# HG changeset patch # User fahad # Date 1424954515 0 # Node ID d86d685273ceba29999e1240effaea959b0043f8 # Parent eb97e8361211a5dd363716f8641120f566d42c7d# Parent 26b71a36f55f5f7840bcf22c7a44ac9639969992 merged diff -r 26b71a36f55f -r d86d685273ce progs/scala/re.scala --- a/progs/scala/re.scala Mon Feb 09 00:46:25 2015 +0000 +++ b/progs/scala/re.scala Thu Feb 26 12:41:55 2015 +0000 @@ -43,6 +43,27 @@ def $ (r: Rexp) = RECD(s, r) } +def pretty(r: Rexp) : String = r match { + case NULL => "0" + case EMPTY => "e" + case CHAR(c) => c.toString + case ALT(r1, r2) => "(" ++ pretty(r1) ++ " | " + pretty(r2) ++ ")" + case SEQ(r1, r2) => pretty(r1) ++ pretty(r2) + case STAR(r) => "(" ++ pretty(r) ++ ")*" + case RECD(x, r) => "(" ++ x ++ " : " ++ pretty(r) ++ ")" +} + +def vpretty(v: Val) : String = v match { + case Void => "()" + case Chr(c) => c.toString + case Left(v) => "Left(" ++ vpretty(v) ++ ")" + case Right(v) => "Right(" ++ vpretty(v) ++ ")" + case Sequ(v1, v2) => vpretty(v1) ++ " ~ " ++ vpretty(v2) + case Stars(vs) => vs.flatMap(vpretty).mkString("[", ",", "]") + case Rec(x, v) => "(" ++ x ++ ":" ++ vpretty(v) ++ ")" +} + + // size of a regular expressions - for testing purposes def size(r: Rexp) : Int = r match { case NULL => 1 @@ -59,7 +80,8 @@ case NULL => Set() case EMPTY => Set(Void) case CHAR(c) => Set(Chr(c)) - case ALT(r1, r2) => values(r1) ++ values(r2) + case ALT(r1, r2) => (for (v1 <- values(r1)) yield Left(v1)) ++ + (for (v2 <- values(r2)) yield Right(v2)) case SEQ(r1, r2) => for (v1 <- values(r1); v2 <- values(r2)) yield Sequ(v1, v2) case STAR(r) => Set(Void) ++ values(r) // to do more would cause the set to be infinite case RECD(_, r) => values(r) @@ -271,6 +293,29 @@ println(values(r2).mkString("\n")) println(values(r2).toList.map(flatten).mkString("\n")) +//Some experiments +//================ + +val f0 = ("ab" | "b" | "cb") +val f1 = der('a', f0) +val f2 = der('b', f1) +val g2 = mkeps(f2) +val g1 = inj(f1, 'b', g2) +val g0 = inj(f0, 'a', g1) + +lex((("" | "a") ~ ("ab" | "b")), "ab".toList) +lex((("" | "a") ~ ("b" | "ab")), "ab".toList) +lex((("" | "a") ~ ("c" | "ab")), "ab".toList) + +val reg0 = ("" | "a") ~ ("ab" | "b") +val reg1 = der('a', reg0) +val reg2 = der('b', reg1) +println(List(reg0, reg1, reg2).map(pretty).mkString("\n")) +println(lexing(reg0, "ab")) + +val val0 = values(reg0) +val val1 = values(reg1) +val val2 = values(reg2) // Two Simple Tests diff -r 26b71a36f55f -r d86d685273ce thys/#Re1.thy# --- a/thys/#Re1.thy# Mon Feb 09 00:46:25 2015 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,897 +0,0 @@ - -theory Re1 - imports "Main" -begin - -section {* Sequential Composition of Sets *} - -definition - Sequ :: "string set \ string set \ string set" ("_ ;; _" [100,100] 100) -where - "A ;; B = {s1 @ s2 | s1 s2. s1 \ A \ s2 \ B}" - -text {* Two Simple Properties about Sequential Composition *} - -lemma seq_empty [simp]: - shows "A ;; {[]} = A" - and "{[]} ;; A = A" -by (simp_all add: Sequ_def) - -lemma seq_null [simp]: - shows "A ;; {} = {}" - and "{} ;; A = {}" -by (simp_all add: Sequ_def) - -section {* Regular Expressions *} - -datatype rexp = - NULL -| EMPTY -| CHAR char -| SEQ rexp rexp -| ALT rexp rexp - -section {* Semantics of Regular Expressions *} - -fun - L :: "rexp \ string set" -where - "L (NULL) = {}" -| "L (EMPTY) = {[]}" -| "L (CHAR c) = {[c]}" -| "L (SEQ r1 r2) = (L r1) ;; (L r2)" -| "L (ALT r1 r2) = (L r1) \ (L r2)" - -value "L(CHAR c)" -value "L(SEQ(CHAR c)(CHAR b))" - - -section {* Values *} - -datatype val = - Void -| Char char -| Seq val val -| Right val -| Left val - -section {* Relation between values and regular expressions *} - -inductive Prf :: "val \ rexp \ bool" ("\ _ : _" [100, 100] 100) -where - "\\ v1 : r1; \ v2 : r2\ \ \ Seq v1 v2 : SEQ r1 r2" -| "\ v1 : r1 \ \ Left v1 : ALT r1 r2" -| "\ v2 : r2 \ \ Right v2 : ALT r1 r2" -| "\ Void : EMPTY" -| "\ Char c : CHAR c" - -section {* The string behind a value *} - -fun