# HG changeset patch # User Chengsong # Date 1656978126 -3600 # Node ID 57e33978e55d5e8863f6b9d9611ca0755e4aa796 # Parent 486fb297ac7c60a94d4add5f18c8d73401dbfab6 more diff -r 486fb297ac7c -r 57e33978e55d ChengsongTanPhdThesis/Chapters/Finite.tex --- a/ChengsongTanPhdThesis/Chapters/Finite.tex Mon Jul 04 13:15:18 2022 +0100 +++ b/ChengsongTanPhdThesis/Chapters/Finite.tex Tue Jul 05 00:42:06 2022 +0100 @@ -1481,8 +1481,11 @@ We prove this by induction on $r$. The base cases for $\RZERO$, $\RONE $ and $\RCHAR{c}$ are straightforward. In the sequence $r_1 \cdot r_2$ case, -the inductive hypotheses state $\exists N_1. \forall s. \; \llbracket \rderssimp{r}{s} \rrbracket \leq N_1$ and -$\exists N_2. \forall s. \; \llbracket \rderssimp{r_2}{s} \rrbracket \leq N_2$. We can reason as follows +the inductive hypotheses state +$\exists N_1. \forall s. \; \llbracket \rderssimp{r}{s} \rrbracket \leq N_1$ and +$\exists N_2. \forall s. \; \llbracket \rderssimp{r_2}{s} \rrbracket \leq N_2$. + +When the string $s$ is not empty, we can reason as follows % \begin{center} \begin{tabular}{lcll} @@ -1492,16 +1495,81 @@ & $\leq$ & $\llbracket \rdistinct{(r_1 \backslash_{rsimp} s \cdot r_2 \; \; :: \; \; \map \; (r_2\backslash_{rsimp} \_)\; (\vsuf{s}{r}))}{\varnothing} \rrbracket_r + 1$ & (2) \\ & $\leq$ & $2 + N_1 + \rsize{r_2} + (N_2 * (card\;(\sizeNregex \; N_2)))$ & (3)\\ -$\rsize{(r_1 \cdot r_2) \backslash_r s}$& $\leq$ & $max \; (2 + N_1 + \llbracket r_2 \rrbracket_r + N_2 * (card\; (\sizeNregex \; N_2))) \; \rsize{r_1\cdot r_2}$ & (4) \end{tabular} \end{center} \noindent (1) is by the corollary \ref{seqEstimate1}. (2) is by \ref{altsSimpControl}. (3) is by \ref{finiteSizeNCorollary}. -(4) is by splitting the case when $s = []$ and $s \neq []$. + + +Combining the cases when $s = []$ and $s \neq []$, we get (4): +\begin{center} + \begin{tabular}{lcll} + $\rsize{(r_1 \cdot r_2) \backslash_r s}$ & $\leq$ & + $max \; (2 + N_1 + + \llbracket r_2 \rrbracket_r + + N_2 * (card\; (\sizeNregex \; N_2))) \; \rsize{r_1\cdot r_2}$ & (4) + \end{tabular} +\end{center} -We reason similarly for $\STAR$.\medskip +We reason similarly for $\STAR$. +The inductive hypothesis is +$\exists N. \forall s. \; \llbracket \rderssimp{r}{s} \rrbracket \leq N$. +Let $\n_r = \llbracket r^* \rrbracket_r$. +When $s = c :: cs$ is not empty, +\begin{center} +\begin{tabular}{lcll} +& & $ \llbracket \rderssimp{r^* }{c::cs} \rrbracket_r $\\ +& $ = $ & $\llbracket \rsimp{(\sum (\map \; (\lambda s. (r \backslash_{rsimp} s) \cdot r^*) \; (\starupdates\; +cs \; r \; [[c]] )) )} \rrbracket_r $ & (5) \\ +& $\leq$ & $\llbracket +\rdistinct{ + (\map \; + (\lambda s. (r \backslash_{rsimp} s) \cdot r^*) \; + (\starupdates\; cs \; r \; [[c]] ) + )} + {\varnothing} \rrbracket_r + 1$ & (6) \\ + & $\leq$ & $1 + (\textit{card} (\sizeNregex \; (N + n_r))) + * (1 + (N + n_r)) $ & (7)\\ +\end{tabular} +\end{center} +\noindent +(5) is by the lemma \ref{starClosedForm}. +(6) is by \ref{altsSimpControl}. +(7) is by \ref{finiteSizeNCorollary}. +Combining with the case when $s = []$, one gets +\begin{center} +\begin{tabular}{lcll} + $\rsize{r^* \backslash_r s}$ & $\leq$ & $max \; n_r \; 1 + (\textit{card} (\sizeNregex \; (N + n_r))) + * (1 + (N + n_r)) $ & (8)\\ +\end{tabular} +\end{center} +\noindent + +The alternative case is slightly less involved. +The inductive hypothesis +is equivalent to $\exists N. \forall r \in (\map \; (\_ \backslash_r s) \; rs). \rsize{r} \leq N$. +In the case when $s = c::cs$, we have +\begin{center} +\begin{tabular}{lcll} +& & $ \llbracket \rderssimp{\sum rs }{c::cs} \rrbracket_r $\\ +& $ = $ & $\llbracket \rsimp{(\sum (\map \; (\_ \backslash_{rsimp} s) \; rs) )} \rrbracket_r $ & (9) \\ +& $\leq$ & $\llbracket (\sum (\map \; (\_ \backslash_{rsimp} s) \; rs) ) \rrbracket_r $ & (10) \\ +& $\leq$ & $1 + N * (length \; rs) $ & (11)\\ +\end{tabular} +\end{center} +\noindent +(9) is by \ref{altsClosedForm}, (10) by \ref{rsimpSize} and (11) by inductive hypothesis. + +Combining with the case when $s = []$, one gets +\begin{center} +\begin{tabular}{lcll} + $\rsize{\sum rs \backslash_r s}$ & $\leq$ & $max \; \rsize{\sum rs} \; 1+N*(length \; rs)$ + & (12)\\ +\end{tabular} +\end{center} +(4), (8), and (12) are all the inductive cases proven. \end{proof} \noindent