:%900=946%:%
+%:%901=947%:%
+%:%902=948%:%
+%:%903=949%:%
+%:%904=950%:%
+%:%905=951%:%
+%:%906=952%:%
+%:%907=953%:%
+%:%908=954%:%
+%:%909=955%:%
+%:%910=956%:%
+%:%911=957%:%
+%:%912=958%:%
+%:%913=959%:%
+%:%914=960%:%
+%:%915=961%:%
+%:%916=962%:%
+%:%917=963%:%
+%:%918=964%:%
+%:%919=965%:%
+%:%920=966%:%
+%:%921=967%:%
+%:%922=968%:%
+%:%923=969%:%
+%:%924=970%:%
+%:%925=971%:%
+%:%926=972%:%
+%:%927=973%:%
+%:%928=974%:%
+%:%929=975%:%
+%:%930=976%:%
+%:%930=977%:%
+%:%931=978%:%
+%:%932=979%:%
+%:%933=980%:%
+%:%934=981%:%
+%:%935=982%:%
+%:%936=983%:%
+%:%937=984%:%
+%:%938=985%:%
+%:%939=986%:%
+%:%940=987%:%
+%:%941=988%:%
+%:%942=989%:%
+%:%943=990%:%
+%:%944=991%:%
+%:%945=992%:%
+%:%946=993%:%
+%:%947=994%:%
+%:%948=995%:%
+%:%949=996%:%
+%:%950=997%:%
+%:%951=998%:%
+%:%952=999%:%
+%:%953=1000%:%
+%:%954=1001%:%
+%:%955=1002%:%
+%:%956=1003%:%
+%:%957=1004%:%
+%:%958=1005%:%
+%:%959=1006%:%
+%:%960=1007%:%
+%:%960=1008%:%
+%:%961=1009%:%
+%:%962=1010%:%
+%:%963=1011%:%
+%:%964=1012%:%
+%:%965=1013%:%
+%:%966=1014%:%
+%:%967=1015%:%
+%:%968=1016%:%
+%:%968=1017%:%
+%:%969=1018%:%
+%:%970=1019%:%
+%:%971=1020%:%
+%:%972=1021%:%
+%:%973=1022%:%
+%:%974=1023%:%
+%:%975=1024%:%
+%:%976=1025%:%
+%:%977=1026%:%
+%:%978=1027%:%
+%:%979=1028%:%
+%:%980=1029%:%
+%:%981=1030%:%
+%:%982=1031%:%
+%:%983=1032%:%
+%:%984=1033%:%
+%:%985=1034%:%
+%:%986=1035%:%
+%:%987=1036%:%
+%:%988=1037%:%
+%:%989=1038%:%
+%:%990=1039%:%
+%:%991=1040%:%
+%:%992=1041%:%
+%:%993=1042%:%
+%:%994=1043%:%
+%:%995=1044%:%
+%:%996=1045%:%
+%:%997=1046%:%
+%:%998=1047%:%
+%:%999=1048%:%
+%:%1000=1049%:%
+%:%1001=1050%:%
+%:%1002=1051%:%
+%:%1003=1052%:%
+%:%1004=1053%:%
+%:%1005=1054%:%
+%:%1005=1055%:%
+%:%1005=1056%:%
+%:%1006=1057%:%
+%:%1006=1058%:%
+%:%1006=1059%:%
+%:%1007=1060%:%
+%:%1008=1061%:%
+%:%1008=1062%:%
+%:%1009=1063%:%
+%:%1010=1064%:%
+%:%1011=1065%:%
+%:%1012=1066%:%
+%:%1013=1067%:%
+%:%1014=1068%:%
+%:%1015=1069%:%
+%:%1016=1070%:%
+%:%1017=1071%:%
+%:%1018=1072%:%
+%:%1019=1073%:%
+%:%1020=1074%:%
+%:%1021=1075%:%
+%:%1022=1076%:%
+%:%1023=1077%:%
+%:%1024=1078%:%
+%:%1025=1079%:%
+%:%1026=1080%:%
+%:%1027=1081%:%
+%:%1028=1082%:%
+%:%1029=1083%:%
+%:%1030=1084%:%
+%:%1031=1085%:%
+%:%1032=1086%:%
+%:%1033=1087%:%
+%:%1034=1088%:%
+%:%1035=1089%:%
+%:%1036=1090%:%
+%:%1037=1091%:%
+%:%1038=1092%:%
+%:%1039=1093%:%
+%:%1040=1094%:%
+%:%1041=1095%:%
+%:%1042=1096%:%
+%:%1042=1097%:%
+%:%1043=1098%:%
+%:%1044=1099%:%
+%:%1045=1100%:%
+%:%1045=1101%:%
+%:%1045=1102%:%
+%:%1045=1103%:%
+%:%1046=1104%:%
+%:%1047=1105%:%
+%:%1048=1106%:%
+%:%1049=1107%:%
+%:%1050=1108%:%
+%:%1051=1109%:%
+%:%1052=1110%:%
+%:%1053=1111%:%
+%:%1054=1112%:%
+%:%1055=1113%:%
+%:%1056=1114%:%
+%:%1057=1115%:%
+%:%1058=1116%:%
+%:%1059=1117%:%
+%:%1060=1118%:%
+%:%1061=1119%:%
+%:%1062=1120%:%
+%:%1063=1121%:%
+%:%1064=1122%:%
+%:%1065=1123%:%
+%:%1066=1124%:%
+%:%1067=1125%:%
+%:%1068=1126%:%
+%:%1069=1127%:%
+%:%1070=1128%:%
+%:%1071=1129%:%
+%:%1072=1130%:%
+%:%1073=1131%:%
+%:%1074=1132%:%
+%:%1075=1133%:%
+%:%1076=1134%:%
+%:%1077=1135%:%
+%:%1078=1136%:%
+%:%1079=1137%:%
+%:%1080=1138%:%
+%:%1081=1139%:%
+%:%1082=1140%:%
+%:%1091=1144%:%
+%:%1103=1148%:%
+%:%1104=1149%:%
+%:%1105=1150%:%
+%:%1106=1151%:%
+%:%1107=1152%:%
+%:%1108=1153%:%
+%:%1109=1154%:%
+%:%1110=1155%:%
+%:%1111=1156%:%
+%:%1112=1157%:%
+%:%1113=1158%:%
+%:%1114=1159%:%
+%:%1115=1160%:%
+%:%1116=1161%:%
+%:%1117=1162%:%
+%:%1118=1163%:%
+%:%1119=1164%:%
+%:%1120=1165%:%
+%:%1121=1166%:%
+%:%1122=1167%:%
+%:%1123=1168%:%
+%:%1124=1169%:%
+%:%1125=1170%:%
+%:%1126=1171%:%
+%:%1127=1172%:%
+%:%1128=1173%:%
+%:%1129=1174%:%
+%:%1130=1175%:%
+%:%1131=1176%:%
+%:%1132=1177%:%
+%:%1133=1178%:%
+%:%1134=1179%:%
+%:%1135=1180%:%
+%:%1136=1181%:%
+%:%1137=1182%:%
+%:%1138=1183%:%
+%:%1139=1184%:%
+%:%1140=1185%:%
+%:%1141=1186%:%
+%:%1142=1187%:%
+%:%1143=1188%:%
+%:%1144=1189%:%
+%:%1145=1190%:%
+%:%1146=1191%:%
+%:%1147=1192%:%
+%:%1148=1193%:%
+%:%1149=1194%:%
+%:%1150=1195%:%
+%:%1151=1196%:%
+%:%1152=1197%:%
+%:%1153=1198%:%
+%:%1154=1199%:%
+%:%1155=1200%:%
+%:%1156=1201%:%
+%:%1157=1202%:%
+%:%1158=1203%:%
+%:%1159=1204%:%
+%:%1160=1205%:%
+%:%1161=1206%:%
+%:%1162=1207%:%
+%:%1163=1208%:%
+%:%1164=1209%:%
+%:%1165=1210%:%
+%:%1166=1211%:%
+%:%1167=1212%:%
+%:%1168=1213%:%
+%:%1169=1214%:%
+%:%1170=1215%:%
+%:%1171=1216%:%
+%:%1172=1217%:%
+%:%1173=1218%:%
+%:%1174=1219%:%
+%:%1175=1220%:%
+%:%1176=1221%:%
+%:%1177=1222%:%
+%:%1178=1223%:%
+%:%1179=1224%:%
+%:%1180=1225%:%
+%:%1181=1226%:%
+%:%1182=1227%:%
+%:%1183=1228%:%
+%:%1184=1229%:%
+%:%1185=1230%:%
+%:%1186=1231%:%
+%:%1187=1232%:%
+%:%1188=1233%:%
+%:%1189=1234%:%
+%:%1190=1235%:%
+%:%1191=1236%:%
+%:%1192=1237%:%
+%:%1193=1238%:%
+%:%1194=1239%:%
+%:%1195=1240%:%
+%:%1196=1241%:%
+%:%1197=1242%:%
+%:%1198=1243%:%
+%:%1199=1244%:%
+%:%1200=1245%:%
+%:%1201=1246%:%
+%:%1202=1247%:%
+%:%1203=1248%:%
+%:%1204=1249%:%
+%:%1205=1250%:%
+%:%1206=1251%:%
+%:%1207=1252%:%
+%:%1208=1253%:%
+%:%1209=1254%:%
+%:%1210=1255%:%
+%:%1211=1256%:%
+%:%1212=1257%:%
+%:%1213=1258%:%
+%:%1214=1259%:%
+%:%1215=1260%:%
+%:%1216=1261%:%
+%:%1217=1262%:%
+%:%1218=1263%:%
+%:%1218=1264%:%
+%:%1219=1265%:%
+%:%1220=1266%:%
+%:%1221=1267%:%
+%:%1222=1268%:%
+%:%1223=1269%:%
+%:%1224=1270%:%
+%:%1225=1271%:%
+%:%1226=1272%:%
+%:%1227=1273%:%
+%:%1228=1274%:%
+%:%1229=1275%:%
+%:%1229=1276%:%
+%:%1230=1277%:%
+%:%1231=1278%:%
+%:%1232=1279%:%
+%:%1233=1280%:%
+%:%1234=1281%:%
+%:%1235=1282%:%
+%:%1236=1283%:%
+%:%1237=1284%:%
+%:%1238=1285%:%
+%:%1239=1286%:%
+%:%1240=1287%:%
+%:%1241=1288%:%
+%:%1242=1289%:%
+%:%1243=1290%:%
+%:%1244=1291%:%
+%:%1245=1292%:%
+%:%1246=1293%:%
+%:%1247=1294%:%
+%:%1248=1295%:%
+%:%1249=1296%:%
+%:%1250=1297%:%
+%:%1251=1298%:%
+%:%1252=1299%:%
+%:%1253=1300%:%
+%:%1254=1301%:%
+%:%1255=1302%:%
+%:%1256=1303%:%
+%:%1257=1304%:%
+%:%1258=1305%:%
+%:%1259=1306%:%
+%:%1260=1307%:%
+%:%1261=1308%:%
+%:%1262=1309%:%
+%:%1263=1310%:%
+%:%1264=1311%:%
+%:%1265=1312%:%
+%:%1266=1313%:%
+%:%1267=1314%:%
+%:%1268=1315%:%
+%:%1269=1316%:%
+%:%1270=1317%:%
+%:%1271=1318%:%
+%:%1272=1319%:%
+%:%1273=1320%:%
+%:%1274=1321%:%
+%:%1275=1322%:%
+%:%1276=1323%:%
+%:%1277=1324%:%
+%:%1278=1325%:%
+%:%1279=1326%:%
+%:%1280=1327%:%
+%:%1281=1328%:%
+%:%1282=1329%:%
+%:%1283=1330%:%
+%:%1283=1331%:%
+%:%1283=1332%:%
+%:%1284=1333%:%
+%:%1285=1334%:%
+%:%1285=1335%:%
+%:%1285=1336%:%
+%:%1285=1337%:%
+%:%1286=1338%:%
+%:%1287=1339%:%
+%:%1288=1340%:%
+%:%1289=1341%:%
+%:%1290=1342%:%
+%:%1290=1343%:%
+%:%1291=1344%:%
+%:%1292=1345%:%
+%:%1293=1346%:%
+%:%1294=1347%:%
+%:%1295=1348%:%
+%:%1296=1349%:%
+%:%1297=1350%:%
+%:%1298=1351%:%
+%:%1299=1352%:%
+%:%1300=1353%:%
+%:%1301=1354%:%
+%:%1302=1355%:%
+%:%1303=1356%:%
+%:%1304=1357%:%
+%:%1305=1358%:%
+%:%1306=1359%:%
+%:%1307=1360%:%
+%:%1308=1361%:%
+%:%1309=1362%:%
+%:%1310=1363%:%
+%:%1311=1364%:%
+%:%1312=1365%:%
+%:%1313=1366%:%
+%:%1314=1367%:%
+%:%1315=1368%:%
+%:%1316=1369%:%
+%:%1317=1370%:%
+%:%1318=1371%:%
+%:%1319=1372%:%
+%:%1320=1373%:%
+%:%1321=1374%:%
+%:%1322=1375%:%
+%:%1323=1376%:%
+%:%1324=1377%:%
+%:%1325=1378%:%
+%:%1326=1379%:%
+%:%1327=1380%:%
+%:%1328=1381%:%
+%:%1329=1382%:%
+%:%1330=1383%:%
+%:%1331=1384%:%
+%:%1332=1385%:%
+%:%1333=1386%:%
+%:%1334=1387%:%
+%:%1335=1388%:%
+%:%1336=1389%:%
+%:%1337=1390%:%
+%:%1338=1391%:%
+%:%1338=1392%:%
+%:%1339=1393%:%
+%:%1339=1394%:%
+%:%1340=1395%:%
+%:%1340=1396%:%
+%:%1341=1397%:%
+%:%1342=1398%:%
+%:%1343=1399%:%
+%:%1344=1400%:%
+%:%1345=1401%:%
+%:%1346=1402%:%
+%:%1347=1403%:%
+%:%1347=1404%:%
+%:%1348=1405%:%
+%:%1348=1406%:%
+%:%1349=1407%:%
+%:%1349=1408%:%
+%:%1350=1409%:%
+%:%1351=1410%:%
+%:%1352=1411%:%
+%:%1353=1412%:%
+%:%1354=1413%:%
+%:%1355=1414%:%
+%:%1356=1415%:%
+%:%1357=1416%:%
+%:%1358=1417%:%
+%:%1359=1418%:%
+%:%1360=1419%:%
+%:%1361=1420%:%
+%:%1362=1421%:%
+%:%1363=1422%:%
+%:%1364=1423%:%
+%:%1365=1424%:%
+%:%1366=1425%:%
+%:%1367=1426%:%
+%:%1368=1427%:%
+%:%1369=1428%:%
+%:%1370=1429%:%
+%:%1371=1430%:%
+%:%1372=1431%:%
+%:%1373=1432%:%
+%:%1374=1433%:%
+%:%1375=1434%:%
+%:%1376=1435%:%
+%:%1377=1436%:%
+%:%1378=1437%:%
+%:%1379=1438%:%
+%:%1380=1439%:%
+%:%1380=1440%:%
+%:%1381=1441%:%
+%:%1382=1442%:%
+%:%1383=1443%:%
+%:%1384=1444%:%
+%:%1385=1445%:%
+%:%1386=1446%:%
+%:%1387=1447%:%
+%:%1387=1448%:%
+%:%1388=1449%:%
+%:%1389=1450%:%
+%:%1390=1451%:%
+%:%1390=1452%:%
+%:%1391=1453%:%
+%:%1392=1454%:%
+%:%1393=1455%:%
+%:%1393=1456%:%
+%:%1394=1457%:%
+%:%1394=1458%:%
+%:%1395=1459%:%
+%:%1395=1460%:%
+%:%1396=1461%:%
+%:%1397=1462%:%
+%:%1398=1463%:%
+%:%1398=1464%:%
+%:%1399=1465%:%
+%:%1399=1466%:%
+%:%1400=1467%:%
+%:%1400=1468%:%
+%:%1400=1469%:%
+%:%1400=1470%:%
+%:%1401=1471%:%
+%:%1401=1472%:%
+%:%1402=1473%:%
+%:%1403=1474%:%
+%:%1403=1476%:%
+%:%1403=1477%:%
+%:%1403=1478%:%
+%:%1403=1479%:%
+%:%1403=1480%:%
+%:%1404=1481%:%
+%:%1404=1482%:%
+%:%1405=1483%:%
+%:%1405=1484%:%
+%:%1406=1485%:%
+%:%1406=1486%:%
+%:%1407=1487%:%
+%:%1408=1488%:%
+%:%1409=1489%:%
+%:%1410=1490%:%
+%:%1410=1491%:%
+%:%1411=1492%:%
+%:%1411=1493%:%
+%:%1412=1494%:%
+%:%1413=1495%:%
+%:%1413=1496%:%
+%:%1414=1497%:%
+%:%1415=1498%:%
+%:%1416=1499%:%
+%:%1417=1500%:%
+%:%1418=1501%:%
+%:%1419=1502%:%
+%:%1420=1503%:%
+%:%1421=1504%:%
+%:%1422=1505%:%
+%:%1423=1506%:%
+%:%1424=1507%:%
+%:%1425=1508%:%
+%:%1426=1509%:%
+%:%1427=1510%:%
+%:%1428=1511%:%
+%:%1429=1512%:%
+%:%1430=1513%:%
+%:%1431=1514%:%
+%:%1432=1515%:%
+%:%1433=1516%:%
+%:%1434=1517%:%
+%:%1435=1518%:%
+%:%1436=1519%:%
+%:%1437=1520%:%
+%:%1438=1521%:%
+%:%1439=1522%:%
+%:%1440=1523%:%
+%:%1441=1524%:%
+%:%1442=1525%:%
+%:%1443=1526%:%
+%:%1444=1527%:%
+%:%1445=1528%:%
+%:%1446=1529%:%
+%:%1447=1530%:%
+%:%1448=1531%:%
+%:%1449=1532%:%
+%:%1450=1533%:%
+%:%1451=1534%:%
+%:%1452=1535%:%
+%:%1453=1536%:%
+%:%1454=1537%:%
+%:%1455=1538%:%
+%:%1456=1539%:%
+%:%1457=1540%:%
+%:%1458=1541%:%
+%:%1459=1542%:%
+%:%1460=1543%:%
+%:%1461=1544%:%
+%:%1462=1545%:%
+%:%1463=1546%:%
+%:%1464=1547%:%
+%:%1473=1551%:%
+%:%1485=1558%:%
+%:%1486=1559%:%
+%:%1487=1560%:%
+%:%1488=1561%:%
+%:%1489=1562%:%
+%:%1490=1563%:%
+%:%1491=1564%:%
+%:%1500=1569%:%
+%:%1512=1573%:%
+%:%1513=1574%:%
+%:%1514=1575%:%
+%:%1515=1576%:%
+%:%1516=1577%:%
+%:%1517=1578%:%
+%:%1518=1579%:%
+%:%1519=1580%:%
+%:%1520=1581%:%
+%:%1521=1582%:%
+%:%1522=1583%:%
+%:%1523=1584%:%
+%:%1524=1585%:%
+%:%1525=1586%:%
+%:%1526=1587%:%
+%:%1527=1588%:%
+%:%1528=1589%:%
+%:%1529=1590%:%
+%:%1530=1591%:%
+%:%1531=1592%:%
+%:%1532=1593%:%
+%:%1533=1594%:%
+%:%1534=1595%:%
+%:%1535=1596%:%
+%:%1536=1597%:%
+%:%1537=1598%:%
+%:%1538=1599%:%
+%:%1539=1600%:%
+%:%1540=1601%:%
+%:%1541=1602%:%
+%:%1542=1603%:%
+%:%1543=1604%:%
+%:%1544=1605%:%
+%:%1545=1606%:%
+%:%1546=1607%:%
+%:%1547=1608%:%
+%:%1548=1609%:%
+%:%1549=1610%:%
+%:%1550=1611%:%
+%:%1551=1612%:%
+%:%1552=1613%:%
+%:%1553=1614%:%
+%:%1554=1615%:%
+%:%1555=1616%:%
+%:%1556=1617%:%
+%:%1557=1618%:%
+%:%1558=1619%:%
+%:%1559=1620%:%
+%:%1560=1621%:%
+%:%1561=1622%:%
+%:%1562=1623%:%
+%:%1563=1624%:%
+%:%1564=1625%:%
+%:%1565=1626%:%
+%:%1566=1627%:%
+%:%1567=1628%:%
+%:%1568=1629%:%
+%:%1569=1630%:%
+%:%1570=1631%:%
+%:%1571=1632%:%
+%:%1572=1633%:%
+%:%1573=1634%:%
+%:%1574=1635%:%
+%:%1575=1636%:%
+%:%1576=1637%:%
+%:%1577=1638%:%
+%:%1578=1639%:%
+%:%1579=1640%:%
+%:%1580=1641%:%
+%:%1581=1642%:%
+%:%1582=1643%:%
+%:%1583=1644%:%
+%:%1584=1645%:%
+%:%1585=1646%:%
+%:%1586=1647%:%
+%:%1587=1648%:%
+%:%1588=1649%:%
+%:%1589=1650%:%
+%:%1590=1651%:%
+%:%1591=1652%:%
+%:%1592=1653%:%
+%:%1593=1654%:%
+%:%1594=1655%:%
+%:%1595=1656%:%
+%:%1596=1657%:%
+%:%1597=1658%:%
+%:%1598=1659%:%
+%:%1599=1660%:%
+%:%1600=1661%:%
+%:%1601=1662%:%
+%:%1601=1778%:%
+%:%1602=1779%:%
+%:%1603=1780%:%
+%:%1604=1781%:%
+%:%1605=1782%:%
+%:%1605=1943%:%
+%:%1606=1944%:%
+%:%1607=1945%:%
+%:%1608=1946%:%
+%:%1609=1947%:%
+%:%1610=1948%:%
+%:%1611=1949%:%
+%:%1612=1950%:%
+%:%1613=1951%:%
+%:%1614=1952%:%
+%:%1615=1953%:%
+%:%1616=1954%:%
+%:%1617=1955%:%
+%:%1618=1956%:%
+%:%1619=1957%:%
+%:%1620=1958%:%
+%:%1621=1959%:%
+%:%1622=1960%:%
+%:%1623=1961%:%
+%:%1624=1962%:%
+%:%1624=1963%:%
+%:%1625=1964%:%
+%:%1625=1965%:%
+%:%1625=1966%:%
+%:%1626=1967%:%
+%:%1626=1968%:%
+%:%1627=1969%:%
+%:%1628=1970%:%
+%:%1629=1971%:%
+%:%1630=1972%:%
+%:%1631=1973%:%
+%:%1632=1974%:%
+%:%1633=1975%:%
+%:%1634=1976%:%
+%:%1635=1977%:%
+%:%1636=1978%:%
+%:%1637=1979%:%
+%:%1638=1980%:%
+%:%1639=1981%:%
+%:%1640=1982%:%
+%:%1641=1983%:%
+%:%1642=1984%:%
+%:%1643=1985%:%
+%:%1643=1986%:%
+%:%1644=1987%:%
+%:%1645=1988%:%
+%:%1646=1989%:%
+%:%1646=1990%:%
+%:%1646=1991%:%
+%:%1647=1992%:%
+%:%1648=1993%:%
+%:%1649=1994%:%
+%:%1649=1995%:%
+%:%1650=1996%:%
+%:%1650=1997%:%
+%:%1651=1998%:%
+%:%1652=1999%:%
+%:%1653=2000%:%
+%:%1654=2001%:%
+%:%1655=2002%:%
+%:%1656=2003%:%
+%:%1657=2004%:%
+%:%1658=2005%:%
+%:%1659=2006%:%
+%:%1660=2007%:%
+%:%1661=2008%:%
+%:%1662=2009%:%
+%:%1663=2010%:%
+%:%1664=2011%:%
