--- a/thys/Paper/Paper.thy Tue Mar 08 07:19:55 2016 +0000
+++ b/thys/Paper/Paper.thy Tue Mar 08 09:25:17 2016 +0000
@@ -903,15 +903,16 @@
\cite{Sulzmann2014} to be ``rigorous''. Since these are evidently not in
final form, we make no comment thereon, preferring to give general reasons
for our belief that the approach of \cite{Sulzmann2014} is problematic.
- Their central definition is an ``ordering relation''
+ Their central definition is an ``ordering relation'' defined by the
+ rules (slightly adapted to fit our notation):
\begin{center}
-\begin{tabular}{c@ {\hspace{5mm}}c}
+\begin{tabular}{@ {}c@ {\hspace{2mm}}c@ {}}
$\infer{v_{1} \posix_{r_{1}} v'_{1}}
{Seq\,v_{1}\,v_{2} \posix_{r_{1}r_{2}} Seq\,v'_{1}\,v'_{2}}(C2)$
&
$\infer{v_{2} \posix_{r_{2}} v'_{2}}
- {Seq\,v_{1}\,v_{2}) \posix_{r_{1}r_{2}} Seq\,v_{1}\,v'_{2}}(C1)$
+ {Seq\,v_{1}\,v_{2} \posix_{r_{1}r_{2}} Seq\,v_{1}\,v'_{2}}(C1)$
\medskip\\
@@ -929,14 +930,14 @@
{Left \; v_{1} \posix_{r_{1}+r_{2}} Left \; v'_{1}}(A4)$
\medskip\\
- $\infer{|v :: vs| = []} {[] \posix_{r^{\star}} v :: vs}(K1)$ &
- $\infer{|v :: vs| \neq []} { v :: vs \posix_{r^{\star}} []}(K2)$
+ $\infer{|v :: vs| = []} {Stars\,[] \posix_{r^{\star}} Stars\,(v :: vs)}(K1)$ &
+ $\infer{|v :: vs| \neq []} {Stars\,(v :: vs) \posix_{r^{\star}} Stars\,[]}(K2)$
\medskip\\
$\infer{ v_{1} \posix_{r} v_{2}}
- {v_{1} :: vs_{1} \posix_{r^{\star}} v_{2} :: vs_{2}}(K3)$ &
-$\infer{ vs_{1} \posix_{r^{\star}} vs_{2}}
- {v :: vs_{1} \posix_{r^{\star}} v :: vs_{2}}(K4)$
+ {Stars\,(v_{1} :: vs_{1}) \posix_{r^{\star}} Stars\,(v_{2} :: vs_{2})}(K3)$ &
+$\infer{ Stars\,vs_{1} \posix_{r^{\star}} Stars\,vs_{2}}
+ {Stars\,(v :: vs_{1}) \posix_{r^{\star}} Stars\,(v :: vs_{2})}(K4)$
\end{tabular}
\end{center}
Binary file thys/paper.pdf has changed