# HG changeset patch # User Christian Urban # Date 1423483990 0 # Node ID a6bb0152ccc2470b8ee881906a9ffe9872d146f2 # Parent 2cdbab0378617cadadeec9a564ce789335d4439f updated some rules diff -r 2cdbab037861 -r a6bb0152ccc2 progs/scala/re.scala --- a/progs/scala/re.scala Sat Jan 31 18:21:03 2015 +0000 +++ b/progs/scala/re.scala Mon Feb 09 12:13:10 2015 +0000 @@ -43,6 +43,27 @@ def $ (r: Rexp) = RECD(s, r) } +def pretty(r: Rexp) : String = r match { + case NULL => "0" + case EMPTY => "e" + case CHAR(c) => c.toString + case ALT(r1, r2) => "(" ++ pretty(r1) ++ " | " + pretty(r2) ++ ")" + case SEQ(r1, r2) => pretty(r1) ++ pretty(r2) + case STAR(r) => "(" ++ pretty(r) ++ ")*" + case RECD(x, r) => "(" ++ x ++ " : " ++ pretty(r) ++ ")" +} + +def vpretty(v: Val) : String = v match { + case Void => "()" + case Chr(c) => c.toString + case Left(v) => "Left(" ++ vpretty(v) ++ ")" + case Right(v) => "Right(" ++ vpretty(v) ++ ")" + case Sequ(v1, v2) => vpretty(v1) ++ " ~ " ++ vpretty(v2) + case Stars(vs) => vs.flatMap(vpretty).mkString("[", ",", "]") + case Rec(x, v) => "(" ++ x ++ ":" ++ vpretty(v) ++ ")" +} + + // size of a regular expressions - for testing purposes def size(r: Rexp) : Int = r match { case NULL => 1 @@ -59,7 +80,8 @@ case NULL => Set() case EMPTY => Set(Void) case CHAR(c) => Set(Chr(c)) - case ALT(r1, r2) => values(r1) ++ values(r2) + case ALT(r1, r2) => (for (v1 <- values(r1)) yield Left(v1)) ++ + (for (v2 <- values(r2)) yield Right(v2)) case SEQ(r1, r2) => for (v1 <- values(r1); v2 <- values(r2)) yield Sequ(v1, v2) case STAR(r) => Set(Void) ++ values(r) // to do more would cause the set to be infinite case RECD(_, r) => values(r) @@ -271,6 +293,18 @@ println(values(r2).mkString("\n")) println(values(r2).toList.map(flatten).mkString("\n")) +//Some experiments +//================ + +val reg0 = ("" | "a") ~ ("ab" | "b") +val reg1 = der('a', reg0) +val reg2 = der('b', reg1) +println(List(reg0, reg1, reg2).map(pretty).mkString("\n")) +println(lexing(reg0, "ab")) + +val val0 = values(reg0) +val val1 = values(reg1) +val val2 = values(reg2) // Two Simple Tests diff -r 2cdbab037861 -r a6bb0152ccc2 thys/Re1.thy --- a/thys/Re1.thy Sat Jan 31 18:21:03 2015 +0000 +++ b/thys/Re1.thy Mon Feb 09 12:13:10 2015 +0000 @@ -42,6 +42,20 @@ | "L (SEQ r1 r2) = (L r1) ;; (L r2)" | "L (ALT r1 r2) = (L r1) \ (L r2)" +fun + nullable :: "rexp \ bool" +where + "nullable (NULL) = False" +| "nullable (EMPTY) = True" +| "nullable (CHAR c) = False" +| "nullable (ALT r1 r2) = (nullable r1 \ nullable r2)" +| "nullable (SEQ r1 r2) = (nullable r1 \ nullable r2)" + +lemma nullable_correctness: + shows "nullable r \ [] \ (L r)" +apply (induct r) +apply(auto simp add: Sequ_def) +done section {* Values *} @@ -52,16 +66,6 @@ | Right val | Left val -section {* Relation between values and regular expressions *} - -inductive Prf :: "val \ rexp \ bool" ("\ _ : _" [100, 100] 100) -where - "\\ v1 : r1; \ v2 : r2\ \ \ Seq v1 v2 : SEQ r1 r2" -| "\ v1 : r1 \ \ Left v1 : ALT r1 r2" -| "\ v2 : r2 \ \ Right v2 : ALT r1 r2" -| "\ Void : EMPTY" -| "\ Char c : CHAR c" - section {* The string behind a value *} fun flat :: "val \ string" @@ -80,6 +84,44 @@ | "flats(Right v) = flats(v)" | "flats(Seq v1 v2) = (flats v1) @ (flats v2)" + +section {* Relation between values and regular expressions *} + +inductive Prf :: "val \ rexp \ bool" ("\ _ : _" [100, 100] 100) +where + "\\ v1 : r1; \ v2 : r2\ \ \ Seq v1 v2 : SEQ r1 r2" +| "\ v1 : r1 \ \ Left v1 : ALT r1 r2" +| "\ v2 : r2 \ \ Right v2 : ALT r1 r2" +| "\ Void : EMPTY" +| "\ Char c : CHAR c" + +fun mkeps :: "rexp \ val" +where + "mkeps(EMPTY) = Void" +| "mkeps(SEQ r1 r2) = Seq (mkeps r1) (mkeps r2)" +| "mkeps(ALT r1 r2) = (if nullable(r1) then Left (mkeps r1) else Right (mkeps r2))" + +lemma mkeps_nullable: + assumes "nullable(r)" shows "\ mkeps r : r" +using assms +apply(induct rule: nullable.induct) +apply(auto intro: Prf.intros) +done + + + +lemma mkeps_flat: + assumes "nullable(r)" shows "flat (mkeps r) = []" +using assms +apply(induct rule: nullable.induct) +apply(auto) +done + +text {* + The value mkeps returns is always the correct POSIX + value. +*} + lemma Prf_flat_L: assumes "\ v : r" shows "flat v \ L r" using assms @@ -108,8 +150,8 @@ inductive ValOrd :: "val \ rexp \ val \ bool" ("_ \_ _" [100, 100, 100] 100) where - "\v1 = v1'; v2 \r2 v2'\ \ (Seq v1 v2) \(SEQ r1 r2) (Seq v1' v2')" -| "v1 \r1 v1' \ (Seq v1 v2) \(SEQ r1 r2) (Seq v1' v2')" + "v2 \r2 v2' \ (Seq v1 v2) \(SEQ r1 r2) (Seq v1 v2')" +| "\v1 \r1 v1'; v1 \ v1'\ \ (Seq v1 v2) \(SEQ r1 r2) (Seq v1' v2')" | "length (flat v1) \ length (flat v2) \ (Left v1) \(ALT r1 r2) (Right v2)" | "length (flat v2) > length (flat v1) \ (Right v2) \(ALT r1 r2) (Left v1)" | "v2 \r2 v2' \ (Right v2) \(ALT r1 r2) (Right v2')" @@ -128,38 +170,32 @@ apply(auto intro: ValOrd.intros) done -lemma ValOrd_flats: - assumes "v1 \r v2" - shows "hd (flats v2) = hd (flats v1)" -using assms -apply(induct) -apply(auto) -oops - - section {* Posix definition *} definition POSIX :: "val \ rexp \ bool" where - "POSIX v r \ (\v'. (\ v' : r \ flat v = flat v') \ v \r v')" + "POSIX v r \ (\ v : r \ (\v'. (\ v' : r \ flat v = flat v') \ v \r v'))" (* an alternative definition: might cause problems with theorem mkeps_POSIX *) +(* definition POSIX2 :: "val \ rexp \ bool" where "POSIX2 v r \ \ v : r \ (\v'. \ v' : r \ v \r v')" +*) +(* definition POSIX3 :: "val \ rexp \ bool" where "POSIX3 v r \ \ v : r \ (\v'. (\ v' : r \ length (flat v') \ length(flat v)) \ v \r v')" - +*) -lemma POSIX_SEQ: +lemma POSIX_SEQ1: assumes "POSIX (Seq v1 v2) (SEQ r1 r2)" "\ v1 : r1" "\ v2 : r2" - shows "POSIX v1 r1 \ POSIX v2 r2" + shows "POSIX v1 r1" using assms unfolding POSIX_def apply(auto) @@ -172,7 +208,14 @@ apply(erule ValOrd.cases) apply(simp_all) apply(clarify) -defer +by (metis ValOrd_refl) + +lemma POSIX_SEQ2: + assumes "POSIX (Seq v1 v2) (SEQ r1 r2)" "\ v1 : r1" "\ v2 : r2" + shows "POSIX v2 r2" +using assms +unfolding POSIX_def +apply(auto) apply(drule_tac x="Seq v1 v'" in spec) apply(simp) apply(erule impE) @@ -181,38 +224,7 @@ apply(simp) apply(erule ValOrd.cases) apply(simp_all) -apply(clarify) -oops (*not true*) - -lemma POSIX_SEQ_I: - assumes "POSIX v1 r1" "POSIX v2 r2" - shows "POSIX (Seq v1 v2) (SEQ r1 r2)" -using assms -unfolding POSIX_def -apply(auto) -apply(rotate_tac 2) -apply(erule Prf.cases) -apply(simp_all)[5] -apply(auto)[1] -apply(rule ValOrd.intros) -oops (* maybe also not true *) - -lemma POSIX3_SEQ_I: - assumes "POSIX3 v1 r1" "POSIX3 v2 r2" - shows "POSIX3 (Seq v1 v2) (SEQ r1 r2)" -using assms -unfolding POSIX3_def -apply(auto) -apply (metis Prf.intros(1)) -apply(rotate_tac 4) -apply(erule Prf.cases) -apply(simp_all)[5] -apply(auto)[1] -apply(case_tac "v1 = v1a") -apply(auto) -apply (metis ValOrd.intros(1)) -apply (rule ValOrd.intros(2)) -oops +done lemma POSIX_ALT2: assumes "POSIX (Left v1) (ALT r1 r2)" @@ -220,6 +232,8 @@ using assms unfolding POSIX_def apply(auto) +apply(erule Prf.cases) +apply(simp_all)[5] apply(drule_tac x="Left v'" in spec) apply(simp) apply(drule mp) @@ -229,52 +243,14 @@ apply(simp_all) done -lemma POSIX2_ALT: - assumes "POSIX2 (Left v1) (ALT r1 r2)" - shows "POSIX2 v1 r1" -using assms -unfolding POSIX2_def -apply(auto) -oops - -lemma POSIX_ALT: - assumes "POSIX (Left v1) (ALT r1 r2)" - shows "POSIX v1 r1" -using assms -unfolding POSIX_def -apply(auto) -apply(drule_tac x="Left v'" in spec) -apply(simp) -apply(drule mp) -apply(rule Prf.intros) -apply(auto) -apply(erule ValOrd.cases) -apply(simp_all) -done - -lemma POSIX2_ALT: - assumes "POSIX2 (Left v1) (ALT r1 r2)" - shows "POSIX2 v1 r1" -using assms -apply(simp add: POSIX2_def) -apply(auto) -apply(erule Prf.cases) -apply(simp_all)[5] -apply(drule_tac x="Left v'" in spec) -apply(drule mp) -apply(rule Prf.intros) -apply(auto) -apply(erule ValOrd.cases) -apply(simp_all) -done - - lemma POSIX_ALT1a: assumes "POSIX (Right v2) (ALT r1 r2)" shows "POSIX v2 r2" using assms unfolding POSIX_def apply(auto) +apply(erule Prf.cases) +apply(simp_all)[5] apply(drule_tac x="Right v'" in spec) apply(simp) apply(drule mp) @@ -284,23 +260,6 @@ apply(simp_all) done -lemma POSIX2_ALT1a: - assumes "POSIX2 (Right v2) (ALT r1 r2)" - shows "POSIX2 v2 r2" -using assms -unfolding POSIX2_def -apply(auto) -apply(erule Prf.cases) -apply(simp_all)[5] -apply(drule_tac x="Right v'" in spec) -apply(drule mp) -apply(rule Prf.intros) -apply(auto) -apply(erule ValOrd.cases) -apply(simp_all) -done - - lemma POSIX_ALT1b: assumes "POSIX (Right v2) (ALT r1 r2)" shows "(\v'. (\ v' : r2 \ flat v' = flat v2) \ v2 \r2 v')" @@ -316,7 +275,8 @@ using assms unfolding POSIX_def apply(auto) -apply(rotate_tac 3) +apply (metis Prf.intros(2)) +apply(rotate_tac 2) apply(erule Prf.cases) apply(simp_all)[5] apply(auto) @@ -325,22 +285,6 @@ apply(rule ValOrd.intros) by simp -lemma POSIX2_ALT_I1: - assumes "POSIX2 v1 r1" - shows "POSIX2 (Left v1) (ALT r1 r2)" -using assms -unfolding POSIX2_def -apply(auto) -apply(rule Prf.intros) -apply(simp) -apply(rotate_tac 2) -apply(erule Prf.cases) -apply(simp_all)[5] -apply(auto) -apply(rule ValOrd.intros) -apply(auto) -apply(rule ValOrd.intros) -oops lemma POSIX_ALT_I2: assumes "POSIX v2 r2" "\v'. \ v' : r1 \ length (flat v2) > length (flat v')" @@ -348,6 +292,7 @@ using assms unfolding POSIX_def apply(auto) +apply (metis Prf.intros) apply(rotate_tac 3) apply(erule Prf.cases) apply(simp_all)[5] @@ -356,108 +301,6 @@ apply metis done - - -section {* The Matcher *} - -fun - nullable :: "rexp \ bool" -where - "nullable (NULL) = False" -| "nullable (EMPTY) = True" -| "nullable (CHAR c) = False" -| "nullable (ALT r1 r2) = (nullable r1 \ nullable r2)" -| "nullable (SEQ r1 r2) = (nullable r1 \ nullable r2)" - -lemma nullable_correctness: - shows "nullable r \ [] \ (L r)" -apply (induct r) -apply(auto simp add: Sequ_def) -done - -fun mkeps :: "rexp \ val" -where - "mkeps(EMPTY) = Void" -| "mkeps(SEQ r1 r2) = Seq (mkeps r1) (mkeps r2)" -| "mkeps(ALT r1 r2) = (if nullable(r1) then Left (mkeps r1) else Right (mkeps r2))" - -lemma mkeps_nullable: - assumes "nullable(r)" shows "\ mkeps r : r" -using assms -apply(induct rule: nullable.induct) -apply(auto intro: Prf.intros) -done - -lemma mkeps_flat: - assumes "nullable(r)" shows "flat (mkeps r) = []" -using assms -apply(induct rule: nullable.induct) -apply(auto) -done - -text {* - The value