+%:%1665=2012%:%
+%:%1666=2013%:%
+%:%1667=2014%:%
+%:%1676=2019%:%
+%:%1688=2023%:%
+%:%1689=2024%:%
+%:%1690=2025%:%
+%:%1691=2026%:%
+%:%1692=2027%:%
+%:%1693=2028%:%
+%:%1694=2029%:%
+%:%1695=2030%:%
+%:%1696=2031%:%
+%:%1697=2032%:%
+%:%1698=2033%:%
+%:%1699=2034%:%
+%:%1700=2035%:%
+%:%1701=2036%:%
+%:%1702=2037%:%
+%:%1703=2038%:%
+%:%1704=2039%:%
+%:%1705=2040%:%
+%:%1706=2041%:%
+%:%1707=2042%:%
+%:%1708=2043%:%
+%:%1709=2044%:%
+%:%1710=2045%:%
+%:%1711=2046%:%
+%:%1712=2047%:%
+%:%1713=2048%:%
+%:%1714=2049%:%
+%:%1715=2050%:%
+%:%1716=2051%:%
+%:%1717=2052%:%
+%:%1718=2053%:%
+%:%1719=2054%:%
+%:%1720=2055%:%
+%:%1721=2056%:%
+%:%1722=2057%:%
+%:%1723=2058%:%
+%:%1724=2059%:%
+%:%1725=2060%:%
+%:%1726=2061%:%
+%:%1727=2062%:%
+%:%1728=2063%:%
+%:%1729=2064%:%
+%:%1730=2065%:%
+%:%1731=2066%:%
+%:%1732=2067%:%
+%:%1733=2068%:%
+%:%1734=2069%:%
+%:%1735=2070%:%
+%:%1736=2071%:%
+%:%1737=2072%:%
+%:%1738=2073%:%
+%:%1739=2074%:%
+%:%1740=2075%:%
+%:%1753=2081%:%
+%:%1756=2082%:%
+%:%1757=2083%:%
--- a/thys2/Journal/Paper.thy Tue Jan 11 23:55:13 2022 +0000
+++ b/thys2/Journal/Paper.thy Tue Jan 11 23:58:39 2022 +0000
@@ -50,10 +50,10 @@
Cons ("_\<^latex>\<open>\\mbox{$\\,$}\<close>::\<^latex>\<open>\\mbox{$\\,$}\<close>_" [75,73] 73) and
ZERO ("\<^bold>0" 81) and
- ONE ("\<^bold>1" 81) and
+ ONE ("\<^bold>1" 81) and
CH ("_" [1000] 80) and
- ALT ("_ + _" [77,77] 78) and
- SEQ ("_ \<cdot> _" [77,77] 78) and
+ ALT ("_ + _" [77,77] 77) and
+ SEQ ("_ \<cdot> _" [78,78] 78) and
STAR ("_\<^sup>\<star>" [79] 78) and
val.Void ("Empty" 78) and
@@ -286,8 +286,10 @@
\end{tabular}
\end{center}
-This rule allows us to simplify \mbox{@{term "ALT (SEQ (ALT a b) c) (SEQ a c)"}}
-
+This rule allows us to simplify \mbox{@{term "(ALT (SEQ (ALT a b) c) (SEQ a c))"}}
+ into \mbox{@{term "ALT (SEQ a c) (SEQ b c)"}},
+which cannot be done under the rrewrite rule because only alternatives which are
+children of another alternative can be spilled out.
\<close>
(*This rule allows us to simplify \mbox{@{term "ALT (SEQ (ALT a b) c) (SEQ a c)"}}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/thys2/Journal/Paper.thy~ Tue Jan 11 23:58:39 2022 +0000
@@ -0,0 +1,2313 @@
+(*<*)
+theory Paper
+imports
+ "../Lexer"
+ "../Simplifying"
+ "../Positions"
+
+ "../SizeBound"
+ "HOL-Library.LaTeXsugar"
+begin
+
+lemma Suc_0_fold:
+ "Suc 0 = 1"
+by simp
+
+
+
+declare [[show_question_marks = false]]
+
+syntax (latex output)
+ "_Collect" :: "pttrn => bool => 'a set" ("(1{_ \<^latex>\<open>\\mbox{\\boldmath$\\mid$}\<close> _})")
+ "_CollectIn" :: "pttrn => 'a set => bool => 'a set" ("(1{_ \<in> _ |e _})")
+
+syntax
+ "_Not_Ex" :: "idts \<Rightarrow> bool \<Rightarrow> bool" ("(3\<nexists>_.a./ _)" [0, 10] 10)
+ "_Not_Ex1" :: "pttrn \<Rightarrow> bool \<Rightarrow> bool" ("(3\<nexists>!_.a./ _)" [0, 10] 10)
+
+
+abbreviation
+ "der_syn r c \<equiv> der c r"
+
+abbreviation
+ "ders_syn r s \<equiv> ders s r"
+
+ abbreviation
+ "bder_syn r c \<equiv> bder c r"
+
+abbreviation
+ "bders_syn r s \<equiv> bders r s"
+
+
+abbreviation
+ "nprec v1 v2 \<equiv> \<not>(v1 :\<sqsubset>val v2)"
+
+
+
+
+notation (latex output)
+ If ("(\<^latex>\<open>\\textrm{\<close>if\<^latex>\<open>}\<close> (_)/ \<^latex>\<open>\\textrm{\<close>then\<^latex>\<open>}\<close> (_)/ \<^latex>\<open>\\textrm{\<close>else\<^latex>\<open>}\<close> (_))" 10) and
+ Cons ("_\<^latex>\<open>\\mbox{$\\,$}\<close>::\<^latex>\<open>\\mbox{$\\,$}\<close>_" [75,73] 73) and
+
+ ZERO ("\<^bold>0" 81) and
+ ONE ("\<^bold>1" 81) and
+ CH ("_" [1000] 80) and
+ ALT ("_ + _" [77,77] 78) and
+ SEQ ("_ \<cdot> _" [77,77] 78) and
+ STAR ("_\<^sup>\<star>" [79] 78) and
+
+ val.Void ("Empty" 78) and
+ val.Char ("Char _" [1000] 78) and
+ val.Left ("Left _" [79] 78) and
+ val.Right ("Right _" [1000] 78) and
+ val.Seq ("Seq _ _" [79,79] 78) and
+ val.Stars ("Stars _" [79] 78) and
+
+ L ("L'(_')" [10] 78) and
+ LV ("LV _ _" [80,73] 78) and
+ der_syn ("_\\_" [79, 1000] 76) and
+ ders_syn ("_\\_" [79, 1000] 76) and
+ flat ("|_|" [75] 74) and
+ flats ("|_|" [72] 74) and
+ Sequ ("_ @ _" [78,77] 63) and
+ injval ("inj _ _ _" [79,77,79] 76) and
+ mkeps ("mkeps _" [79] 76) and
+ length ("len _" [73] 73) and
+ intlen ("len _" [73] 73) and
+ set ("_" [73] 73) and
+
+ Prf ("_ : _" [75,75] 75) and
+ Posix ("'(_, _') \<rightarrow> _" [63,75,75] 75) and
+
+ lexer ("lexer _ _" [78,78] 77) and
+ F_RIGHT ("F\<^bsub>Right\<^esub> _") and
+ F_LEFT ("F\<^bsub>Left\<^esub> _") and
+ F_ALT ("F\<^bsub>Alt\<^esub> _ _") and
+ F_SEQ1 ("F\<^bsub>Seq1\<^esub> _ _") and
+ F_SEQ2 ("F\<^bsub>Seq2\<^esub> _ _") and
+ F_SEQ ("F\<^bsub>Seq\<^esub> _ _") and
+ simp_SEQ ("simp\<^bsub>Seq\<^esub> _ _" [1000, 1000] 1) and
+ simp_ALT ("simp\<^bsub>Alt\<^esub> _ _" [1000, 1000] 1) and
+ slexer ("lexer\<^sup>+" 1000) and
+
+ at ("_\<^latex>\<open>\\mbox{$\\downharpoonleft$}\<close>\<^bsub>_\<^esub>") and
+ lex_list ("_ \<prec>\<^bsub>lex\<^esub> _") and
+ PosOrd ("_ \<prec>\<^bsub>_\<^esub> _" [77,77,77] 77) and
+ PosOrd_ex ("_ \<prec> _" [77,77] 77) and
+ PosOrd_ex_eq ("_ \<^latex>\<open>\\mbox{$\\preccurlyeq$}\<close> _" [77,77] 77) and
+ pflat_len ("\<parallel>_\<parallel>\<^bsub>_\<^esub>") and
+ nprec ("_ \<^latex>\<open>\\mbox{$\\not\\prec$}\<close> _" [77,77] 77) and
+
+ bder_syn ("_\<^latex>\<open>\\mbox{$\\bbslash$}\<close>_" [79, 1000] 76) and
+ bders_syn ("_\<^latex>\<open>\\mbox{$\\bbslash$}\<close>_" [79, 1000] 76) and
+ intern ("_\<^latex>\<open>\\mbox{$^\\uparrow$}\<close>" [900] 80) and
+ erase ("_\<^latex>\<open>\\mbox{$^\\downarrow$}\<close>" [1000] 74) and
+ bnullable ("nullable\<^latex>\<open>\\mbox{$_b$}\<close> _" [1000] 80) and
+ bmkeps ("mkeps\<^latex>\<open>\\mbox{$_b$}\<close> _" [1000] 80) and
+ blexer ("lexer\<^latex>\<open>\\mbox{$_b$}\<close> _ _" [77, 77] 80) and
+ code ("code _" [79] 74) and
+
+ DUMMY ("\<^latex>\<open>\\underline{\\hspace{2mm}}\<close>")
+
+
+definition
+ "match r s \<equiv> nullable (ders s r)"
+
+
+lemma LV_STAR_ONE_empty:
+ shows "LV (STAR ONE) [] = {Stars []}"
+by(auto simp add: LV_def elim: Prf.cases intro: Prf.intros)
+
+
+
+(*
+comments not implemented
+
+p9. The condition "not exists s3 s4..." appears often enough (in particular in
+the proof of Lemma 3) to warrant a definition.
+
+*)
+
+
+(*>*)
+
+section\<open>Core of the proof\<close>
+text \<open>
+This paper builds on previous work by Ausaf and Urban using
+regular expression'd bit-coded derivatives to do lexing that
+is both fast and satisfies the POSIX specification.
+In their work, a bit-coded algorithm introduced by Sulzmann and Lu
+was formally verified in Isabelle, by a very clever use of
+flex function and retrieve to carefully mimic the way a value is
+built up by the injection funciton.
+
+In the previous work, Ausaf and Urban established the below equality:
+\begin{lemma}
+@{thm [mode=IfThen] MAIN_decode}
+\end{lemma}
+
+This lemma establishes a link with the lexer without bit-codes.
+
+With it we get the correctness of bit-coded algorithm.
+\begin{lemma}
+@{thm [mode=IfThen] blexer_correctness}
+\end{lemma}
+
+However what is not certain is whether we can add simplification
+to the bit-coded algorithm, without breaking the correct lexing output.
+
+
+The reason that we do need to add a simplification phase
+after each derivative step of $\textit{blexer}$ is
+because it produces intermediate
+regular expressions that can grow exponentially.
+For example, the regular expression $(a+aa)^*$ after taking
+derivative against just 10 $a$s will have size 8192.
+
+%TODO: add figure for this?
+
+
+Therefore, we insert a simplification phase
+after each derivation step, as defined below:
+\begin{lemma}
+@{thm blexer_simp_def}
+\end{lemma}
+
+The simplification function is given as follows:
+
+\begin{center}
+ \begin{tabular}{lcl}
+ @{thm (lhs) bsimp.simps(1)[of "bs" "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) bsimp.simps(1)[of "bs" "r\<^sub>1" "r\<^sub>2"]}\\
+ @{thm (lhs) bsimp.simps(2)} & $\dn$ & @{thm (rhs) bsimp.simps(2)}\\
+ @{thm (lhs) bsimp.simps(3)} & $\dn$ & @{thm (rhs) bsimp.simps(3)}\\
+
+\end{tabular}
+\end{center}
+
+And the two helper functions are:
+\begin{center}
+ \begin{tabular}{lcl}
+ @{thm (lhs) bsimp_AALTs.simps(2)[of "bs\<^sub>1" "r" ]} & $\dn$ & @{thm (rhs) bsimp.simps(1)[of "bs\<^sub>1" "r" ]}\\
+ @{thm (lhs) bsimp_AALTs.simps(2)} & $\dn$ & @{thm (rhs) bsimp.simps(2)}\\
+ @{thm (lhs) bsimp_AALTs.simps(3)} & $\dn$ & @{thm (rhs) bsimp.simps(3)}\\
+
+\end{tabular}
+\end{center}
+
+
+This might sound trivial in the case of producing a YES/NO answer,
+but once we require a lexing output to be produced (which is required
+in applications like compiler front-end, malicious attack domain extraction,
+etc.), it is not straightforward if we still extract what is needed according
+to the POSIX standard.
+
+
+
+
+
+By simplification, we mean specifically the following rules:
+
+\begin{center}
+ \begin{tabular}{lcl}
+ @{thm[mode=Axiom] rrewrite.intros(1)[of "bs" "r\<^sub>2"]}\\
+ @{thm[mode=Axiom] rrewrite.intros(2)[of "bs" "r\<^sub>1"]}\\
+ @{thm[mode=Axiom] rrewrite.intros(3)[of "bs" "bs\<^sub>1" "r\<^sub>1"]}\\
+ @{thm[mode=Rule] rrewrite.intros(4)[of "r\<^sub>1" "r\<^sub>2" "bs" "r\<^sub>3"]}\\
+ @{thm[mode=Rule] rrewrite.intros(5)[of "r\<^sub>3" "r\<^sub>4" "bs" "r\<^sub>1"]}\\
+ @{thm[mode=Rule] rrewrite.intros(6)[of "r" "r'" "bs" "rs\<^sub>1" "rs\<^sub>2"]}\\
+ @{thm[mode=Axiom] rrewrite.intros(7)[of "bs" "rs\<^sub>a" "rs\<^sub>b"]}\\
+ @{thm[mode=Axiom] rrewrite.intros(8)[of "bs" "rs\<^sub>a" "bs\<^sub>1" "rs\<^sub>1" "rs\<^sub>b"]}\\
+ @{thm[mode=Axiom] rrewrite.intros(9)[of "bs" "bs\<^sub>1" "rs"]}\\
+ @{thm[mode=Axiom] rrewrite.intros(10)[of "bs" ]}\\
+ @{thm[mode=Axiom] rrewrite.intros(11)[of "bs" "r\<^sub>1"]}\\
+ @{thm[mode=Rule] rrewrite.intros(12)[of "a\<^sub>1" "a\<^sub>2" "bs" "rs\<^sub>a" "rs\<^sub>b" "rs\<^sub>c"]}\\
+
+ \end{tabular}
+\end{center}
+
+
+And these can be made compact by the following simplification function:
+
+where the function $\mathit{bsimp_AALTs}$
+
+The core idea of the proof is that two regular expressions,
+if "isomorphic" up to a finite number of rewrite steps, will
+remain "isomorphic" when we take the same sequence of
+derivatives on both of them.
+This can be expressed by the following rewrite relation lemma:
+\begin{lemma}
+@{thm [mode=IfThen] central}
+\end{lemma}
+
+This isomorphic relation implies a property that leads to the
+correctness result:
+if two (nullable) regular expressions are "rewritable" in many steps
+from one another,
+then a call to function $\textit{bmkeps}$ gives the same
+bit-sequence :
+\begin{lemma}
+@{thm [mode=IfThen] rewrites_bmkeps}
+\end{lemma}
+
+Given the same bit-sequence, the decode function
+will give out the same value, which is the output
+of both lexers:
+\begin{lemma}
+@{thm blexer_def}
+\end{lemma}
+
+\begin{lemma}
+@{thm blexer_simp_def}
+\end{lemma}
+
+And that yields the correctness result:
+\begin{lemma}
+@{thm blexersimp_correctness}
+\end{lemma}
+
+The nice thing about the above
+\<close>
+
+
+section \<open> Additional Simp Rules?\<close>
+
+
+text \<open>
+One question someone would ask is:
+can we add more "atomic" simplification/rewriting rules,
+so the simplification is even more aggressive, making
+the intermediate results smaller, and therefore more space-efficient?
+For example, one might want to do open up alternatives who is a child
+of a sequence:
+
+\begin{center}
+ \begin{tabular}{lcl}
+ @{thm[mode=Rule] aggressive.intros(1)[of "bs" "bs1" "rs" "r"]}\\
+ \end{tabular}
+\end{center}
+
+This rule allows us to simplify \mbox{@{term "(ALT (SEQ (ALT a b) c) (SEQ a c))"}}
+ into \mbox{@{term "ALT (SEQ a c) (SEQ b c)"}},
+which is cannot be done under the \mbox{ \<leadsto>} rule because only alternatives which are
+children of another alternative can be spilled out.
+\<close>
+
+(*This rule allows us to simplify \mbox{@{term "ALT (SEQ (ALT a b) c) (SEQ a c)"}}
+ into \mbox{@{term "ALT (SEQ a c) (SEQ b c)"}},
+which is cannot be done under the \<leadsto> rule because only alternatives which are
+children of another alternative can be spilled out.*)
+section \<open>Introduction\<close>
+
+
+text \<open>
+
+
+Brzozowski \cite{Brzozowski1964} introduced the notion of the {\em
+derivative} @{term "der c r"} of a regular expression \<open>r\<close> w.r.t.\
+a character~\<open>c\<close>, and showed that it gave a simple solution to the
+problem of matching a string @{term s} with a regular expression @{term
+r}: if the derivative of @{term r} w.r.t.\ (in succession) all the
+characters of the string matches the empty string, then @{term r}
+matches @{term s} (and {\em vice versa}). The derivative has the
+property (which may almost be regarded as its specification) that, for
+every string @{term s} and regular expression @{term r} and character
+@{term c}, one has @{term "cs \<in> L(r)"} if and only if \mbox{@{term "s \<in> L(der c r)"}}.