flat :: "val \ string" -where - "flat(Void) = []" -| "flat(Char c) = [c]" -| "flat(Left v) = flat(v)" -| "flat(Right v) = flat(v)" -| "flat(Seq v1 v2) = flat(v1) @ flat(v2)" - -value "flat(Seq(Char c)(Char b))" -value "flat(Right(Void))" - -fun flats :: "val \ string list" -where - "flats(Void) = [[]]" -| "flats(Char c) = [[c]]" -| "flats(Left v) = flats(v)" -| "flats(Right v) = flats(v)" -| "flats(Seq v1 v2) = (flats v1) @ (flats v2)" - -value "flats(Seq(Char c)(Char b))" - -lemma Prf_flat_L: - assumes "\ v : r" shows "flat v \ L r" -using assms -apply(induct) -apply(auto simp add: Sequ_def) -done - -lemma L_flat_Prf: - "L(r) = {flat v | v. \ v : r}" -apply(induct r) -apply(auto dest: Prf_flat_L simp add: Sequ_def) -apply (metis Prf.intros(4) flat.simps(1)) -apply (metis Prf.intros(5) flat.simps(2)) -apply (metis Prf.intros(1) flat.simps(5)) -apply (metis Prf.intros(2) flat.simps(3)) -apply (metis Prf.intros(3) flat.simps(4)) -apply(erule Prf.cases) -apply(auto) -done - -definition definition prefix :: :: "string \ string \ bool" ("_ \ _" [100, 100] 100) -where - "s1 \ s2 \ \s3. s1 @ s3 = s2" - -section {* Ordering of values *} - -inductive ValOrd :: "val \ rexp \ val \ bool" ("_ \_ _" [100, 100, 100] 100) -where - "\v1 = v1'; v2 \r2 v2'\ \ (Seq v1 v2) \(SEQ r1 r2) (Seq v1' v2')" -| "v1 \r1 v1' \ (Seq v1 v2) \(SEQ r1 r2) (Seq v1' v2')" -| "length (flat v1) \ length (flat v2) \ (Left v1) \(ALT r1 r2) (Right v2)" -| "length (flat v2) > length (flat v1) \ (Right v2) \(ALT r1 r2) (Left v1)" -| "v2 \r2 v2' \ (Right v2) \(ALT r1 r2) (Right v2')" -| "v1 \r1 v1' \ (Left v1) \(ALT r1 r2) (Left v1')" -| "Void \EMPTY Void" -| "(Char c) \(CHAR c) (Char c)" - -section {* The ordering is reflexive *} - -lemma ValOrd_refl: - assumes "\ v : r" - shows "v \r v" -using assms -apply(induct) -apply(auto intro: ValOrd.intros) -done - -lemma ValOrd_flats: - assumes "v1 \r v2" - shows "hd (flats v2) = hd (flats v1)" -using assms -apply(induct) -apply(auto) -oops - - -section {* Posix definition *} - -definition POSIX :: "val \ rexp \ bool" -where - "POSIX v r \ (\v'. (\ v' : r \ flat v = flat v') \ v \r v')" - -(* -an alternative definition: might cause problems -with theorem mkeps_POSIX -*) - -definition POSIX2 :: "val \ rexp \ bool" -where - "POSIX2 v r \ \ v : r \ (\v'. \ v' : r \ v \r v')" - -definition POSIX3 :: "val \ rexp \ bool" -where - "POSIX3 v r \ \ v : r \ (\v'. (\ v' : r \ length (flat v') \ length(flat v)) \ v \r v')" - - -lemma POSIX_SEQ: - assumes "POSIX (Seq v1 v2) (SEQ r1 r2)" "\ v1 : r1" "\ v2 : r2" - shows "POSIX v1 r1 \ POSIX v2 r2" -using assms -unfolding POSIX_def -apply(auto) -apply(drule_tac x="Seq v' v2" in spec) -apply(simp) -apply(erule impE) -apply(rule Prf.intros) -apply(simp) -apply(simp) -apply(erule ValOrd.cases) -apply(simp_all) -apply(clarify) -defer -apply(drule_tac x="Seq v1 v'" in spec) -apply(simp) -apply(erule impE) -apply(rule Prf.intros) -apply(simp) -apply(simp) -apply(erule ValOrd.cases) -apply(simp_all) -apply(clarify) -oops (*not true*) - -lemma POSIX_SEQ_I: - assumes "POSIX v1 r1" "POSIX v2 r2" - shows "POSIX (Seq v1 v2) (SEQ r1 r2)" -using assms -unfolding POSIX_def -apply(auto) -apply(rotate_tac 2) -apply(erule Prf.cases) -apply(simp_all)[5] -apply(auto)[1] -apply(rule ValOrd.intros) -oops (* maybe also not true *) - -lemma POSIX3_SEQ_I: - assumes "POSIX3 v1 r1" "POSIX3 v2 r2" - shows "POSIX3 (Seq v1 v2) (SEQ r1 r2)" -using assms -unfolding POSIX3_def -apply(auto) -apply (metis Prf.intros(1)) -apply(rotate_tac 4) -apply(erule Prf.cases) -apply(simp_all)[5] -apply(auto)[1] -apply(case_tac "v1 = v1a") -apply(auto) -apply (metis ValOrd.intros(1)) -apply (rule ValOrd.intros(2)) -oops - -lemma POSIX_ALT2: - assumes "POSIX (Left v1) (ALT r1 r2)" - shows "POSIX v1 r1" -using assms -unfolding POSIX_def -apply(auto) -apply(drule_tac x="Left v'" in spec) -apply(simp) -apply(drule mp) -apply(rule Prf.intros) -apply(auto) -apply(erule