mkeps returns is always the correct POSIX - value. -*} - -lemma mkeps_POSIX2: - assumes "nullable r" - shows "POSIX2 (mkeps r) r" -using assms -apply(induct r) -apply(auto)[1] -apply(simp add: POSIX2_def) -oops - -lemma mkeps_POSIX3: - assumes "nullable r" - shows "POSIX3 (mkeps r) r" -using assms -apply(induct r) -apply(auto)[1] -apply(simp add: POSIX3_def) -apply(auto)[1] -apply (metis Prf.intros(4)) -apply(erule Prf.cases) -apply(simp_all)[5] -apply (metis ValOrd.intros) -apply(simp add: POSIX3_def) -apply(auto)[1] -apply(simp add: POSIX3_def) -apply(auto)[1] -apply (metis mkeps.simps(2) mkeps_nullable nullable.simps(5)) -apply(rotate_tac 6) -apply(erule Prf.cases) -apply(simp_all)[5] -apply (metis ValOrd.intros(2) add_leE gen_length_code(1) gen_length_def mkeps_flat) -apply(auto) -apply(simp add: POSIX3_def) -apply(auto) -apply (metis Prf.intros(2)) -apply(rotate_tac 4) -apply(erule Prf.cases) -apply(simp_all)[5] -apply (metis ValOrd.intros(6)) -apply(auto)[1] -apply (metis ValOrd.intros(3)) -apply(simp add: POSIX3_def) -apply(auto) -apply (metis Prf.intros(2)) -apply(rotate_tac 6) -apply(erule Prf.cases) -apply(simp_all)[5] -apply (metis ValOrd.intros(6)) -apply (metis ValOrd.intros(3)) -apply(simp add: POSIX3_def) -apply(auto) -apply (metis Prf.intros(3)) -apply(rotate_tac 5) -apply(erule Prf.cases) -apply(simp_all)[5] -apply (metis Prf_flat_L drop_0 drop_all list.size(3) mkeps_flat nullable_correctness) -by (metis ValOrd.intros(5)) - - lemma mkeps_POSIX: assumes "nullable r" shows "POSIX (mkeps r) r" @@ -466,6 +309,7 @@ apply(auto)[1] apply(simp add: POSIX_def) apply(auto)[1] +apply (metis Prf.intros(4)) apply(erule Prf.cases) apply(simp_all)[5] apply (metis ValOrd.intros) @@ -473,70 +317,34 @@ apply(auto)[1] apply(simp add: POSIX_def) apply(auto)[1] -apply(erule Prf.cases) -apply(simp_all)[5] -apply(auto) -apply (simp add: ValOrd.intros(2) mkeps_flat) -apply(simp add: POSIX_def) -apply(auto)[1] -apply(erule Prf.cases) -apply(simp_all)[5] -apply(auto) -apply (simp add: ValOrd.intros(6)) -apply (simp add: ValOrd.intros(3)) -apply(simp add: POSIX_def) -apply(auto)[1] -apply(erule Prf.cases) -apply(simp_all)[5] -apply(auto) -apply (simp add: ValOrd.intros(6)) -apply (simp add: ValOrd.intros(3)) -apply(simp add: POSIX_def) -apply(auto)[1] -apply(erule Prf.cases) -apply(simp_all)[5] -apply(auto) -apply (metis Prf_flat_L mkeps_flat nullable_correctness) -by (simp add: ValOrd.intros(5)) - - -lemma mkeps_POSIX2: - assumes "nullable r" - shows "POSIX2 (mkeps r) r" -using assms -apply(induct r) -apply(simp) -apply(simp) -apply(simp add: POSIX2_def) -apply(rule conjI) -apply(rule Prf.intros) -apply(auto)[1] -apply(erule Prf.cases) -apply(simp_all)[5] -apply(rule ValOrd.intros) -apply(simp) -apply(simp) -apply(simp add: POSIX2_def) -apply(rule conjI) -apply(rule Prf.intros) -apply(simp add: mkeps_nullable) -apply(simp add: mkeps_nullable) -apply(auto)[1] +apply (metis mkeps.simps(2) mkeps_nullable nullable.simps(5)) apply(rotate_tac 6) apply(erule Prf.cases) apply(simp_all)[5] -apply(rule ValOrd.intros(2)) +apply (simp add: mkeps_flat) +apply(case_tac "mkeps r1a = v1") apply(simp) -apply(simp only: nullable.simps) +apply (metis ValOrd.intros(1)) +apply (rule ValOrd.intros(2)) +apply metis +apply(simp) +apply(simp) apply(erule disjE) apply(simp) -thm POSIX2_ALT1a -apply(rule POSIX2_ALT) -apply(simp add: POSIX2_def) -apply(rule conjI) -apply(rule Prf.intros) -apply(simp add: mkeps_nullable) -oops +apply (metis POSIX_ALT_I1) +apply(auto) +apply (metis POSIX_ALT_I1) +apply(simp add: POSIX_def) +apply(auto)[1] +apply (metis Prf.intros(3)) +apply(rotate_tac 5) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(simp add: mkeps_flat) +apply(auto)[1] +apply (metis Prf_flat_L nullable_correctness) +apply(rule ValOrd.intros) +by metis section {* Derivatives *} @@ -724,8 +532,21 @@ lemma t: "(c#xs = c#ys) \ xs = ys" by (metis list.sel(3)) +lemma t2: "(xs = ys) \ (c#xs) = (c#ys)" +by (metis) + +fun zeroable where + "zeroable NULL = True" +| "zeroable EMPTY = False" +| "zeroable (CHAR c) = False" +| "zeroable (ALT r1 r2) = (zeroable r1 \ zeroable r2)" +| "zeroable (SEQ r1 r2) = (zeroable r1 \ zeroable r2)" + +lemma "\(nullable r) \ \(\v. \ v : r \ flat v = [])" +by (metis Prf_flat_L nullable_correctness) + lemma Prf_inj: - assumes "v1 \(der c r) v2" "\ v1 : der c r" "\ v2 : der c r" + assumes "v1 \(der c r) v2" "\ v1 : der c r" "\ v2 : der c r" (*"flat v1 = flat v2"*) shows "(injval r c v1) \r (injval r c v2)" using assms apply(induct arbitrary: v1 v2 rule: der.induct) @@ -762,6 +583,594 @@ apply(simp_all)[5] apply(simp) apply(rule ValOrd.intros) +apply(clarify) +apply(rotate_tac 3) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(clarify) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(clarify) +apply(subst v4) +apply(simp) +apply(subst v4) +apply(simp) +apply(simp) +apply(rule ValOrd.intros) +apply(clarify) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(rule ValOrd.intros) +apply(clarify) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +(* SEQ case*) +apply(simp) +apply(case_tac "nullable r1") +apply(simp) +defer +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(clarify) +apply(erule ValOrd.cases) +apply(simp_all)[8] +apply(clarify) +apply(rule ValOrd.intros) +apply(simp) +apply(clarify) +apply(rule ValOrd.intros(2)) +apply metis + +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(clarify) +defer +apply(erule ValOrd.cases) +apply(simp_all del: injval.simps)[8] +apply(simp) +apply(clarify) +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(clarify) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(clarify) +apply(rule ValOrd.intros(2)) + + +lemma POSIX_ex: "\ v : r \ \v. POSIX v r" +apply(induct r arbitrary: v) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(rule_tac x="Void" in exI) +apply(simp add: POSIX_def) +apply(auto)[1] +apply (metis Prf.intros(4)) +apply(erule Prf.cases) +apply(simp_all)[5] +apply (metis ValOrd.intros(7)) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(rule_tac x="Char c" in exI) +apply(simp add: POSIX_def) +apply(auto)[1] +apply (metis Prf.intros(5)) +apply(erule Prf.cases) +apply(simp_all)[5] +apply (metis ValOrd.intros(8)) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(auto)[1] +apply(drule_tac x="v1" in meta_spec) +apply(drule_tac x="v2" in meta_spec) +apply(auto)[1] +defer +apply(erule Prf.cases) +apply(simp_all)[5] +apply(auto)[1] +apply (metis POSIX_ALT_I1) +apply (metis POSIX_ALT_I1 POSIX_ALT_I2) +apply(case_tac "nullable r1a") +apply(rule_tac x="Seq (mkeps r1a) va" in exI) +apply(auto simp add: POSIX_def)[1] +apply (metis Prf.intros(1) mkeps_nullable) +apply(simp add: mkeps_flat) +apply(rotate_tac 7) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(case_tac "mkeps r1 = v1a") +apply(simp) +apply (rule ValOrd.intros(1)) +apply (metis append_Nil mkeps_flat) +apply (rule