# HG changeset patch # User fahadausaf # Date 1412599467 -3600 # Node ID 8c9349065477142c6ce563673e20e21cfe6756d1 # Parent a5427713eef44c85b503f1f81a805c1be5ede522 c diff -r a5427713eef4 -r 8c9349065477 thys/Re1.thy.orig --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/thys/Re1.thy.orig Mon Oct 06 13:44:27 2014 +0100 @@ -0,0 +1,642 @@ + +theory Re1 + imports "Main" +begin + +section {* Sequential Composition of Sets *} + +definition + Sequ :: "string set \ string set \ string set" ("_ ;; _" [100,100] 100) +where + "A ;; B = {s1 @ s2 | s1 s2. s1 \ A \ s2 \ B}" + +text {* Two Simple Properties about Sequential Composition *} + +lemma seq_empty [simp]: + shows "A ;; {[]} = A" + and "{[]} ;; A = A" +by (simp_all add: Sequ_def) + +lemma seq_null [simp]: + shows "A ;; {} = {}" + and "{} ;; A = {}" +by (simp_all add: Sequ_def) + +section {* Regular Expressions *} + +datatype rexp = + NULL +| EMPTY +| CHAR char +| SEQ rexp rexp +| ALT rexp rexp + +section {* Semantics of Regular Expressions *} + +fun + L :: "rexp \ string set" +where + "L (NULL) = {}" +| "L (EMPTY) = {[]}" +| "L (CHAR c) = {[c]}" +| "L (SEQ r1 r2) = (L r1) ;; (L r2)" +| "L (ALT r1 r2) = (L r1) \ (L r2)" + + +section {* Values *} + +datatype val = + Void +| Char char +| Seq val val +| Right val +| Left val + +section {* Relation between values and regular expressions *} + +inductive Prf :: "val \ rexp \ bool" ("\ _ : _" [100, 100] 100) +where + "\\ v1 : r1; \ v2 : r2\ \ \ Seq v1 v2 : SEQ r1 r2" +| "\ v1 : r1 \ \ Left v1 : ALT r1 r2" +| "\ v2 : r2 \ \ Right v2 : ALT r1 r2" +| "\ Void : EMPTY" +| "\ Char c : CHAR c" + +section {* The string behind a value *} + +fun flat :: "val \ string" +where + "flat(Void) = []" +| "flat(Char c) = [c]" +| "flat(Left v) = flat(v)" +| "flat(Right v) = flat(v)" +| "flat(Seq v1 v2) = flat(v1) @ flat(v2)" + + +lemma Prf_flat_L: + assumes "\ v : r" shows "flat v \ L r" +using assms +apply(induct) +apply(auto simp add: Sequ_def) +done + +lemma L_flat_Prf: + "L(r) = {flat v | v. \ v : r}" +apply(induct r) +apply(auto dest: Prf_flat_L simp add: Sequ_def) +apply (metis Prf.intros(4) flat.simps(1)) +apply (metis Prf.intros(5) flat.simps(2)) +apply (metis Prf.intros(1) flat.simps(5)) +apply (metis Prf.intros(2) flat.simps(3)) +apply (metis Prf.intros(3) flat.simps(4)) +apply(erule Prf.cases) +apply(auto) +done + +section {* Ordering of values *} + +inductive ValOrd :: "val \ rexp \ val \ bool" ("_ \_ _" [100, 100, 100] 100) +where + "\v1 = v1'; v2 \r2 v2'\ \ (Seq v1 v2) \(SEQ r1 r2) (Seq v1' v2')" +| "v1 \r1 v1' \ (Seq v1 v2) \(SEQ r1 r2) (Seq v1' v2')" +| "length (flat v1) \ length (flat v2) \ (Left v1) \(ALT r1 r2) (Right v2)" +| "length (flat v2) > length (flat v1) \ (Right v2) \(ALT r1 r2) (Left v1)" +| "v2 \r2 v2' \ (Right v2) \(ALT r1 r2) (Right v2')" +| "v1 \r1 v1' \ (Left v1) \(ALT r1 r2) (Left v1')" +| "Void \EMPTY Void" +| "(Char c) \(CHAR c) (Char c)" + +(* +lemma + assumes "r = SEQ (ALT EMPTY EMPTY) (ALT EMPTY (CHAR c))" + shows "(Seq (Left Void) (Right (Char c))) \r (Seq (Left Void) (Left Void))" +using