+The beauty of Brzozowski's derivatives is that
+they are neatly expressible in any functional language, and easily
+definable and reasoned about in theorem provers---the definitions just
+consist of inductive datatypes and simple recursive functions. A
+mechanised correctness proof of Brzozowski's matcher in for example HOL4
+has been mentioned by Owens and Slind~\cite{Owens2008}. Another one in
+Isabelle/HOL is part of the work by Krauss and Nipkow \cite{Krauss2011}.
+And another one in Coq is given by Coquand and Siles \cite{Coquand2012}.
+
+If a regular expression matches a string, then in general there is more
+than one way of how the string is matched. There are two commonly used
+disambiguation strategies to generate a unique answer: one is called
+GREEDY matching \cite{Frisch2004} and the other is POSIX
+matching~\cite{POSIX,Kuklewicz,OkuiSuzuki2010,Sulzmann2014,Vansummeren2006}.
+For example consider the string @{term xy} and the regular expression
+\mbox{@{term "STAR (ALT (ALT x y) xy)"}}. Either the string can be
+matched in two `iterations' by the single letter-regular expressions
+@{term x} and @{term y}, or directly in one iteration by @{term xy}. The
+first case corresponds to GREEDY matching, which first matches with the
+left-most symbol and only matches the next symbol in case of a mismatch
+(this is greedy in the sense of preferring instant gratification to
+delayed repletion). The second case is POSIX matching, which prefers the
+longest match.
+
+In the context of lexing, where an input string needs to be split up
+into a sequence of tokens, POSIX is the more natural disambiguation
+strategy for what programmers consider basic syntactic building blocks
+in their programs. These building blocks are often specified by some
+regular expressions, say \<open>r\<^bsub>key\<^esub>\<close> and \<open>r\<^bsub>id\<^esub>\<close> for recognising keywords and identifiers,
+respectively. There are a few underlying (informal) rules behind
+tokenising a string in a POSIX \cite{POSIX} fashion:
+
+\begin{itemize}
+\item[$\bullet$] \emph{The Longest Match Rule} (or \emph{``{M}aximal {M}unch {R}ule''}):
+The longest initial substring matched by any regular expression is taken as
+next token.\smallskip
+
+\item[$\bullet$] \emph{Priority Rule:}
+For a particular longest initial substring, the first (leftmost) regular expression
+that can match determines the token.\smallskip
+
+\item[$\bullet$] \emph{Star Rule:} A subexpression repeated by ${}^\star$ shall
+not match an empty string unless this is the only match for the repetition.\smallskip
+
+\item[$\bullet$] \emph{Empty String Rule:} An empty string shall be considered to
+be longer than no match at all.
+\end{itemize}
+
+\noindent Consider for example a regular expression \<open>r\<^bsub>key\<^esub>\<close> for recognising keywords such as \<open>if\<close>,
+\<open>then\<close> and so on; and \<open>r\<^bsub>id\<^esub>\<close>
+recognising identifiers (say, a single character followed by
+characters or numbers). Then we can form the regular expression
+\<open>(r\<^bsub>key\<^esub> + r\<^bsub>id\<^esub>)\<^sup>\<star>\<close>
+and use POSIX matching to tokenise strings, say \<open>iffoo\<close> and
+\<open>if\<close>. For \<open>iffoo\<close> we obtain by the Longest Match Rule
+a single identifier token, not a keyword followed by an
+identifier. For \<open>if\<close> we obtain by the Priority Rule a keyword
+token, not an identifier token---even if \<open>r\<^bsub>id\<^esub>\<close>
+matches also. By the Star Rule we know \<open>(r\<^bsub>key\<^esub> +
+r\<^bsub>id\<^esub>)\<^sup>\<star>\<close> matches \<open>iffoo\<close>,
+respectively \<open>if\<close>, in exactly one `iteration' of the star. The
+Empty String Rule is for cases where, for example, the regular expression
+\<open>(a\<^sup>\<star>)\<^sup>\<star>\<close> matches against the
+string \<open>bc\<close>. Then the longest initial matched substring is the
+empty string, which is matched by both the whole regular expression
+and the parenthesised subexpression.
+
+
+One limitation of Brzozowski's matcher is that it only generates a
+YES/NO answer for whether a string is being matched by a regular
+expression. Sulzmann and Lu~\cite{Sulzmann2014} extended this matcher
+to allow generation not just of a YES/NO answer but of an actual
+matching, called a [lexical] {\em value}. Assuming a regular
+expression matches a string, values encode the information of
+\emph{how} the string is matched by the regular expression---that is,
+which part of the string is matched by which part of the regular
+expression. For this consider again the string \<open>xy\<close> and
+the regular expression \mbox{\<open>(x + (y + xy))\<^sup>\<star>\<close>}
+(this time fully parenthesised). We can view this regular expression
+as tree and if the string \<open>xy\<close> is matched by two Star
+`iterations', then the \<open>x\<close> is matched by the left-most
+alternative in this tree and the \<open>y\<close> by the right-left alternative. This
+suggests to record this matching as
+
+\begin{center}
+@{term "Stars [Left(Char x), Right(Left(Char y))]"}
+\end{center}
+
+\noindent where @{const Stars}, \<open>Left\<close>, \<open>Right\<close> and \<open>Char\<close> are constructors for values. \<open>Stars\<close> records how many
+iterations were used; \<open>Left\<close>, respectively \<open>Right\<close>, which
+alternative is used. This `tree view' leads naturally to the idea that
+regular expressions act as types and values as inhabiting those types
+(see, for example, \cite{HosoyaVouillonPierce2005}). The value for
+matching \<open>xy\<close> in a single `iteration', i.e.~the POSIX value,
+would look as follows
+
+\begin{center}
+@{term "Stars [Seq (Char x) (Char y)]"}
+\end{center}
+
+\noindent where @{const Stars} has only a single-element list for the
+single iteration and @{const Seq} indicates that @{term xy} is matched
+by a sequence regular expression.
+
+%, which we will in what follows
+%write more formally as @{term "SEQ x y"}.
+
+
+Sulzmann and Lu give a simple algorithm to calculate a value that
+appears to be the value associated with POSIX matching. The challenge
+then is to specify that value, in an algorithm-independent fashion,
+and to show that Sulzmann and Lu's derivative-based algorithm does
+indeed calculate a value that is correct according to the
+specification. The answer given by Sulzmann and Lu
+\cite{Sulzmann2014} is to define a relation (called an ``order
+relation'') on the set of values of @{term r}, and to show that (once
+a string to be matched is chosen) there is a maximum element and that
+it is computed by their derivative-based algorithm. This proof idea is
+inspired by work of Frisch and Cardelli \cite{Frisch2004} on a GREEDY
+regular expression matching algorithm. However, we were not able to
+establish transitivity and totality for the ``order relation'' by
+Sulzmann and Lu. There are some inherent problems with their approach
+(of which some of the proofs are not published in
+\cite{Sulzmann2014}); perhaps more importantly, we give in this paper
+a simple inductive (and algorithm-independent) definition of what we
+call being a {\em POSIX value} for a regular expression @{term r} and
+a string @{term s}; we show that the algorithm by Sulzmann and Lu
+computes such a value and that such a value is unique. Our proofs are
+both done by hand and checked in Isabelle/HOL. The experience of
+doing our proofs has been that this mechanical checking was absolutely
+essential: this subject area has hidden snares. This was also noted by
+Kuklewicz \cite{Kuklewicz} who found that nearly all POSIX matching
+implementations are ``buggy'' \cite[Page 203]{Sulzmann2014} and by
+Grathwohl et al \cite[Page 36]{CrashCourse2014} who wrote:
+
+\begin{quote}
+\it{}``The POSIX strategy is more complicated than the greedy because of
+the dependence on information about the length of matched strings in the
+various subexpressions.''
+\end{quote}
+
+
+
+\noindent {\bf Contributions:} We have implemented in Isabelle/HOL the
+derivative-based regular expression matching algorithm of
+Sulzmann and Lu \cite{Sulzmann2014}. We have proved the correctness of this
+algorithm according to our specification of what a POSIX value is (inspired
+by work of Vansummeren \cite{Vansummeren2006}). Sulzmann
+and Lu sketch in \cite{Sulzmann2014} an informal correctness proof: but to
+us it contains unfillable gaps.\footnote{An extended version of
+\cite{Sulzmann2014} is available at the website of its first author; this
+extended version already includes remarks in the appendix that their
+informal proof contains gaps, and possible fixes are not fully worked out.}
+Our specification of a POSIX value consists of a simple inductive definition
+that given a string and a regular expression uniquely determines this value.
+We also show that our definition is equivalent to an ordering
+of values based on positions by Okui and Suzuki \cite{OkuiSuzuki2010}.
+
+%Derivatives as calculated by Brzozowski's method are usually more complex
+%regular expressions than the initial one; various optimisations are
+%possible. We prove the correctness when simplifications of @{term "ALT ZERO r"},
+%@{term "ALT r ZERO"}, @{term "SEQ ONE r"} and @{term "SEQ r ONE"} to
+%@{term r} are applied.
+
+We extend our results to ??? Bitcoded version??
+
+\<close>
+
+
+
+
+section \<open>Preliminaries\<close>
+
+text \<open>\noindent Strings in Isabelle/HOL are lists of characters with
+the empty string being represented by the empty list, written @{term
+"[]"}, and list-cons being written as @{term "DUMMY # DUMMY"}. Often
+we use the usual bracket notation for lists also for strings; for
+example a string consisting of just a single character @{term c} is
+written @{term "[c]"}. We use the usual definitions for
+\emph{prefixes} and \emph{strict prefixes} of strings. By using the
+type @{type char} for characters we have a supply of finitely many
+characters roughly corresponding to the ASCII character set. Regular
+expressions are defined as usual as the elements of the following
+inductive datatype:
+
+ \begin{center}
+ \<open>r :=\<close>
+ @{const "ZERO"} $\mid$
+ @{const "ONE"} $\mid$
+ @{term "CH c"} $\mid$
+ @{term "ALT r\<^sub>1 r\<^sub>2"} $\mid$
+ @{term "SEQ r\<^sub>1 r\<^sub>2"} $\mid$
+ @{term "STAR r"}
+ \end{center}
+
+ \noindent where @{const ZERO} stands for the regular expression that does
+ not match any string, @{const ONE} for the regular expression that matches
+ only the empty string and @{term c} for matching a character literal. The
+ language of a regular expression is also defined as usual by the
+ recursive function @{term L} with the six clauses:
+
+ \begin{center}
+ \begin{tabular}{l@ {\hspace{4mm}}rcl}
+ \textit{(1)} & @{thm (lhs) L.simps(1)} & $\dn$ & @{thm (rhs) L.simps(1)}\\
+ \textit{(2)} & @{thm (lhs) L.simps(2)} & $\dn$ & @{thm (rhs) L.simps(2)}\\
+ \textit{(3)} & @{thm (lhs) L.simps(3)} & $\dn$ & @{thm (rhs) L.simps(3)}\\
+ \textit{(4)} & @{thm (lhs) L.simps(4)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ &
+ @{thm (rhs) L.simps(4)[of "r\<^sub>1" "r\<^sub>2"]}\\
+ \textit{(5)} & @{thm (lhs) L.simps(5)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ &
+ @{thm (rhs) L.simps(5)[of "r\<^sub>1" "r\<^sub>2"]}\\
+ \textit{(6)} & @{thm (lhs) L.simps(6)} & $\dn$ & @{thm (rhs) L.simps(6)}\\
+ \end{tabular}
+ \end{center}
+
+ \noindent In clause \textit{(4)} we use the operation @{term "DUMMY ;;
+ DUMMY"} for the concatenation of two languages (it is also list-append for
+ strings). We use the star-notation for regular expressions and for
+ languages (in the last clause above). The star for languages is defined
+ inductively by two clauses: \<open>(i)\<close> the empty string being in
+ the star of a language and \<open>(ii)\<close> if @{term "s\<^sub>1"} is in a
+ language and @{term "s\<^sub>2"} in the star of this language, then also @{term
+ "s\<^sub>1 @ s\<^sub>2"} is in the star of this language. It will also be convenient
+ to use the following notion of a \emph{semantic derivative} (or \emph{left
+ quotient}) of a language defined as
+ %
+ \begin{center}
+ @{thm Der_def}\;.
+ \end{center}
+
+ \noindent
+ For semantic derivatives we have the following equations (for example
+ mechanically proved in \cite{Krauss2011}):
+ %
+ \begin{equation}\label{SemDer}
+ \begin{array}{lcl}
+ @{thm (lhs) Der_null} & \dn & @{thm (rhs) Der_null}\\
+ @{thm (lhs) Der_empty} & \dn & @{thm (rhs) Der_empty}\\
+ @{thm (lhs) Der_char} & \dn & @{thm (rhs) Der_char}\\
+ @{thm (lhs) Der_union} & \dn & @{thm (rhs) Der_union}\\
+ @{thm (lhs) Der_Sequ} & \dn & @{thm (rhs) Der_Sequ}\\
+ @{thm (lhs) Der_star} & \dn & @{thm (rhs) Der_star}
+ \end{array}
+ \end{equation}
+
+
+ \noindent \emph{\Brz's derivatives} of regular expressions
+ \cite{Brzozowski1964} can be easily defined by two recursive functions:
+ the first is from regular expressions to booleans (implementing a test
+ when a regular expression can match the empty string), and the second
+ takes a regular expression and a character to a (derivative) regular
+ expression:
+
+ \begin{center}
+ \begin{tabular}{lcl}
+ @{thm (lhs) nullable.simps(1)} & $\dn$ & @{thm (rhs) nullable.simps(1)}\\
+ @{thm (lhs) nullable.simps(2)} & $\dn$ & @{thm (rhs) nullable.simps(2)}\\
+ @{thm (lhs) nullable.simps(3)} & $\dn$ & @{thm (rhs) nullable.simps(3)}\\
+ @{thm (lhs) nullable.simps(4)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) nullable.simps(4)[of "r\<^sub>1" "r\<^sub>2"]}\\
+ @{thm (lhs) nullable.simps(5)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) nullable.simps(5)[of "r\<^sub>1" "r\<^sub>2"]}\\
+ @{thm (lhs) nullable.simps(6)} & $\dn$ & @{thm (rhs) nullable.simps(6)}\medskip\\
+
+% \end{tabular}
+% \end{center}
+
+% \begin{center}
+% \begin{tabular}{lcl}
+
+ @{thm (lhs) der.simps(1)} & $\dn$ & @{thm (rhs) der.simps(1)}\\
+ @{thm (lhs) der.simps(2)} & $\dn$ & @{thm (rhs) der.simps(2)}\\
+ @{thm (lhs) der.simps(3)} & $\dn$ & @{thm (rhs) der.simps(3)}\\
+ @{thm (lhs) der.simps(4)[of c "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) der.simps(4)[of c "r\<^sub>1" "r\<^sub>2"]}\\
+ @{thm (lhs) der.simps(5)[of c "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) der.simps(5)[of c "r\<^sub>1" "r\<^sub>2"]}\\
+ @{thm (lhs) der.simps(6)} & $\dn$ & @{thm (rhs) der.simps(6)}
+ \end{tabular}
+ \end{center}
+
+ \noindent
+ We may extend this definition to give derivatives w.r.t.~strings:
+
+ \begin{center}
+ \begin{tabular}{lcl}
+ @{thm (lhs) ders.simps(1)} & $\dn$ & @{thm (rhs) ders.simps(1)}\\
+ @{thm (lhs) ders.simps(2)} & $\dn$ & @{thm (rhs) ders.simps(2)}\\
+ \end{tabular}
+ \end{center}
+
+ \noindent Given the equations in \eqref{SemDer}, it is a relatively easy
+ exercise in mechanical reasoning to establish that
+
+ \begin{proposition}\label{derprop}\mbox{}\\
+ \begin{tabular}{ll}
+ \textit{(1)} & @{thm (lhs) nullable_correctness} if and only if
+ @{thm (rhs) nullable_correctness}, and \\
+ \textit{(2)} & @{thm[mode=IfThen] der_correctness}.
+ \end{tabular}
+ \end{proposition}
+
+ \noindent With this in place it is also very routine to prove that the
+ regular expression matcher defined as
+ %
+ \begin{center}
+ @{thm match_def}
+ \end{center}
+
+ \noindent gives a positive answer if and only if @{term "s \<in> L r"}.
+ Consequently, this regular expression matching algorithm satisfies the
+ usual specification for regular expression matching. While the matcher
+ above calculates a provably correct YES/NO answer for whether a regular
+ expression matches a string or not, the novel idea of Sulzmann and Lu
+ \cite{Sulzmann2014} is to append another phase to this algorithm in order
+ to calculate a [lexical] value. We will explain the details next.
+
+\<close>
+
+section \<open>POSIX Regular Expression Matching\label{posixsec}\<close>
+
+text \<open>
+
+ There have been many previous works that use values for encoding
+ \emph{how} a regular expression matches a string.
+ The clever idea by Sulzmann and Lu \cite{Sulzmann2014} is to
+ define a function on values that mirrors (but inverts) the
+ construction of the derivative on regular expressions. \emph{Values}
+ are defined as the inductive datatype
+
+ \begin{center}
+ \<open>v :=\<close>
+ @{const "Void"} $\mid$
+ @{term "val.Char c"} $\mid$
+ @{term "Left v"} $\mid$
+ @{term "Right v"} $\mid$
+ @{term "Seq v\<^sub>1 v\<^sub>2"} $\mid$
+ @{term "Stars vs"}
+ \end{center}
+
+ \noindent where we use @{term vs} to stand for a list of
+ values. (This is similar to the approach taken by Frisch and
+ Cardelli for GREEDY matching \cite{Frisch2004}, and Sulzmann and Lu
+ for POSIX matching \cite{Sulzmann2014}). The string underlying a
+ value can be calculated by the @{const flat} function, written
+ @{term "flat DUMMY"} and defined as:
+
+ \begin{center}
+ \begin{tabular}[t]{lcl}
+ @{thm (lhs) flat.simps(1)} & $\dn$ & @{thm (rhs) flat.simps(1)}\\
+ @{thm (lhs) flat.simps(2)} & $\dn$ & @{thm (rhs) flat.simps(2)}\\
+ @{thm (lhs) flat.simps(3)} & $\dn$ & @{thm (rhs) flat.simps(3)}\\
+ @{thm (lhs) flat.simps(4)} & $\dn$ & @{thm (rhs) flat.simps(4)}
+ \end{tabular}\hspace{14mm}
+ \begin{tabular}[t]{lcl}
+ @{thm (lhs) flat.simps(5)[of "v\<^sub>1" "v\<^sub>2"]} & $\dn$ & @{thm (rhs) flat.simps(5)[of "v\<^sub>1" "v\<^sub>2"]}\\
+ @{thm (lhs) flat.simps(6)} & $\dn$ & @{thm (rhs) flat.simps(6)}\\
+ @{thm (lhs) flat.simps(7)} & $\dn$ & @{thm (rhs) flat.simps(7)}\\
+ \end{tabular}
+ \end{center}
+
+ \noindent We will sometimes refer to the underlying string of a
+ value as \emph{flattened value}. We will also overload our notation and
+ use @{term "flats vs"} for flattening a list of values and concatenating
+ the resulting strings.
+
+ Sulzmann and Lu define
+ inductively an \emph{inhabitation relation} that associates values to
+ regular expressions. We define this relation as
+ follows:\footnote{Note that the rule for @{term Stars} differs from
+ our earlier paper \cite{AusafDyckhoffUrban2016}. There we used the
+ original definition by Sulzmann and Lu which does not require that
+ the values @{term "v \<in> set vs"} flatten to a non-empty
+ string. The reason for introducing the more restricted version of
+ lexical values is convenience later on when reasoning about an
+ ordering relation for values.}
+
+ \begin{center}
+ \begin{tabular}{c@ {\hspace{12mm}}c}\label{prfintros}
+ \\[-8mm]
+ @{thm[mode=Axiom] Prf.intros(4)} &
+ @{thm[mode=Axiom] Prf.intros(5)[of "c"]}\\[4mm]
+ @{thm[mode=Rule] Prf.intros(2)[of "v\<^sub>1" "r\<^sub>1" "r\<^sub>2"]} &
+ @{thm[mode=Rule] Prf.intros(3)[of "v\<^sub>2" "r\<^sub>1" "r\<^sub>2"]}\\[4mm]
+ @{thm[mode=Rule] Prf.intros(1)[of "v\<^sub>1" "r\<^sub>1" "v\<^sub>2" "r\<^sub>2"]} &
+ @{thm[mode=Rule] Prf.intros(6)[of "vs"]}
+ \end{tabular}
+ \end{center}
+
+ \noindent where in the clause for @{const "Stars"} we use the
+ notation @{term "v \<in> set vs"} for indicating that \<open>v\<close> is a
+ member in the list \<open>vs\<close>. We require in this rule that every
+ value in @{term vs} flattens to a non-empty string. The idea is that
+ @{term "Stars"}-values satisfy the informal Star Rule (see Introduction)
+ where the $^\star$ does not match the empty string unless this is
+ the only match for the repetition. Note also that no values are
+ associated with the regular expression @{term ZERO}, and that the
+ only value associated with the regular expression @{term ONE} is
+ @{term Void}. It is routine to establish how values ``inhabiting''
+ a regular expression correspond to the language of a regular
+ expression, namely
+
+ \begin{proposition}\label{inhabs}
+ @{thm L_flat_Prf}
+ \end{proposition}
+
+ \noindent
+ Given a regular expression \<open>r\<close> and a string \<open>s\<close>, we define the
+ set of all \emph{Lexical Values} inhabited by \<open>r\<close> with the underlying string
+ being \<open>s\<close>:\footnote{Okui and Suzuki refer to our lexical values
+ as \emph{canonical values} in \cite{OkuiSuzuki2010}. The notion of \emph{non-problematic
+ values} by Cardelli and Frisch \cite{Frisch2004} is related, but not identical
+ to our lexical values.}
+
+ \begin{center}
+ @{thm LV_def}
+ \end{center}
+
+ \noindent The main property of @{term "LV r s"} is that it is alway finite.
