# HG changeset patch # User Chengsong # Date 1656936918 -3600 # Node ID 486fb297ac7c60a94d4add5f18c8d73401dbfab6 # Parent c24602876ec74bb1a581da31f03bc858e23c60e4 more done diff -r c24602876ec7 -r 486fb297ac7c ChengsongTanPhdThesis/Chapters/Finite.tex --- a/ChengsongTanPhdThesis/Chapters/Finite.tex Mon Jul 04 12:50:48 2022 +0100 +++ b/ChengsongTanPhdThesis/Chapters/Finite.tex Mon Jul 04 13:15:18 2022 +0100 @@ -1434,7 +1434,7 @@ if forall $r \in rs$, $\rsize{r} \leq N$, then the output of $\rdistinct{rs}{\varnothing}$ is a list of regular expressions of finite size depending on $N$ only. -\begin{corollary} +\begin{corollary}\label{finiteSizeNCorollary} Assumes that for all $r \in rs. \rsize{r} \leq N$, and the cardinality of $\sizeNregex \; N$ is $c_N$ then$\rsize{\rdistinct{rs}{\varnothing}} \leq c*N$. @@ -1487,28 +1487,24 @@ \begin{center} \begin{tabular}{lcll} & & $ \llbracket \rderssimp{r_1\cdot r_2 }{s} \rrbracket_r $\\ -& $ = $ & $\llbracket \rsimp{(\sum(r_1 \backslash s \cdot r_2 \; \; :: \; \; -\map \; (\lambda s'. r_2\backslash_{rsimp} s') (\vsuf{s}{r})))} \rrbracket_r $ & (1) \\ -& $\leq$ & $\llbracket \rsimp{(\sum(r_1 \backslash s \cdot r_2 :: -\map \; (\lambda s'. r_2\backslash_{rsimp} s') (\vsuf{s}{r})))} \rrbracket_r $ & (2) \\ - +& $ = $ & $\llbracket \rsimp{(\sum(r_1 \backslash_{rsimp} s \cdot r_2 \; \; :: \; \; +\map \; (r_2\backslash_{rsimp} \_)\; (\vsuf{s}{r})))} \rrbracket_r $ & (1) \\ +& $\leq$ & $\llbracket \rdistinct{(r_1 \backslash_{rsimp} s \cdot r_2 \; \; :: \; \; +\map \; (r_2\backslash_{rsimp} \_)\; (\vsuf{s}{r}))}{\varnothing} \rrbracket_r + 1$ & (2) \\ + & $\leq$ & $2 + N_1 + \rsize{r_2} + (N_2 * (card\;(\sizeNregex \; N_2)))$ & (3)\\ +$\rsize{(r_1 \cdot r_2) \backslash_r s}$& $\leq$ & $max \; (2 + N_1 + \llbracket r_2 \rrbracket_r + N_2 * (card\; (\sizeNregex \; N_2))) \; \rsize{r_1\cdot r_2}$ & (4) \end{tabular} \end{center} +\noindent +(1) is by the corollary \ref{seqEstimate1}. +(2) is by \ref{altsSimpControl}. +(3) is by \ref{finiteSizeNCorollary}. +(4) is by splitting the case when $s = []$ and $s \neq []$. +We reason similarly for $\STAR$.\medskip \end{proof} \noindent -(1) is by the corollary \ref{seqEstimate1} -The term (2) is used to control (1). -That is because one can obtain an overall -smaller regex list -by flattening it and removing $\ZERO$s first before applying $\distinctWith$ on it. -Section 3 is dedicated to its proof. -In (3) we know that $\llbracket \ASEQ{bs}{(\rderssimp{ r_1}{s}}{r_2}\rrbracket$ is -bounded by $N_1 + \llbracket{}r_2\rrbracket + 1$. In (5) we know the list comprehension contains only regular expressions of size smaller -than $N_2$. The list length after $\distinctWith$ is bounded by a number, which we call $l_{N_2}$. It stands -for the number of distinct regular expressions smaller than $N_2$ (there can only be finitely many of them). -We reason similarly for $\STAR$.\medskip %----------------------------------- % SECTION 2