# HG changeset patch # User Christian Urban # Date 1502479741 -3600 # Node ID 32b222d77fa0303012e2f41a42a81de6f207fb5e # Parent fff2e1b40dfc11de30c8cc687b3286abf030c3d3 updated diff -r fff2e1b40dfc -r 32b222d77fa0 thys/Journal/Paper.thy --- a/thys/Journal/Paper.thy Wed Jul 19 14:55:46 2017 +0100 +++ b/thys/Journal/Paper.thy Fri Aug 11 20:29:01 2017 +0100 @@ -15,6 +15,11 @@ declare [[show_question_marks = false]] +syntax (latex output) + "_Collect" :: "pttrn => bool => 'a set" ("(1{_ \<^raw:\mbox{\boldmath$\mid$}> _})") + "_CollectIn" :: "pttrn => 'a set => bool => 'a set" ("(1{_ \ _ |e _})") + + abbreviation "der_syn r c \ der c r" @@ -26,12 +31,14 @@ "nprec v1 v2 \ \(v1 :\val v2)" + + notation (latex output) If ("(\<^raw:\textrm{>if\<^raw:}> (_)/ \<^raw:\textrm{>then\<^raw:}> (_)/ \<^raw:\textrm{>else\<^raw:}> (_))" 10) and Cons ("_\<^raw:\mbox{$\,$}>::\<^raw:\mbox{$\,$}>_" [75,73] 73) and ZERO ("\<^bold>0" 78) and - ONE ("\<^bold>1" 78) and + ONE ("\<^bold>1" 1000) and CHAR ("_" [1000] 80) and ALT ("_ + _" [77,77] 78) and SEQ ("_ \ _" [77,77] 78) and @@ -53,8 +60,10 @@ mkeps ("mkeps _" [79] 76) and length ("len _" [73] 73) and intlen ("len _" [73] 73) and + set ("_" [73] 73) and - Prf ("_ : _" [75,75] 75) and + Prf ("_ : _" [75,75] 75) and + CPrf ("_ \<^raw:\mbox{\textbf{\textlengthmark}}> _" [75,75] 75) and Posix ("'(_, _') \ _" [63,75,75] 75) and lexer ("lexer _ _" [78,78] 77) and @@ -84,6 +93,13 @@ definition "match r s \ nullable (ders s r)" + +lemma CV_STAR_ONE_empty: + shows "CV (STAR ONE) [] = {Stars []}" +by(auto simp add: CV_def elim: CPrf.cases intro: CPrf.intros) + + + (* comments not implemented @@ -94,6 +110,8 @@ (*>*) + + section {* Introduction *} @@ -153,7 +171,7 @@ not match an empty string unless this is the only match for the repetition.\smallskip \item[$\bullet$] \emph{Empty String Rule:} An empty string shall be considered to -be longer than no match at all. +be longer than no match at all.\marginpar{Explain its purpose} \end{itemize} \noindent Consider for example a regular expression @{text "r\<^bsub>key\<^esub>"} for recognising keywords @@ -165,7 +183,9 @@ by the Longest Match Rule a single identifier token, not a keyword followed by an identifier. For @{text "if"} we obtain by the Priority Rule a keyword token, not an identifier token---even if @{text "r\<^bsub>id\<^esub>"} -matches also. +matches also. By the Star Rule we know @{text "(r\<^bsub>key\<^esub> + r\<^bsub>id\<^esub>)\<^sup>\"} matches @{text "iffoo"}, respectively @{text "if"}, in exactly one +`iteration' of the star. + One limitation of Brzozowski's matcher is that it only generates a YES/NO answer for whether a string is being matched by a regular @@ -185,7 +205,8 @@ algorithm. This proof idea is inspired by work of Frisch and Cardelli \cite{Frisch2004} on a GREEDY regular expression matching algorithm. However, we were not able to establish transitivity and -totality for the ``order relation'' by Sulzmann and Lu. ??In Section +totality for the ``order relation'' by Sulzmann and Lu. \marginpar{We probably drop this section} +??In Section \ref{argu} we identify some inherent problems with their approach (of which some of the proofs are not published in \cite{Sulzmann2014}); perhaps more importantly, we give a simple inductive (and @@ -230,6 +251,8 @@ informal proof contains gaps, and possible fixes are not fully worked out.} Our specification of a POSIX value consists of a simple inductive definition that given a string and a regular expression uniquely determines this value. +We also show that our definition is equivalent to an ordering +of values based on positions by Okui and Suzuki \cite{OkuiSuzuki2013}. Derivatives as calculated by Brzozowski's method are usually more complex regular expressions than the initial one; various optimisations are possible. We prove the correctness when simplifications of @{term "ALT ZERO @@ -267,13 +290,10 @@ recursive function @{term L} with the six clauses: \begin{center} - \begin{tabular}{l@ {\hspace{3mm}}rcl} + \begin{tabular}{l@ {\hspace{4mm}}rcl} (1) & @{thm (lhs) L.simps(1)} & $\dn$ & @{thm (rhs) L.simps(1)}\\ (2) & @{thm (lhs) L.simps(2)} & $\dn$ & @{thm (rhs) L.simps(2)}\\ (3) & @{thm (lhs) L.simps(3)} & $\dn$ & @{thm (rhs) L.simps(3)}\\ - \end{tabular} - \hspace{14mm} - \begin{tabular}{l@ {\hspace{3mm}}rcl} (4) & @{thm (lhs) L.simps(4)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) L.simps(4)[of "r\<^sub>1" "r\<^sub>2"]}\\ (5) & @{thm (lhs) L.simps(5)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) L.simps(5)[of "r\<^sub>1" "r\<^sub>2"]}\\ (6) & @{thm (lhs) L.simps(6)} & $\dn$ & @{thm (rhs) L.simps(6)}\\ @@ -325,14 +345,12 @@ @{thm (lhs) nullable.simps(3)} & $\dn$ & @{thm (rhs) nullable.simps(3)}\\ @{thm (lhs) nullable.simps(4)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) nullable.simps(4)[of "r\<^sub>1" "r\<^sub>2"]}\\ @{thm (lhs) nullable.simps(5)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) nullable.simps(5)[of "r\<^sub>1" "r\<^sub>2"]}\\ - @{thm (lhs) nullable.simps(6)} & $\dn$ & @{thm (rhs) nullable.simps(6)}\medskip\\ - - %\end{tabular} - %\end{center} + @{thm (lhs) nullable.simps(6)} & $\dn$ & @{thm (rhs) nullable.simps(6)}%\medskip\\ + \end{tabular} + \end{center} - %\begin{center} - %\begin{tabular}{lcl} - + \begin{center} + \begin{tabular}{lcl} @{thm (lhs) der.simps(1)} & $\dn$ & @{thm (rhs) der.simps(1)}\\ @{thm (lhs) der.simps(2)} & $\dn$ & @{thm (rhs) der.simps(2)}\\ @{thm (lhs) der.simps(3)} & $\dn$ & @{thm (rhs) der.simps(3)}\\ @@ -384,7 +402,7 @@ text {* - The clever idea by Sulzmann and Lu \cite{Sulzmann2014} is to define + The clever idea by Sulzmann and Lu \cite{Sulzmann2014} is to use values for encoding \emph{how} a regular expression matches a string and then define a function on values that mirrors (but inverts) the construction of the derivative on regular expressions. \emph{Values} @@ -422,7 +440,7 @@ \end{center} \noindent Sulzmann and Lu also define inductively an inhabitation relation - that associates values to regular expressions: + that associates values to regular expressions \begin{center} \begin{tabular}{c} @@ -436,7 +454,10 @@ \end{tabular} \end{center} - \noindent Note that no values are associated with the regular expression + \noindent + where in the clause for @{const "Stars"} we use the notation @{term "v \ set vs"} + for indicating that @{text v} is a member in the list @{text vs}. + Note that no values are associated with the regular expression @{term ZERO}, and that the only value associated with the regular expression @{term ONE} is @{term Void}, pronounced (if