+
+ \begin{proposition}
+ @{thm LV_finite}
+ \end{proposition}
+
+ \noindent This finiteness property does not hold in general if we
+ remove the side-condition about @{term "flat v \<noteq> []"} in the
+ @{term Stars}-rule above. For example using Sulzmann and Lu's
+ less restrictive definition, @{term "LV (STAR ONE) []"} would contain
+ infinitely many values, but according to our more restricted
+ definition only a single value, namely @{thm LV_STAR_ONE_empty}.
+
+ If a regular expression \<open>r\<close> matches a string \<open>s\<close>, then
+ generally the set @{term "LV r s"} is not just a singleton set. In
+ case of POSIX matching the problem is to calculate the unique lexical value
+ that satisfies the (informal) POSIX rules from the Introduction.
+ Graphically the POSIX value calculation algorithm by Sulzmann and Lu
+ can be illustrated by the picture in Figure~\ref{Sulz} where the
+ path from the left to the right involving @{term
+ derivatives}/@{const nullable} is the first phase of the algorithm
+ (calculating successive \Brz's derivatives) and @{const
+ mkeps}/\<open>inj\<close>, the path from right to left, the second
+ phase. This picture shows the steps required when a regular
+ expression, say \<open>r\<^sub>1\<close>, matches the string @{term
+ "[a,b,c]"}. We first build the three derivatives (according to
+ @{term a}, @{term b} and @{term c}). We then use @{const nullable}
+ to find out whether the resulting derivative regular expression
+ @{term "r\<^sub>4"} can match the empty string. If yes, we call the
+ function @{const mkeps} that produces a value @{term "v\<^sub>4"}
+ for how @{term "r\<^sub>4"} can match the empty string (taking into
+ account the POSIX constraints in case there are several ways). This
+ function is defined by the clauses:
+
+\begin{figure}[t]
+\begin{center}
+\begin{tikzpicture}[scale=2,node distance=1.3cm,
+ every node/.style={minimum size=6mm}]
+\node (r1) {@{term "r\<^sub>1"}};
+\node (r2) [right=of r1]{@{term "r\<^sub>2"}};
+\draw[->,line width=1mm](r1)--(r2) node[above,midway] {@{term "der a DUMMY"}};
+\node (r3) [right=of r2]{@{term "r\<^sub>3"}};
+\draw[->,line width=1mm](r2)--(r3) node[above,midway] {@{term "der b DUMMY"}};
+\node (r4) [right=of r3]{@{term "r\<^sub>4"}};
+\draw[->,line width=1mm](r3)--(r4) node[above,midway] {@{term "der c DUMMY"}};
+\draw (r4) node[anchor=west] {\;\raisebox{3mm}{@{term nullable}}};
+\node (v4) [below=of r4]{@{term "v\<^sub>4"}};
+\draw[->,line width=1mm](r4) -- (v4);
+\node (v3) [left=of v4] {@{term "v\<^sub>3"}};
+\draw[->,line width=1mm](v4)--(v3) node[below,midway] {\<open>inj r\<^sub>3 c\<close>};
+\node (v2) [left=of v3]{@{term "v\<^sub>2"}};
+\draw[->,line width=1mm](v3)--(v2) node[below,midway] {\<open>inj r\<^sub>2 b\<close>};
+\node (v1) [left=of v2] {@{term "v\<^sub>1"}};
+\draw[->,line width=1mm](v2)--(v1) node[below,midway] {\<open>inj r\<^sub>1 a\<close>};
+\draw (r4) node[anchor=north west] {\;\raisebox{-8mm}{@{term "mkeps"}}};
+\end{tikzpicture}
+\end{center}
+\mbox{}\\[-13mm]
+
+\caption{The two phases of the algorithm by Sulzmann \& Lu \cite{Sulzmann2014},
+matching the string @{term "[a,b,c]"}. The first phase (the arrows from
+left to right) is \Brz's matcher building successive derivatives. If the
+last regular expression is @{term nullable}, then the functions of the
+second phase are called (the top-down and right-to-left arrows): first
+@{term mkeps} calculates a value @{term "v\<^sub>4"} witnessing
+how the empty string has been recognised by @{term "r\<^sub>4"}. After
+that the function @{term inj} ``injects back'' the characters of the string into
+the values.
+\label{Sulz}}
+\end{figure}
+
+ \begin{center}
+ \begin{tabular}{lcl}
+ @{thm (lhs) mkeps.simps(1)} & $\dn$ & @{thm (rhs) mkeps.simps(1)}\\
+ @{thm (lhs) mkeps.simps(2)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) mkeps.simps(2)[of "r\<^sub>1" "r\<^sub>2"]}\\
+ @{thm (lhs) mkeps.simps(3)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) mkeps.simps(3)[of "r\<^sub>1" "r\<^sub>2"]}\\
+ @{thm (lhs) mkeps.simps(4)} & $\dn$ & @{thm (rhs) mkeps.simps(4)}\\
+ \end{tabular}
+ \end{center}
+
+ \noindent Note that this function needs only to be partially defined,
+ namely only for regular expressions that are nullable. In case @{const
+ nullable} fails, the string @{term "[a,b,c]"} cannot be matched by @{term
+ "r\<^sub>1"} and the null value @{term "None"} is returned. Note also how this function
+ makes some subtle choices leading to a POSIX value: for example if an
+ alternative regular expression, say @{term "ALT r\<^sub>1 r\<^sub>2"}, can
+ match the empty string and furthermore @{term "r\<^sub>1"} can match the
+ empty string, then we return a \<open>Left\<close>-value. The \<open>Right\<close>-value will only be returned if @{term "r\<^sub>1"} cannot match the empty
+ string.
+
+ The most interesting idea from Sulzmann and Lu \cite{Sulzmann2014} is
+ the construction of a value for how @{term "r\<^sub>1"} can match the
+ string @{term "[a,b,c]"} from the value how the last derivative, @{term
+ "r\<^sub>4"} in Fig.~\ref{Sulz}, can match the empty string. Sulzmann and
+ Lu achieve this by stepwise ``injecting back'' the characters into the
+ values thus inverting the operation of building derivatives, but on the level
+ of values. The corresponding function, called @{term inj}, takes three
+ arguments, a regular expression, a character and a value. For example in
+ the first (or right-most) @{term inj}-step in Fig.~\ref{Sulz} the regular
+ expression @{term "r\<^sub>3"}, the character @{term c} from the last
+ derivative step and @{term "v\<^sub>4"}, which is the value corresponding
+ to the derivative regular expression @{term "r\<^sub>4"}. The result is
+ the new value @{term "v\<^sub>3"}. The final result of the algorithm is
+ the value @{term "v\<^sub>1"}. The @{term inj} function is defined by recursion on regular
+ expressions and by analysing the shape of values (corresponding to
+ the derivative regular expressions).
+ %
+ \begin{center}
+ \begin{tabular}{l@ {\hspace{5mm}}lcl}
+ \textit{(1)} & @{thm (lhs) injval.simps(1)} & $\dn$ & @{thm (rhs) injval.simps(1)}\\
+ \textit{(2)} & @{thm (lhs) injval.simps(2)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1"]} & $\dn$ &
+ @{thm (rhs) injval.simps(2)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1"]}\\
+ \textit{(3)} & @{thm (lhs) injval.simps(3)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>2"]} & $\dn$ &
+ @{thm (rhs) injval.simps(3)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>2"]}\\
+ \textit{(4)} & @{thm (lhs) injval.simps(4)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1" "v\<^sub>2"]} & $\dn$
+ & @{thm (rhs) injval.simps(4)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1" "v\<^sub>2"]}\\
+ \textit{(5)} & @{thm (lhs) injval.simps(5)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1" "v\<^sub>2"]} & $\dn$
+ & @{thm (rhs) injval.simps(5)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1" "v\<^sub>2"]}\\
+ \textit{(6)} & @{thm (lhs) injval.simps(6)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>2"]} & $\dn$
+ & @{thm (rhs) injval.simps(6)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>2"]}\\
+ \textit{(7)} & @{thm (lhs) injval.simps(7)[of "r" "c" "v" "vs"]} & $\dn$
+ & @{thm (rhs) injval.simps(7)[of "r" "c" "v" "vs"]}\\
+ \end{tabular}
+ \end{center}
+
+ \noindent To better understand what is going on in this definition it
+ might be instructive to look first at the three sequence cases (clauses
+ \textit{(4)} -- \textit{(6)}). In each case we need to construct an ``injected value'' for
+ @{term "SEQ r\<^sub>1 r\<^sub>2"}. This must be a value of the form @{term
+ "Seq DUMMY DUMMY"}\,. Recall the clause of the \<open>derivative\<close>-function
+ for sequence regular expressions:
+
+ \begin{center}
+ @{thm (lhs) der.simps(5)[of c "r\<^sub>1" "r\<^sub>2"]} $\dn$ @{thm (rhs) der.simps(5)[of c "r\<^sub>1" "r\<^sub>2"]}
+ \end{center}
+
+ \noindent Consider first the \<open>else\<close>-branch where the derivative is @{term
+ "SEQ (der c r\<^sub>1) r\<^sub>2"}. The corresponding value must therefore
+ be of the form @{term "Seq v\<^sub>1 v\<^sub>2"}, which matches the left-hand
+ side in clause~\textit{(4)} of @{term inj}. In the \<open>if\<close>-branch the derivative is an
+ alternative, namely @{term "ALT (SEQ (der c r\<^sub>1) r\<^sub>2) (der c
+ r\<^sub>2)"}. This means we either have to consider a \<open>Left\<close>- or
+ \<open>Right\<close>-value. In case of the \<open>Left\<close>-value we know further it
+ must be a value for a sequence regular expression. Therefore the pattern
+ we match in the clause \textit{(5)} is @{term "Left (Seq v\<^sub>1 v\<^sub>2)"},
+ while in \textit{(6)} it is just @{term "Right v\<^sub>2"}. One more interesting
+ point is in the right-hand side of clause \textit{(6)}: since in this case the
+ regular expression \<open>r\<^sub>1\<close> does not ``contribute'' to
+ matching the string, that means it only matches the empty string, we need to
+ call @{const mkeps} in order to construct a value for how @{term "r\<^sub>1"}
+ can match this empty string. A similar argument applies for why we can
+ expect in the left-hand side of clause \textit{(7)} that the value is of the form
+ @{term "Seq v (Stars vs)"}---the derivative of a star is @{term "SEQ (der c r)
+ (STAR r)"}. Finally, the reason for why we can ignore the second argument
+ in clause \textit{(1)} of @{term inj} is that it will only ever be called in cases
+ where @{term "c=d"}, but the usual linearity restrictions in patterns do
+ not allow us to build this constraint explicitly into our function
+ definition.\footnote{Sulzmann and Lu state this clause as @{thm (lhs)
+ injval.simps(1)[of "c" "c"]} $\dn$ @{thm (rhs) injval.simps(1)[of "c"]},
+ but our deviation is harmless.}
+
+ The idea of the @{term inj}-function to ``inject'' a character, say
+ @{term c}, into a value can be made precise by the first part of the
+ following lemma, which shows that the underlying string of an injected
+ value has a prepended character @{term c}; the second part shows that
+ the underlying string of an @{const mkeps}-value is always the empty
+ string (given the regular expression is nullable since otherwise
+ \<open>mkeps\<close> might not be defined).
+
+ \begin{lemma}\mbox{}\smallskip\\\label{Prf_injval_flat}
+ \begin{tabular}{ll}
+ (1) & @{thm[mode=IfThen] Prf_injval_flat}\\
+ (2) & @{thm[mode=IfThen] mkeps_flat}
+ \end{tabular}
+ \end{lemma}
+
+ \begin{proof}
+ Both properties are by routine inductions: the first one can, for example,
+ be proved by induction over the definition of @{term derivatives}; the second by
+ an induction on @{term r}. There are no interesting cases.\qed
+ \end{proof}
+
+ Having defined the @{const mkeps} and \<open>inj\<close> function we can extend
+ \Brz's matcher so that a value is constructed (assuming the
+ regular expression matches the string). The clauses of the Sulzmann and Lu lexer are
+
+ \begin{center}
+ \begin{tabular}{lcl}
+ @{thm (lhs) lexer.simps(1)} & $\dn$ & @{thm (rhs) lexer.simps(1)}\\
+ @{thm (lhs) lexer.simps(2)} & $\dn$ & \<open>case\<close> @{term "lexer (der c r) s"} \<open>of\<close>\\
+ & & \phantom{$|$} @{term "None"} \<open>\<Rightarrow>\<close> @{term None}\\
+ & & $|$ @{term "Some v"} \<open>\<Rightarrow>\<close> @{term "Some (injval r c v)"}
+ \end{tabular}
+ \end{center}
+
+ \noindent If the regular expression does not match the string, @{const None} is
+ returned. If the regular expression \emph{does}
+ match the string, then @{const Some} value is returned. One important
+ virtue of this algorithm is that it can be implemented with ease in any
+ functional programming language and also in Isabelle/HOL. In the remaining
+ part of this section we prove that this algorithm is correct.
+
+ The well-known idea of POSIX matching is informally defined by some
+ rules such as the Longest Match and Priority Rules (see
+ Introduction); as correctly argued in \cite{Sulzmann2014}, this
+ needs formal specification. Sulzmann and Lu define an ``ordering
+ relation'' between values and argue that there is a maximum value,
+ as given by the derivative-based algorithm. In contrast, we shall
+ introduce a simple inductive definition that specifies directly what
+ a \emph{POSIX value} is, incorporating the POSIX-specific choices
+ into the side-conditions of our rules. Our definition is inspired by
+ the matching relation given by Vansummeren~\cite{Vansummeren2006}.
+ The relation we define is ternary and
+ written as \mbox{@{term "s \<in> r \<rightarrow> v"}}, relating
+ strings, regular expressions and values; the inductive rules are given in
+ Figure~\ref{POSIXrules}.
+ We can prove that given a string @{term s} and regular expression @{term
+ r}, the POSIX value @{term v} is uniquely determined by @{term "s \<in> r \<rightarrow> v"}.
+
+ %
+ \begin{figure}[t]
+ \begin{center}
+ \begin{tabular}{c}
+ @{thm[mode=Axiom] Posix.intros(1)}\<open>P\<close>@{term "ONE"} \qquad
+ @{thm[mode=Axiom] Posix.intros(2)}\<open>P\<close>@{term "c"}\medskip\\
+ @{thm[mode=Rule] Posix.intros(3)[of "s" "r\<^sub>1" "v" "r\<^sub>2"]}\<open>P+L\<close>\qquad
+ @{thm[mode=Rule] Posix.intros(4)[of "s" "r\<^sub>2" "v" "r\<^sub>1"]}\<open>P+R\<close>\medskip\\
+ $\mprset{flushleft}
+ \inferrule
+ {@{thm (prem 1) Posix.intros(5)[of "s\<^sub>1" "r\<^sub>1" "v\<^sub>1" "s\<^sub>2" "r\<^sub>2" "v\<^sub>2"]} \qquad
+ @{thm (prem 2) Posix.intros(5)[of "s\<^sub>1" "r\<^sub>1" "v\<^sub>1" "s\<^sub>2" "r\<^sub>2" "v\<^sub>2"]} \\\\
+ @{thm (prem 3) Posix.intros(5)[of "s\<^sub>1" "r\<^sub>1" "v\<^sub>1" "s\<^sub>2" "r\<^sub>2" "v\<^sub>2"]}}
+ {@{thm (concl) Posix.intros(5)[of "s\<^sub>1" "r\<^sub>1" "v\<^sub>1" "s\<^sub>2" "r\<^sub>2" "v\<^sub>2"]}}$\<open>PS\<close>\\
+ @{thm[mode=Axiom] Posix.intros(7)}\<open>P[]\<close>\medskip\\
+ $\mprset{flushleft}
+ \inferrule
+ {@{thm (prem 1) Posix.intros(6)[of "s\<^sub>1" "r" "v" "s\<^sub>2" "vs"]} \qquad
+ @{thm (prem 2) Posix.intros(6)[of "s\<^sub>1" "r" "v" "s\<^sub>2" "vs"]} \qquad
+ @{thm (prem 3) Posix.intros(6)[of "s\<^sub>1" "r" "v" "s\<^sub>2" "vs"]} \\\\
+ @{thm (prem 4) Posix.intros(6)[of "s\<^sub>1" "r" "v" "s\<^sub>2" "vs"]}}
+ {@{thm (concl) Posix.intros(6)[of "s\<^sub>1" "r" "v" "s\<^sub>2" "vs"]}}$\<open>P\<star>\<close>
+ \end{tabular}
+ \end{center}
+ \caption{Our inductive definition of POSIX values.}\label{POSIXrules}
+ \end{figure}
+
+
+
+ \begin{theorem}\mbox{}\smallskip\\\label{posixdeterm}
+ \begin{tabular}{ll}
+ (1) & If @{thm (prem 1) Posix1(1)} then @{thm (concl)
+ Posix1(1)} and @{thm (concl) Posix1(2)}.\\
+ (2) & @{thm[mode=IfThen] Posix_determ(1)[of _ _ "v" "v'"]}
+ \end{tabular}
+ \end{theorem}
+
+ \begin{proof} Both by induction on the definition of @{term "s \<in> r \<rightarrow> v"}.
+ The second parts follows by a case analysis of @{term "s \<in> r \<rightarrow> v'"} and
+ the first part.\qed
+ \end{proof}
+
+ \noindent
+ We claim that our @{term "s \<in> r \<rightarrow> v"} relation captures the idea behind the four
+ informal POSIX rules shown in the Introduction: Consider for example the
+ rules \<open>P+L\<close> and \<open>P+R\<close> where the POSIX value for a string
+ and an alternative regular expression, that is @{term "(s, ALT r\<^sub>1 r\<^sub>2)"},
+ is specified---it is always a \<open>Left\<close>-value, \emph{except} when the
+ string to be matched is not in the language of @{term "r\<^sub>1"}; only then it
+ is a \<open>Right\<close>-value (see the side-condition in \<open>P+R\<close>).
+ Interesting is also the rule for sequence regular expressions (\<open>PS\<close>). The first two premises state that @{term "v\<^sub>1"} and @{term "v\<^sub>2"}
+ are the POSIX values for @{term "(s\<^sub>1, r\<^sub>1)"} and @{term "(s\<^sub>2, r\<^sub>2)"}
+ respectively. Consider now the third premise and note that the POSIX value
+ of this rule should match the string \mbox{@{term "s\<^sub>1 @ s\<^sub>2"}}. According to the
+ Longest Match Rule, we want that the @{term "s\<^sub>1"} is the longest initial
+ split of \mbox{@{term "s\<^sub>1 @ s\<^sub>2"}} such that @{term "s\<^sub>2"} is still recognised
+ by @{term "r\<^sub>2"}. Let us assume, contrary to the third premise, that there
+ \emph{exist} an @{term "s\<^sub>3"} and @{term "s\<^sub>4"} such that @{term "s\<^sub>2"}
+ can be split up into a non-empty string @{term "s\<^sub>3"} and a possibly empty
+ string @{term "s\<^sub>4"}. Moreover the longer string @{term "s\<^sub>1 @ s\<^sub>3"} can be
+ matched by \<open>r\<^sub>1\<close> and the shorter @{term "s\<^sub>4"} can still be
+ matched by @{term "r\<^sub>2"}. In this case @{term "s\<^sub>1"} would \emph{not} be the
+ longest initial split of \mbox{@{term "s\<^sub>1 @ s\<^sub>2"}} and therefore @{term "Seq v\<^sub>1
+ v\<^sub>2"} cannot be a POSIX value for @{term "(s\<^sub>1 @ s\<^sub>2, SEQ r\<^sub>1 r\<^sub>2)"}.
