# HG changeset patch # User Chengsong # Date 1652748270 -3600 # Node ID 84938708781d4db1e96b231b364bb8aeb2602ca5 # Parent 036600af4c30b88727aae1a1966f8c4fdda0cba6 a bit diff -r 036600af4c30 -r 84938708781d ChengsongTanPhdThesis/Chapters/Chapter2.tex --- a/ChengsongTanPhdThesis/Chapters/Chapter2.tex Tue May 17 00:54:29 2022 +0100 +++ b/ChengsongTanPhdThesis/Chapters/Chapter2.tex Tue May 17 01:44:30 2022 +0100 @@ -215,10 +215,40 @@ but this time we will have stronger equalities established. \subsection{"hrewrite" relation} List of 1-step rewrite rules for regular expressions simplification without bitcodes: -\ +\begin{center} +\begin{tabular}{lcl} +$r_1 \cdot \ZERO$ & $\rightarrow$ & $\ZERO$ +\end{tabular} +\end{center} + +And we define an "grewrite" relation that works on lists: +\begin{center} +\begin{tabular}{lcl} +$ \ZERO :: rs$ & $\rightarrow_g$ & $rs$ +\end{tabular} +\end{center} +With these relations we prove +\begin{lemma} +$rs \rightarrow rs' \implies \RALTS{rs} \rightarrow \RALTS{rs'}$ +\end{lemma} +which enables us to prove "closed forms" equalities such as +\begin{lemma} +$\sflat{(r_1 \cdot r_2) \backslash s} = \RALTS{ (r_1 \backslash s) \cdot r_2 :: (\map (r_2 \backslash \_) (\vsuf{s}{r_1}))}$ +\end{lemma} + +But the most involved part of the above lemma is proving the following: +\begin{lemma} +$\bsimp{\RALTS{rs @ \RALTS{rs_1} @ rs'}} = \bsimp{\RALTS{rs @rs_1 @ rs'}} $ +\end{lemma} +which is needed in proving things like +\begin{lemma} +$r \rightarrow_f r' \implies \rsimp{r} \rightarrow \rsimp{r'}$ +\end{lemma} +. +Fortunately this is provable by induction on the list $rs$ %---------------------------------------------------------------------------------------- % SECTION ??