# HG changeset patch # User Christian Urban # Date 1422574748 0 # Node ID c33cfa1e813adf8997b3209b93b9251ac39e0a2a # Parent 38cde0214ad52359e189c4bd277736f9111a78db added some notes (still incomplete) diff -r 38cde0214ad5 -r c33cfa1e813a thys/Re1.thy --- a/thys/Re1.thy Thu Jan 29 09:05:40 2015 +0000 +++ b/thys/Re1.thy Thu Jan 29 23:39:08 2015 +0000 @@ -724,192 +724,19 @@ lemma t: "(c#xs = c#ys) \ xs = ys" by (metis list.sel(3)) -lemma Prf_proj: - assumes "v1 \r v2" "\ v1 : r" "\ v2 : r" "\s. (flat v1) = c # s" "\s. (flat v2) = c # s" - shows "(projval r c v1) \(der c r) (projval r c v2)" -using assms -apply(induct arbitrary: v1 v2 rule: der.induct) -apply(simp) -apply(erule ValOrd.cases) -apply(simp_all)[8] -apply(erule ValOrd.cases) -apply(simp_all)[8] -apply(case_tac "c = c'") -apply(simp) -apply (metis ValOrd.intros(7)) -apply(erule ValOrd.cases) -apply(simp_all)[8] -apply(simp) -apply(erule ValOrd.cases) -apply(simp_all)[8] -apply(erule Prf.cases) -apply(simp_all)[5] -apply(erule Prf.cases) -apply(simp_all)[5] -apply(clarify) -apply(rule ValOrd.intros) -apply(subst v4_proj2) -apply(simp) -apply(simp) -apply(subst v4_proj2) -apply(simp) -apply(simp) -apply(simp) -apply(clarify) -apply(erule Prf.cases) -apply(simp_all)[5] -apply(erule Prf.cases) -apply(simp_all)[5] -apply(clarify) -apply(rule ValOrd.intros) -apply(subst v4_proj2) -apply(simp) -apply(simp) -apply(subst v4_proj2) -apply(simp) -apply(simp) -apply(simp) -apply(clarify) -apply(erule Prf.cases) -apply(simp_all)[5] -apply(erule Prf.cases) -apply(simp_all)[5] -apply(clarify) -apply(rule ValOrd.intros) -apply metis -apply(clarify) -apply(erule Prf.cases) -apply(simp_all)[5] -apply(erule Prf.cases) -apply(simp_all)[5] -apply(clarify) -apply(rule ValOrd.intros) -apply metis -apply(clarify) -apply(simp) -apply(auto) -defer -apply(erule ValOrd.cases) -apply(simp_all)[8] -apply(auto)[1] -apply(erule Prf.cases) -apply(simp_all)[5] -apply(erule Prf.cases) -apply(simp_all)[5] -apply(clarify) -apply(simp) -apply (metis Prf_flat_L nullable_correctness) -apply(erule Prf.cases) -apply(simp_all)[5] -apply(erule Prf.cases) -apply(simp_all)[5] -apply(clarify) -apply(rule ValOrd.intros) -apply(simp) -apply(simp) -apply(auto)[1] -apply(erule Prf.cases) -apply(simp_all)[5] -apply(erule Prf.cases) -apply(simp_all)[5] -apply(clarify) -apply (metis Prf_flat_L nullable_correctness) -apply(erule Prf.cases) -apply(simp_all)[5] -apply(erule Prf.cases) -apply(simp_all)[5] -apply(clarify) -apply (metis Prf_flat_L nullable_correctness) -apply(erule Prf.cases) -apply(simp_all)[5] -apply(erule Prf.cases) -apply(simp_all)[5] -apply(clarify) -apply (metis Prf_flat_L nullable_correctness) -apply(erule Prf.cases) -apply(simp_all)[5] -apply(erule Prf.cases) -apply(simp_all)[5] -apply(clarify) -apply(rule ValOrd.intros(2)) -apply (metis append_Cons list.inject neq_Nil_conv) -apply(erule Prf.cases) -apply(simp_all)[5] -apply(erule