assms +apply(simp) +apply(rule ValOrd.intros) +apply(rule ValOrd.intros) +apply(rule ValOrd.intros) +apply(rule ValOrd.intros) +apply(simp) +done +*) + +section {* Posix definition *} + +definition POSIX :: "val \ rexp \ bool" +where + "POSIX v r \ (\v'. (\ v' : r \ flat v = flat v') \ v \r v')" + +(* +an alternative definition: might cause problems +with theorem mkeps_POSIX +*) + +definition POSIX2 :: "val \ rexp \ bool" +where + "POSIX2 v r \ \ v : r \ (\v'. \ v' : r \ v \r v')" + + +(* +lemma POSIX_SEQ: + assumes "POSIX (Seq v1 v2) (SEQ r1 r2)" "\ v1 : r1" "\ v2 : r2" + shows "POSIX v1 r1 \ POSIX v2 r2" +using assms +unfolding POSIX_def +apply(auto) +apply(drule_tac x="Seq v' v2" in spec) +apply(simp) +apply (smt Prf.intros(1) ValOrd.simps assms(3) rexp.inject(2) val.distinct(15) val.distinct(17) val.distinct(3) val.distinct(9) val.inject(2)) +apply(drule_tac x="Seq v1 v'" in spec) +apply(simp) +by (smt Prf.intros(1) ValOrd.simps rexp.inject(2) val.distinct(15) val.distinct(17) val.distinct(3) val.distinct(9) val.inject(2)) +*) + +(* +lemma POSIX_SEQ_I: + assumes "POSIX v1 r1" "POSIX v2 r2" + shows "POSIX (Seq v1 v2) (SEQ r1 r2)" +using assms +unfolding POSIX_def +apply(auto) +apply(rotate_tac 2) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(auto)[1] +apply(rule ValOrd.intros) + +apply(auto) +done +*) + + + + +lemma POSIX_ALT2: + assumes "POSIX (Left v1) (ALT r1 r2)" + shows "POSIX v1 r1" +using assms +unfolding POSIX_def +apply(auto) +apply(drule_tac x="Left v'" in spec) +apply(simp) +apply(drule mp) +apply(rule Prf.intros) +apply(auto) +apply(erule ValOrd.cases) +apply(simp_all) +done + +lemma POSIX2_ALT: + assumes "POSIX2 (Left v1) (ALT r1 r2)" + shows "POSIX2 v1 r1" +using assms +unfolding POSIX2_def +apply(auto) + +done + + +lemma POSIX_ALT2: +lemma POSIX_ALT: + assumes "POSIX (Left v1) (ALT r1 r2)" + shows "POSIX v1 r1" +using assms +unfolding POSIX_def +apply(auto) +apply(drule_tac x="Left v'" in spec) +apply(simp) +apply(drule mp) +apply(rule Prf.intros) +apply(auto) +apply(erule ValOrd.cases) +apply(simp_all) +done + +lemma POSIX_ALT1a: + assumes "POSIX (Right v2) (ALT r1 r2)" + shows "POSIX v2 r2" +using assms +unfolding POSIX_def +apply(auto) +apply(drule_tac x="Right v'" in spec) +apply(simp) +apply(drule mp) +apply(rule Prf.intros) +apply(auto) +apply(erule ValOrd.cases) +apply(simp_all) +done + + +lemma POSIX_ALT1b: + assumes "POSIX (Right v2) (ALT r1 r2)" + shows "(\v'. (\ v' : r2 \ flat v' = flat v2) \ v2 \r2 v')" +using assms +apply(drule_tac POSIX_ALT1a) +unfolding POSIX_def +apply(auto) +done + +lemma POSIX_ALT_I1: + assumes "POSIX v1 r1" + shows "POSIX (Left v1) (ALT r1 r2)" +using assms +unfolding POSIX_def +apply(auto) +apply(rotate_tac 3) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(auto) +apply(rule ValOrd.intros) +apply(auto) +apply(rule ValOrd.intros) +by simp + +lemma POSIX_ALT_I2: + assumes "POSIX v2 r2" "\v'. \ v' : r1 \ length (flat v2) > length (flat v')" + shows "POSIX (Right v2) (ALT r1 r2)" +using assms +unfolding POSIX_def +apply(auto) +apply(rotate_tac 3) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(auto) +apply(rule ValOrd.intros) +apply metis +done + + +section {* The ordering is reflexive *} + +lemma ValOrd_refl: + assumes "\ v : r" + shows "v \r v" +using assms +apply(induct) +apply(auto intro: ValOrd.intros) +done + + +section {* The Matcher *} + +fun + nullable :: "rexp \ bool" +where + "nullable (NULL) = False" +| "nullable (EMPTY) = True" +| "nullable (CHAR c) = False" +| "nullable (ALT r1 r2) = (nullable r1 \ nullable r2)" +| "nullable (SEQ r1 r2) = (nullable r1 \ nullable r2)" + +lemma nullable_correctness: + shows "nullable r \ [] \ (L r)" +apply (induct r) +apply(auto simp add: Sequ_def) +done + +fun mkeps :: "rexp \ val" +where + "mkeps(EMPTY) = Void" +| "mkeps(SEQ r1 r2) = Seq (mkeps r1) (mkeps r2)" +| "mkeps(ALT r1 r2) = (if nullable(r1) then Left (mkeps r1) else Right (mkeps r2))" + +lemma mkeps_nullable: + assumes "nullable(r)" shows "\ mkeps r : r" +using assms +apply(induct rule: nullable.induct) +apply(auto intro: Prf.intros) +done + +lemma mkeps_flat: + assumes "nullable(r)" shows "flat (mkeps r) = []" +using assms +apply(induct rule: nullable.induct) +apply(auto) +done + +text {* + The value mkeps returns is always the correct POSIX + value. +*} + +lemma mkeps_POSIX2: + assumes "nullable r" + shows "POSIX2 (mkeps r) r" +using assms +apply(induct r) +apply(auto)[1] +apply(simp add: POSIX2_def) + +lemma mkeps_POSIX: + assumes "nullable r" + shows "POSIX (mkeps r) r" +using assms +apply(induct r) +apply(auto)[1] +apply(simp add: POSIX_def) +apply(auto)[1] +apply(erule Prf.cases) +apply(simp_all)[5] +apply (metis ValOrd.intros) +apply(simp add: POSIX_def) +apply(auto)[1] +apply(simp add: POSIX_def) +apply(auto)[1] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(auto) +apply (simp add: ValOrd.intros(2) mkeps_flat) +apply(simp add: POSIX_def) +apply(auto)[1] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(auto) +apply (simp add: ValOrd.intros(6)) +apply (simp add: ValOrd.intros(3)) +apply(simp add: POSIX_def) +apply(auto)[1] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(auto) +apply (simp add: ValOrd.intros(6)) +apply (simp add: ValOrd.intros(3)) +apply(simp add: POSIX_def) +apply(auto)[1] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(auto) +apply (metis Prf_flat_L mkeps_flat nullable_correctness) +by (simp add: ValOrd.intros(5)) + + +section {* Derivatives *} + +fun + der :: "char \ rexp \ rexp" +where + "der c (NULL) = NULL" +| "der c (EMPTY) = NULL" +| "der c (CHAR c') = (if c = c' then EMPTY else NULL)" +| "der c (ALT r1 r2) = ALT (der c r1) (der c r2)" +| "der c (SEQ r1 r2) = + (if nullable r1 + then ALT (SEQ (der c r1) r2) (der c r2) + else SEQ (der c r1) r2)" + +fun + ders :: "string \ rexp \ rexp" +where + "ders [] r = r" +| "ders (c # s) r = ders s (der c r)" + +section {* Injection function *} + +fun injval :: "rexp \ char \ val \ val" +where + "injval (CHAR d) c Void = Char d" +| "injval (ALT r1 r2) c (Left v1) = Left(injval r1 c v1)" +| "injval (ALT r1 r2) c (Right v2) = Right(injval