one must) as @{text "Void"}. It is routine to establish how values ``inhabiting'' a regular @@ -446,10 +467,58 @@ @{thm L_flat_Prf} \end{proposition} - In general there is more than one value associated with a regular - expression. In case of POSIX matching the problem is to calculate the - unique value that satisfies the (informal) POSIX rules from the - Introduction. Graphically the POSIX value calculation algorithm by + \noindent + Given a regular expression @{text r} and a string @{text s}, we can define the + set of all \emph{Lexical Values} inhabited by @{text r} with the underlying string + being @{text s} by + + \begin{center} + @{thm LV_def} + \end{center} + + \noindent However, later on it will sometimes be necessary to + restrict the set of lexical values to a subset called + \emph{Canonical Values}. The idea of canonical values is that they + satisfy the Star Rule (see Introduction) where the $^\star$ does not + match the empty string unless this is the only match for the + repetition. One way to define canonical values formally is to use a + stronger inhabitation relation, written @{term "\ DUMMY : DUMMY"}, which has the same rules as @{term + "\ DUMMY : DUMMY"} shown above, except that the rule for + @{term Stars} has + the additional side-condition of flattened values not being the + empty string, namely + + \begin{center} + @{thm [mode=Rule] CPrf.intros(6)} + \end{center} + + \noindent + With this we can define + + \begin{center} + @{thm CV_def} + \end{center} + + \noindent + Clearly we have @{thm LV_CV_subset}. + The main point of canonical values is that for every regular expression @{text r} and every + string @{text s}, the set @{term "CV r s"} is finite. + + \begin{lemma} + @{thm CV_finite} + \end{lemma} + + \noindent This finiteness property does not generally hold for lexical values where + for example @{term "LV (STAR ONE) []"} contains infinitely many + values, but @{thm CV_STAR_ONE_empty}. However, if a regular + expression @{text r} matches a string @{text s}, then in general the + set @{term "CV r s"} is not just a + singleton set. In case of POSIX matching the problem is to + calculate the unique value that satisfies the (informal) POSIX rules + from the Introduction. It will turn out that this POSIX value is in fact a + canonical value. + + Graphically the POSIX value calculation algorithm by Sulzmann and Lu can be illustrated by the picture in Figure~\ref{Sulz} where the path from the left to the right involving @{term derivatives}/@{const nullable} is the first phase of the algorithm (calculating successive @@ -614,7 +683,7 @@ \end{proof} Having defined the @{const mkeps} and @{text inj} function we can extend - \Brz's matcher so that a [lexical] value is constructed (assuming the + \Brz's matcher so that a value is constructed (assuming the regular expression matches the string). The clauses of the Sulzmann and Lu lexer are \begin{center} @@ -633,19 +702,25 @@ functional programming language and also in Isabelle/HOL. In the remaining part of this section we prove that this algorithm is correct. - The well-known idea of POSIX matching is informally defined by the longest - match and priority rule (see Introduction); as correctly argued in \cite{Sulzmann2014}, this + The well-known idea of POSIX matching is informally defined by some + rules such as the longest match and priority rule (see + Introduction); as correctly argued in \cite{Sulzmann2014}, this needs formal specification. Sulzmann and Lu define an ``ordering - relation'' between values and argue - that there is a maximum value, as given by the derivative-based algorithm. - In contrast, we shall introduce a simple inductive definition that - specifies directly what a \emph{POSIX value} is, incorporating the - POSIX-specific choices into the side-conditions of our rules. Our - definition is inspired by the matching relation given by Vansummeren - \cite{Vansummeren2006}. The relation we define is ternary and written as - \mbox{@{term "s \ r \ v"}}, relating strings, regular expressions and - values. + relation'' between values and argue that there is a maximum value, + as given by the derivative-based algorithm. In contrast, we shall + introduce a simple inductive definition that specifies directly what + a \emph{POSIX value} is, incorporating the POSIX-specific choices + into the side-conditions of our rules. Our definition is inspired by + the matching relation given by Vansummeren + \cite{Vansummeren2006}. The relation we define is ternary and + written as \mbox{@{term "s \ r \ v"}}, relating + strings, regular expressions and values; the inductive rules are given in + Figure~\ref{POSIXrules}. + We can prove that given a string @{term s} and regular expression @{term + r}, the POSIX value @{term v} is uniquely determined by @{term "s \ r \ v"}. + % + \begin{figure}[t] \begin{center} \begin{tabular}{c} @{thm[mode=Axiom] Posix.intros(1)}@{text "P"}@{term "ONE"} \qquad @@ -668,10 +743,10 @@ {@{thm (concl) Posix.intros(6)[of "s\<^sub>1" "r" "v" "s\<^sub>2" "vs"]}}$@{text "P\"} \end{tabular} \end{center} + \caption{Our inductive definition of POSIX values.}\label{POSIXrules} + \end{figure} - \noindent - We can prove that given a string @{term s} and regular expression @{term - r}, the POSIX value @{term v} is uniquely determined by @{term "s \ r \ v"}. + \begin{theorem}\mbox{}\smallskip\\\label{posixdeterm} \begin{tabular}{ll} @@ -687,7 +762,7 @@ \end{proof} \noindent - We claim that our @{term "s \ r \ v"} relation captures the idea behind the two + We claim that our @{term "s \ r \ v"} relation captures the idea behind the four informal POSIX rules shown in the Introduction: Consider for example the rules @{text "P+L"} and @{text "P+R"} where the POSIX value for a string and an alternative regular expression, that is @{term "(s, ALT r\<^sub>1 r\<^sub>2)"}, @@ -718,8 +793,19 @@ @{term v} cannot be flattened to the empty string. In effect, we require that in each ``iteration'' of the star, some non-empty substring needs to be ``chipped'' away; only in case of the empty string we accept @{term - "Stars []"} as the POSIX value. + "Stars []"} as the POSIX value. Indeed we can show that our POSIX value + is a canonical value which excludes those @{text Stars} containing values + that flatten to the empty string. + \begin{lemma} + @{thm [mode=IfThen] Posix_CV} + \end{lemma} + + \begin{proof} + By routine induction on @{thm (prem 1) Posix_CV}.