ValOrd.cases) -apply(simp_all) -done - -lemma POSIX2_ALT: - assumes "POSIX2 (Left v1) (ALT r1 r2)" - shows "POSIX2 v1 r1" -using assms -unfolding POSIX2_def -apply(auto) -oops - -lemma POSIX_ALT: - assumes "POSIX (Left v1) (ALT r1 r2)" - shows "POSIX v1 r1" -using assms -unfolding POSIX_def -apply(auto) -apply(drule_tac x="Left v'" in spec) -apply(simp) -apply(drule mp) -apply(rule Prf.intros) -apply(auto) -apply(erule ValOrd.cases) -apply(simp_all) -done - -lemma POSIX2_ALT: - assumes "POSIX2 (Left v1) (ALT r1 r2)" - shows "POSIX2 v1 r1" -using assms -apply(simp add: POSIX2_def) -apply(auto) -apply(erule Prf.cases) -apply(simp_all)[5] -apply(drule_tac x="Left v'" in spec) -apply(drule mp) -apply(rule Prf.intros) -apply(auto) -apply(erule ValOrd.cases) -apply(simp_all) -done - - -lemma POSIX_ALT1a: - assumes "POSIX (Right v2) (ALT r1 r2)" - shows "POSIX v2 r2" -using assms -unfolding POSIX_def -apply(auto) -apply(drule_tac x="Right v'" in spec) -apply(simp) -apply(drule mp) -apply(rule Prf.intros) -apply(auto) -apply(erule ValOrd.cases) -apply(simp_all) -done - -lemma POSIX2_ALT1a: - assumes "POSIX2 (Right v2) (ALT r1 r2)" - shows "POSIX2 v2 r2" -using assms -unfolding POSIX2_def -apply(auto) -apply(erule Prf.cases) -apply(simp_all)[5] -apply(drule_tac x="Right v'" in spec) -apply(drule mp) -apply(rule Prf.intros) -apply(auto) -apply(erule ValOrd.cases) -apply(simp_all) -done - - -lemma POSIX_ALT1b: - assumes "POSIX (Right v2) (ALT r1 r2)" - shows "(\v'. (\ v' : r2 \ flat v' = flat v2) \ v2 \r2 v')" -using assms -apply(drule_tac POSIX_ALT1a) -unfolding POSIX_def -apply(auto) -done - -lemma POSIX_ALT_I1: - assumes "POSIX v1 r1" - shows "POSIX (Left v1) (ALT r1 r2)" -using assms -unfolding POSIX_def -apply(auto) -apply(rotate_tac 3) -apply(erule Prf.cases) -apply(simp_all)[5] -apply(auto) -apply(rule ValOrd.intros) -apply(auto) -apply(rule ValOrd.intros) -by simp - -lemma POSIX2_ALT_I1: - assumes "POSIX2 v1 r1" - shows "POSIX2 (Left v1) (ALT r1 r2)" -using assms -unfolding POSIX2_def -apply(auto) -apply(rule Prf.intros) -apply(simp) -apply(rotate_tac 2) -apply(erule Prf.cases) -apply(simp_all)[5] -apply(auto) -apply(rule ValOrd.intros) -apply(auto) -apply(rule ValOrd.intros) -oops - -lemma POSIX_ALT_I2: - assumes "POSIX v2 r2" "\v'. \ v' : r1 \ length (flat v2) > length (flat v')" - shows "POSIX (Right v2) (ALT r1 r2)" -using assms -unfolding POSIX_def -apply(auto) -apply(rotate_tac 3) -apply(erule Prf.cases) -apply(simp_all)[5] -apply(auto) -apply(rule ValOrd.intros) -apply metis -done - - - - - -section {* The Matcher *} - -fun - nullable :: "rexp \ bool" -where - "nullable (NULL) = False" -| "nullable (EMPTY) = True" -| "nullable (CHAR c) = False" -| "nullable (ALT r1 r2) = (nullable r1 \ nullable r2)" -| "nullable (SEQ r1 r2) = (nullable r1 \ nullable r2)" - -lemma nullable_correctness: - shows "nullable r \ [] \ (L r)" -apply (induct r) -apply(auto simp add: Sequ_def) -done - -fun mkeps :: "rexp \ val" -where - "mkeps(EMPTY) = Void" -| "mkeps(SEQ r1 r2) = Seq (mkeps r1) (mkeps r2)" -| "mkeps(ALT r1 r2) = (if nullable(r1) then Left (mkeps r1) else Right (mkeps r2))" - -lemma mkeps_nullable: - assumes "nullable(r)" shows "\ mkeps r : r" -using assms -apply(induct rule: nullable.induct) -apply(auto intro: Prf.intros) -done - -lemma mkeps_flat: - assumes "nullable(r)" shows "flat (mkeps r) = []" -using assms -apply(induct rule: nullable.induct) -apply(auto) -done - -text {* - The value mkeps returns is always the correct POSIX - value. -*} - -lemma mkeps_POSIX2: - assumes "nullable r" - shows "POSIX2 (mkeps r) r" -using assms -apply(induct r) -apply(auto)[1] -apply(simp add: POSIX2_def) -oops - -lemma mkeps_POSIX3: - assumes "nullable r" - shows "POSIX3 (mkeps r) r" -using assms -apply(induct r) -apply(auto)[1] -apply(simp add: POSIX3_def) -apply(auto)[1] -apply (metis Prf.intros(4)) -apply(erule Prf.cases) -apply(simp_all)[5] -apply (metis ValOrd.intros) -apply(simp add: POSIX3_def) -apply(auto)[1] -apply(simp add: POSIX3_def) -apply(auto)[1] -apply (metis mkeps.simps(2) mkeps_nullable nullable.simps(5)) -apply(rotate_tac 6) -apply(erule Prf.cases) -apply(simp_all)[5] -apply (metis ValOrd.intros(2) add_leE gen_length_code(1) gen_length_def mkeps_flat) -apply(auto) -apply(simp add: POSIX3_def) -apply(auto) -apply (metis Prf.intros(2)) -apply(rotate_tac 4) -apply(erule Prf.cases) -apply(simp_all)[5] -apply (metis ValOrd.intros(6)) -apply(auto)[1] -apply (metis ValOrd.intros(3)) -apply(simp add: POSIX3_def) -apply(auto) -apply (metis Prf.intros(2)) -apply(rotate_tac 6) -apply(erule Prf.cases) -apply(simp_all)[5] -apply (metis ValOrd.intros(6)) -apply (metis ValOrd.intros(3)) -apply(simp add: POSIX3_def) -apply(auto) -apply (metis Prf.intros(3)) -apply(rotate_tac 5) -apply(erule Prf.cases) -apply(simp_all)[5] -apply (metis Prf_flat_L drop_0 drop_all list.size(3) mkeps_flat nullable_correctness) -by (metis ValOrd.intros(5)) - - -lemma mkeps_POSIX: - assumes "nullable r" - shows "POSIX (mkeps r) r" -using assms -apply(induct r) -apply(auto)[1] -apply(simp add: POSIX_def) -apply(auto)[1] -apply(erule Prf.cases) -apply(simp_all)[5] -apply (metis ValOrd.intros) -apply(simp add: POSIX_def) -apply(auto)[1] -apply(simp add: POSIX_def) -apply(auto)[1] -apply(erule Prf.cases) -apply(simp_all)[5] -apply(auto) -apply (simp add: ValOrd.intros(2) mkeps_flat) -apply(simp add: POSIX_def) -apply(auto)[1] -apply(erule Prf.cases) -apply(simp_all)[5] -apply(auto) -apply (simp add: ValOrd.intros(6)) -apply (simp add: ValOrd.intros(3)) -apply(simp add: POSIX_def) -apply(auto)[1] -apply(erule Prf.cases) -apply(simp_all)[5] -apply(auto) -apply (simp add: ValOrd.intros(6)) -apply (simp add: ValOrd.intros(3)) -apply(simp add: POSIX_def) -apply(auto)[1] -apply(erule Prf.cases) -apply(simp_all)[5] -apply(auto) -apply (metis Prf_flat_L mkeps_flat nullable_correctness) -by (simp add: ValOrd.intros(5)) - - -lemma mkeps_POSIX2: - assumes "nullable r" - shows "POSIX2 (mkeps r) r" -using assms -apply(induct r) -apply(simp) -apply(simp) -apply(simp add: POSIX2_def) -apply(rule conjI) -apply(rule Prf.intros) -apply(auto)[1] -apply(erule Prf.cases) -apply(simp_all)[5] -apply(rule ValOrd.intros) -apply(simp) -apply(simp) -apply(simp add: POSIX2_def) -apply(rule conjI) -apply(rule Prf.intros) -apply(simp add: mkeps_nullable) -apply(simp add: mkeps_nullable) -apply(auto)[1] -apply(rotate_tac 6) -apply(erule Prf.cases) -apply(simp_all)[5] -apply(rule ValOrd.intros(2)) -apply(simp) -apply(simp only: nullable.simps) -apply(erule disjE) -apply(simp) -thm POSIX2_ALT1a -apply(rule POSIX2_ALT) -apply(simp add: POSIX2_def) -apply(rule conjI) -apply(rule Prf.intros) -apply(simp add: mkeps_nullable) -oops - - -section {* Derivatives *} - -fun - der :: "char \ rexp \ rexp" -where - "der c (NULL) = NULL" -| "der c (EMPTY) = NULL" -| "der c (CHAR c') = (if c = c' then EMPTY else NULL)" -| "der c (ALT r1 r2) = ALT (der c r1) (der c r2)" -| "der c (SEQ r1 r2) = - (if nullable r1 - then ALT (SEQ (der c r1) r2) (der c r2) - else SEQ (der c r1) r2)" - -fun - ders :: "string \ rexp \ rexp" -where - "ders [] r = r" -| "ders (c # s) r = ders s (der c r)" - -section {* Injection function *} - -fun injval :: "rexp \ char \ val \ val" -where - "injval (CHAR d) c Void = Char d" -| "injval (ALT r1 r2) c (Left v1) = Left(injval r1 c v1)" -| "injval (ALT r1 r2) c (Right v2) = Right(injval r2 c v2)" -| "injval (SEQ r1 r2) c (Seq v1 v2) = Seq (injval r1 c v1) v2" -| "injval (SEQ r1 r2) c (Left (Seq v1 v2)) = Seq (injval r1 c v1) v2" -| "injval (SEQ r1 r2) c (Right v2) = Seq (mkeps r1) (injval r2 c v2)" - -section {* Projection function *} - -fun projval :: "rexp \ char \ val \ val" -where - "projval (CHAR d) c _ = Void" -| "projval (ALT r1 r2) c (Left v1) = Left(projval r1 c v1)" -| "projval (ALT r1 r2) c (Right v2) = Right(projval r2 c v2)" -| "projval (SEQ r1 r2) c (Seq v1 v2) = - (if flat v1 = [] then Right(projval r2 