r2 c v2)" +| "injval (SEQ r1 r2) c (Seq v1 v2) = Seq (injval r1 c v1) v2" +| "injval (SEQ r1 r2) c (Left (Seq v1 v2)) = Seq (injval r1 c v1) v2" +| "injval (SEQ r1 r2) c (Right v2) = Seq (mkeps r1) (injval r2 c v2)" + +section {* Projection function *} + +fun projval :: "rexp \ char \ val \ val" +where + "projval (CHAR d) c _ = Void" +| "projval (ALT r1 r2) c (Left v1) = Left(projval r1 c v1)" +| "projval (ALT r1 r2) c (Right v2) = Right(projval r2 c v2)" +| "projval (SEQ r1 r2) c (Seq v1 v2) = + (if flat v1 = [] then Right(projval r2 c v2) + else if nullable r1 then Left (Seq (projval r1 c v1) v2) + else Seq (projval r1 c v1) v2)" + +text {* + Injection value is related to r +*} + +lemma v3: + assumes "\ v : der c r" shows "\ (injval r c v) : r" +using assms +apply(induct arbitrary: v rule: der.induct) +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(case_tac "c = c'") +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[5] +apply (metis Prf.intros(5)) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply (metis Prf.intros(2)) +apply (metis Prf.intros(3)) +apply(simp) +apply(case_tac "nullable r1") +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(auto)[1] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(auto)[1] +apply (metis Prf.intros(1)) +apply(auto)[1] +apply (metis Prf.intros(1) mkeps_nullable) +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(auto)[1] +apply(rule Prf.intros) +apply(auto)[2] +done + +text {* + The string behin the injection value is an added c +*} + +lemma v4: + assumes "\ v : der c r" shows "flat (injval r c v) = c # (flat v)" +using assms +apply(induct arbitrary: v rule: der.induct) +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(simp) +apply(case_tac "c = c'") +apply(simp) +apply(auto)[1] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(simp) +apply(case_tac "nullable r1") +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(auto)[1] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(auto)[1] +apply (metis mkeps_flat) +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[5] +done + +text {* + Injection followed by projection is the identity. +*} + +lemma proj_inj_id: + assumes "\ v : der c r" + shows "projval r c (injval r c v) = v" +using assms +apply(induct r arbitrary: c v rule: rexp.induct) +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(simp) +apply(case_tac "c = char") +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[5] +defer +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(simp) +apply(case_tac "nullable rexp1") +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(auto)[1] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(auto)[1] +apply (metis list.distinct(1) v4) +apply(auto)[1] +apply (metis mkeps_flat) +apply(auto) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(auto)[1] +apply(simp add: v4) +done + +lemma "\v. POSIX v r" +apply(induct r) +apply(rule exI) +apply(simp add: POSIX_def) +apply (metis (full_types) Prf_flat_L der.simps(1) der.simps(2) der.simps(3) flat.simps(1) nullable.simps(1) nullable_correctness