\qed + \end{proof} + + \noindent Next is the lemma that shows the function @{term "mkeps"} calculates the POSIX value for the empty string and a nullable regular expression. @@ -1117,17 +1203,11 @@ text {* - Theorems: - - @{thm [mode=IfThen] Posix_CPT} + Theorem 1: @{thm [mode=IfThen] Posix_PosOrd[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2"]} - Corrollary from the last one - - @{thm [mode=IfThen] Posix_PosOrd_stronger[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2"]} - - Theorem + Theorem 2: @{thm [mode=IfThen] PosOrd_Posix[where ?v1.0="v\<^sub>1"]} *} diff -r fff2e1b40dfc -r 32b222d77fa0 thys/Journal/document/root.tex --- a/thys/Journal/document/root.tex Wed Jul 19 14:55:46 2017 +0100 +++ b/thys/Journal/document/root.tex Fri Aug 11 20:29:01 2017 +0100 @@ -12,6 +12,9 @@ %%\usepackage{stmaryrd} \usepackage{url} \usepackage{color} +\usepackage[safe]{tipa} + + \titlerunning{POSIX Lexing with Derivatives of Regular Expressions} @@ -26,6 +29,8 @@ \renewcommand{\isasymemptyset}{$\varnothing$} \renewcommand{\isacharunderscore}{\mbox{$\_\!\_$}} \renewcommand{\isasymiota}{\makebox[0mm]{${}^{\prime}$}} +\renewcommand{\isasymin}{\ensuremath{\,\in\,}} + \def\Brz{Brzozowski} \def\der{\backslash} @@ -36,8 +41,10 @@ \renewcommand{\thefootnote}{$\star$} \footnotetext[1]{This paper is a revised and expanded version of \cite{AusafDyckhoffUrban2016}. Compared with that paper we give a second definition for POSIX - values and prove that it is equivalent to the original one. This - definition is based on an ordering of values and very similar to the + values introduced by Okui Suzuki \cite{OkuiSuzuki2013} and prove that it is + equivalent to our original one. This + second definition is based on an ordering of values and very similar to, + but not equivalent with, the definition given by Sulzmann and Lu~\cite{Sulzmann2014}. We also extend our results to additional constructors of regular expressions.} \renewcommand{\thefootnote}{\arabic{footnote}} @@ -54,7 +61,6 @@ \maketitle \begin{abstract} - Brzozowski introduced the notion of derivatives for regular expressions. They can be used for a very simple regular expression matching algorithm. Sulzmann and Lu cleverly extended this algorithm @@ -68,10 +74,10 @@ of an optimised version of the POSIX matching algorithm. In the second part we show that $(iii)$ our inductive definition of a POSIX value is equivalent to an alternative definition by Okui and Suzuki -which identifies a POSIX value as least element according to an +which identifies POSIX values as least elements according to an ordering of values. The advantage of the definition based on the -ordering is that it implements more directly the POSIX -longest-leftmost matching semantics.\smallskip +ordering is that it implements more directly the informal rules from the +POSIX standard.\smallskip {\bf Keywords:} POSIX matching, Derivatives of Regular Expressions, Isabelle/HOL diff -r fff2e1b40dfc -r 32b222d77fa0 thys/Paper/document/root.tex --- a/thys/Paper/document/root.tex Wed Jul 19 14:55:46 2017 +0100 +++ b/thys/Paper/document/root.tex Fri Aug 11 20:29:01 2017 +0100 @@ -1,4 +1,5 @@ \documentclass[runningheads]{llncs} +\usepackage{stix} \usepackage{times} \usepackage{isabelle} \usepackage{isabellesym} @@ -13,6 +14,8 @@ \usepackage{url} \usepackage{color} + + \titlerunning{POSIX Lexing with Derivatives of Regular Expressions} \urlstyle{rm} diff -r fff2e1b40dfc -r 32b222d77fa0 thys/Positions.thy --- a/thys/Positions.thy Wed Jul 19 14:55:46 2017 +0100 +++ b/thys/Positions.thy Fri Aug 11 20:29:01 2017 +0100 @@ -31,10 +31,8 @@ lemma Pos_stars: "Pos (Stars vs) = {[]} \ (\n < length vs. {n#ps | ps. ps \ Pos (vs ! n)})" apply(induct vs) -apply(simp) -apply(simp add: insert_ident) -apply(rule subset_antisym) -using less_Suc_eq_0_disj by auto +apply(auto simp add: insert_ident less_Suc_eq_0_disj) +done lemma Pos_empty: shows "[] \ Pos v" @@ -45,31 +43,25 @@ "intlen [] = 0" | "intlen (x # xs) = 1 + intlen xs" +lemma intlen_int: + shows "intlen xs = int (length xs)" +by (induct xs)(simp_all) + lemma intlen_bigger: shows "0 \ intlen xs" by (induct xs)(auto) lemma intlen_append: shows "intlen (xs @ ys) = intlen xs + intlen ys" -by (induct xs arbitrary: ys) (auto) +by (simp add: intlen_int) lemma intlen_length: shows "intlen xs < intlen ys \ length xs < length ys" -apply(induct xs arbitrary: ys) -apply (auto simp add: intlen_bigger not_less) -apply (metis intlen.elims intlen_bigger le_imp_0_less) -apply (smt Suc_lessI intlen.simps(2) length_Suc_conv nat_neq_iff) -by (smt Suc_lessE intlen.simps(2) length_Suc_conv) +by (simp add: intlen_int) lemma intlen_length_eq: shows "intlen xs = intlen ys \ length xs = length ys" -apply(induct xs arbitrary: ys) -apply (auto simp add: intlen_bigger not_less) -apply(case_tac ys) -apply(simp_all) -apply (smt intlen_bigger) -apply (smt intlen.elims intlen_bigger length_Suc_conv) -by (metis intlen.simps(2) length_Suc_conv) +by (simp add: intlen_int) definition pflat_len :: "val \ nat list => int" where @@ -90,7 +82,7 @@ lemma pflat_len_Stars_simps: assumes "n < length vs" shows "pflat_len (Stars vs) (n#p) = pflat_len (vs!n) p" -using assms +using assms apply(induct vs arbitrary: n p) apply(auto simp add: less_Suc_eq_0_disj pflat_len_simps) done @@ -98,7 +90,8 @@ lemma pflat_len_outside: assumes "p \ Pos v1" shows "pflat_len v1 p = -1 " -using assms by (auto simp add: pflat_len_def) +using assms by (simp add: pflat_len_def) + section {* Orderings *} @@ -175,15 +168,10 @@ lemma PosOrd_shorterE: assumes "v1 :\val v2" shows "length (flat v2) \ length (flat v1)" -using assms -apply(auto simp add: pflat_len_simps PosOrd_ex_def PosOrd_def) -apply(case_tac p) -apply(simp add: pflat_len_simps intlen_length) -apply(simp) -apply(drule_tac x="[]" in bspec) -apply(simp add: Pos_empty) -apply(simp add: pflat_len_simps le_less intlen_length_eq) -done +using assms unfolding PosOrd_ex_def PosOrd_def +apply(auto simp add: pflat_len_def intlen_int split: if_splits) +apply (metis Pos_empty Un_iff at.simps(1) eq_iff lex_simps(1) nat_less_le) +by (metis Pos_empty UnI2 at.simps(1) lex_simps(2) lex_trichotomous linear) lemma PosOrd_shorterI: assumes "length (flat v2) < length (flat v1)" @@ -206,8 +194,7 @@ unfolding PosOrd_ex_def apply(rule_tac x="[0]" in exI) using assms -apply(auto simp add: PosOrd_def pflat_len_simps) -apply(smt intlen_bigger) +apply(auto simp add: PosOrd_def pflat_len_simps intlen_int) done lemma PosOrd_Left_eq: @@ -547,34 +534,35 @@ by (metis PosOrd_SeqI1 PosOrd_shorterI WW1 antisym_conv3 append_eq_append_conv assms(2)) + section {* The Posix Value is smaller than any other Value *} lemma Posix_PosOrd: - assumes "s \ r \ v1" "v2 \ CPT r s" + assumes "s \ r \ v1" "v2 \ CV r s" shows "v1 :\val v2" using assms