+ The main point is that our side-condition ensures the Longest
+ Match Rule is satisfied.
+
+ A similar condition is imposed on the POSIX value in the \<open>P\<star>\<close>-rule. Also there we want that @{term "s\<^sub>1"} is the longest initial
+ split of @{term "s\<^sub>1 @ s\<^sub>2"} and furthermore the corresponding value
+ @{term v} cannot be flattened to the empty string. In effect, we require
+ that in each ``iteration'' of the star, some non-empty substring needs to
+ be ``chipped'' away; only in case of the empty string we accept @{term
+ "Stars []"} as the POSIX value. Indeed we can show that our POSIX values
+ are lexical values which exclude those \<open>Stars\<close> that contain subvalues
+ that flatten to the empty string.
+
+ \begin{lemma}\label{LVposix}
+ @{thm [mode=IfThen] Posix_LV}
+ \end{lemma}
+
+ \begin{proof}
+ By routine induction on @{thm (prem 1) Posix_LV}.\qed
+ \end{proof}
+
+ \noindent
+ Next is the lemma that shows the function @{term "mkeps"} calculates
+ the POSIX value for the empty string and a nullable regular expression.
+
+ \begin{lemma}\label{lemmkeps}
+ @{thm[mode=IfThen] Posix_mkeps}
+ \end{lemma}
+
+ \begin{proof}
+ By routine induction on @{term r}.\qed
+ \end{proof}
+
+ \noindent
+ The central lemma for our POSIX relation is that the \<open>inj\<close>-function
+ preserves POSIX values.
+
+ \begin{lemma}\label{Posix2}
+ @{thm[mode=IfThen] Posix_injval}
+ \end{lemma}
+
+ \begin{proof}
+ By induction on \<open>r\<close>. We explain two cases.
+
+ \begin{itemize}
+ \item[$\bullet$] Case @{term "r = ALT r\<^sub>1 r\<^sub>2"}. There are
+ two subcases, namely \<open>(a)\<close> \mbox{@{term "v = Left v'"}} and @{term
+ "s \<in> der c r\<^sub>1 \<rightarrow> v'"}; and \<open>(b)\<close> @{term "v = Right v'"}, @{term
+ "s \<notin> L (der c r\<^sub>1)"} and @{term "s \<in> der c r\<^sub>2 \<rightarrow> v'"}. In \<open>(a)\<close> we
+ know @{term "s \<in> der c r\<^sub>1 \<rightarrow> v'"}, from which we can infer @{term "(c # s)
+ \<in> r\<^sub>1 \<rightarrow> injval r\<^sub>1 c v'"} by induction hypothesis and hence @{term "(c #
+ s) \<in> ALT r\<^sub>1 r\<^sub>2 \<rightarrow> injval (ALT r\<^sub>1 r\<^sub>2) c (Left v')"} as needed. Similarly
+ in subcase \<open>(b)\<close> where, however, in addition we have to use
+ Proposition~\ref{derprop}(2) in order to infer @{term "c # s \<notin> L r\<^sub>1"} from @{term
+ "s \<notin> L (der c r\<^sub>1)"}.\smallskip
+
+ \item[$\bullet$] Case @{term "r = SEQ r\<^sub>1 r\<^sub>2"}. There are three subcases:
+
+ \begin{quote}
+ \begin{description}
+ \item[\<open>(a)\<close>] @{term "v = Left (Seq v\<^sub>1 v\<^sub>2)"} and @{term "nullable r\<^sub>1"}
+ \item[\<open>(b)\<close>] @{term "v = Right v\<^sub>1"} and @{term "nullable r\<^sub>1"}
+ \item[\<open>(c)\<close>] @{term "v = Seq v\<^sub>1 v\<^sub>2"} and @{term "\<not> nullable r\<^sub>1"}
+ \end{description}
+ \end{quote}
+
+ \noindent For \<open>(a)\<close> we know @{term "s\<^sub>1 \<in> der c r\<^sub>1 \<rightarrow> v\<^sub>1"} and
+ @{term "s\<^sub>2 \<in> r\<^sub>2 \<rightarrow> v\<^sub>2"} as well as
+ %
+ \[@{term "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s\<^sub>2 \<and> s\<^sub>1 @ s\<^sub>3 \<in> L (der c r\<^sub>1) \<and> s\<^sub>4 \<in> L r\<^sub>2)"}\]
+
+ \noindent From the latter we can infer by Proposition~\ref{derprop}(2):
+ %
+ \[@{term "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s\<^sub>2 \<and> (c # s\<^sub>1) @ s\<^sub>3 \<in> L r\<^sub>1 \<and> s\<^sub>4 \<in> L r\<^sub>2)"}\]
+
+ \noindent We can use the induction hypothesis for \<open>r\<^sub>1\<close> to obtain
+ @{term "(c # s\<^sub>1) \<in> r\<^sub>1 \<rightarrow> injval r\<^sub>1 c v\<^sub>1"}. Putting this all together allows us to infer
+ @{term "((c # s\<^sub>1) @ s\<^sub>2) \<in> SEQ r\<^sub>1 r\<^sub>2 \<rightarrow> Seq (injval r\<^sub>1 c v\<^sub>1) v\<^sub>2"}. The case \<open>(c)\<close>
+ is similar.
+
+ For \<open>(b)\<close> we know @{term "s \<in> der c r\<^sub>2 \<rightarrow> v\<^sub>1"} and
+ @{term "s\<^sub>1 @ s\<^sub>2 \<notin> L (SEQ (der c r\<^sub>1) r\<^sub>2)"}. From the former
+ we have @{term "(c # s) \<in> r\<^sub>2 \<rightarrow> (injval r\<^sub>2 c v\<^sub>1)"} by induction hypothesis
+ for @{term "r\<^sub>2"}. From the latter we can infer
+ %
+ \[@{term "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = c # s \<and> s\<^sub>3 \<in> L r\<^sub>1 \<and> s\<^sub>4 \<in> L r\<^sub>2)"}\]
+
+ \noindent By Lemma~\ref{lemmkeps} we know @{term "[] \<in> r\<^sub>1 \<rightarrow> (mkeps r\<^sub>1)"}
+ holds. Putting this all together, we can conclude with @{term "(c #
+ s) \<in> SEQ r\<^sub>1 r\<^sub>2 \<rightarrow> Seq (mkeps r\<^sub>1) (injval r\<^sub>2 c v\<^sub>1)"}, as required.
+
+ Finally suppose @{term "r = STAR r\<^sub>1"}. This case is very similar to the
+ sequence case, except that we need to also ensure that @{term "flat (injval r\<^sub>1
+ c v\<^sub>1) \<noteq> []"}. This follows from @{term "(c # s\<^sub>1)
+ \<in> r\<^sub>1 \<rightarrow> injval r\<^sub>1 c v\<^sub>1"} (which in turn follows from @{term "s\<^sub>1 \<in> der c
+ r\<^sub>1 \<rightarrow> v\<^sub>1"} and the induction hypothesis).\qed
+ \end{itemize}
+ \end{proof}
+
+ \noindent
+ With Lemma~\ref{Posix2} in place, it is completely routine to establish
+ that the Sulzmann and Lu lexer satisfies our specification (returning
+ the null value @{term "None"} iff the string is not in the language of the regular expression,
+ and returning a unique POSIX value iff the string \emph{is} in the language):
+
+ \begin{theorem}\mbox{}\smallskip\\\label{lexercorrect}
+ \begin{tabular}{ll}
+ (1) & @{thm (lhs) lexer_correct_None} if and only if @{thm (rhs) lexer_correct_None}\\
+ (2) & @{thm (lhs) lexer_correct_Some} if and only if @{thm (rhs) lexer_correct_Some}\\
+ \end{tabular}
+ \end{theorem}
+
+ \begin{proof}
+ By induction on @{term s} using Lemma~\ref{lemmkeps} and \ref{Posix2}.\qed
+ \end{proof}
+
+ \noindent In \textit{(2)} we further know by Theorem~\ref{posixdeterm} that the
+ value returned by the lexer must be unique. A simple corollary
+ of our two theorems is:
+
+ \begin{corollary}\mbox{}\smallskip\\\label{lexercorrectcor}
+ \begin{tabular}{ll}
+ (1) & @{thm (lhs) lexer_correctness(2)} if and only if @{thm (rhs) lexer_correctness(2)}\\
+ (2) & @{thm (lhs) lexer_correctness(1)} if and only if @{thm (rhs) lexer_correctness(1)}\\
+ \end{tabular}
+ \end{corollary}
+
+ \noindent This concludes our correctness proof. Note that we have
+ not changed the algorithm of Sulzmann and Lu,\footnote{All
+ deviations we introduced are harmless.} but introduced our own
+ specification for what a correct result---a POSIX value---should be.
+ In the next section we show that our specification coincides with
+ another one given by Okui and Suzuki using a different technique.
+
+\<close>
+
+section \<open>Ordering of Values according to Okui and Suzuki\<close>
+
+text \<open>
+
+ While in the previous section we have defined POSIX values directly
+ in terms of a ternary relation (see inference rules in Figure~\ref{POSIXrules}),
+ Sulzmann and Lu took a different approach in \cite{Sulzmann2014}:
+ they introduced an ordering for values and identified POSIX values
+ as the maximal elements. An extended version of \cite{Sulzmann2014}
+ is available at the website of its first author; this includes more
+ details of their proofs, but which are evidently not in final form
+ yet. Unfortunately, we were not able to verify claims that their
+ ordering has properties such as being transitive or having maximal
+ elements.
+
+ Okui and Suzuki \cite{OkuiSuzuki2010,OkuiSuzukiTech} described
+ another ordering of values, which they use to establish the
+ correctness of their automata-based algorithm for POSIX matching.
+ Their ordering resembles some aspects of the one given by Sulzmann
+ and Lu, but overall is quite different. To begin with, Okui and
+ Suzuki identify POSIX values as minimal, rather than maximal,
+ elements in their ordering. A more substantial difference is that
+ the ordering by Okui and Suzuki uses \emph{positions} in order to
+ identify and compare subvalues. Positions are lists of natural
+ numbers. This allows them to quite naturally formalise the Longest
+ Match and Priority rules of the informal POSIX standard. Consider
+ for example the value @{term v}
+
+ \begin{center}
+ @{term "v == Stars [Seq (Char x) (Char y), Char z]"}
+ \end{center}
+
+ \noindent
+ At position \<open>[0,1]\<close> of this value is the
+ subvalue \<open>Char y\<close> and at position \<open>[1]\<close> the
+ subvalue @{term "Char z"}. At the `root' position, or empty list
+ @{term "[]"}, is the whole value @{term v}. Positions such as \<open>[0,1,0]\<close> or \<open>[2]\<close> are outside of \<open>v\<close>. If it exists, the subvalue of @{term v} at a position \<open>p\<close>, written @{term "at v p"}, can be recursively defined by
+
+ \begin{center}
+ \begin{tabular}{r@ {\hspace{0mm}}lcl}
+ @{term v} & \<open>\<downharpoonleft>\<^bsub>[]\<^esub>\<close> & \<open>\<equiv>\<close>& @{thm (rhs) at.simps(1)}\\
+ @{term "Left v"} & \<open>\<downharpoonleft>\<^bsub>0::ps\<^esub>\<close> & \<open>\<equiv>\<close>& @{thm (rhs) at.simps(2)}\\
+ @{term "Right v"} & \<open>\<downharpoonleft>\<^bsub>1::ps\<^esub>\<close> & \<open>\<equiv>\<close> &
+ @{thm (rhs) at.simps(3)[simplified Suc_0_fold]}\\
+ @{term "Seq v\<^sub>1 v\<^sub>2"} & \<open>\<downharpoonleft>\<^bsub>0::ps\<^esub>\<close> & \<open>\<equiv>\<close> &
+ @{thm (rhs) at.simps(4)[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2"]} \\
+ @{term "Seq v\<^sub>1 v\<^sub>2"} & \<open>\<downharpoonleft>\<^bsub>1::ps\<^esub>\<close>
+ & \<open>\<equiv>\<close> &
+ @{thm (rhs) at.simps(5)[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2", simplified Suc_0_fold]} \\
+ @{term "Stars vs"} & \<open>\<downharpoonleft>\<^bsub>n::ps\<^esub>\<close> & \<open>\<equiv>\<close>& @{thm (rhs) at.simps(6)}\\
+ \end{tabular}
+ \end{center}
+
+ \noindent In the last clause we use Isabelle's notation @{term "vs ! n"} for the
+ \<open>n\<close>th element in a list. The set of positions inside a value \<open>v\<close>,
+ written @{term "Pos v"}, is given by
+
+ \begin{center}
+ \begin{tabular}{lcl}
+ @{thm (lhs) Pos.simps(1)} & \<open>\<equiv>\<close> & @{thm (rhs) Pos.simps(1)}\\
+ @{thm (lhs) Pos.simps(2)} & \<open>\<equiv>\<close> & @{thm (rhs) Pos.simps(2)}\\
+ @{thm (lhs) Pos.simps(3)} & \<open>\<equiv>\<close> & @{thm (rhs) Pos.simps(3)}\\
+ @{thm (lhs) Pos.simps(4)} & \<open>\<equiv>\<close> & @{thm (rhs) Pos.simps(4)}\\
+ @{thm (lhs) Pos.simps(5)[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2"]}
+ & \<open>\<equiv>\<close>
+ & @{thm (rhs) Pos.simps(5)[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2"]}\\
+ @{thm (lhs) Pos_stars} & \<open>\<equiv>\<close> & @{thm (rhs) Pos_stars}\\
+ \end{tabular}
+ \end{center}
+
+ \noindent
+ whereby \<open>len\<close> in the last clause stands for the length of a list. Clearly
+ for every position inside a value there exists a subvalue at that position.
+
+
+ To help understanding the ordering of Okui and Suzuki, consider again
+ the earlier value
+ \<open>v\<close> and compare it with the following \<open>w\<close>:
+
+ \begin{center}
+ \begin{tabular}{l}
+ @{term "v == Stars [Seq (Char x) (Char y), Char z]"}\\
+ @{term "w == Stars [Char x, Char y, Char z]"}
+ \end{tabular}
+ \end{center}
+
+ \noindent Both values match the string \<open>xyz\<close>, that means if
+ we flatten these values at their respective root position, we obtain
+ \<open>xyz\<close>. However, at position \<open>[0]\<close>, \<open>v\<close> matches
+ \<open>xy\<close> whereas \<open>w\<close> matches only the shorter \<open>x\<close>. So
+ according to the Longest Match Rule, we should prefer \<open>v\<close>,
+ rather than \<open>w\<close> as POSIX value for string \<open>xyz\<close> (and
+ corresponding regular expression). In order to
+ formalise this idea, Okui and Suzuki introduce a measure for
+ subvalues at position \<open>p\<close>, called the \emph{norm} of \<open>v\<close>
+ at position \<open>p\<close>. We can define this measure in Isabelle as an
+ integer as follows
+
+ \begin{center}
+ @{thm pflat_len_def}
+ \end{center}
+
+ \noindent where we take the length of the flattened value at
+ position \<open>p\<close>, provided the position is inside \<open>v\<close>; if
+ not, then the norm is \<open>-1\<close>. The default for outside
+ positions is crucial for the POSIX requirement of preferring a
+ \<open>Left\<close>-value over a \<open>Right\<close>-value (if they can match the
+ same string---see the Priority Rule from the Introduction). For this
+ consider
+
+ \begin{center}
+ @{term "v == Left (Char x)"} \qquad and \qquad @{term "w == Right (Char x)"}
+ \end{center}
+
+ \noindent Both values match \<open>x\<close>. At position \<open>[0]\<close>
+ the norm of @{term v} is \<open>1\<close> (the subvalue matches \<open>x\<close>),
+ but the norm of \<open>w\<close> is \<open>-1\<close> (the position is outside
+ \<open>w\<close> according to how we defined the `inside' positions of
+ \<open>Left\<close>- and \<open>Right\<close>-values). Of course at position
+ \<open>[1]\<close>, the norms @{term "pflat_len v [1]"} and @{term
+ "pflat_len w [1]"} are reversed, but the point is that subvalues
+ will be analysed according to lexicographically ordered
+ positions. According to this ordering, the position \<open>[0]\<close>
+ takes precedence over \<open>[1]\<close> and thus also \<open>v\<close> will be
+ preferred over \<open>w\<close>. The lexicographic ordering of positions, written
+ @{term "DUMMY \<sqsubset>lex DUMMY"}, can be conveniently formalised
+ by three inference rules
+
+ \begin{center}
+ \begin{tabular}{ccc}
+ @{thm [mode=Axiom] lex_list.intros(1)}\hspace{1cm} &
+ @{thm [mode=Rule] lex_list.intros(3)[where ?p1.0="p\<^sub>1" and ?p2.0="p\<^sub>2" and
+ ?ps1.0="ps\<^sub>1" and ?ps2.0="ps\<^sub>2"]}\hspace{1cm} &
+ @{thm [mode=Rule] lex_list.intros(2)[where ?ps1.0="ps\<^sub>1" and ?ps2.0="ps\<^sub>2"]}
+ \end{tabular}
+ \end{center}
+
+ With the norm and lexicographic order in place,
+ we can state the key definition of Okui and Suzuki
+ \cite{OkuiSuzuki2010}: a value @{term "v\<^sub>1"} is \emph{smaller at position \<open>p\<close>} than
+ @{term "v\<^sub>2"}, written @{term "v\<^sub>1 \<sqsubset>val p v\<^sub>2"},
+ if and only if $(i)$ the norm at position \<open>p\<close> is
+ greater in @{term "v\<^sub>1"} (that is the string @{term "flat (at v\<^sub>1 p)"} is longer
+ than @{term "flat (at v\<^sub>2 p)"}) and $(ii)$ all subvalues at
+ positions that are inside @{term "v\<^sub>1"} or @{term "v\<^sub>2"} and that are
+ lexicographically smaller than \<open>p\<close>, we have the same norm, namely
+
+ \begin{center}
+ \begin{tabular}{c}
+ @{thm (lhs) PosOrd_def[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2"]}
+ \<open>\<equiv>\<close>
+ $\begin{cases}
+ (i) & @{term "pflat_len v\<^sub>1 p > pflat_len v\<^sub>2 p"} \quad\text{and}\smallskip \\
+ (ii) & @{term "(\<forall>q \<in> Pos v\<^sub>1 \<union> Pos v\<^sub>2. q \<sqsubset>lex p --> pflat_len v\<^sub>1 q = pflat_len v\<^sub>2 q)"}
+ \end{cases}$
+ \end{tabular}
+ \end{center}
+
+ \noindent The position \<open>p\<close> in this definition acts as the
+ \emph{first distinct position} of \<open>v\<^sub>1\<close> and \<open>v\<^sub>2\<close>, where both values match strings of different length
+ \cite{OkuiSuzuki2010}. Since at \<open>p\<close> the values \<open>v\<^sub>1\<close> and \<open>v\<^sub>2\<close> match different strings, the
+ ordering is irreflexive. Derived from the definition above
+ are the following two orderings:
+
+ \begin{center}
+ \begin{tabular}{l}
+ @{thm PosOrd_ex_def[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2"]}\\
+ @{thm PosOrd_ex_eq_def[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2"]}
+ \end{tabular}
+ \end{center}
+
+ While we encountered a number of obstacles for establishing properties like
+ transitivity for the ordering of Sulzmann and Lu (and which we failed
+ to overcome), it is relatively straightforward to establish this
+ property for the orderings
+ @{term "DUMMY :\<sqsubset>val DUMMY"} and @{term "DUMMY :\<sqsubseteq>val DUMMY"}
+ by Okui and Suzuki.
+
+ \begin{lemma}[Transitivity]\label{transitivity}
+ @{thm [mode=IfThen] PosOrd_trans[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2" and ?v3.0="v\<^sub>3"]}
+ \end{lemma}
+
+ \begin{proof} From the assumption we obtain two positions \<open>p\<close>
+ and \<open>q\<close>, where the values \<open>v\<^sub>1\<close> and \<open>v\<^sub>2\<close> (respectively \<open>v\<^sub>2\<close> and \<open>v\<^sub>3\<close>) are `distinct'. Since \<open>\<prec>\<^bsub>lex\<^esub>\<close> is trichotomous, we need to consider
+ three cases, namely @{term "p = q"}, @{term "p \<sqsubset>lex q"} and
+ @{term "q \<sqsubset>lex p"}. Let us look at the first case. Clearly
+ @{term "pflat_len v\<^sub>2 p < pflat_len v\<^sub>1 p"} and @{term
+ "pflat_len v\<^sub>3 p < pflat_len v\<^sub>2 p"} imply @{term
+ "pflat_len v\<^sub>3 p < pflat_len v\<^sub>1 p"}. It remains to show
+ that for a @{term "p' \<in> Pos v\<^sub>1 \<union> Pos v\<^sub>3"}
+ with @{term "p' \<sqsubset>lex p"} that @{term "pflat_len v\<^sub>1
+ p' = pflat_len v\<^sub>3 p'"} holds. Suppose @{term "p' \<in> Pos
+ v\<^sub>1"}, then we can infer from the first assumption that @{term
+ "pflat_len v\<^sub>1 p' = pflat_len v\<^sub>2 p'"}. But this means
+ that @{term "p'"} must be in @{term "Pos v\<^sub>2"} too (the norm
+ cannot be \<open>-1\<close> given @{term "p' \<in> Pos v\<^sub>1"}).