proj_inj_id projval.simps(1) v3 v4) +apply(rule_tac x = "Void" in exI) +apply(simp add: POSIX_def) +apply (metis POSIX_def flat.simps(1) mkeps.simps(1) mkeps_POSIX nullable.simps(2)) +apply(rule_tac x = "Char char" in exI) +apply(simp add: POSIX_def) +apply(auto) [1] +apply(erule Prf.cases) +apply(simp_all) [5] +apply (metis ValOrd.intros(8)) +defer +apply(auto) +apply (metis POSIX_ALT_I1) +(* maybe it is too early to instantiate this existential quantifier *) +(* potentially this is the wrong POSIX value *) +apply(rule_tac x = "Seq v va" in exI ) +apply(simp (no_asm) add: POSIX_def) +apply(auto) +apply(erule Prf.cases) +apply(simp_all) +apply(case_tac "v \r1a v1") +apply (metis ValOrd.intros(2)) +apply(simp add: POSIX_def) +apply(case_tac "flat v = flat v1") +apply(auto)[1] +apply(simp only: append_eq_append_conv2) +apply(auto) +thm append_eq_append_conv2 + +text {* + + HERE: Crucial lemma that does not go through in the sequence case. + +*} +lemma v5: + assumes "\ v : der c r" "POSIX v (der c r)" + shows "POSIX (injval r c v) r" +using assms +apply(induct arbitrary: v rule: der.induct) +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(simp) +apply(case_tac "c = c'") +apply(auto simp add: POSIX_def)[1] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +using ValOrd.simps apply blast +apply(auto) +apply(erule Prf.cases) +apply(simp_all)[5] +(* base cases done *) +(* ALT case *) +apply(erule Prf.cases) +apply(simp_all)[5] +using POSIX_ALT POSIX_ALT_I1 apply blast +apply(clarify) +apply(subgoal_tac "POSIX v2 (der c r2)") +prefer 2 +apply(auto simp add: POSIX_def)[1] +apply (metis POSIX_ALT1a POSIX_def flat.simps(4)) +apply(rotate_tac 1) +apply(drule_tac x="v2" in meta_spec) +apply(simp) +apply(subgoal_tac "\ Right (injval r2 c v2) : (ALT r1 r2)") +prefer 2 +apply (metis Prf.intros(3) v3) +apply(rule ccontr) +apply(auto simp add: POSIX_def)[1] + +apply(rule allI) +apply(rule impI) +apply(erule conjE) +thm POSIX_ALT_I2 +apply(frule POSIX_ALT1a) +apply(drule POSIX_ALT1b) +apply(rule POSIX_ALT_I2) +apply auto[1] +apply(subst v4) +apply(auto)[2] +apply(rotate_tac 1) +apply(drule_tac x="v2" in meta_spec) +apply(simp) +apply(subst (asm) (4) POSIX_def) +apply(subst (asm) v4) +apply(auto)[2] +(* stuck in the ALT case *) diff -r a5427713eef4 -r 8c9349065477 thys/Re1.thy.rej --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/thys/Re1.thy.rej Mon Oct 06 13:44:27 2014 +0100 @@ -0,0 +1,36 @@ +--- thys/Re1.thy ++++ thys/Re1.thy +@@ -168,6 +168,33 @@ + done + *) + ++ ++ ++ ++lemma POSIX_ALT2: ++ assumes "POSIX (Left v1) (ALT r1 r2)" ++ shows "POSIX v1 r1" ++using assms ++unfolding POSIX_def ++apply(auto) ++apply(drule_tac x="Left v'" in spec) ++apply(simp) ++apply(drule mp) ++apply(rule Prf.intros) ++apply(auto) ++apply(erule ValOrd.cases) ++apply(simp_all) ++done ++ ++lemma POSIX2_ALT: ++ assumes "POSIX2 (Left v1) (ALT r1 r2)" ++ shows "POSIX2 v1 r1" ++using assms ++unfolding POSIX2_def ++apply(auto) ++ ++done ++ + lemma POSIX_ALT: + assumes "POSIX (Left v1) (ALT r1 r2)" + shows "POSIX v1 r1"