proof (induct arbitrary: v2 rule: Posix.induct) case (Posix_ONE v) - have "v \ CPT ONE []" by fact + have "v \ CV ONE []" by fact then have "v = Void" - by (simp add: CPT_simps) + by (simp add: CV_simps) then show "Void :\val v" by (simp add: PosOrd_ex_eq_def) next case (Posix_CHAR c v) - have "v \ CPT (CHAR c) [c]" by fact + have "v \ CV (CHAR c) [c]" by fact then have "v = Char c" - by (simp add: CPT_simps) + by (simp add: CV_simps) then show "Char c :\val v" by (simp add: PosOrd_ex_eq_def) next case (Posix_ALT1 s r1 v r2 v2) have as1: "s \ r1 \ v" by fact - have IH: "\v2. v2 \ CPT r1 s \ v :\val v2" by fact - have "v2 \ CPT (ALT r1 r2) s" by fact + have IH: "\v2. v2 \ CV r1 s \ v :\val v2" by fact + have "v2 \ CV (ALT r1 r2) s" by fact then have "\ v2 : ALT r1 r2" "flat v2 = s" - by(auto simp add: CPT_def prefix_list_def) + by(auto simp add: CV_def prefix_list_def) then consider (Left) v3 where "v2 = Left v3" "\ v3 : r1" "flat v3 = s" | (Right) v3 where "v2 = Right v3" "\ v3 : r2" "flat v3 = s" @@ -582,8 +570,8 @@ then show "Left v :\val v2" proof(cases) case (Left v3) - have "v3 \ CPT r1 s" using Left(2,3) - by (auto simp add: CPT_def prefix_list_def) + have "v3 \ CV r1 s" using Left(2,3) + by (auto simp add: CV_def prefix_list_def) with IH have "v :\val v3" by simp moreover have "flat v3 = flat v" using as1 Left(3) @@ -603,10 +591,10 @@ case (Posix_ALT2 s r2 v r1 v2) have as1: "s \ r2 \ v" by fact have as2: "s \ L r1" by fact - have IH: "\v2. v2 \ CPT r2 s \ v :\val v2" by fact - have "v2 \ CPT (ALT r1 r2) s" by fact + have IH: "\v2. v2 \ CV r2 s \ v :\val v2" by fact + have "v2 \ CV (ALT r1 r2) s" by fact then have "\ v2 : ALT r1 r2" "flat v2 = s" - by(auto simp add: CPT_def prefix_list_def) + by(auto simp add: CV_def prefix_list_def) then consider (Left) v3 where "v2 = Left v3" "\ v3 : r1" "flat v3 = s" | (Right) v3 where "v2 = Right v3" "\ v3 : r2" "flat v3 = s" @@ -614,8 +602,8 @@ then show "Right v :\val v2" proof (cases) case (Right v3) - have "v3 \ CPT r2 s" using Right(2,3) - by (auto simp add: CPT_def prefix_list_def) + have "v3 \ CV r2 s" using Right(2,3) + by (auto simp add: CV_def prefix_list_def) with IH have "v :\val v3" by simp moreover have "flat v3 = flat v" using as1 Right(3) @@ -625,10 +613,10 @@ then show "Right v :\val v2" unfolding Right . next case (Left v3) - have "v3 \ CPT r1 s" using Left(2,3) as2 - by (auto simp add: CPT_def prefix_list_def) + have "v3 \ CV r1 s" using Left(2,3) as2 + by (auto simp add: CV_def prefix_list_def) then have "flat v3 = flat v \ \ v3 : r1" using as1 Left(3) - by (simp add: Posix1(2) CPT_def) + by (simp add: Posix1(2) CV_def) then have "False" using as1 as2 Left by (auto simp add: Posix1(2) L_flat_Prf1 Prf_CPrf) then show "Right v :\val v2" by simp @@ -637,22 +625,22 @@ case (Posix_SEQ s1 r1 v1 s2 r2 v2 v3) have "s1 \ r1 \ v1" "s2 \ r2 \ v2" by fact+ then have as1: "s1 = flat v1" "s2 = flat v2" by (simp_all add: Posix1(2)) - have IH1: "\v3. v3 \ CPT r1 s1 \ v1 :\val v3" by fact - have IH2: "\v3. v3 \ CPT r2 s2 \ v2 :\val v3" by fact + have IH1: "\v3. v3 \ CV r1 s1 \ v1 :\val v3" by fact + have IH2: "\v3. v3 \ CV r2 s2 \ v2 :\val v3" by fact have cond: "\ (\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = s2 \ s1 @ s\<^sub>3 \ L r1 \ s\<^sub>4 \ L r2)" by fact - have "v3 \ CPT (SEQ r1 r2) (s1 @ s2)" by fact + have "v3 \ CV (SEQ r1 r2) (s1 @ s2)" by fact then obtain v3a v3b where eqs: "v3 = Seq v3a v3b" "\ v3a : r1" "\ v3b : r2" "flat v3a @ flat v3b = s1 @ s2" - by (force simp add: prefix_list_def CPT_def elim: CPrf.cases) + by (force simp add: prefix_list_def CV_def elim: CPrf.cases) with cond have "flat v3a \pre s1" unfolding prefix_list_def by (smt L_flat_Prf1 Prf_CPrf append_eq_append_conv2 append_self_conv) then have "flat v3a \spre s1 \ (flat v3a = s1 \ flat v3b = s2)" using eqs by (simp add: sprefix_list_def append_eq_conv_conj) then have q2: "v1 :\val v3a \ (flat v3a = s1 \ flat v3b = s2)" using PosOrd_spreI as1(1) eqs by blast - then have "v1 :\val v3a \ (v3a \ CPT r1 s1 \ v3b \ CPT r2 s2)" using eqs(2,3) - by (auto simp add: CPT_def) + then have "v1 :\val v3a \ (v3a \ CV r1 s1 \ v3b \ CV r2 s2)" using eqs(2,3) + by (auto simp add: CV_def) then have "v1 :\val v3a \ (v1 :\val v3a \ v2 :\val v3b)" using IH1 IH2 by blast then have "Seq v1 v2 :\val Seq v3a v3b" using eqs q2 as1 unfolding PosOrd_ex_eq_def by (auto simp add: PosOrd_SeqI1 PosOrd_SeqI2) @@ -661,17 +649,17 @@ case (Posix_STAR1 s1 r v s2 vs v3) have "s1 \ r \ v" "s2 \ STAR r \ Stars vs" by fact+ then have as1: "s1 = flat v" "s2 = flat (Stars vs)" by (auto dest: Posix1(2)) - have IH1: "\v3. v3 \ CPT r s1 \ v :\val v3" by fact - have IH2: "\v3. v3 \ CPT (STAR r) s2 \ Stars vs :\val v3" by fact + have IH1: "\v3. v3 \ CV r s1 \ v :\val v3" by fact + have IH2: "\v3. v3 \ CV (STAR r) s2 \ Stars vs :\val v3" by fact have cond: "\ (\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = s2 \ s1 @ s\<^sub>3 \ L r \ s\<^sub>4 \ L (STAR r))" by fact have cond2: "flat v \ []" by fact - have "v3 \ CPT (STAR r) (s1 @ s2)" by fact + have "v3 \ CV (STAR r) (s1 @ s2)" by fact then consider (NonEmpty) v3a vs3 where "v3 = Stars (v3a # vs3)" "\ v3a : r" "\ Stars vs3 : STAR r" "flat (Stars (v3a # vs3)) = s1 @ s2" | (Empty) "v3 = Stars []" - unfolding CPT_def + unfolding CV_def apply(auto) apply(erule CPrf.cases) apply(simp_all) @@ -690,8 +678,8 @@ by (simp add: sprefix_list_def append_eq_conv_conj) then have q2: "v :\val v3a \ (flat v3a = s1 \ flat (Stars vs3) = s2)" using PosOrd_spreI as1(1) NonEmpty(4) by blast - then have "v :\val v3a \ (v3a \ CPT r s1 \ Stars vs3 \ CPT (STAR r) s2)" - using NonEmpty(2,3) by (auto simp add: CPT_def) + then have "v :\val v3a \ (v3a \ CV r s1 \ Stars vs3 \ CV (STAR r) s2)" + using NonEmpty(2,3) by (auto simp add: CV_def) then have "v :\val v3a \ (v :\val v3a \ Stars vs :\val Stars vs3)" using IH1 IH2 by blast then have "v :\val v3a \ (v = v3a \ Stars vs :\val Stars vs3)" unfolding PosOrd_ex_eq_def by auto @@ -708,58 +696,26 @@ qed next case (Posix_STAR2 r v2) - have "v2 \ CPT (STAR r) []" by fact + have "v2 \ CV (STAR r) []" by fact then have "v2 = Stars []" - unfolding CPT_def by (auto elim: CPrf.cases) + unfolding CV_def by (auto elim: CPrf.cases) then show "Stars [] :\val v2" by (simp add: PosOrd_ex_eq_def) qed -lemma Posix_PosOrd_stronger: - assumes "s \ r \ v1" "v2 \ CPTpre r s" - shows "v1 :\val v2" -proof - - from assms(2) have "v2 \ CPT r s \ flat v2 \spre s" - unfolding CPTpre_def CPT_def sprefix_list_def prefix_list_def by auto - moreover - { assume "v2 \ CPT r s" - with assms(1) - have "v1 :\val v2" by (rule