c v2) - else if nullable r1 then Left (Seq (projval r1 c v1) v2) - else Seq (projval r1 c v1) v2)" - -text {* - Injection value is related to r -*} - -lemma v3: - assumes "\ v : der c r" shows "\ (injval r c v) : r" -using assms -apply(induct arbitrary: v rule: der.induct) -apply(simp) -apply(erule Prf.cases) -apply(simp_all)[5] -apply(simp) -apply(erule Prf.cases) -apply(simp_all)[5] -apply(case_tac "c = c'") -apply(simp) -apply(erule Prf.cases) -apply(simp_all)[5] -apply (metis Prf.intros(5)) -apply(simp) -apply(erule Prf.cases) -apply(simp_all)[5] -apply(simp) -apply(erule Prf.cases) -apply(simp_all)[5] -apply (metis Prf.intros(2)) -apply (metis Prf.intros(3)) -apply(simp) -apply(case_tac "nullable r1") -apply(simp) -apply(erule Prf.cases) -apply(simp_all)[5] -apply(auto)[1] -apply(erule Prf.cases) -apply(simp_all)[5] -apply(auto)[1] -apply (metis Prf.intros(1)) -apply(auto)[1] -apply (metis Prf.intros(1) mkeps_nullable) -apply(simp) -apply(erule Prf.cases) -apply(simp_all)[5] -apply(auto)[1] -apply(rule Prf.intros) -apply(auto)[2] -done - -text {* - The string behin the injection value is an added c -*} - -lemma v4: - assumes "\ v : der c r" shows "flat (injval r c v) = c # (flat v)" -using assms -apply(induct arbitrary: v rule: der.induct) -apply(simp) -apply(erule Prf.cases) -apply(simp_all)[5] -apply(simp) -apply(erule Prf.cases) -apply(simp_all)[5] -apply(simp) -apply(case_tac "c = c'") -apply(simp) -apply(auto)[1] -apply(erule Prf.cases) -apply(simp_all)[5] -apply(simp) -apply(erule Prf.cases) -apply(simp_all)[5] -apply(simp) -apply(erule Prf.cases) -apply(simp_all)[5] -apply(simp) -apply(case_tac "nullable r1") -apply(simp) -apply(erule Prf.cases) -apply(simp_all)[5] -apply(auto)[1] -apply(erule Prf.cases) -apply(simp_all)[5] -apply(auto)[1] -apply (metis mkeps_flat) -apply(simp) -apply(erule Prf.cases) -apply(simp_all)[5] -done - -text {* - Injection followed by projection is the identity. -*} - -lemma proj_inj_id: - assumes "\ v : der c r" - shows "projval r c (injval r c v) = v" -using assms -apply(induct r arbitrary: c v rule: rexp.induct) -apply(simp) -apply(erule Prf.cases) -apply(simp_all)[5] -apply(simp) -apply(erule Prf.cases) -apply(simp_all)[5] -apply(simp) -apply(case_tac "c = char") -apply(simp) -apply(erule Prf.cases) -apply(simp_all)[5] -apply(simp) -apply(erule Prf.cases) -apply(simp_all)[5] -defer -apply(simp) -apply(erule Prf.cases) -apply(simp_all)[5] -apply(simp) -apply(case_tac "nullable rexp1") -apply(simp) -apply(erule Prf.cases) -apply(simp_all)[5] -apply(auto)[1] -apply(erule Prf.cases) -apply(simp_all)[5] -apply(auto)[1] -apply (metis list.distinct(1) v4) -apply(auto)[1] -apply (metis mkeps_flat) -apply(auto) -apply(erule Prf.cases) -apply(simp_all)[5] -apply(auto)[1] -apply(simp add: v4) -done - -lemma "L r \ {} \ \v. POSIX3 v r" -apply(induct r) -apply(simp) -apply(simp add: POSIX3_def) -apply(rule_tac x="Void" in exI) -apply(auto)[1] -apply (metis Prf.intros(4)) -apply (metis POSIX3_def flat.simps(1) mkeps.simps(1) mkeps_POSIX3 nullable.simps(2) order_refl) -apply(simp add: POSIX3_def) -apply(rule_tac x="Char char" in exI) -apply(auto)[1] -apply (metis Prf.intros(5)) -apply(erule Prf.cases) -apply(simp_all)[5] -apply (metis ValOrd.intros(8)) -apply(simp add: Sequ_def) -apply(auto)[1] -apply(drule meta_mp) -apply(auto)[2] -apply(drule meta_mp) -apply(auto)[2] -apply(rule_tac x="Seq v va" in exI) -apply(simp (no_asm) add: POSIX3_def) -apply(auto)[1] -apply (metis POSIX3_def Prf.intros(1)) -apply(erule Prf.cases) -apply(simp_all)[5] -apply(clarify) -apply(case_tac "v \r1a v1") -apply(rule ValOrd.intros(2)) -apply(simp) -apply(case_tac "v = v1") -apply(rule ValOrd.intros(1)) -apply(simp) -apply(simp) -apply (metis ValOrd_refl) -apply(simp add: POSIX3_def) - - -lemma "\v. POSIX v r" -apply(induct r) -apply(rule exI) -apply(simp add: POSIX_def) -apply (metis (full_types) Prf_flat_L der.simps(1) der.simps(2) der.simps(3) flat.simps(1) nullable.simps(1) nullable_correctness