+ Hence we can use the second assumption and
+ infer @{term "pflat_len v\<^sub>2 p' = pflat_len v\<^sub>3 p'"},
+ which concludes this case with @{term "v\<^sub>1 :\<sqsubset>val
+ v\<^sub>3"}. The reasoning in the other cases is similar.\qed
+ \end{proof}
+
+ \noindent
+ The proof for $\preccurlyeq$ is similar and omitted.
+ It is also straightforward to show that \<open>\<prec>\<close> and
+ $\preccurlyeq$ are partial orders. Okui and Suzuki furthermore show that they
+ are linear orderings for lexical values \cite{OkuiSuzuki2010} of a given
+ regular expression and given string, but we have not formalised this in Isabelle. It is
+ not essential for our results. What we are going to show below is
+ that for a given \<open>r\<close> and \<open>s\<close>, the orderings have a unique
+ minimal element on the set @{term "LV r s"}, which is the POSIX value
+ we defined in the previous section. We start with two properties that
+ show how the length of a flattened value relates to the \<open>\<prec>\<close>-ordering.
+
+ \begin{proposition}\mbox{}\smallskip\\\label{ordlen}
+ \begin{tabular}{@ {}ll}
+ (1) &
+ @{thm [mode=IfThen] PosOrd_shorterE[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2"]}\\
+ (2) &
+ @{thm [mode=IfThen] PosOrd_shorterI[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2"]}
+ \end{tabular}
+ \end{proposition}
+
+ \noindent Both properties follow from the definition of the ordering. Note that
+ \textit{(2)} entails that a value, say @{term "v\<^sub>2"}, whose underlying
+ string is a strict prefix of another flattened value, say @{term "v\<^sub>1"}, then
+ @{term "v\<^sub>1"} must be smaller than @{term "v\<^sub>2"}. For our proofs it
+ will be useful to have the following properties---in each case the underlying strings
+ of the compared values are the same:
+
+ \begin{proposition}\mbox{}\smallskip\\\label{ordintros}
+ \begin{tabular}{ll}
+ \textit{(1)} &
+ @{thm [mode=IfThen] PosOrd_Left_Right[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2"]}\\
+ \textit{(2)} & If
+ @{thm (prem 1) PosOrd_Left_eq[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2"]} \;then\;
+ @{thm (lhs) PosOrd_Left_eq[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2"]} \;iff\;
+ @{thm (rhs) PosOrd_Left_eq[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2"]}\\
+ \textit{(3)} & If
+ @{thm (prem 1) PosOrd_Right_eq[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2"]} \;then\;
+ @{thm (lhs) PosOrd_Right_eq[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2"]} \;iff\;
+ @{thm (rhs) PosOrd_Right_eq[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2"]}\\
+ \textit{(4)} & If
+ @{thm (prem 1) PosOrd_Seq_eq[where ?v2.0="v\<^sub>2" and ?w2.0="w\<^sub>2"]} \;then\;
+ @{thm (lhs) PosOrd_Seq_eq[where ?v2.0="v\<^sub>2" and ?w2.0="w\<^sub>2"]} \;iff\;
+ @{thm (rhs) PosOrd_Seq_eq[where ?v2.0="v\<^sub>2" and ?w2.0="w\<^sub>2"]}\\
+ \textit{(5)} & If
+ @{thm (prem 2) PosOrd_SeqI1[simplified, where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2" and
+ ?w1.0="w\<^sub>1" and ?w2.0="w\<^sub>2"]} \;and\;
+ @{thm (prem 1) PosOrd_SeqI1[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2" and
+ ?w1.0="w\<^sub>1" and ?w2.0="w\<^sub>2"]} \;then\;
+ @{thm (concl) PosOrd_SeqI1[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2" and
+ ?w1.0="w\<^sub>1" and ?w2.0="w\<^sub>2"]}\\
+ \textit{(6)} & If
+ @{thm (prem 1) PosOrd_Stars_append_eq[where ?vs1.0="vs\<^sub>1" and ?vs2.0="vs\<^sub>2"]} \;then\;
+ @{thm (lhs) PosOrd_Stars_append_eq[where ?vs1.0="vs\<^sub>1" and ?vs2.0="vs\<^sub>2"]} \;iff\;
+ @{thm (rhs) PosOrd_Stars_append_eq[where ?vs1.0="vs\<^sub>1" and ?vs2.0="vs\<^sub>2"]}\\
+
+ \textit{(7)} & If
+ @{thm (prem 2) PosOrd_StarsI[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2" and
+ ?vs1.0="vs\<^sub>1" and ?vs2.0="vs\<^sub>2"]} \;and\;
+ @{thm (prem 1) PosOrd_StarsI[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2" and
+ ?vs1.0="vs\<^sub>1" and ?vs2.0="vs\<^sub>2"]} \;then\;
+ @{thm (concl) PosOrd_StarsI[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2" and
+ ?vs1.0="vs\<^sub>1" and ?vs2.0="vs\<^sub>2"]}\\
+ \end{tabular}
+ \end{proposition}
+
+ \noindent One might prefer that statements \textit{(4)} and \textit{(5)}
+ (respectively \textit{(6)} and \textit{(7)})
+ are combined into a single \textit{iff}-statement (like the ones for \<open>Left\<close> and \<open>Right\<close>). Unfortunately this cannot be done easily: such
+ a single statement would require an additional assumption about the
+ two values @{term "Seq v\<^sub>1 v\<^sub>2"} and @{term "Seq w\<^sub>1 w\<^sub>2"}
+ being inhabited by the same regular expression. The
+ complexity of the proofs involved seems to not justify such a
+ `cleaner' single statement. The statements given are just the properties that
+ allow us to establish our theorems without any difficulty. The proofs
+ for Proposition~\ref{ordintros} are routine.
+
+
+ Next we establish how Okui and Suzuki's orderings relate to our
+ definition of POSIX values. Given a \<open>POSIX\<close> value \<open>v\<^sub>1\<close>
+ for \<open>r\<close> and \<open>s\<close>, then any other lexical value \<open>v\<^sub>2\<close> in @{term "LV r s"} is greater or equal than \<open>v\<^sub>1\<close>, namely:
+
+
+ \begin{theorem}\label{orderone}
+ @{thm [mode=IfThen] Posix_PosOrd[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2"]}
+ \end{theorem}
+
+ \begin{proof} By induction on our POSIX rules. By
+ Theorem~\ref{posixdeterm} and the definition of @{const LV}, it is clear
+ that \<open>v\<^sub>1\<close> and \<open>v\<^sub>2\<close> have the same
+ underlying string @{term s}. The three base cases are
+ straightforward: for example for @{term "v\<^sub>1 = Void"}, we have
+ that @{term "v\<^sub>2 \<in> LV ONE []"} must also be of the form
+ \mbox{@{term "v\<^sub>2 = Void"}}. Therefore we have @{term
+ "v\<^sub>1 :\<sqsubseteq>val v\<^sub>2"}. The inductive cases for
+ \<open>r\<close> being of the form @{term "ALT r\<^sub>1 r\<^sub>2"} and
+ @{term "SEQ r\<^sub>1 r\<^sub>2"} are as follows:
+
+
+ \begin{itemize}
+
+ \item[$\bullet$] Case \<open>P+L\<close> with @{term "s \<in> (ALT r\<^sub>1 r\<^sub>2)
+ \<rightarrow> (Left w\<^sub>1)"}: In this case the value
+ @{term "v\<^sub>2"} is either of the
+ form @{term "Left w\<^sub>2"} or @{term "Right w\<^sub>2"}. In the
+ latter case we can immediately conclude with \mbox{@{term "v\<^sub>1
+ :\<sqsubseteq>val v\<^sub>2"}} since a \<open>Left\<close>-value with the
+ same underlying string \<open>s\<close> is always smaller than a
+ \<open>Right\<close>-value by Proposition~\ref{ordintros}\textit{(1)}.
+ In the former case we have @{term "w\<^sub>2
+ \<in> LV r\<^sub>1 s"} and can use the induction hypothesis to infer
+ @{term "w\<^sub>1 :\<sqsubseteq>val w\<^sub>2"}. Because @{term
+ "w\<^sub>1"} and @{term "w\<^sub>2"} have the same underlying string
+ \<open>s\<close>, we can conclude with @{term "Left w\<^sub>1
+ :\<sqsubseteq>val Left w\<^sub>2"} using
+ Proposition~\ref{ordintros}\textit{(2)}.\smallskip
+
+ \item[$\bullet$] Case \<open>P+R\<close> with @{term "s \<in> (ALT r\<^sub>1 r\<^sub>2)
+ \<rightarrow> (Right w\<^sub>1)"}: This case similar to the previous
+ case, except that we additionally know @{term "s \<notin> L
+ r\<^sub>1"}. This is needed when @{term "v\<^sub>2"} is of the form
+ \mbox{@{term "Left w\<^sub>2"}}. Since \mbox{@{term "flat v\<^sub>2 = flat
+ w\<^sub>2"} \<open>= s\<close>} and @{term "\<Turnstile> w\<^sub>2 :
+ r\<^sub>1"}, we can derive a contradiction for \mbox{@{term "s \<notin> L
+ r\<^sub>1"}} using
+ Proposition~\ref{inhabs}. So also in this case \mbox{@{term "v\<^sub>1
+ :\<sqsubseteq>val v\<^sub>2"}}.\smallskip
+
+ \item[$\bullet$] Case \<open>PS\<close> with @{term "(s\<^sub>1 @
+ s\<^sub>2) \<in> (SEQ r\<^sub>1 r\<^sub>2) \<rightarrow> (Seq
+ w\<^sub>1 w\<^sub>2)"}: We can assume @{term "v\<^sub>2 = Seq
+ (u\<^sub>1) (u\<^sub>2)"} with @{term "\<Turnstile> u\<^sub>1 :
+ r\<^sub>1"} and \mbox{@{term "\<Turnstile> u\<^sub>2 :
+ r\<^sub>2"}}. We have @{term "s\<^sub>1 @ s\<^sub>2 = (flat
+ u\<^sub>1) @ (flat u\<^sub>2)"}. By the side-condition of the
+ \<open>PS\<close>-rule we know that either @{term "s\<^sub>1 = flat
+ u\<^sub>1"} or that @{term "flat u\<^sub>1"} is a strict prefix of
+ @{term "s\<^sub>1"}. In the latter case we can infer @{term
+ "w\<^sub>1 :\<sqsubset>val u\<^sub>1"} by
+ Proposition~\ref{ordlen}\textit{(2)} and from this @{term "v\<^sub>1
+ :\<sqsubseteq>val v\<^sub>2"} by Proposition~\ref{ordintros}\textit{(5)}
+ (as noted above @{term "v\<^sub>1"} and @{term "v\<^sub>2"} must have the
+ same underlying string).
+ In the former case we know
+ @{term "u\<^sub>1 \<in> LV r\<^sub>1 s\<^sub>1"} and @{term
+ "u\<^sub>2 \<in> LV r\<^sub>2 s\<^sub>2"}. With this we can use the
+ induction hypotheses to infer @{term "w\<^sub>1 :\<sqsubseteq>val
+ u\<^sub>1"} and @{term "w\<^sub>2 :\<sqsubseteq>val u\<^sub>2"}. By
+ Proposition~\ref{ordintros}\textit{(4,5)} we can again infer
+ @{term "v\<^sub>1 :\<sqsubseteq>val
+ v\<^sub>2"}.
+
+ \end{itemize}
+
+ \noindent The case for \<open>P\<star>\<close> is similar to the \<open>PS\<close>-case and omitted.\qed
+ \end{proof}
+
+ \noindent This theorem shows that our \<open>POSIX\<close> value for a
+ regular expression \<open>r\<close> and string @{term s} is in fact a
+ minimal element of the values in \<open>LV r s\<close>. By
+ Proposition~\ref{ordlen}\textit{(2)} we also know that any value in
+ \<open>LV r s'\<close>, with @{term "s'"} being a strict prefix, cannot be
+ smaller than \<open>v\<^sub>1\<close>. The next theorem shows the
+ opposite---namely any minimal element in @{term "LV r s"} must be a
+ \<open>POSIX\<close> value. This can be established by induction on \<open>r\<close>, but the proof can be drastically simplified by using the fact
+ from the previous section about the existence of a \<open>POSIX\<close> value
+ whenever a string @{term "s \<in> L r"}.
+
+
+ \begin{theorem}
+ @{thm [mode=IfThen] PosOrd_Posix[where ?v1.0="v\<^sub>1"]}
+ \end{theorem}
+
+ \begin{proof}
+ If @{thm (prem 1) PosOrd_Posix[where ?v1.0="v\<^sub>1"]} then
+ @{term "s \<in> L r"} by Proposition~\ref{inhabs}. Hence by Theorem~\ref{lexercorrect}(2)
+ there exists a
+ \<open>POSIX\<close> value @{term "v\<^sub>P"} with @{term "s \<in> r \<rightarrow> v\<^sub>P"}
+ and by Lemma~\ref{LVposix} we also have \mbox{@{term "v\<^sub>P \<in> LV r s"}}.
+ By Theorem~\ref{orderone} we therefore have
+ @{term "v\<^sub>P :\<sqsubseteq>val v\<^sub>1"}. If @{term "v\<^sub>P = v\<^sub>1"} then
+ we are done. Otherwise we have @{term "v\<^sub>P :\<sqsubset>val v\<^sub>1"}, which
+ however contradicts the second assumption about @{term "v\<^sub>1"} being the smallest
+ element in @{term "LV r s"}. So we are done in this case too.\qed
+ \end{proof}
+
+ \noindent
+ From this we can also show
+ that if @{term "LV r s"} is non-empty (or equivalently @{term "s \<in> L r"}) then
+ it has a unique minimal element:
+
+ \begin{corollary}
+ @{thm [mode=IfThen] Least_existence1}
+ \end{corollary}
+
+
+
+ \noindent To sum up, we have shown that the (unique) minimal elements
+ of the ordering by Okui and Suzuki are exactly the \<open>POSIX\<close>
+ values we defined inductively in Section~\ref{posixsec}. This provides
+ an independent confirmation that our ternary relation formalises the
+ informal POSIX rules.
+
+\<close>
+
+section \<open>Bitcoded Lexing\<close>
+
+
+
+
+text \<open>
+
+Incremental calculation of the value. To simplify the proof we first define the function
+@{const flex} which calculates the ``iterated'' injection function. With this we can
+rewrite the lexer as
+
+\begin{center}
+@{thm lexer_flex}
+\end{center}
+
+
+\<close>
+
+section \<open>Optimisations\<close>
+
+text \<open>
+
+ Derivatives as calculated by \Brz's method are usually more complex
+ regular expressions than the initial one; the result is that the
+ derivative-based matching and lexing algorithms are often abysmally slow.
+ However, various optimisations are possible, such as the simplifications
+ of @{term "ALT ZERO r"}, @{term "ALT r ZERO"}, @{term "SEQ ONE r"} and
+ @{term "SEQ r ONE"} to @{term r}. These simplifications can speed up the
+ algorithms considerably, as noted in \cite{Sulzmann2014}. One of the
+ advantages of having a simple specification and correctness proof is that
+ the latter can be refined to prove the correctness of such simplification
+ steps. While the simplification of regular expressions according to
+ rules like
+
+ \begin{equation}\label{Simpl}
+ \begin{array}{lcllcllcllcl}
+ @{term "ALT ZERO r"} & \<open>\<Rightarrow>\<close> & @{term r} \hspace{8mm}%\\
+ @{term "ALT r ZERO"} & \<open>\<Rightarrow>\<close> & @{term r} \hspace{8mm}%\\
+ @{term "SEQ ONE r"} & \<open>\<Rightarrow>\<close> & @{term r} \hspace{8mm}%\\
+ @{term "SEQ r ONE"} & \<open>\<Rightarrow>\<close> & @{term r}
+ \end{array}
+ \end{equation}
+
+ \noindent is well understood, there is an obstacle with the POSIX value
+ calculation algorithm by Sulzmann and Lu: if we build a derivative regular
+ expression and then simplify it, we will calculate a POSIX value for this
+ simplified derivative regular expression, \emph{not} for the original (unsimplified)
+ derivative regular expression. Sulzmann and Lu \cite{Sulzmann2014} overcome this obstacle by
+ not just calculating a simplified regular expression, but also calculating
+ a \emph{rectification function} that ``repairs'' the incorrect value.