Posix_PosOrd) - } - moreover - { assume "flat v2 \spre s" - then have "flat v2 \spre flat v1" using assms(1) - using Posix1(2) by blast - then have "v1 :\val v2" - by (simp add: PosOrd_ex_eq_def PosOrd_spreI) - } - ultimately show "v1 :\val v2" by blast -qed lemma Posix_PosOrd_reverse: assumes "s \ r \ v1" - shows "\(\v2 \ CPTpre r s. v2 :\val v1)" + shows "\(\v2 \ CV r s. v2 :\val v1)" using assms -by (metis Posix_PosOrd_stronger less_irrefl PosOrd_def +by (metis Posix_PosOrd less_irrefl PosOrd_def PosOrd_ex_eq_def PosOrd_ex_def PosOrd_trans) -lemma test2: - assumes "\v \ set vs. flat v \ r \ v \ flat v \ []" - shows "(Stars vs) \ CPT (STAR r) (flat (Stars vs))" -using assms -apply(induct vs) -apply(auto simp add: CPT_def) -apply(rule CPrf.intros) -apply(simp) -apply(rule CPrf.intros) -apply(simp_all) -by (metis (no_types, lifting) CPT_def Posix_CPT mem_Collect_eq) - lemma PosOrd_Posix_Stars: assumes "\v \ set vs. flat v \ r \ v \ flat v \ []" - and "\(\vs2 \ PT (STAR r) (flat (Stars vs)). vs2 :\val (Stars vs))" + and "\(\vs2 \ LV (STAR r) (flat (Stars vs)). vs2 :\val (Stars vs))" shows "(flat (Stars vs)) \ (STAR r) \ Stars vs" using assms proof(induct vs) @@ -769,24 +725,24 @@ next case (Cons v vs) have IH: "\\v\set vs. flat v \ r \ v \ flat v \ []; - \ (\vs2\PT (STAR r) (flat (Stars vs)). vs2 :\val Stars vs)\ + \ (\vs2\LV (STAR r) (flat (Stars vs)). vs2 :\val Stars vs)\ \ flat (Stars vs) \ STAR r \ Stars vs" by fact have as2: "\v\set (v # vs). flat v \ r \ v \ flat v \ []" by fact - have as3: "\ (\vs2\PT (STAR r) (flat (Stars (v # vs))). vs2 :\val Stars (v # vs))" by fact + have as3: "\ (\vs2\LV (STAR r) (flat (Stars (v # vs))). vs2 :\val Stars (v # vs))" by fact have "flat v \ r \ v" using as2 by simp moreover have "flat (Stars vs) \ STAR r \ Stars vs" proof (rule IH) show "\v\set vs. flat v \ r \ v \ flat v \ []" using as2 by simp next - show "\ (\vs2\PT (STAR r) (flat (Stars vs)). vs2 :\val Stars vs)" using as3 + show "\ (\vs2\LV (STAR r) (flat (Stars vs)). vs2 :\val Stars vs)" using as3 apply(auto) - apply(subst (asm) (2) PT_def) + apply(subst (asm) (2) LV_def) apply(auto) apply(erule Prf.cases) apply(simp_all) apply(drule_tac x="Stars (v # vs)" in bspec) - apply(simp add: PT_def CPT_def) + apply(simp add: LV_def CV_def) using Posix_Prf Prf.intros(6) calculation apply(rule_tac Prf.intros) apply(simp add:) @@ -810,7 +766,7 @@ apply(simp_all) apply(clarify) apply(drule_tac x="Stars (va#vs)" in bspec) - apply(auto simp add: PT_def)[1] + apply(auto simp add: LV_def)[1] apply(rule Prf.intros) apply(simp) by (simp add: PosOrd_StarsI PosOrd_shorterI) @@ -823,69 +779,69 @@ section {* The Smallest Value is indeed the Posix Value *} text {* - The next lemma seems to require PT instead of CPT in the Star-case. + The next lemma seems to require LV instead of CV in the Star-case. *} lemma PosOrd_Posix: - assumes "v1 \ CPT r s" "\v\<^sub>2 \ PT r s. \ v\<^sub>2 :\val v1" + assumes "v1 \ CV r s" "\v\<^sub>2 \ LV r s. \ v\<^sub>2 :\val v1" shows "s \ r \ v1" using assms proof(induct r arbitrary: s v1) case (ZERO s v1) - have "v1 \ CPT ZERO s" by fact - then show "s \ ZERO \ v1" unfolding CPT_def + have "v1 \ CV ZERO s" by fact + then show "s \ ZERO \ v1" unfolding CV_def by (auto elim: CPrf.cases) next case (ONE s v1) - have "v1 \ CPT ONE s" by fact - then show "s \ ONE \ v1" unfolding CPT_def + have "v1 \ CV ONE s" by fact + then show "s \ ONE \ v1" unfolding CV_def by(auto elim!: CPrf.cases intro: Posix.intros) next case (CHAR c s v1) - have "v1 \ CPT (CHAR c) s" by fact - then show "s \ CHAR c \ v1" unfolding CPT_def + have "v1 \ CV (CHAR c) s" by fact + then show "s \ CHAR c \ v1" unfolding CV_def by (auto elim!: CPrf.cases intro: Posix.intros) next case (ALT r1 r2 s v1) - have IH1: "\s v1. \v1 \ CPT r1 s; \v2 \ PT r1 s. \ v2 :\val v1\ \ s \ r1 \ v1" by fact - have IH2: "\s v1. \v1 \ CPT r2 s; \v2 \ PT r2 s. \ v2 :\val v1\ \ s \ r2 \ v1" by fact - have as1: "\v2\PT (ALT r1 r2) s. \ v2 :\val v1" by fact - have as2: "v1 \ CPT (ALT r1 r2) s" by fact + have IH1: "\s v1. \v1 \ CV r1 s; \v2 \ LV r1 s. \ v2 :\val v1\ \ s \ r1 \ v1" by fact + have IH2: "\s v1. \v1 \ CV r2 s; \v2 \ LV r2 s. \ v2 :\val v1\ \ s \ r2 \ v1" by fact + have as1: "\v2\LV (ALT r1 r2) s. \ v2 :\val v1" by fact + have as2: "v1 \ CV (ALT r1 r2) s" by fact then consider (Left) v1' where "v1 = Left v1'" "s = flat v1'" - "v1' \ CPT r1 s" + "v1' \ CV r1 s" | (Right) v1' where "v1 = Right v1'" "s = flat v1'" - "v1' \ CPT r2 s" - unfolding CPT_def by (auto elim: CPrf.cases) + "v1' \ CV r2 s" + unfolding CV_def by (auto elim: CPrf.cases) then show "s \ ALT r1 r2 \ v1" proof (cases) case (Left v1') - have "v1' \ CPT r1 s" using as2 - unfolding CPT_def Left by (auto elim: CPrf.cases) + have "v1' \ CV r1 s" using as2 + unfolding CV_def Left by (auto elim: CPrf.cases) moreover - have "\v2 \ PT r1 s. \ v2 :\val v1'" using as1 - unfolding PT_def Left using Prf.intros(2) PosOrd_Left_eq by force + have "\v2 \ LV r1 s. \ v2 :\val v1'" using as1 + unfolding LV_def Left using Prf.intros(2) PosOrd_Left_eq by force ultimately have "s \ r1 \ v1'" using IH1 by simp then have "s \ ALT r1 r2 \ Left v1'" by (rule Posix.intros) then show "s \ ALT r1 r2 \ v1" using Left by simp next case (Right v1') - have "v1' \ CPT r2 s" using as2 - unfolding CPT_def Right by (auto elim: CPrf.cases) + have "v1' \ CV r2 s" using as2 + unfolding CV_def Right by (auto elim: CPrf.cases) moreover - have "\v2 \ PT r2 s. \ v2 :\val v1'" using as1 - unfolding PT_def Right using Prf.intros(3) PosOrd_RightI by force + have "\v2 \ LV r2 s. \ v2 :\val v1'" using as1 + unfolding LV_def Right using Prf.intros(3) PosOrd_RightI by force ultimately have "s \ r2 \ v1'" using IH2 by simp moreover { assume "s \ L r1" - then obtain v' where "v' \ PT r1 s" - unfolding PT_def using L_flat_Prf2 by blast - then have "Left v' \ PT (ALT r1 r2) s" - unfolding PT_def by (auto intro: Prf.intros) + then obtain v' where "v' \ LV r1 s" + unfolding LV_def using L_flat_Prf2 by blast + then have "Left v' \ LV (ALT r1 r2) s" + unfolding LV_def by (auto intro: Prf.intros) with as1 have "\ (Left v' :\val Right v1') \ (flat v' = s)" - unfolding PT_def Right by (auto) + unfolding LV_def Right by (auto) then have False using PosOrd_Left_Right Right by blast } then have "s \ L r1" by rule @@ -894,36 +850,36 @@ qed next case (SEQ r1 r2 s v1) - have IH1: "\s v1. \v1 \ CPT r1 s; \v2 \ PT r1 s. \ v2 :\val v1\ \ s \ r1 \ v1" by fact - have IH2: "\s v1. \v1 \ CPT r2 s; \v2 \ PT r2 s. \ v2 :\val v1\ \ s \ r2 \ v1" by fact - have as1: "\v2\PT (SEQ r1 r2) s. \ v2 :\val v1" by fact - have as2: "v1 \ CPT (SEQ r1 