Prf.cases) -apply(simp_all)[5] -apply(clarify) -apply(auto) -apply(erule ValOrd.cases) -apply(simp_all)[8] -apply(auto)[1] -apply(rule ValOrd.intros) -apply metis -apply(clarify) -apply(rule ValOrd.intros) - -apply(rule ValOrd.intros) -apply(simp) -apply(simp) -apply(auto)[1] -apply(erule Prf.cases) -apply(simp_all)[5] -apply(erule Prf.cases) -apply(simp_all)[5] -apply(clarify) -apply(rule ValOrd.intros) -defer -apply(erule Prf.cases) -apply(simp_all)[5] -apply(erule Prf.cases) -apply(simp_all)[5] -apply(clarify) -apply(simp add: append_eq_Cons_conv) -apply(clarify) -apply(rule ValOrd.intros) -apply(simp) -apply(subst v4_proj2) -apply(simp) -apply(simp) -apply(subst v4_proj2) -apply(simp) -apply(simp) - -apply(simp) - -apply (metis Prf_flat_L nullable_correctness) - - - - -apply(rule ValOrd.intros(2)) -apply(erule Prf.cases) -apply(simp_all)[5] -apply(erule Prf.cases) -apply(simp_all)[5] -apply(simp) -apply(erule ValOrd.cases) -apply(simp_all)[8] -apply(clarify) -apply(erule Prf.cases) -apply(simp_all)[5] -apply(erule Prf.cases) -apply(simp_all)[5] -apply(clarify) -apply(erule Prf.cases) -apply(simp_all)[5] -apply(clarify) -apply(simp) - lemma Prf_inj: assumes "v1 \(der c r) v2" "\ v1 : der c r" "\ v2 : der c r" shows "(injval r c v1) \r (injval r c v2)" using assms apply(induct arbitrary: v1 v2 rule: der.induct) +(* NULL case *) apply(simp) apply(erule ValOrd.cases) apply(simp_all)[8] +(* EMPTY case *) apply(erule ValOrd.cases) apply(simp_all)[8] +(* CHAR case *) apply(case_tac "c = c'") apply(simp) apply(erule ValOrd.cases) @@ -918,6 +745,7 @@ apply(simp) apply(erule ValOrd.cases) apply(simp_all)[8] +(* ALT case *) apply(simp) apply(erule ValOrd.cases) apply(simp_all)[8] @@ -956,6 +784,7 @@ apply(simp_all)[5] apply(erule Prf.cases) apply(simp_all)[5] +(* SEQ case*) apply(simp) apply(case_tac "nullable r1") defer @@ -976,10 +805,12 @@ apply(simp_all)[5] apply(erule Prf.cases) apply(simp_all)[5] +(* nullable case - unfinished *) apply(simp) apply(erule ValOrd.cases) apply(simp_all)[8] apply(clarify) +apply(simp) apply(erule Prf.cases) apply(simp_all)[5] apply(erule Prf.cases) @@ -994,10 +825,8 @@ apply(simp) apply (metis impossible_Cons le_add2 list.size(3) mkeps_flat monoid_add_class.add.right_neutral v4) apply(rule ValOrd.intros(2)) - -apply(rotate_tac 1) -apply(drule meta_mp) -apply(rule +apply(drule_tac x="proj r1 c" in spec) +oops lemma POSIX_der: assumes "POSIX v (der c r)" "\ v : der c r" @@ -1005,10 +834,10 @@ using assms unfolding POSIX_def apply(auto) +thm v4 apply(subst (asm) v4) apply(assumption) apply(drule_tac x="projval r c v'" in spec) -apply(drule mp) apply(auto) apply(rule v3_proj) apply(simp) diff -r 38cde0214ad5 -r c33cfa1e813a thys/notes.pdf Binary file thys/notes.pdf has changed diff -r 38cde0214ad5 -r c33cfa1e813a thys/notes.tex --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/thys/notes.tex Thu Jan 29 23:39:08 2015 +0000 @@ -0,0 +1,121 @@ +\documentclass[11pt]{article} + +\begin{document} + +\noindent +A lemma which might be true, but can also be false, is as follows: + +\begin{center} +\begin{tabular}{lll} +If & (1) & $v_1 \succ_{der\;c\;r} v_2$,\\ + & (2) & $\vdash v_1 : der\;c\;r$, and\\ + & (3) & $\vdash v_2 : der\;c\;r$ holds,\\ +then & & $inj\;r\;c\;v_1 \succ_r inj\;r\;c\;v_2$ also holds. +\end{tabular} +\end{center} + +\noindent It essentially states that if one value $v_1$ is +bigger than $v_2$ then this ordering is preserved under +injections. This is proved by induction (on the definition of +$der$\ldots this is very similar to an induction on $r$). +\bigskip + +\noindent +The case that is still unproved is the sequence case where we +assume $r = r_1\cdot r_2$ and also $r_1$ being nullable. +The derivative $der\;c\;r$ is then + +\begin{center} +$der\;c\;r = ((der\;c\;r_1) \cdot r_2) + (der\;c\;r_2)$ +\end{center} + +\noindent +or without the parentheses + +\begin{center} +$der\;c\;r = (der\;c\;r_1) \cdot r_2 + der\;c\;r_2$ +\end{center} + +\noindent +In this case the assumptions are + +\begin{center} +\begin{tabular}{ll} +(a) & $v_1 \succ_{(der\;c\;r_1) \cdot r_2 + der\;c\;r_2} v_2$\\ +(b) & $\vdash v_1 : (der\;c\;r_1) \cdot r_2 + der\;c\;r_2$\\ +(c) & $\vdash v_2 : (der\;c\;r_1) \cdot r_2 + der\;c\;r_2$\\ +(d) & $nullable(r_1)$ +\end{tabular} +\end{center} + +\noindent +The induction hypotheses are + +\begin{center} +\begin{tabular}{ll} +(IH1) & $\forall v_1 v_2.\;v_1 \succ_{der\;c\;r_1} v_2 +\;\wedge\; \vdash v_1 : der\;c\;r_1 \;\wedge\; +\vdash v_2 : der\;c\;r_1\qquad$\\ + & $\hfill\longrightarrow + inj\;r_1\;c\;v_1 \succ{r_1} \;inj\;r_1\;c\;v_2$\smallskip\\ +(IH2) & $\forall v_1 v_2.\;v_1 \succ_{der\;c\;r_2} v_2 +\;\wedge\; \vdash v_2 : der\;c\;r_2 \;\wedge\; +\vdash v_2 : der\;c\;r_2\qquad$\\ + & $\hfill\longrightarrow + inj\;r_2\;c\;v_1 \succ{r_2} \;inj\;r_2\;c\;v_2$\\ +\end{tabular} +\end{center} + +\noindent +The goal is + +\[ +(goal)\qquad +inj\; (r_1 \cdot r_2)\;c\;v_1 \succ_{r_1 \cdot r_2} +inj\; (r_1 \cdot r_2)\;c\;v_2 +\] + +\noindent +If we analyse how (a) could have arisen (that is make a case +distinction), then we will find four cases: + +\begin{center} +\begin{tabular}{ll} +LL & $v_1 = Left(w_1)$, $v_2 = Left(w_2)$\\ +LR & $v_1 = Left(w_1)$, $v_2 = Right(w_2)$\\ +RL & $v_1 = Right(w_1)$, $v_2 = Left(w_2)$\\ +RR & $v_1 = Right(w_1)$, $v_2 = Right(w_2)$\\ +\end{tabular} +\end{center} + + +\noindent +We have to establish our goal in all four cases. + + +\subsubsection*{Case LR} + +The corresponding rule (instantiated) is: + +\begin{center} +\begin{tabular}{c} +$len\,|w_1| \geq len\,|w_2|$\\ +\hline +$Left(w_1) \succ_{(der\;c\;r_1) \cdot r_2 + der\;c\;r_2} Right(w_2)$ +\end{tabular} +\end{center} + +\subsubsection*{Case RL} + +The corresponding rule (instantiated) is: + +\begin{center} +\begin{tabular}{c} +$len\,|w_1| > len\,|w_2|$\\ +\hline +$Right(w_1) \succ_{(der\;c\;r_1) \cdot r_2 + der\;c\;r_2} Left(w_2)$ +\end{tabular} +\end{center} + + +\end{document}