+
+ The rectification functions can be (slightly clumsily) implemented in
+ Isabelle/HOL as follows using some auxiliary functions:
+
+ \begin{center}
+ \begin{tabular}{lcl}
+ @{thm (lhs) F_RIGHT.simps(1)} & $\dn$ & \<open>Right (f v)\<close>\\
+ @{thm (lhs) F_LEFT.simps(1)} & $\dn$ & \<open>Left (f v)\<close>\\
+
+ @{thm (lhs) F_ALT.simps(1)} & $\dn$ & \<open>Right (f\<^sub>2 v)\<close>\\
+ @{thm (lhs) F_ALT.simps(2)} & $\dn$ & \<open>Left (f\<^sub>1 v)\<close>\\
+
+ @{thm (lhs) F_SEQ1.simps(1)} & $\dn$ & \<open>Seq (f\<^sub>1 ()) (f\<^sub>2 v)\<close>\\
+ @{thm (lhs) F_SEQ2.simps(1)} & $\dn$ & \<open>Seq (f\<^sub>1 v) (f\<^sub>2 ())\<close>\\
+ @{thm (lhs) F_SEQ.simps(1)} & $\dn$ & \<open>Seq (f\<^sub>1 v\<^sub>1) (f\<^sub>2 v\<^sub>2)\<close>\medskip\\
+ %\end{tabular}
+ %
+ %\begin{tabular}{lcl}
+ @{term "simp_ALT (ZERO, DUMMY) (r\<^sub>2, f\<^sub>2)"} & $\dn$ & @{term "(r\<^sub>2, F_RIGHT f\<^sub>2)"}\\
+ @{term "simp_ALT (r\<^sub>1, f\<^sub>1) (ZERO, DUMMY)"} & $\dn$ & @{term "(r\<^sub>1, F_LEFT f\<^sub>1)"}\\
+ @{term "simp_ALT (r\<^sub>1, f\<^sub>1) (r\<^sub>2, f\<^sub>2)"} & $\dn$ & @{term "(ALT r\<^sub>1 r\<^sub>2, F_ALT f\<^sub>1 f\<^sub>2)"}\\
+ @{term "simp_SEQ (ONE, f\<^sub>1) (r\<^sub>2, f\<^sub>2)"} & $\dn$ & @{term "(r\<^sub>2, F_SEQ1 f\<^sub>1 f\<^sub>2)"}\\
+ @{term "simp_SEQ (r\<^sub>1, f\<^sub>1) (ONE, f\<^sub>2)"} & $\dn$ & @{term "(r\<^sub>1, F_SEQ2 f\<^sub>1 f\<^sub>2)"}\\
+ @{term "simp_SEQ (r\<^sub>1, f\<^sub>1) (r\<^sub>2, f\<^sub>2)"} & $\dn$ & @{term "(SEQ r\<^sub>1 r\<^sub>2, F_SEQ f\<^sub>1 f\<^sub>2)"}\\
+ \end{tabular}
+ \end{center}
+
+ \noindent
+ The functions \<open>simp\<^bsub>Alt\<^esub>\<close> and \<open>simp\<^bsub>Seq\<^esub>\<close> encode the simplification rules
+ in \eqref{Simpl} and compose the rectification functions (simplifications can occur
+ deep inside the regular expression). The main simplification function is then
+
+ \begin{center}
+ \begin{tabular}{lcl}
+ @{term "simp (ALT r\<^sub>1 r\<^sub>2)"} & $\dn$ & @{term "simp_ALT (simp r\<^sub>1) (simp r\<^sub>2)"}\\
+ @{term "simp (SEQ r\<^sub>1 r\<^sub>2)"} & $\dn$ & @{term "simp_SEQ (simp r\<^sub>1) (simp r\<^sub>2)"}\\
+ @{term "simp r"} & $\dn$ & @{term "(r, id)"}\\
+ \end{tabular}
+ \end{center}
+
+ \noindent where @{term "id"} stands for the identity function. The
+ function @{const simp} returns a simplified regular expression and a corresponding
+ rectification function. Note that we do not simplify under stars: this
+ seems to slow down the algorithm, rather than speed it up. The optimised
+ lexer is then given by the clauses:
+
+ \begin{center}
+ \begin{tabular}{lcl}
+ @{thm (lhs) slexer.simps(1)} & $\dn$ & @{thm (rhs) slexer.simps(1)}\\
+ @{thm (lhs) slexer.simps(2)} & $\dn$ &
+ \<open>let (r\<^sub>s, f\<^sub>r) = simp (r \<close>$\backslash$\<open> c) in\<close>\\
+ & & \<open>case\<close> @{term "slexer r\<^sub>s s"} \<open>of\<close>\\
+ & & \phantom{$|$} @{term "None"} \<open>\<Rightarrow>\<close> @{term None}\\
+ & & $|$ @{term "Some v"} \<open>\<Rightarrow>\<close> \<open>Some (inj r c (f\<^sub>r v))\<close>
+ \end{tabular}
+ \end{center}
+
+ \noindent
+ In the second clause we first calculate the derivative @{term "der c r"}
+ and then simpli
+
+text \<open>
+
+Incremental calculation of the value. To simplify the proof we first define the function
+@{const flex} which calculates the ``iterated'' injection function. With this we can
+rewrite the lexer as
+
+\begin{center}
+@{thm lexer_flex}
+\end{center}
+
+\begin{center}
+ \begin{tabular}{lcl}
+ @{thm (lhs) code.simps(1)} & $\dn$ & @{thm (rhs) code.simps(1)}\\
+ @{thm (lhs) code.simps(2)} & $\dn$ & @{thm (rhs) code.simps(2)}\\
+ @{thm (lhs) code.simps(3)} & $\dn$ & @{thm (rhs) code.simps(3)}\\
+ @{thm (lhs) code.simps(4)} & $\dn$ & @{thm (rhs) code.simps(4)}\\
+ @{thm (lhs) code.simps(5)[of "v\<^sub>1" "v\<^sub>2"]} & $\dn$ & @{thm (rhs) code.simps(5)[of "v\<^sub>1" "v\<^sub>2"]}\\
+ @{thm (lhs) code.simps(6)} & $\dn$ & @{thm (rhs) code.simps(6)}\\
+ @{thm (lhs) code.simps(7)} & $\dn$ & @{thm (rhs) code.simps(7)}
+\end{tabular}
+\end{center}
+
+\begin{center}
+\begin{tabular}{lcl}
+ @{term areg} & $::=$ & @{term "AZERO"}\\
+ & $\mid$ & @{term "AONE bs"}\\
+ & $\mid$ & @{term "ACHAR bs c"}\\
+ & $\mid$ & @{term "AALT bs r1 r2"}\\
+ & $\mid$ & @{term "ASEQ bs r\<^sub>1 r\<^sub>2"}\\
+ & $\mid$ & @{term "ASTAR bs r"}
+\end{tabular}
+\end{center}
+
+
+\begin{center}
+ \begin{tabular}{lcl}
+ @{thm (lhs) intern.simps(1)} & $\dn$ & @{thm (rhs) intern.simps(1)}\\
+ @{thm (lhs) intern.simps(2)} & $\dn$ & @{thm (rhs) intern.simps(2)}\\
+ @{thm (lhs) intern.simps(3)} & $\dn$ & @{thm (rhs) intern.simps(3)}\\
+ @{thm (lhs) intern.simps(4)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) intern.simps(4)[of "r\<^sub>1" "r\<^sub>2"]}\\
+ @{thm (lhs) intern.simps(5)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) intern.simps(5)[of "r\<^sub>1" "r\<^sub>2"]}\\
+ @{thm (lhs) intern.simps(6)} & $\dn$ & @{thm (rhs) intern.simps(6)}\\
+\end{tabular}
+\end{center}
+
+\begin{center}
+ \begin{tabular}{lcl}
+ @{thm (lhs) erase.simps(1)} & $\dn$ & @{thm (rhs) erase.simps(1)}\\
+ @{thm (lhs) erase.simps(2)[of bs]} & $\dn$ & @{thm (rhs) erase.simps(2)[of bs]}\\
+ @{thm (lhs) erase.simps(3)[of bs]} & $\dn$ & @{thm (rhs) erase.simps(3)[of bs]}\\
+ @{thm (lhs) erase.simps(4)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) erase.simps(4)[of bs "r\<^sub>1" "r\<^sub>2"]}\\
+ @{thm (lhs) erase.simps(5)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) erase.simps(5)[of bs "r\<^sub>1" "r\<^sub>2"]}\\
+ @{thm (lhs) erase.simps(6)[of bs]} & $\dn$ & @{thm (rhs) erase.simps(6)[of bs]}\\
+\end{tabular}
+\end{center}
+
+Some simple facts about erase
+
+\begin{lemma}\mbox{}\\
+@{thm erase_bder}\\
+@{thm erase_intern}
+\end{lemma}
+
+\begin{center}
+ \begin{tabular}{lcl}
+ @{thm (lhs) bnullable.simps(1)} & $\dn$ & @{thm (rhs) bnullable.simps(1)}\\
+ @{thm (lhs) bnullable.simps(2)} & $\dn$ & @{thm (rhs) bnullable.simps(2)}\\
+ @{thm (lhs) bnullable.simps(3)} & $\dn$ & @{thm (rhs) bnullable.simps(3)}\\
+ @{thm (lhs) bnullable.simps(4)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) bnullable.simps(4)[of bs "r\<^sub>1" "r\<^sub>2"]}\\
+ @{thm (lhs) bnullable.simps(5)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) bnullable.simps(5)[of bs "r\<^sub>1" "r\<^sub>2"]}\\
+ @{thm (lhs) bnullable.simps(6)} & $\dn$ & @{thm (rhs) bnullable.simps(6)}\medskip\\
+
+% \end{tabular}
+% \end{center}
+
+% \begin{center}
+% \begin{tabular}{lcl}
+
+ @{thm (lhs) bder.simps(1)} & $\dn$ & @{thm (rhs) bder.simps(1)}\\
+ @{thm (lhs) bder.simps(2)} & $\dn$ & @{thm (rhs) bder.simps(2)}\\
+ @{thm (lhs) bder.simps(3)} & $\dn$ & @{thm (rhs) bder.simps(3)}\\
+ @{thm (lhs) bder.simps(4)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) bder.simps(4)[of bs "r\<^sub>1" "r\<^sub>2"]}\\
+ @{thm (lhs) bder.simps(5)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) bder.simps(5)[of bs "r\<^sub>1" "r\<^sub>2"]}\\
+ @{thm (lhs) bder.simps(6)} & $\dn$ & @{thm (rhs) bder.simps(6)}
+ \end{tabular}
+ \end{center}
+
+
+\begin{center}
+ \begin{tabular}{lcl}
+ @{thm (lhs) bmkeps.simps(1)} & $\dn$ & @{thm (rhs) bmkeps.simps(1)}\\
+ @{thm (lhs) bmkeps.simps(2)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) bmkeps.simps(2)[of bs "r\<^sub>1" "r\<^sub>2"]}\\
+ @{thm (lhs) bmkeps.simps(3)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) bmkeps.simps(3)[of bs "r\<^sub>1" "r\<^sub>2"]}\\
+ @{thm (lhs) bmkeps.simps(4)} & $\dn$ & @{thm (rhs) bmkeps.simps(4)}\medskip\\
+\end{tabular}
+\end{center}
+
+
+@{thm [mode=IfThen] bder_retrieve}
+
+By induction on \<open>r\<close>
+
+\begin{theorem}[Main Lemma]\mbox{}\\
+@{thm [mode=IfThen] MAIN_decode}
+\end{theorem}
+
+\noindent
+Definition of the bitcoded lexer
+
+@{thm blexer_def}
+
+
+\begin{theorem}
+@{thm blexer_correctness}
+\end{theorem}
+
+\<close>
+
+section \<open>Optimisations\<close>
+
+text \<open>
+
+ Derivatives as calculated by \Brz's method are usually more complex
+ regular expressions than the initial one; the result is that the
+ derivative-based matching and lexing algorithms are often abysmally slow.
+ However, various optimisations are possible, such as the simplifications
+ of @{term "ALT ZERO r"}, @{term "ALT r ZERO"}, @{term "SEQ ONE r"} and
+ @{term "SEQ r ONE"} to @{term r}. These simplifications can speed up the
+ algorithms considerably, as noted in \cite{Sulzmann2014}. One of the
+ advantages of having a simple specification and correctness proof is that
+ the latter can be refined to prove the correctness of such simplification
+ steps. While the simplification of regular expressions according to
+ rules like
+
+ \begin{equation}\label{Simpl}
+ \begin{array}{lcllcllcllcl}
+ @{term "ALT ZERO r"} & \<open>\<Rightarrow>\<close> & @{term r} \hspace{8mm}%\\
+ @{term "ALT r ZERO"} & \<open>\<Rightarrow>\<close> & @{term r} \hspace{8mm}%\\
+ @{term "SEQ ONE r"} & \<open>\<Rightarrow>\<close> & @{term r} \hspace{8mm}%\\
+ @{term "SEQ r ONE"} & \<open>\<Rightarrow>\<close> & @{term r}
+ \end{array}
+ \end{equation}
+
+ \noindent is well understood, there is an obstacle with the POSIX value
+ calculation algorithm by Sulzmann and Lu: if we build a derivative regular
+ expression and then simplify it, we will calculate a POSIX value for this
+ simplified derivative regular expression, \emph{not} for the original (unsimplified)
+ derivative regular expression. Sulzmann and Lu \cite{Sulzmann2014} overcome this obstacle by
+ not just calculating a simplified regular expression, but also calculating
+ a \emph{rectification function} that ``repairs'' the incorrect value.
+
+ The rectification functions can be (slightly clumsily) implemented in
+ Isabelle/HOL as follows using some auxiliary functions:
+
+ \begin{center}
+ \begin{tabular}{lcl}
+ @{thm (lhs) F_RIGHT.simps(1)} & $\dn$ & \<open>Right (f v)\<close>\\
+ @{thm (lhs) F_LEFT.simps(1)} & $\dn$ & \<open>Left (f v)\<close>\\
+
+ @{thm (lhs) F_ALT.simps(1)} & $\dn$ & \<open>Right (f\<^sub>2 v)\<close>\\
+ @{thm (lhs) F_ALT.simps(2)} & $\dn$ & \<open>Left (f\<^sub>1 v)\<close>\\
+
+ @{thm (lhs) F_SEQ1.simps(1)} & $\dn$ & \<open>Seq (f\<^sub>1 ()) (f\<^sub>2 v)\<close>\\
+ @{thm (lhs) F_SEQ2.simps(1)} & $\dn$ & \<open>Seq (f\<^sub>1 v) (f\<^sub>2 ())\<close>\\
+ @{thm (lhs) F_SEQ.simps(1)} & $\dn$ & \<open>Seq (f\<^sub>1 v\<^sub>1) (f\<^sub>2 v\<^sub>2)\<close>\medskip\\
+ %\end{tabular}
+ %
+ %\begin{tabular}{lcl}
+ @{term "simp_ALT (ZERO, DUMMY) (r\<^sub>2, f\<^sub>2)"} & $\dn$ & @{term "(r\<^sub>2, F_RIGHT f\<^sub>2)"}\\
+ @{term "simp_ALT (r\<^sub>1, f\<^sub>1) (ZERO, DUMMY)"} & $\dn$ & @{term "(r\<^sub>1, F_LEFT f\<^sub>1)"}\\
+ @{term "simp_ALT (r\<^sub>1, f\<^sub>1) (r\<^sub>2, f\<^sub>2)"} & $\dn$ & @{term "(ALT r\<^sub>1 r\<^sub>2, F_ALT f\<^sub>1 f\<^sub>2)"}\\
+ @{term "simp_SEQ (ONE, f\<^sub>1) (r\<^sub>2, f\<^sub>2)"} & $\dn$ & @{term "(r\<^sub>2, F_SEQ1 f\<^sub>1 f\<^sub>2)"}\\
+ @{term "simp_SEQ (r\<^sub>1, f\<^sub>1) (ONE, f\<^sub>2)"} & $\dn$ & @{term "(r\<^sub>1, F_SEQ2 f\<^sub>1 f\<^sub>2)"}\\
+ @{term "simp_SEQ (r\<^sub>1, f\<^sub>1) (r\<^sub>2, f\<^sub>2)"} & $\dn$ & @{term "(SEQ r\<^sub>1 r\<^sub>2, F_SEQ f\<^sub>1 f\<^sub>2)"}\\
+ \end{tabular}
+ \end{center}
+
+ \noindent
+ The functions \<open>simp\<^bsub>Alt\<^esub>\<close> and \<open>simp\<^bsub>Seq\<^esub>\<close> encode the simplification rules
+ in \eqref{Simpl} and compose the rectification functions (simplifications can occur
+ deep inside the regular expression). The main simplification function is then
+
+ \begin{center}
+ \begin{tabular}{lcl}
+ @{term "simp (ALT r\<^sub>1 r\<^sub>2)"} & $\dn$ & @{term "simp_ALT (simp r\<^sub>1) (simp r\<^sub>2)"}\\
+ @{term "simp (SEQ r\<^sub>1 r\<^sub>2)"} & $\dn$ & @{term "simp_SEQ (simp r\<^sub>1) (simp r\<^sub>2)"}\\
+ @{term "simp r"} & $\dn$ & @{term "(r, id)"}\\
+ \end{tabular}
+ \end{center}
+
+ \noindent where @{term "id"} stands for the identity function. The
+ function @{const simp} returns a simplified regular expression and a corresponding
+ rectification function. Note that we do not simplify under stars: this
+ seems to slow down the algorithm, rather than speed it up. The optimised
+ lexer is then given by the clauses:
+
+ \begin{center}
+ \begin{tabular}{lcl}
+ @{thm (lhs) slexer.simps(1)} & $\dn$ & @{thm (rhs) slexer.simps(1)}\\
+ @{thm (lhs) slexer.simps(2)} & $\dn$ &
+ \<open>let (r\<^sub>s, f\<^sub>r) = simp (r \<close>$\backslash$\<open> c) in\<close>\\
+ & & \<open>case\<close> @{term "slexer r\<^sub>s s"} \<open>of\<close>\\
+ & & \phantom{$|$} @{term "None"} \<open>\<Rightarrow>\<close> @{term None}\\
+ & & $|$ @{term "Some v"} \<open>\<Rightarrow>\<close> \<open>Some (inj r c (f\<^sub>r v))\<close>
+ \end{tabular}
+ \end{center}
+
+ \noindent
+ In the second clause we first calculate the derivative @{term "der c r"}
+ and then simplify the result. This gives us a simplified derivative
+ \<open>r\<^sub>s\<close> and a rectification function \<open>f\<^sub>r\<close>. The lexer
+ is then recursively called with the simplified derivative, but before
+ we inject the character @{term c} into the value @{term v}, we need to rectify
+ @{term v} (that is construct @{term "f\<^sub>r v"}). Before we can establish the correctness
+ of @{term "slexer"}, we need to show that simplification preserves the language
+ and simplification preserves our POSIX relation once the value is rectified
+ (recall @{const "simp"} generates a (regular expression, rectification function) pair):
+
+ \begin{lemma}\mbox{}\smallskip\\\label{slexeraux}
+ \begin{tabular}{ll}
+ (1) & @{thm L_fst_simp[symmetric]}\\
+ (2) & @{thm[mode=IfThen] Posix_simp}
+ \end{tabular}
+ \end{lemma}
+
+ \begin{proof} Both are by induction on \<open>r\<close>. There is no
+ interesting case for the first statement. For the second statement,
+ of interest are the @{term "r = ALT r\<^sub>1 r\<^sub>2"} and @{term "r = SEQ r\<^sub>1
+ r\<^sub>2"} cases. In each case we have to analyse four subcases whether
+ @{term "fst (simp r\<^sub>1)"} and @{term "fst (simp r\<^sub>2)"} equals @{const
+ ZERO} (respectively @{const ONE}). For example for @{term "r = ALT
+ r\<^sub>1 r\<^sub>2"}, consider the subcase @{term "fst (simp r\<^sub>1) = ZERO"} and
+ @{term "fst (simp r\<^sub>2) \<noteq> ZERO"}. By assumption we know @{term "s \<in>
+ fst (simp (ALT r\<^sub>1 r\<^sub>2)) \<rightarrow> v"}. From this we can infer @{term "s \<in> fst (simp r\<^sub>2) \<rightarrow> v"}
+ and by IH also (*) @{term "s \<in> r\<^sub>2 \<rightarrow> (snd (simp r\<^sub>2) v)"}. Given @{term "fst (simp r\<^sub>1) = ZERO"}
+ we know @{term "L (fst (simp r\<^sub>1)) = {}"}. By the first statement
+ @{term "L r\<^sub>1"} is the empty set, meaning (**) @{term "s \<notin> L r\<^sub>1"}.
+ Taking (*) and (**) together gives by the \mbox{\<open>P+R\<close>}-rule
+ @{term "s \<in> ALT r\<^sub>1 r\<^sub>2 \<rightarrow> Right (snd (simp r\<^sub>2) v)"}. In turn this
+ gives @{term "s \<in> ALT r\<^sub>1 r\<^sub>2 \<rightarrow> snd (simp (ALT r\<^sub>1 r\<^sub>2)) v"} as we need to show.
+ The other cases are similar.\qed
+ \end{proof}
+
+ \noindent We can now prove relatively straightforwardly that the
+ optimised lexer produces the expected result:
+
+ \begin{theorem}
+ @{thm slexer_correctness}
+ \end{theorem}
+
+ \begin{proof} By induction on @{term s} generalising over @{term
+ r}. The case @{term "[]"} is trivial. For the cons-case suppose the
+ string is of the form @{term "c # s"}. By induction hypothesis we
+ know @{term "slexer r s = lexer r s"} holds for all @{term r} (in
+ particular for @{term "r"} being the derivative @{term "der c
+ r"}). Let @{term "r\<^sub>s"} be the simplified derivative regular expression, that is @{term
+ "fst (simp (der c r))"}, and @{term "f\<^sub>r"} be the rectification
+ function, that is @{term "snd (simp (der c r))"}. We distinguish the cases
+ whether (*) @{term "s \<in> L (der c r)"} or not. In the first case we
+ have by Theorem~\ref{lexercorrect}(2) a value @{term "v"} so that @{term
+ "lexer (der c r) s = Some v"} and @{term "s \<in> der c r \<rightarrow> v"} hold.
+ By Lemma~\ref{slexeraux}(1) we can also infer from~(*) that @{term "s
+ \<in> L r\<^sub>s"} holds. Hence we know by Theorem~\ref{lexercorrect}(2) that
+ there exists a @{term "v'"} with @{term "lexer r\<^sub>s s = Some v'"} and
+ @{term "s \<in> r\<^sub>s \<rightarrow> v'"}. From the latter we know by
+ Lemma~\ref{slexeraux}(2) that @{term "s \<in> der c r \<rightarrow> (f\<^sub>r v')"} holds.
+ By the uniqueness of the POSIX relation (Theorem~\ref{posixdeterm}) we
+ can infer that @{term v} is equal to @{term "f\<^sub>r v'"}---that is the
+ rectification function applied to @{term "v'"}
+ produces the original @{term "v"}. Now the case follows by the
+ definitions of @{const lexer} and @{const slexer}.
+
+ In the second case where @{term "s \<notin> L (der c r)"} we have that
+ @{term "lexer (der c r) s = None"} by Theorem~\ref{lexercorrect}(1). We
+ also know by Lemma~\ref{slexeraux}(1) that @{term "s \<notin> L r\<^sub>s"}. Hence
+ @{term "lexer r\<^sub>s s = None"} by Theorem~\ref{lexercorrect}(1) and
+ by IH then also @{term "slexer r\<^sub>s s = None"}. With this we can
+ conclude in this case too.\qed
+
+ \end{proof}
+
+\<close>
+fy the result. This gives us a simplified derivative
+ \<open>r\<^sub>s\<close> and a rectification function \<open>f\<^sub>r\<close>. The lexer
+ is then recursively called with the simplified derivative, but before
+ we inject the character @{term c} into the value @{term v}, we need to rectify
+ @{term v} (that is construct @{term "f\<^sub>r v"}). Before we can establish the correctness
+ of @{term "slexer"}, we need to show that simplification preserves the language
+ and simplification preserves our POSIX relation once the value is rectified
+ (recall @{const "simp"} generates a (regular expression, rectification function) pair):
+
+ \begin{lemma}\mbox{}\smallskip\\\label{slexeraux}
+ \begin{tabular}{ll}
+ (1) & @{thm L_fst_simp[symmetric]}\\
+ (2) & @{thm[mode=IfThen] Posix_simp}
+ \end{tabular}
+ \end{lemma}
+
+ \begin{proof} Both are by induction on \<open>r\<close>. There is no
+ interesting case for the first statement. For the second statement,
+ of interest are the @{term "r = ALT r\<^sub>1 r\<^sub>2"} and @{term "r = SEQ r\<^sub>1
+ r\<^sub>2"} cases. In each case we have to analyse four subcases whether
+ @{term "fst (simp r\<^sub>1)"} and @{term "fst (simp r\<^sub>2)"} equals @{const
+ ZERO} (respectively @{const ONE}). For example for @{term "r = ALT
+ r\<^sub>1 r\<^sub>2"}, consider the subcase @{term "fst (simp r\<^sub>1) = ZERO"} and
+ @{term "fst (simp r\<^sub>2) \<noteq> ZERO"}. By assumption we know @{term "s \<in>
+ fst (simp (ALT r\<^sub>1 r\<^sub>2)) \<rightarrow> v"}. From this we can infer @{term "s \<in> fst (simp r\<^sub>2) \<rightarrow> v"}
+ and by IH also (*) @{term "s \<in> r\<^sub>2 \<rightarrow> (snd (simp r\<^sub>2) v)"}. Given @{term "fst (simp r\<^sub>1) = ZERO"}
+ we know @{term "L (fst (simp r\<^sub>1)) = {}"}. By the first statement
+ @{term "L r\<^sub>1"} is the empty set, meaning (**) @{term "s \<notin> L r\<^sub>1"}.