r2) s" by fact + have IH1: "\s v1. \v1 \ CV r1 s; \v2 \ LV r1 s. \ v2 :\val v1\ \ s \ r1 \ v1" by fact + have IH2: "\s v1. \v1 \ CV r2 s; \v2 \ LV r2 s. \ v2 :\val v1\ \ s \ r2 \ v1" by fact + have as1: "\v2\LV (SEQ r1 r2) s. \ v2 :\val v1" by fact + have as2: "v1 \ CV (SEQ r1 r2) s" by fact then obtain v1a v1b where eqs: "v1 = Seq v1a v1b" "s = flat v1a @ flat v1b" - "v1a \ CPT r1 (flat v1a)" "v1b \ CPT r2 (flat v1b)" - unfolding CPT_def by(auto elim: CPrf.cases) - have "\v2 \ PT r1 (flat v1a). \ v2 :\val v1a" + "v1a \ CV r1 (flat v1a)" "v1b \ CV r2 (flat v1b)" + unfolding CV_def by(auto elim: CPrf.cases) + have "\v2 \ LV r1 (flat v1a). \ v2 :\val v1a" proof fix v2 - assume "v2 \ PT r1 (flat v1a)" - with eqs(2,4) have "Seq v2 v1b \ PT (SEQ r1 r2) s" - by (simp add: CPT_def PT_def Prf.intros(1) Prf_CPrf) + assume "v2 \ LV r1 (flat v1a)" + with eqs(2,4) have "Seq v2 v1b \ LV (SEQ r1 r2) s" + by (simp add: CV_def LV_def Prf.intros(1) Prf_CPrf) with as1 have "\ Seq v2 v1b :\val Seq v1a v1b \ flat (Seq v2 v1b) = flat (Seq v1a v1b)" - using eqs by (simp add: PT_def) + using eqs by (simp add: LV_def) then show "\ v2 :\val v1a" using PosOrd_SeqI1 by blast qed then have "flat v1a \ r1 \ v1a" using IH1 eqs by simp moreover - have "\v2 \ PT r2 (flat v1b). \ v2 :\val v1b" + have "\v2 \ LV r2 (flat v1b). \ v2 :\val v1b" proof fix v2 - assume "v2 \ PT r2 (flat v1b)" - with eqs(2,3,4) have "Seq v1a v2 \ PT (SEQ r1 r2) s" - by (simp add: CPT_def PT_def Prf.intros Prf_CPrf) + assume "v2 \ LV r2 (flat v1b)" + with eqs(2,3,4) have "Seq v1a v2 \ LV (SEQ r1 r2) s" + by (simp add: CV_def LV_def Prf.intros Prf_CPrf) with as1 have "\ Seq v1a v2 :\val Seq v1a v1b \ flat v2 = flat v1b" - using eqs by (simp add: PT_def) + using eqs by (simp add: LV_def) then show "\ v2 :\val v1b" using PosOrd_SeqI2 by auto qed @@ -935,8 +891,8 @@ then obtain s3 s4 where q1: "s3 \ [] \ s3 @ s4 = flat v1b \ flat v1a @ s3 \ L r1 \ s4 \ L r2" by blast then obtain vA vB where q2: "flat vA = flat v1a @ s3" "\ vA : r1" "flat vB = s4" "\ vB : r2" using L_flat_Prf2 by blast - then have "Seq vA vB \ PT (SEQ r1 r2) s" unfolding eqs using q1 - by (auto simp add: PT_def intro: Prf.intros) + then have "Seq vA vB \ LV (SEQ r1 r2) s" unfolding eqs using q1 + by (auto simp add: LV_def intro: Prf.intros) with as1 have "\ Seq vA vB :\val Seq v1a v1b" unfolding eqs by auto then have "\ vA :\val v1a \ length (flat vA) > length (flat v1a)" using q1 q2 PosOrd_SeqI1 by auto then show "False" @@ -947,57 +903,57 @@ by (rule Posix.intros) next case (STAR r s v1) - have IH: "\s v1. \v1 \ CPT r s; \v2\PT r s. \ v2 :\val v1\ \ s \ r \ v1" by fact - have as1: "\v2\PT (STAR r) s. \ v2 :\val v1" by fact - have as2: "v1 \ CPT (STAR r) s" by fact + have IH: "\s v1. \v1 \ CV r s; \v2\LV r s. \ v2 :\val v1\ \ s \ r \ v1" by fact + have as1: "\v2\LV (STAR r) s. \ v2 :\val v1" by fact + have as2: "v1 \ CV (STAR r) s" by fact then obtain vs where eqs: "v1 = Stars vs" "s = flat (Stars vs)" - "\v \ set vs. v \ CPT r (flat v)" - unfolding CPT_def by (auto elim: CPrf.cases dest!: CPrf_stars) + "\v \ set vs. v \ CV r (flat v)" + unfolding CV_def by (auto elim: CPrf.cases) have "\v\set vs. flat v \ r \ v \ flat v \ []" proof fix v assume a: "v \ set vs" then obtain pre post where e: "vs = pre @ [v] @ post" by (metis append_Cons append_Nil in_set_conv_decomp_first) - then have q: "\v2\PT (STAR r) s. \ v2 :\val Stars (pre @ [v] @ post)" + then have q: "\v2\LV (STAR r) s. \ v2 :\val Stars (pre @ [v] @ post)" using as1 unfolding eqs by simp - have "\v2\PT r (flat v). \ v2 :\val v" unfolding eqs + have "\v2\LV r (flat v). \ v2 :\val v" unfolding eqs proof (rule ballI, rule notI) fix v2 assume w: "v2 :\val v" - assume "v2 \ PT r (flat v)" - then have "Stars (pre @ [v2] @ post) \ PT (STAR r) s" + assume "v2 \ LV r (flat v)" + then have "Stars (pre @ [v2] @ post) \ LV (STAR r) s" using as2 unfolding e eqs - apply(auto simp add: CPT_def PT_def intro!: Prf.intros)[1] - using CPrf_Stars_appendE CPrf_stars Prf_CPrf apply blast - by (meson CPrf_Stars_appendE CPrf_stars Prf_CPrf list.set_intros(2)) + apply(auto simp add: CV_def LV_def intro!: Prf.intros)[1] + using CPrf_Stars_appendE Prf_CPrf Prf_elims(6) list.set_intros apply blast + by (metis CPrf_Stars_appendE Prf_CPrf Prf_elims(6) list.set_intros(2) val.inject(5)) then have "\ Stars (pre @ [v2] @ post) :\val Stars (pre @ [v] @ post)" using q by simp with w show "False" - using PT_def \v2 \ PT r (flat v)\ append_Cons flat.simps(7) mem_Collect_eq + using LV_def \v2 \ LV r (flat v)\ append_Cons flat.simps(7) mem_Collect_eq PosOrd_StarsI PosOrd_Stars_appendI by auto qed with IH - show "flat v \ r \ v \ flat v \ []" using a as2 unfolding eqs - using eqs(3) by (smt CPT_def CPrf_stars mem_Collect_eq) + show "flat v \ r \ v \ flat v \ []" using a as2 unfolding eqs CV_def + by (auto elim: CPrf.cases) qed moreover - have "\ (\vs2\PT (STAR r) (flat (Stars vs)). vs2 :\val Stars vs)" + have "\ (\vs2\LV (STAR r) (flat (Stars vs)). vs2 :\val Stars vs)" proof - assume "\vs2 \ PT (STAR r) (flat (Stars vs)). vs2 :\val Stars vs" + assume "\vs2 \ LV (STAR r) (flat (Stars vs)). vs2 :\val Stars vs" then obtain vs2 where "\ Stars vs2 : STAR r" "flat (Stars vs2) = flat (Stars vs)" "Stars vs2 :\val Stars vs" - unfolding PT_def - apply(auto elim: Prf.cases) + unfolding LV_def + apply(auto) apply(erule Prf.cases) apply(auto intro: Prf.intros) done then show "False" using as1 unfolding eqs apply - apply(drule_tac x="Stars vs2" in bspec) - apply(auto simp add: PT_def) + apply(auto simp add: LV_def) done qed ultimately have "flat (Stars vs) \ STAR r \ Stars vs" diff -r fff2e1b40dfc -r 32b222d77fa0 thys/Spec.thy --- a/thys/Spec.thy Wed Jul 19 14:55:46 2017 +0100 +++ b/thys/Spec.thy Fri Aug 11 20:29:01 2017 +0100 @@ -1,9 +1,8 @@ theory Spec - imports Main + imports Main "~~/src/HOL/Library/Sublist" begin - section {* Sequential Composition of Languages *} definition @@ -172,13 +171,15 @@ lemma ders_correctness: shows "L (ders s r) = Ders s (L r)" -apply(induct s arbitrary: r) -apply(simp_all add: Ders_def der_correctness Der_def) -done +by (induct s arbitrary: r) + (simp_all add: Ders_def der_correctness Der_def) + section {* Lemmas about ders *} +(* not really needed *) + lemma ders_ZERO: shows "ders s (ZERO) = ZERO" apply(induct s) @@ -201,9 +202,8 @@ lemma ders_ALT: shows "ders s (ALT r1 r2) = ALT (ders s r1) (ders s r2)" -apply(induct s arbitrary: r1 r2) -apply(simp_all) -done +by (induct s arbitrary: r1 r2)(simp_all) + section {* Values *} @@ -229,8 +229,11 @@ | "flat (Stars []) = []" | "flat (Stars (v#vs)) = (flat v) @ (flat (Stars vs))" +abbreviation + "flats vs \ concat (map flat vs)" + lemma flat_Stars [simp]: - "flat (Stars vs) = concat (map flat vs)" + "flat (Stars vs) = flats vs" by (induct vs) (auto) @@ -273,7 +276,7 @@ lemma Star_val: assumes "\s\set ss. \v. s = flat v \ \ v : r" - shows "\vs. concat (map flat vs) = concat ss \ (\v\set vs. \ v : r)" + shows "\vs. flats vs = concat ss \ (\v\set vs. \ v : r)" using assms apply(induct ss) apply(auto) @@ -313,7 +316,7 @@ have "s \ L (STAR r)" by fact then obtain ss where "concat ss = s" "\s \ set ss. s \ L r" using Star_string by auto - then obtain vs where "concat (map flat vs) = s" "\v\set vs. \ v : r" + then obtain vs where "flats vs = s" "\v\set vs. \ v : r" using IH Star_val by blast then show "\v. \ v : STAR r \ flat v = s" using Prf.intros(6) flat_Stars by blast @@ -331,8 +334,8 @@ shows "L(r) = {flat v | v. \ v : r}" using L_flat_Prf1 L_flat_Prf2 by blast -section {* CPT and CPTpre *} +section {* Canonical Values *} inductive CPrf :: "val \ rexp \ bool" ("\ _ : _" [100, 100] 100) @@ -350,71 +353,153 @@ using assms by (induct)(auto intro: Prf.intros) -lemma CPrf_stars: - assumes "\ Stars vs : STAR r" - shows "\v \ set vs. flat v \ [] \ \ v : r" -using assms -apply(erule_tac CPrf.cases) -apply(simp_all) -done - lemma CPrf_Stars_appendE: assumes "\ Stars (vs1 @ vs2) : STAR r" shows "\ Stars vs1 : STAR r \ \ Stars vs2 : STAR r" using assms apply(erule_tac CPrf.cases) -apply(auto intro: CPrf.intros elim: Prf.cases) +apply(auto intro: CPrf.intros) done -definition PT :: "rexp \ string \ val set" -where "PT r s \ {v. flat v = s \ \ v : r}" + +section {* Sets of Lexical and Canonical Values *} -definition - "CPT r s = {v. flat v = s \ \ v : r}" +definition + LV :: "rexp \ string \ val set" +where "LV r s \ {v. \ v : r \ flat v = s}" definition - "CPTpre r s = {v. \s'. flat v @ s' = s \ \ v : r}" + CV :: "rexp \ string \ val set" +where "CV r s \ {v. \ v : r \ flat v = s}" + +lemma LV_CV_subset: + shows "CV r s \ LV r s" +unfolding CV_def LV_def by(auto simp add: Prf_CPrf) + +abbreviation + "Prefixes s \ {s'. prefixeq s' s}" + +abbreviation + "Suffixes s \ {s'. suffixeq s' s}" + +abbreviation + "SSuffixes s \ {s'. suffix s' s}" -lemma CPT_CPTpre_subset: - shows "CPT r s \ CPTpre r s" -by(auto simp add: CPT_def CPTpre_def) +lemma Suffixes_cons [simp]: + shows "Suffixes (c # s) = Suffixes s \ {c # s}" +by (auto simp add: suffixeq_def Cons_eq_append_conv) + +lemma CV_simps: + shows "CV ZERO s = {}" + and "CV ONE s = (if s = [] then {Void} else {})" + and "CV (CHAR c) s = (if s = [c] then {Char c} else {})" + and "CV (ALT r1 r2) s = Left ` CV r1 s \ Right ` CV r2 s" +unfolding CV_def +by (auto intro: CPrf.intros elim: CPrf.cases) + +lemma finite_Suffixes: + shows "finite (Suffixes s)" +by (induct s) (simp_all) -lemma CPT_simps: - shows "CPT ZERO s = {}" - and "CPT ONE s = (if s = [] then {Void} else {})" - and "CPT (CHAR c) s = (if s = [c] then {Char c} else {})" - and "CPT (ALT r1 r2) s = Left ` CPT r1 s \ Right ` CPT r2 s" - and "CPT (SEQ r1 r2) s = - {Seq v1 v2 | v1 v2. flat v1 @ flat v2 = s \ v1 \ CPT r1 (flat v1) \ v2 \ CPT r2 (flat v2)}" - and "CPT (STAR r) s = - Stars ` {vs. concat (map flat vs) = s \ (\v \ set vs. v \ CPT r (flat v) \ flat v \ [])}" -apply - -apply(auto simp add: CPT_def intro: CPrf.intros)[1] +lemma finite_SSuffixes: + shows "finite (SSuffixes s)" +proof - + have "SSuffixes s \ Suffixes s" + unfolding suffix_def suffixeq_def by auto + then show "finite (SSuffixes s)" + using finite_Suffixes finite_subset by blast +qed + +lemma finite_Prefixes: + shows "finite (Prefixes s)" +proof - + have "finite (Suffixes (rev s))" + by (rule finite_Suffixes) + then have "finite (rev ` Suffixes (rev s))" by simp + moreover + have "rev ` (Suffixes (rev s)) = Prefixes s" + unfolding suffixeq_def prefixeq_def image_def + by (auto)(metis rev_append rev_rev_ident)+ + ultimately show "finite (Prefixes s)" by simp +qed + +lemma CV_SEQ_subset: + "CV (SEQ r1 r2) s \ (\(v1,v2). Seq v1 v2) ` ((\s' \ Prefixes s. CV r1 s') \ (\s' \ Suffixes s. CV r2 s'))" +unfolding image_def CV_def prefixeq_def suffixeq_def +by (auto elim: CPrf.cases) + +lemma CV_STAR_subset: + "CV (STAR r) s \ {Stars []} \ + (\(v,vs). Stars (v#vs)) ` ((\s' \ Prefixes s. CV r s') \ (\s2 \ SSuffixes s. Stars -` (CV (STAR r) s2)))" +unfolding image_def CV_def prefixeq_def suffix_def +apply(auto) apply(erule CPrf.cases) -apply(simp_all)[6] -apply(auto simp add: CPT_def intro: CPrf.intros)[1] -apply(erule CPrf.cases) -apply(simp_all)[6] -apply(erule CPrf.cases) -apply(simp_all)[6] -apply(auto simp add: CPT_def intro: CPrf.intros)[1] -apply(erule CPrf.cases) -apply(simp_all)[6] -apply(erule CPrf.cases) -apply(simp_all)[6] -apply(auto simp add: CPT_def intro: CPrf.intros)[1] -apply(erule CPrf.cases) -apply(simp_all)[6] -apply(auto simp add: CPT_def intro: CPrf.intros)[1] -apply(erule CPrf.cases) -apply(simp_all)[6] -(* STAR case *) -apply(auto simp add: CPT_def intro: CPrf.intros)[1] -apply(erule CPrf.cases) -apply(simp_all)[6] +apply(auto) +apply(case_tac vs) +apply(auto intro: CPrf.intros) done +lemma CV_STAR_finite: + assumes "\s. finite (CV r s)" + shows "finite (CV (STAR r) s)" +proof(induct s rule: length_induct) + fix s::"char list" + assume "\s'. length s' < length s \ finite (CV (STAR r) s')" + then have IH: "\s' \ SSuffixes s. finite (CV (STAR r) s')" + by (auto simp add: suffix_def) + def f \ "\(v, vs). Stars (v # vs)" + def S1 \ "\s' \ Prefixes s. CV r s'" + def S2 \ "\s2 \ SSuffixes s. Stars -` (CV (STAR r) s2)" + have "finite S1" using assms + unfolding S1_def by (simp_all add: finite_Prefixes) + moreover + with IH have "finite S2" unfolding S2_def + by (auto simp add: finite_SSuffixes inj_on_def finite_vimageI) + ultimately + have "finite ({Stars []} \ f ` (S1 \ S2))" by simp + moreover + have "CV (STAR r) s \ {Stars []} \ f ` (S1 \ S2)" unfolding S1_def S2_def f_def + by (rule CV_STAR_subset) + ultimately + show "finite (CV (STAR r) s)" by (simp add: finite_subset) +qed + + +lemma CV_finite: + shows "finite (CV r s)" +proof(induct r arbitrary: s) + case (ZERO s) + show "finite (CV ZERO s)" by (simp add: CV_simps) +next + case (ONE s) + show "finite (CV ONE s)" by (simp add: CV_simps) +next + case (CHAR c s) + show "finite (CV (CHAR c) s)" by (simp add: CV_simps) +next + case (ALT r1 r2 s) + then show "finite (CV (ALT r1 r2) s)" by (simp add: CV_simps) +next + case (SEQ r1 r2 s) + def f \ "\(v1, v2). Seq v1 v2" + def S1 \ "\s' \ Prefixes s. CV r1 s'" + def S2 \ "\s' \ Suffixes s. CV r2 s'" + have IHs: "\s. finite (CV r1 s)" "\s. finite (CV r2 s)" by fact+ + then have "finite S1" "finite