ValOrd.intros(2)) +apply(drule mkeps_POSIX) +apply(simp add: POSIX_def) + +apply metis +apply(simp) +apply(simp) +apply(erule disjE) +apply(simp) + +apply(drule_tac x="v2" in spec) + +lemma POSIX_ex2: "\ v : r \ \v. POSIX v r \ \ v : r" +apply(induct r arbitrary: v) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(rule_tac x="Void" in exI) +apply(simp add: POSIX_def) +apply(auto)[1] +apply(erule Prf.cases) +apply(simp_all)[5] +apply (metis ValOrd.intros(7)) +apply (metis Prf.intros(4)) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(rule_tac x="Char c" in exI) +apply(simp add: POSIX_def) +apply(auto)[1] +apply(erule Prf.cases) +apply(simp_all)[5] +apply (metis ValOrd.intros(8)) +apply (metis Prf.intros(5)) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(auto)[1] +apply(drule_tac x="v1" in meta_spec) +apply(drule_tac x="v2" in meta_spec) +apply(auto)[1] +apply(simp add: POSIX_def) +apply(auto)[1] +apply(rule ccontr) +apply(simp) +apply(drule_tac x="Seq v va" in spec) +apply(drule mp) +defer +apply (metis Prf.intros(1)) + + +oops + +lemma POSIX_ALT_cases: + assumes "\ v : (ALT r1 r2)" "POSIX v (ALT r1 r2)" + shows "(\v1. v = Left v1 \ POSIX v1 r1) \ (\v2. v = Right v2 \ POSIX v2 r2)" +using assms +apply(erule_tac Prf.cases) +apply(simp_all) +unfolding POSIX_def +apply(auto) +apply (metis POSIX_ALT2 POSIX_def assms(2)) +by (metis POSIX_ALT1b assms(2)) + +lemma POSIX_ALT_cases2: + assumes "POSIX v (ALT r1 r2)" "\ v : (ALT r1 r2)" + shows "(\v1. v = Left v1 \ POSIX v1 r1) \ (\v2. v = Right v2 \ POSIX v2 r2)" +using assms POSIX_ALT_cases by auto + +lemma Prf_flat_empty: + assumes "\ v : r" "flat v = []" + shows "nullable r" +using assms +apply(induct) +apply(auto) +done + +lemma POSIX_proj: + assumes "POSIX v r" "\ v : r" "\s. flat v = c#s" + shows "POSIX (projval r c v) (der c r)" +using assms +apply(induct r c v arbitrary: rule: projval.induct) +defer +defer +defer +defer +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(simp add: POSIX_def) +apply(auto)[1] +apply(erule Prf.cases) +apply(simp_all)[5] +apply (metis ValOrd.intros(7)) +apply(erule_tac [!] exE) +prefer 3 +apply(frule POSIX_SEQ1) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(case_tac "flat v1 = []") +apply(subgoal_tac "nullable r1") +apply(simp) +prefer 2 +apply(rule_tac v="v1" in Prf_flat_empty) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(simp) +apply(frule POSIX_SEQ2) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(simp) +apply(drule meta_mp) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(rule ccontr) +apply(subgoal_tac "\ val.Right (projval r2 c v2) : (ALT (SEQ (der c r1) r2) (der c r2))") +apply(rotate_tac 11) +apply(frule POSIX_ex) +apply(erule exE) +apply(drule POSIX_ALT_cases2) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(drule v3_proj) +apply(simp) +apply(simp) +apply(drule POSIX_ex) +apply(erule exE) +apply(frule POSIX_ALT_cases2) +apply(simp) +apply(simp) +apply(erule +prefer 2 +apply(case_tac "nullable r1") +prefer 2 +apply(simp) +apply(rotate_tac 1) +apply(drule meta_mp) +apply(rule POSIX_SEQ1) +apply(assumption) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(rotate_tac 7) +apply(drule meta_mp) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(rotate_tac 7) +apply(drule meta_mp) +apply (metis Cons_eq_append_conv) + + +apply(erule Prf.cases) +apply(simp_all)[5] +apply(simp add: POSIX_def) +apply(simp) +apply(simp) +apply(simp_all)[5] +apply(simp add: POSIX_def) + + +lemma POSIX_proj: + assumes "POSIX v r" "\ v : r" "\s. flat v = c#s" + shows "POSIX (projval r c v) (der c r)" +using assms +apply(induct r arbitrary: c v rule: rexp.induct) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(simp add: POSIX_def) +apply(auto)[1] +apply(erule Prf.cases) +apply(simp_all)[5] +apply (metis ValOrd.intros(7)) + +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(simp add: POSIX_def) +apply(auto)[1] +apply(erule Prf.cases) +apply(simp_all)[5] +apply (metis ValOrd.intros(7)) +apply(erule_tac [!] exE) +prefer 3 +apply(frule POSIX_SEQ1) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(case_tac "flat v1 = []") +apply(subgoal_tac "nullable r1") +apply(simp) +prefer 2 +apply(rule_tac v="v1" in Prf_flat_empty) +apply(erule Prf.cases) +apply(simp_all)[5] + + +lemma POSIX_proj: + assumes "POSIX v r" "\ v : r" "\s. flat v = c#s" + shows "POSIX (projval r c v) (der c r)" +using assms +apply(induct r c v arbitrary: rule: projval.induct) +defer +defer +defer +defer +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(simp add: POSIX_def) +apply(auto)[1] +apply(erule Prf.cases) +apply(simp_all)[5] +apply (metis ValOrd.intros(7)) +apply(erule_tac [!] exE) +prefer 3 +apply(frule POSIX_SEQ1) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(case_tac "flat v1 = []") +apply(subgoal_tac "nullable r1") +apply(simp) +prefer 2 +apply(rule_tac v="v1" in Prf_flat_empty) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(simp) +apply(rule ccontr) +apply(drule v3_proj) +apply(simp) +apply(simp) +apply(drule POSIX_ex) +apply(erule exE) +apply(frule POSIX_ALT_cases2) +apply(simp) +apply(simp) +apply(erule +prefer 2 +apply(case_tac "nullable r1") +prefer 2 +apply(simp) +apply(rotate_tac 1) +apply(drule meta_mp) +apply(rule POSIX_SEQ1) +apply(assumption) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(rotate_tac 7) +apply(drule meta_mp) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(rotate_tac 7) +apply(drule meta_mp) +apply (metis Cons_eq_append_conv) + + +apply(erule Prf.cases) +apply(simp_all)[5] +apply(simp add: POSIX_def) +apply(simp) +apply(simp) +apply(simp_all)[5] +apply(simp add: POSIX_def) + +done +(* NULL case *) +apply(simp add: POSIX_def) +apply(auto)[1] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply (metis ValOrd.intros(7)) +apply(rotate_tac 4) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(simp) +prefer 2 +apply(simp) +apply(frule POSIX_ALT1a) +apply(drule meta_mp) +apply(simp) +apply(drule meta_mp) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(rule POSIX_ALT_I2) +apply(assumption) +apply(auto)[1] + +thm v4_proj2 +prefer 2 +apply(subst (asm) (13) POSIX_def) + +apply(drule_tac x="projval v2" in spec) +apply(auto)[1] +apply(drule mp) +apply(rule conjI) +apply(simp) +apply(simp) + +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +prefer 2 +apply(clarify) +apply(subst (asm) (2) POSIX_def) + +apply (metis ValOrd.intros(5)) +apply(clarify) +apply(simp) +apply(rotate_tac 3) +apply(drule_tac c="c" in t2) +apply(subst (asm) v4_proj) +apply(simp) +apply(simp) +thm contrapos_np contrapos_nn +apply(erule contrapos_np) +apply(rule ValOrd.intros) +apply(subst v4_proj2) +apply(simp) +apply(simp) +apply(subgoal_tac "\(length (flat v1) < length (flat (projval r2a c v2a)))") +prefer 2 +apply(erule contrapos_nn) +apply (metis nat_less_le v4_proj2) +apply(simp) + +apply(blast) +thm contrapos_nn + +apply(simp add: POSIX_def) +apply(auto)[1] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(clarify) +apply(rule ValOrd.intros) +apply(drule meta_mp) +apply(auto)[1] +apply (metis POSIX_ALT2 POSIX_def flat.simps(3)) +apply metis +apply(clarify) +apply(rule ValOrd.intros) +apply(simp) +apply(simp add: POSIX_def) +apply(auto)[1] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(clarify) +apply(rule ValOrd.intros) +apply(simp) + +apply(drule meta_mp) +apply(auto)[1] +apply (metis POSIX_ALT2 POSIX_def flat.simps(3)) +apply metis +apply(clarify) +apply(rule ValOrd.intros) +apply(simp) + + +done +(* EMPTY case *) +apply(simp add: POSIX_def) +apply(auto)[1] +apply(rotate_tac 3) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(drule_tac c="c" in t2) +apply(subst (asm) v4_proj) +apply(auto)[2] + +apply(erule ValOrd.cases) +apply(simp_all)[8] +(* CHAR case *) +apply(case_tac "c = c'") +apply(simp) +apply(erule ValOrd.cases) +apply(simp_all)[8] +apply(rule ValOrd.intros) +apply(simp) +apply(erule ValOrd.cases) +apply(simp_all)[8] +(* ALT case *) + + +unfolding POSIX_def +apply(auto) +thm v4 + +lemma Prf_inj: + assumes "v1 \(der c r) v2" "\ v1 : der c r" "\ v2 : der c r" "flat v1 = flat v2" + shows "(injval r c v1) \r (injval r c v2)" +using assms +apply(induct arbitrary: v1 v2 rule: der.induct) +(* NULL case *) +apply(simp) +apply(erule ValOrd.cases) +apply(simp_all)[8] +(* EMPTY case *) +apply(erule ValOrd.cases) +apply(simp_all)[8] +(* CHAR case *) +apply(case_tac "c = c'") +apply(simp) +apply(erule ValOrd.cases) +apply(simp_all)[8] +apply(rule ValOrd.intros) +apply(simp) +apply(erule ValOrd.cases) +apply(simp_all)[8] +(* ALT case *) +apply(simp) +apply(erule ValOrd.cases) +apply(simp_all)[8] +apply(rule ValOrd.intros) apply(subst v4) apply(clarify) apply(rotate_tac 3) @@ -769,13 +1178,16 @@ apply(simp_all)[5] apply(subst v4) apply(clarify) +apply(rotate_tac 2) apply(erule Prf.cases) apply(simp_all)[5] apply(simp) apply(rule ValOrd.intros) apply(clarify) +apply(rotate_tac 3) apply(erule Prf.cases) apply(simp_all)[5] +apply(clarify) apply(erule Prf.cases) apply(simp_all)[5] apply(rule ValOrd.intros) @@ -805,10 +1217,37 @@ apply(simp_all)[5] apply(erule Prf.cases) apply(simp_all)[5] +apply(clarify) +defer +apply(simp) +apply(erule ValOrd.cases) +apply(simp_all del: injval.simps)[8] +apply(simp) +apply(clarify) +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(clarify) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(clarify) +apply(rule ValOrd.intros(2)) + + + + +done + + +txt {* +done (* nullable case - unfinished *) apply(simp) apply(erule ValOrd.cases) -apply(simp_all)[8] +apply(simp_all del: injval.simps)[8] +apply(simp) apply(clarify) apply(simp) apply(erule Prf.cases) @@ -820,12 +1259,9 @@ apply(simp_all)[5] apply(clarify) apply(simp) -apply(case_tac "injval r1 c v1 = mkeps r1") -apply(rule ValOrd.intros(1)) -apply(simp) -apply (metis impossible_Cons le_add2 list.size(3) mkeps_flat monoid_add_class.add.right_neutral v4) apply(rule ValOrd.intros(2)) -apply(drule_tac x="proj r1 c" in spec) +oops +*} oops lemma POSIX_der: diff -r 2cdbab037861 -r a6bb0152ccc2 thys/notes.pdf Binary file thys/notes.pdf has changed diff -r 2cdbab037861 -r a6bb0152ccc2 thys/notes.tex --- a/thys/notes.tex Sat Jan 31 18:21:03 2015 +0000 +++ b/thys/notes.tex Mon Feb 09 12:13:10 2015 +0000 @@ -348,5 +348,8 @@ \end{tabular} \end{center} +\subsection*{Problems in the paper proof} + +I cannot verify \end{document}