+ Taking (*) and (**) together gives by the \mbox{\<open>P+R\<close>}-rule
+ @{term "s \<in> ALT r\<^sub>1 r\<^sub>2 \<rightarrow> Right (snd (simp r\<^sub>2) v)"}. In turn this
+ gives @{term "s \<in> ALT r\<^sub>1 r\<^sub>2 \<rightarrow> snd (simp (ALT r\<^sub>1 r\<^sub>2)) v"} as we need to show.
+ The other cases are similar.\qed
+ \end{proof}
+
+ \noindent We can now prove relatively straightforwardly that the
+ optimised lexer produces the expected result:
+
+ \begin{theorem}
+ @{thm slexer_correctness}
+ \end{theorem}
+
+ \begin{proof} By induction on @{term s} generalising over @{term
+ r}. The case @{term "[]"} is trivial. For the cons-case suppose the
+ string is of the form @{term "c # s"}. By induction hypothesis we
+ know @{term "slexer r s = lexer r s"} holds for all @{term r} (in
+ particular for @{term "r"} being the derivative @{term "der c
+ r"}). Let @{term "r\<^sub>s"} be the simplified derivative regular expression, that is @{term
+ "fst (simp (der c r))"}, and @{term "f\<^sub>r"} be the rectification
+ function, that is @{term "snd (simp (der c r))"}. We distinguish the cases
+ whether (*) @{term "s \<in> L (der c r)"} or not. In the first case we
+ have by Theorem~\ref{lexercorrect}(2) a value @{term "v"} so that @{term
+ "lexer (der c r) s = Some v"} and @{term "s \<in> der c r \<rightarrow> v"} hold.
+ By Lemma~\ref{slexeraux}(1) we can also infer from~(*) that @{term "s
+ \<in> L r\<^sub>s"} holds. Hence we know by Theorem~\ref{lexercorrect}(2) that
+ there exists a @{term "v'"} with @{term "lexer r\<^sub>s s = Some v'"} and
+ @{term "s \<in> r\<^sub>s \<rightarrow> v'"}. From the latter we know by
+ Lemma~\ref{slexeraux}(2) that @{term "s \<in> der c r \<rightarrow> (f\<^sub>r v')"} holds.
+ By the uniqueness of the POSIX relation (Theorem~\ref{posixdeterm}) we
+ can infer that @{term v} is equal to @{term "f\<^sub>r v'"}---that is the
+ rectification function applied to @{term "v'"}
+ produces the original @{term "v"}. Now the case follows by the
+ definitions of @{const lexer} and @{const slexer}.
+
+ In the second case where @{term "s \<notin> L (der c r)"} we have that
+ @{term "lexer (der c r) s = None"} by Theorem~\ref{lexercorrect}(1). We
+ also know by Lemma~\ref{slexeraux}(1) that @{term "s \<notin> L r\<^sub>s"}. Hence
+ @{term "lexer r\<^sub>s s = None"} by Theorem~\ref{lexercorrect}(1) and
+ by IH then also @{term "slexer r\<^sub>s s = None"}. With this we can
+ conclude in this case too.\qed
+
+ \end{proof}
+
+\<close>
+
+
+section \<open>HERE\<close>
+
+text \<open>
+
+ \begin{lemma}
+ @{thm [mode=IfThen] bder_retrieve}
+ \end{lemma}
+
+ \begin{proof}
+ By induction on the definition of @{term "erase r"}. The cases for rule 1) and 2) are
+ straightforward as @{term "der c ZERO"} and @{term "der c ONE"} are both equal to
+ @{term ZERO}. This means @{term "\<Turnstile> v : ZERO"} cannot hold. Similarly in case of rule 3)
+ where @{term r} is of the form @{term "ACHAR d"} with @{term "c = d"}. Then by assumption
+ we know @{term "\<Turnstile> v : ONE"}, which implies @{term "v = Void"}. The equation follows by
+ simplification of left- and right-hand side. In case @{term "c \<noteq> d"} we have again
+ @{term "\<Turnstile> v : ZERO"}, which cannot hold.
+
+ For rule 4a) we have again @{term "\<Turnstile> v : ZERO"}. The property holds by IH for rule 4b).
+ The induction hypothesis is
+ \[
+ @{term "retrieve (bder c r) v = retrieve r (injval (erase r) c v)"}
+ \]
+ which is what left- and right-hand side simplify to. The slightly more interesting case
+ is for 4c). By assumption we have
+ @{term "\<Turnstile> v : ALT (der c (erase r\<^sub>1)) (der c (erase (AALTs bs (r\<^sub>2 # rs))))"}. This means we
+ have either (*) @{term "\<Turnstile> v1 : der c (erase r\<^sub>1)"} with @{term "v = Left v1"} or
+ (**) @{term "\<Turnstile> v2 : der c (erase (AALTs bs (r\<^sub>2 # rs)))"} with @{term "v = Right v2"}.
+ The former case is straightforward by simplification. The second case is \ldots TBD.
+
+ Rule 5) TBD.
+
+ Finally for rule 6) the reasoning is as follows: By assumption we have
+ @{term "\<Turnstile> v : SEQ (der c (erase r)) (STAR (erase r))"}. This means we also have
+ @{term "v = Seq v1 v2"}, @{term "\<Turnstile> v1 : der c (erase r)"} and @{term "v2 = Stars vs"}.
+ We want to prove
+ \begin{align}
+ & @{term "retrieve (ASEQ bs (fuse [Z] (bder c r)) (ASTAR [] r)) v"}\\
+ &= @{term "retrieve (ASTAR bs r) (injval (STAR (erase r)) c v)"}
+ \end{align}
+ The right-hand side @{term inj}-expression is equal to
+ @{term "Stars (injval (erase r) c v1 # vs)"}, which means the @{term retrieve}-expression
+ simplifies to
+ \[
+ @{term "bs @ [Z] @ retrieve r (injval (erase r) c v1) @ retrieve (ASTAR [] r) (Stars vs)"}
+ \]
+ The left-hand side (3) above simplifies to
+ \[
+ @{term "bs @ retrieve (fuse [Z] (bder c r)) v1 @ retrieve (ASTAR [] r) (Stars vs)"}
+ \]
+ We can move out the @{term "fuse [Z]"} and then use the IH to show that left-hand side
+ and right-hand side are equal. This completes the proof.
+ \end{proof}
+
+
+
+ \bibliographystyle{plain}
+ \bibliography{root}
+
+\<close>
+(*<*)
+end
+(*>*)
+
+
+
+(*
+
+\begin{center}
+ \begin{tabular}
+ @{thm[mode=Rule] aggressive.intros(1)[of "bs" "bs1" "rs" "r"]}
+ end{tabular}
+\end{center}
+
+
+
+\begin{center}
+ \begin{tabular}{lcl}
+ @{thm (lhs) code.simps(1)} & $\dn$ & @{thm (rhs) code.simps(1)}\\
+ @{thm (lhs) code.simps(2)} & $\dn$ & @{thm (rhs) code.simps(2)}\\
+ @{thm (lhs) code.simps(3)} & $\dn$ & @{thm (rhs) code.simps(3)}\\
+ @{thm (lhs) code.simps(4)} & $\dn$ & @{thm (rhs) code.simps(4)}\\
+ @{thm (lhs) code.simps(5)[of "v\<^sub>1" "v\<^sub>2"]} & $\dn$ & @{thm (rhs) code.simps(5)[of "v\<^sub>1" "v\<^sub>2"]}\\
+ @{thm (lhs) code.simps(6)} & $\dn$ & @{thm (rhs) code.simps(6)}\\
+ @{thm (lhs) code.simps(7)} & $\dn$ & @{thm (rhs) code.simps(7)}
+\end{tabular}
+\end{center}
+
+\begin{center}
+\begin{tabular}{lcl}
+ @{term areg} & $::=$ & @{term "AZERO"}\\
+ & $\mid$ & @{term "AONE bs"}\\
+ & $\mid$ & @{term "ACHAR bs c"}\\
+ & $\mid$ & @{term "AALT bs r1 r2"}\\
+ & $\mid$ & @{term "ASEQ bs r\<^sub>1 r\<^sub>2"}\\
+ & $\mid$ & @{term "ASTAR bs r"}
+\end{tabular}
+\end{center}
+
+
+\begin{center}
+ \begin{tabular}{lcl}
+ @{thm (lhs) intern.simps(1)} & $\dn$ & @{thm (rhs) intern.simps(1)}\\
+ @{thm (lhs) intern.simps(2)} & $\dn$ & @{thm (rhs) intern.simps(2)}\\
+ @{thm (lhs) intern.simps(3)} & $\dn$ & @{thm (rhs) intern.simps(3)}\\
+ @{thm (lhs) intern.simps(4)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) intern.simps(4)[of "r\<^sub>1" "r\<^sub>2"]}\\
+ @{thm (lhs) intern.simps(5)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) intern.simps(5)[of "r\<^sub>1" "r\<^sub>2"]}\\
+ @{thm (lhs) intern.simps(6)} & $\dn$ & @{thm (rhs) intern.simps(6)}\\
+\end{tabular}
+\end{center}
+
+\begin{center}
+ \begin{tabular}{lcl}
+ @{thm (lhs) erase.simps(1)} & $\dn$ & @{thm (rhs) erase.simps(1)}\\
+ @{thm (lhs) erase.simps(2)[of bs]} & $\dn$ & @{thm (rhs) erase.simps(2)[of bs]}\\
+ @{thm (lhs) erase.simps(3)[of bs]} & $\dn$ & @{thm (rhs) erase.simps(3)[of bs]}\\
+ @{thm (lhs) erase.simps(4)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) erase.simps(4)[of bs "r\<^sub>1" "r\<^sub>2"]}\\
+ @{thm (lhs) erase.simps(5)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) erase.simps(5)[of bs "r\<^sub>1" "r\<^sub>2"]}\\
+ @{thm (lhs) erase.simps(6)[of bs]} & $\dn$ & @{thm (rhs) erase.simps(6)[of bs]}\\
+\end{tabular}
+\end{center}
+
+Some simple facts about erase
+
+\begin{lemma}\mbox{}\\
+@{thm erase_bder}\\
+@{thm erase_intern}
+\end{lemma}
+
+\begin{center}
+ \begin{tabular}{lcl}
+ @{thm (lhs) bnullable.simps(1)} & $\dn$ & @{thm (rhs) bnullable.simps(1)}\\
+ @{thm (lhs) bnullable.simps(2)} & $\dn$ & @{thm (rhs) bnullable.simps(2)}\\
+ @{thm (lhs) bnullable.simps(3)} & $\dn$ & @{thm (rhs) bnullable.simps(3)}\\
+ @{thm (lhs) bnullable.simps(4)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) bnullable.simps(4)[of bs "r\<^sub>1" "r\<^sub>2"]}\\
+ @{thm (lhs) bnullable.simps(5)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) bnullable.simps(5)[of bs "r\<^sub>1" "r\<^sub>2"]}\\
+ @{thm (lhs) bnullable.simps(6)} & $\dn$ & @{thm (rhs) bnullable.simps(6)}\medskip\\
+
+% \end{tabular}
+% \end{center}
+
+% \begin{center}
+% \begin{tabular}{lcl}
+
+ @{thm (lhs) bder.simps(1)} & $\dn$ & @{thm (rhs) bder.simps(1)}\\
+ @{thm (lhs) bder.simps(2)} & $\dn$ & @{thm (rhs) bder.simps(2)}\\
+ @{thm (lhs) bder.simps(3)} & $\dn$ & @{thm (rhs) bder.simps(3)}\\
+ @{thm (lhs) bder.simps(4)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) bder.simps(4)[of bs "r\<^sub>1" "r\<^sub>2"]}\\
+ @{thm (lhs) bder.simps(5)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) bder.simps(5)[of bs "r\<^sub>1" "r\<^sub>2"]}\\
+ @{thm (lhs) bder.simps(6)} & $\dn$ & @{thm (rhs) bder.simps(6)}
+ \end{tabular}
+ \end{center}
+
+
+\begin{center}
+ \begin{tabular}{lcl}
+ @{thm (lhs) bmkeps.simps(1)} & $\dn$ & @{thm (rhs) bmkeps.simps(1)}\\
+ @{thm (lhs) bmkeps.simps(2)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) bmkeps.simps(2)[of bs "r\<^sub>1" "r\<^sub>2"]}\\
+ @{thm (lhs) bmkeps.simps(3)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) bmkeps.simps(3)[of bs "r\<^sub>1" "r\<^sub>2"]}\\
+ @{thm (lhs) bmkeps.simps(4)} & $\dn$ & @{thm (rhs) bmkeps.simps(4)}\medskip\\
+\end{tabular}
+\end{center}
+
+
+@{thm [mode=IfThen] bder_retrieve}
+
+By induction on \<open>r\<close>
+
+\begin{theorem}[Main Lemma]\mbox{}\\
+@{thm [mode=IfThen] MAIN_decode}
+\end{theorem}
+
+\noindent
+Definition of the bitcoded lexer
+
+@{thm blexer_def}
+
+
+\begin{theorem}
+@{thm blexer_correctness}
+\end{theorem}
+
+
+
+
+
+\begin{center}
+ \begin{tabular}{lcl}
+ @{thm (lhs) code.simps(1)} & $\dn$ & @{thm (rhs) code.simps(1)}\\
+ @{thm (lhs) code.simps(2)} & $\dn$ & @{thm (rhs) code.simps(2)}\\
+ @{thm (lhs) code.simps(3)} & $\dn$ & @{thm (rhs) code.simps(3)}\\
+ @{thm (lhs) code.simps(4)} & $\dn$ & @{thm (rhs) code.simps(4)}\\
+ @{thm (lhs) code.simps(5)[of "v\<^sub>1" "v\<^sub>2"]} & $\dn$ & @{thm (rhs) code.simps(5)[of "v\<^sub>1" "v\<^sub>2"]}\\
+ @{thm (lhs) code.simps(6)} & $\dn$ & @{thm (rhs) code.simps(6)}\\
+ @{thm (lhs) code.simps(7)} & $\dn$ & @{thm (rhs) code.simps(7)}
+\end{tabular}
+\end{center}
+
+\begin{center}
+\begin{tabular}{lcl}
+ @{term areg} & $::=$ & @{term "AZERO"}\\
+ & $\mid$ & @{term "AONE bs"}\\
+ & $\mid$ & @{term "ACHAR bs c"}\\
+ & $\mid$ & @{term "AALT bs r1 r2"}\\
+ & $\mid$ & @{term "ASEQ bs r\<^sub>1 r\<^sub>2"}\\
+ & $\mid$ & @{term "ASTAR bs r"}
+\end{tabular}
+\end{center}
+
+
+\begin{center}
+ \begin{tabular}{lcl}
+ @{thm (lhs) intern.simps(1)} & $\dn$ & @{thm (rhs) intern.simps(1)}\\
+ @{thm (lhs) intern.simps(2)} & $\dn$ & @{thm (rhs) intern.simps(2)}\\
+ @{thm (lhs) intern.simps(3)} & $\dn$ & @{thm (rhs) intern.simps(3)}\\
+ @{thm (lhs) intern.simps(4)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) intern.simps(4)[of "r\<^sub>1" "r\<^sub>2"]}\\
+ @{thm (lhs) intern.simps(5)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) intern.simps(5)[of "r\<^sub>1" "r\<^sub>2"]}\\
+ @{thm (lhs) intern.simps(6)} & $\dn$ & @{thm (rhs) intern.simps(6)}\\
+\end{tabular}
+\end{center}
+
+\begin{center}
+ \begin{tabular}{lcl}
+ @{thm (lhs) erase.simps(1)} & $\dn$ & @{thm (rhs) erase.simps(1)}\\
+ @{thm (lhs) erase.simps(2)[of bs]} & $\dn$ & @{thm (rhs) erase.simps(2)[of bs]}\\
+ @{thm (lhs) erase.simps(3)[of bs]} & $\dn$ & @{thm (rhs) erase.simps(3)[of bs]}\\
+ @{thm (lhs) erase.simps(4)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) erase.simps(4)[of bs "r\<^sub>1" "r\<^sub>2"]}\\
+ @{thm (lhs) erase.simps(5)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) erase.simps(5)[of bs "r\<^sub>1" "r\<^sub>2"]}\\
+ @{thm (lhs) erase.simps(6)[of bs]} & $\dn$ & @{thm (rhs) erase.simps(6)[of bs]}\\
+\end{tabular}
+\end{center}
+
+Some simple facts about erase
+
+\begin{lemma}\mbox{}\\
+@{thm erase_bder}\\
+@{thm erase_intern}
+\end{lemma}
+
+\begin{center}
+ \begin{tabular}{lcl}
+ @{thm (lhs) bnullable.simps(1)} & $\dn$ & @{thm (rhs) bnullable.simps(1)}\\
+ @{thm (lhs) bnullable.simps(2)} & $\dn$ & @{thm (rhs) bnullable.simps(2)}\\
+ @{thm (lhs) bnullable.simps(3)} & $\dn$ & @{thm (rhs) bnullable.simps(3)}\\
+ @{thm (lhs) bnullable.simps(4)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) bnullable.simps(4)[of bs "r\<^sub>1" "r\<^sub>2"]}\\
+ @{thm (lhs) bnullable.simps(5)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) bnullable.simps(5)[of bs "r\<^sub>1" "r\<^sub>2"]}\\
+ @{thm (lhs) bnullable.simps(6)} & $\dn$ & @{thm (rhs) bnullable.simps(6)}\medskip\\
+
+% \end{tabular}
+% \end{center}
+
+% \begin{center}
+% \begin{tabular}{lcl}
+
+ @{thm (lhs) bder.simps(1)} & $\dn$ & @{thm (rhs) bder.simps(1)}\\
+ @{thm (lhs) bder.simps(2)} & $\dn$ & @{thm (rhs) bder.simps(2)}\\
+ @{thm (lhs) bder.simps(3)} & $\dn$ & @{thm (rhs) bder.simps(3)}\\
+ @{thm (lhs) bder.simps(4)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) bder.simps(4)[of bs "r\<^sub>1" "r\<^sub>2"]}\\
+ @{thm (lhs) bder.simps(5)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) bder.simps(5)[of bs "r\<^sub>1" "r\<^sub>2"]}\\
+ @{thm (lhs) bder.simps(6)} & $\dn$ & @{thm (rhs) bder.simps(6)}
+ \end{tabular}
+ \end{center}
+
+
+\begin{center}
+ \begin{tabular}{lcl}
+ @{thm (lhs) bmkeps.simps(1)} & $\dn$ & @{thm (rhs) bmkeps.simps(1)}\\
+ @{thm (lhs) bmkeps.simps(2)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) bmkeps.simps(2)[of bs "r\<^sub>1" "r\<^sub>2"]}\\
+ @{thm (lhs) bmkeps.simps(3)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) bmkeps.simps(3)[of bs "r\<^sub>1" "r\<^sub>2"]}\\
+ @{thm (lhs) bmkeps.simps(4)} & $\dn$ & @{thm (rhs) bmkeps.simps(4)}\medskip\\
+\end{tabular}
+\end{center}
+
+
+@{thm [mode=IfThen] bder_retrieve}
+
+By induction on \<open>r\<close>
+
+\begin{theorem}[Main Lemma]\mbox{}\\
+@{thm [mode=IfThen] MAIN_decode}
+\end{theorem}
+
+\noindent
+Definition of the bitcoded lexer
+
+@{thm blexer_def}
+
+
+\begin{theorem}
+@{thm blexer_correctness}
+\end{theorem}
+
+\<close>
+\<close>*)
\ No newline at end of file
Binary file thys2/Journal/session_graph.pdf has changed