S2" unfolding S1_def S2_def + by (simp_all add: finite_Prefixes finite_Suffixes) + moreover + have "CV (SEQ r1 r2) s \ f ` (S1 \ S2)" + unfolding f_def S1_def S2_def by (auto simp add: CV_SEQ_subset) + ultimately + show "finite (CV (SEQ r1 r2) s)" + by (simp add: finite_subset) +next + case (STAR r s) + then show "finite (CV (STAR r) s)" by (simp add: CV_STAR_finite) +qed + + section {* Our POSIX Definition *} @@ -531,12 +616,12 @@ Our POSIX value is a canonical value. *} -lemma Posix_CPT: +lemma Posix_CV: assumes "s \ r \ v" - shows "v \ CPT r s" + shows "v \ CV r s" using assms apply(induct rule: Posix.induct) -apply(auto simp add: CPT_def intro: CPrf.intros elim: CPrf.cases) +apply(auto simp add: CV_def intro: CPrf.intros elim: CPrf.cases) apply(rotate_tac 5) apply(erule CPrf.cases) apply(simp_all) @@ -544,203 +629,17 @@ apply(simp_all) done - - -(* -lemma CPTpre_STAR_finite: - assumes "\s. finite (CPT r s)" - shows "finite (CPT (STAR r) s)" -apply(induct s rule: length_induct) -apply(case_tac xs) -apply(simp) -apply(simp add: CPT_simps) -apply(auto) -apply(rule finite_imageI) -using assms -thm finite_Un -prefer 2 -apply(simp add: CPT_simps) -apply(rule finite_imageI) -apply(rule finite_subset) -apply(rule CPTpre_subsets) -apply(simp) -apply(rule_tac B="(\(v, vs). Stars (v#vs)) ` {(v, vs). v \ CPTpre r (a#list) \ flat v \ [] \ Stars vs \ CPTpre (STAR r) (drop (length (flat v)) (a#list))}" in finite_subset) -apply(auto)[1] -apply(rule finite_imageI) -apply(simp add: Collect_case_prod_Sigma) -apply(rule finite_SigmaI) -apply(rule assms) -apply(case_tac "flat v = []") -apply(simp) -apply(drule_tac x="drop (length (flat v)) (a # list)" in spec) -apply(simp) -apply(auto)[1] -apply(rule test) -apply(simp) -done - -lemma CPTpre_subsets: - "CPTpre ZERO s = {}" - "CPTpre ONE s \ {Void}" - "CPTpre (CHAR c) s \ {Char c}" - "CPTpre (ALT r1 r2) s \ Left ` CPTpre r1 s \ Right ` CPTpre r2 s" - "CPTpre (SEQ r1 r2) s \ {Seq v1 v2 | v1 v2. v1 \ CPTpre r1 s \ v2 \ CPTpre r2 (drop (length (flat v1)) s)}" - "CPTpre (STAR r) s \ {Stars []} \ - {Stars (v#vs) | v vs. v \ CPTpre r s \ flat v \ [] \ Stars vs \ CPTpre (STAR r) (drop (length (flat v)) s)}" - "CPTpre (STAR r) [] = {Stars []}" -apply(auto simp add: CPTpre_def) -apply(erule CPrf.cases) -apply(simp_all) -apply(erule CPrf.cases) -apply(simp_all) -apply(erule CPrf.cases) -apply(simp_all) -apply(erule CPrf.cases) -apply(simp_all) -apply(erule CPrf.cases) -apply(simp_all) - -apply(erule CPrf.cases) -apply(simp_all) -apply(erule CPrf.cases) -apply(simp_all) -apply(rule CPrf.intros) -done - - -lemma CPTpre_simps: - shows "CPTpre ONE s = {Void}" - and "CPTpre (CHAR c) (d#s) = (if c = d then {Char c} else {})" - and "CPTpre (ALT r1 r2) s = Left ` CPTpre r1 s \ Right ` CPTpre r2 s" - and "CPTpre (SEQ r1 r2) s = - {Seq v1 v2 | v1 v2. v1 \ CPTpre r1 s \ v2 \ CPTpre r2 (drop (length (flat v1)) s)}" -apply - -apply(rule subset_antisym) -apply(rule CPTpre_subsets) -apply(auto simp add: CPTpre_def intro: "CPrf.intros")[1] -apply(case_tac "c = d") -apply(simp) -apply(rule subset_antisym) -apply(rule CPTpre_subsets) -apply(auto simp add: CPTpre_def intro: CPrf.intros)[1] -apply(simp) -apply(auto simp add: CPTpre_def intro: CPrf.intros)[1] -apply(erule CPrf.cases) -apply(simp_all) -apply(rule subset_antisym) -apply(rule CPTpre_subsets) -apply(auto simp add: CPTpre_def intro: CPrf.intros)[1] -apply(rule subset_antisym) -apply(rule CPTpre_subsets) -apply(auto simp add: CPTpre_def intro: CPrf.intros)[1] -done - -lemma CPT_simps: - shows "CPT ONE s = (if s = [] then {Void} else {})" - and "CPT (CHAR c) [d] = (if c = d then {Char c} else {})" - and "CPT (ALT r1 r2) s = Left ` CPT r1 s \ Right ` CPT r2 s" - and "CPT (SEQ r1 r2) s = - {Seq v1 v2 | v1 v2 s1 s2. s1 @ s2 = s \ v1 \ CPT r1 s1 \ v2 \ CPT r2 s2}" -apply - -apply(rule subset_antisym) -apply(auto simp add: CPT_def)[1] -apply(erule CPrf.cases) -apply(simp_all)[7] -apply(erule CPrf.cases) -apply(simp_all)[7] -apply(auto simp add: CPT_def intro: CPrf.intros)[1] -apply(auto simp add: CPT_def intro: CPrf.intros)[1] -apply(erule CPrf.cases) -apply(simp_all)[7] -apply(erule CPrf.cases) -apply(simp_all)[7] -apply(auto simp add: CPT_def image_def intro: CPrf.intros)[1] -apply(erule CPrf.cases) -apply(simp_all)[7] -apply(clarify) -apply blast -apply(auto simp add: CPT_def image_def intro: CPrf.intros)[1] -apply(erule CPrf.cases) -apply(simp_all)[7] -done - -lemma test: - assumes "finite A" - shows "finite {vs. Stars vs \ A}" -using assms -apply(induct A) -apply(simp) -apply(auto) -apply(case_tac x) -apply(simp_all) -done - -lemma CPTpre_STAR_finite: - assumes "\s. finite (CPTpre r s)" - shows "finite (CPTpre (STAR r) s)" -apply(induct s rule: length_induct) -apply(case_tac xs) -apply(simp) -apply(simp add: CPTpre_subsets) -apply(rule finite_subset) -apply(rule CPTpre_subsets) -apply(simp) -apply(rule_tac B="(\(v, vs). Stars (v#vs)) ` {(v, vs). v \ CPTpre r (a#list) \ flat v \ [] \ Stars vs \ CPTpre (STAR r) (drop (length (flat v)) (a#list))}" in finite_subset) -apply(auto)[1] -apply(rule finite_imageI) -apply(simp add: Collect_case_prod_Sigma) -apply(rule finite_SigmaI) -apply(rule assms) -apply(case_tac "flat v = []") -apply(simp) -apply(drule_tac x="drop (length (flat v)) (a # list)" in spec) -apply(simp) -apply(auto)[1] -apply(rule test) -apply(simp) -done - -lemma CPTpre_finite: - shows "finite (CPTpre r s)" -apply(induct r arbitrary: s) -apply(simp add: CPTpre_subsets) -apply(rule finite_subset) -apply(rule CPTpre_subsets) -apply(simp) -apply(rule finite_subset) -apply(rule CPTpre_subsets) -apply(simp) -apply(rule finite_subset) -apply(rule CPTpre_subsets) -apply(rule_tac B="(\(v1, v2). Seq v1 v2) ` {(v1, v2). v1 \ CPTpre r1 s \ v2 \ CPTpre r2 (drop (length (flat v1)) s)}" in finite_subset) -apply(auto)[1] -apply(rule finite_imageI) -apply(simp add: Collect_case_prod_Sigma) -apply(rule finite_subset) -apply(rule CPTpre_subsets) -apply(simp) -by (simp add: CPTpre_STAR_finite) - - -lemma CPT_finite: - shows "finite (CPT r s)" -apply(rule finite_subset) -apply(rule CPT_CPTpre_subset) -apply(rule CPTpre_finite) -done -*) - lemma test2: assumes "\v \ set vs. flat v \ r \ v \ flat v \ []" - shows "(Stars vs) \ CPT (STAR r) (flat (Stars vs))" + shows "(Stars vs) \ CV (STAR r) (flat (Stars vs))" using assms apply(induct vs) -apply(auto simp add: CPT_def) +apply(auto simp add: CV_def) apply(rule CPrf.intros) apply(simp) apply(rule CPrf.intros) apply(simp_all) -by (metis (no_types, lifting) CPT_def Posix_CPT mem_Collect_eq) +by (metis (no_types, lifting) CV_def Posix_CV mem_Collect_eq) end \ No newline at end of file