proj_inj_id projval.simps(1) v3 v4) -apply(rule_tac x = "Void" in exI) -apply(simp add: POSIX_def) -apply (metis POSIX_def flat.simps(1) mkeps.simps(1) mkeps_POSIX nullable.simps(2)) -apply(rule_tac x = "Char char" in exI) -apply(simp add: POSIX_def) -apply(auto) [1] -apply(erule Prf.cases) -apply(simp_all) [5] -apply (metis ValOrd.intros(8)) -defer -apply(auto) -apply (metis POSIX_ALT_I1) -(* maybe it is too early to instantiate this existential quantifier *) -(* potentially this is the wrong POSIX value *) -apply(case_tac "r1 = NULL") -apply(simp add: POSIX_def) -apply(auto)[1] -apply (metis L.simps(1) L.simps(4) Prf_flat_L mkeps_flat nullable.simps(1) nullable.simps(2) nullable_correctness seq_null(2)) -apply(case_tac "r1 = EMPTY") -apply(rule_tac x = "Seq Void va" in exI ) -apply(simp (no_asm) add: POSIX_def) -apply(auto) -apply(erule Prf.cases) -apply(simp_all) -apply(auto)[1] -apply(erule Prf.cases) -apply(simp_all) -apply(rule ValOrd.intros(2)) -apply(rule ValOrd.intros) -apply(case_tac "\c. r1 = CHAR c") -apply(auto) -apply(rule_tac x = "Seq (Char c) va" in exI ) -apply(simp (no_asm) add: POSIX_def) -apply(auto) -apply(erule Prf.cases) -apply(simp_all) -apply(auto)[1] -apply(erule Prf.cases) -apply(simp_all) -apply(auto)[1] -apply(rule ValOrd.intros(2)) -apply(rule ValOrd.intros) -apply(case_tac "\r1a r1b. r1 = ALT r1a r1b") -apply(auto) -oops (* not sure if this can be proved by induction *) - -text {* - - HERE: Crucial lemma that does not go through in the sequence case. - -*} -lemma v5: - assumes "\ v : der c r" "POSIX v (der c r)" - shows "POSIX (injval r c v) r" -using assms -apply(induct arbitrary: v rule: der.induct) -apply(simp) -apply(erule Prf.cases) -apply(simp_all)[5] -apply(simp) -apply(erule Prf.cases) -apply(simp_all)[5] -apply(simp) -apply(case_tac "c = c'") -apply(auto simp add: POSIX_def)[1] -apply(erule Prf.cases) -apply(simp_all)[5] -apply(erule Prf.cases) -apply(simp_all)[5] -using ValOrd.simps apply blast -apply(auto) -apply(erule Prf.cases) -apply(simp_all)[5] -(* base cases done *) -(* ALT case *) -apply(erule Prf.cases) -apply(simp_all)[5] -using POSIX_ALT POSIX_ALT_I1 apply blast -apply(clarify) -apply(subgoal_tac "POSIX v2 (der c r2)") -prefer 2 -apply(auto simp add: POSIX_def)[1] -apply (metis POSIX_ALT1a POSIX_def flat.simps(4)) -apply(frule POSIX_ALT1a) -apply(drule POSIX_ALT1b) -apply(rule POSIX_ALT_I2) -apply(rotate_tac 1) -apply(drule_tac x="v2" in meta_spec) -apply(simp) -apply(subgoal_tac "\ Right (injval r2 c v2) : (ALT r1 r2)") -prefer 2 -apply (metis Prf.intros(3) v3) - -apply auto[1] -apply(subst v4) -apply(auto)[2] -apply(subst (asm) (4) POSIX_def) -apply(subst (asm) v4) -apply(drule_tac x="v2" in meta_spec) -apply(simp) - -apply(auto)[2] - -thm POSIX_ALT_I2 -apply(rule POSIX_ALT_I2) - -apply(rule ccontr) -apply(auto simp add: POSIX_def)[1] - -apply(rule allI) -apply(rule impI) -apply(erule conjE) -thm POSIX_ALT_I2 -apply(frule POSIX_ALT1a) -apply(drule POSIX_ALT1b) -apply(rule POSIX_ALT_I2) -apply auto[1] -apply(subst v4) -apply(auto)[2] -apply(rotate_tac 1) -apply(drule_tac x="v2" in meta_spec) -apply(simp) -apply(subst (asm) (4) POSIX_def) -apply(subst (asm) v4) -apply(auto)[2] -(* stuck in the ALT case *) diff -r 26b71a36f55f -r d86d685273ce thys/Chap03.thy --- a/thys/Chap03.thy Mon Feb 09 00:46:25 2015 +0000 +++ b/thys/Chap03.thy Thu Feb 26 12:41:55 2015 +0000 @@ -1,8 +1,77 @@ -(* test *) theory Chap03 imports Main begin +(* 2.5.6 Case Study: Boolean Expressions *) + +datatype boolex = Const bool | Var nat | Neg boolex +| And boolex boolex + +primrec "value2" :: "boolex \ (nat \ bool) \ bool" where +"value2 (Const b) env = b" | +"value2 (Var x) env = env x" | +"value2 (Neg b) env = (\ value2 b env)" | +"value2 (And b c) env = (value2 b env \ value2 c env)" + +value "Const true" +value "Var (Suc(0))" +value "value2 (Const False) (\x. False)" +value "value2 (Var 11) (\x. if (x = 10 | x = 11) then True else False)" +value "value2 (Var 11) (\x. True )" + +definition + "en1 \ (\x. if x = 10 | x = 11 then True else False)" + +abbreviation + "en2 \ (\x. if x = 10 | x = 11 then True else False)" + +value "value2 (And (Var 10) (Var 11)) en2" + +lemma "value2 (And (Var 10) (Var 11)) en2 = True" +apply(simp) +done + +datatype ifex = + CIF bool +| VIF nat +| IF ifex ifex ifex + +primrec valif :: "ifex \ (nat \ bool) \ bool" where +"valif (CIF b) env = b" | +"valif (VIF x) env = env x" | +"valif (IF b t e) env = (if valif b env then valif t env else valif e env)" + +abbreviation "vif1 \ valif (CIF False) (\x. False)" +abbreviation "vif2 \ valif (VIF 11) (\x. False)" +abbreviation "vif3 \ valif (VIF 13) (\x. True)" + +value "valif (CIF False) (\x. False)" +value "valif (VIF 11) (\x. True)" +value "valif (IF (CIF False) (CIF True) (CIF True))" + +primrec bool2if :: "boolex \ ifex" where +"bool2if (Const b) = CIF b" | +"bool2if (Var x) = VIF x" | +"bool2if (Neg b) = IF (bool2if b) (CIF False) (CIF True)" | +"bool2if (And b c) = IF (bool2if b) (bool2if c) (CIF False)" + +lemma "valif (bool2if b) env = value2 b env" +apply(induct_tac b) +apply(auto) +done + +primrec normif :: "ifex \ ifex \ ifex \ ifex" where +"normif (CIF b) t e = IF (CIF b) t e" | +"normif (VIF x) t e = IF (VIF x) t e" | +"normif (IF b t e) u f = normif b (normif t u f) (normif e u f)" + +primrec norm :: "ifex \ ifex" where +"norm (CIF b) = CIF b" | +"norm (VIF x) = VIF x" | +"norm (IF b t e) = normif b (norm t) (norm e)" + +(*************** CHAPTER-3 ********************************) + lemma "\ xs @ zs = ys @ xs; [] @ xs = [] @ [] \ \ ys = zs" apply simp done @@ -125,7 +194,9 @@ apply(simp add: abc3) done -(* added test *) +find_theorems "_ \ _ " + +(* added anottest *) lemma abc5: "add2 m n = m + n" apply(induction n) @@ -147,6 +218,8 @@ "value (Vex a) env = env a" | "value (Bex f e1 e2) env = f (value e1 env) (value e2 env)" +value "value (Cex a) (\x. True)" + datatype ('a,'v)instr = Const 'v | Load 'a @@ -182,34 +255,41 @@ apply(simp split: instr.split) done -(* 2.5.6 Case Study: Boolean Expressions *) - -datatype boolex = Const bool | Var nat | Neg boolex -| And boolex boolex +(* 3.4 Advanced Datatypes *) -primrec "value2" :: "boolex \ (nat \ bool) \ bool" where -"value2 (Const b) env = b" | -"value2 (Var x) env = env x" | -"value2 (Neg b) env = (\ value2 b env)" | -"value2 (And b c) env = (value2 b env \ value2 c env)" +datatype 'a aexp = IF "'a bexp" "'a aexp" "'a aexp" + | Sum "'a aexp" "'a aexp" + | Diff "'a aexp" "'a aexp" + | Var 'a + | Num nat +and 'a bexp = Less "'a aexp" "'a aexp" + | And "'a bexp" "'a bexp" + | Neg "'a bexp" + +(* Total Recursive Functions: Fun *) +(* 3.5.1 Definition *) -value "Const true" -value "Var (Suc(0))" - - +fun fib :: "nat \ nat" where +"fib 0 = 0" | +"fib (Suc 0) = 1" | +"fib (Suc(Suc x)) = fib x + fib (Suc x)" -value "value2 (Const False) (\x. False)" -value "value2 (Var 11) (\x. if (x = 10 | x = 11) then True else False)" +value "fib (Suc(Suc(Suc(Suc(Suc 0)))))" + +fun sep :: "'a \ 'a list \ 'a list" where +"sep a [] = []" | +"sep a [x] = [x]" | +"sep a (x#y#zs) = x # a # sep a (y#zs)" -definition - "en1 \ (\x. if x = 10 | x = 11 then True else False)" - -abbreviation - "en2 \ (\x. if x = 10 | x = 11 then True else False)" - -value "value2 (And (Var 10) (Var 11)) en2" +fun last :: "'a list \ 'a" where +"last [x] = x" | +"last (_#y#zs) = last (y#zs)" -lemma "value2 (And (Var 10) (Var 11)) en2 = True" -apply(simp) -done +fun sep1 :: "'a \ 'a list \ 'a list" where +"sep1 a (x#y#zs) = x # a # sep1 a (y#zs)" | +"sep1 _ xs = xs" +fun swap12:: "'a list \ 'a list" where +"swap12 (x#y#zs) = y#x#zs" | +"swap12 zs = zs" + diff -r 26b71a36f55f -r d86d685273ce thys/Re1.thy --- a/thys/Re1.thy Mon Feb 09 00:46:25 2015 +0000 +++ b/thys/Re1.thy Thu Feb 26 12:41:55 2015 +0000 @@ -42,6 +42,20 @@ | "L (SEQ r1 r2) = (L r1) ;; (L r2)" | "L (ALT r1 r2) = (L r1) \ (L r2)" +fun + nullable :: "rexp \ bool" +where + "nullable (NULL) = False" +| "nullable (EMPTY) = True" +| "nullable (CHAR c) = False" +| "nullable (ALT r1 r2) = (nullable r1 \ nullable r2)" +| "nullable (SEQ r1 r2) = (nullable r1 \ nullable r2)" + +lemma nullable_correctness: + shows "nullable r \ [] \ (L r)" +apply (induct r) +apply(auto simp add: Sequ_def) +done section {* Values *} @@ -52,6 +66,33 @@ | Right val | Left val +section {* The string behind a value *} + +fun flat :: "val \ string" +where + "flat(Void) = []" +| "flat(Char c) = [c]" +| "flat(Left v) = flat(v)" +| "flat(Right v) = flat(v)" +| "flat(Seq v1 v2) = flat(v1) @ flat(v2)" + +fun head :: "val \ string" +where + "head(Void) = []" +| "head(Char c) = [c]" +| "head(Left v) = head(v)" +| "head(Right v) = head(v)" +| "head(Seq v1 v2) = head v1" + +fun flats :: "val \ string list" +where + "flats(Void) = [[]]" +| "flats(Char c) = [[c]]" +| "flats(Left v) = flats(v)" +| "flats(Right v) = flats(v)" +| "flats(Seq v1 v2) = (flats v1) @ (flats v2)" + + section {* Relation between values and regular expressions *} inductive Prf :: "val \ rexp \ bool" ("\ _ : _" [100, 100] 100) @@ -62,23 +103,32 @@ | "\ Void : EMPTY" | "\ Char c : CHAR c" -section {* The string behind a value *} - -fun flat :: "val \ string" +fun mkeps :: "rexp \ val" where - "flat(Void) = []" -| "flat(Char c) = [c]" -| "flat(Left v) = flat(v)" -| "flat(Right v) = flat(v)" -| "flat(Seq v1 v2) = flat(v1) @ flat(v2)" + "mkeps(EMPTY) = Void" +| "mkeps(SEQ r1 r2) = Seq (mkeps r1) (mkeps r2)" +| "mkeps(ALT r1 r2) = (if nullable(r1) then Left (mkeps r1) else Right (mkeps r2))" + +lemma mkeps_nullable: + assumes "nullable(r)" shows "\ mkeps r : r" +using assms +apply(induct rule: nullable.induct) +apply(auto intro: Prf.intros) +done + -fun flats :: "val \ string list" -where - "flats(Void) = [[]]" -| "flats(Char c) = [[c]]" -| "flats(Left v) = flats(v)" -| "flats(Right v) = flats(v)" -| "flats(Seq v1 v2) = (flats v1) @ (flats v2)" + +lemma mkeps_flat: + assumes "nullable(r)" shows "flat (mkeps r) = []" +using assms +apply(induct rule: nullable.induct) +apply(auto) +done + +text {* + The value mkeps returns is always the correct POSIX + value. +*} lemma Prf_flat_L: assumes "\ v : r" shows "flat v \ L r" @@ -108,8 +158,8 @@ inductive ValOrd :: "val \ rexp \ val \ bool" ("_ \_ _" [100, 100, 100] 100) where - "\v1 = v1'; v2 \r2 v2'\ \ (Seq v1 v2) \(SEQ r1 r2) (Seq v1' v2')" -| "v1 \r1 v1' \ (Seq v1 v2) \(SEQ r1 r2) (Seq v1' v2')" + "v2 \r2 v2' \ (Seq v1 v2) \(SEQ r1 r2) (Seq v1 v2')" +| "\v1 \r1 v1'; v1 \ v1'\ \ (Seq v1 v2) \(SEQ r1 r2) (Seq v1' v2')" | "length (flat v1) \ length (flat v2) \ (Left v1) \(ALT r1 r2) (Right v2)" | "length (flat v2) > length (flat v1) \ (Right v2) \(ALT r1 r2) (Left v1)" | "v2 \r2 v2' \ (Right v2) \(ALT r1 r2) (Right v2')" @@ -128,38 +178,32 @@ apply(auto intro: ValOrd.intros) done -lemma ValOrd_flats: - assumes "v1 \r v2" - shows "hd (flats v2) = hd (flats v1)" -using assms -apply(induct) -apply(auto) -oops - - section {* Posix definition *} definition POSIX :: "val \ rexp \ bool" where - "POSIX v r \ (\v'. (\ v' : r \ flat v = flat v') \ v \r v')" + "POSIX v r \ (\ v : r \ (\v'. (\ v' : r \ flat v = flat v') \ v \r v'))" (* an alternative definition: might cause problems with theorem mkeps_POSIX *) +(* definition POSIX2 :: "val \ rexp \ bool" where "POSIX2 v r \ \ v : r \ (\v'. \ v' : r \ v \r v')" +*) +(* definition POSIX3 :: "val \ rexp \ bool" where "POSIX3 v r \ \ v : r \ (\v'. (\ v' : r \ length (flat v') \ length(flat v)) \ v \r v')" - +*) -lemma POSIX_SEQ: +lemma POSIX_SEQ1: assumes "POSIX (Seq v1 v2) (SEQ r1 r2)" "\ v1 : r1" "\ v2 : r2" - shows "POSIX v1 r1 \ POSIX v2 r2" + shows "POSIX v1 r1" using assms unfolding POSIX_def apply(auto) @@ -172,7 +216,14 @@ apply(erule ValOrd.cases) apply(simp_all) apply(clarify) -defer +by (metis ValOrd_refl) + +lemma POSIX_SEQ2: + assumes "POSIX (Seq v1 v2) (SEQ r1 r2)" "\ v1 : r1" "\ v2 : r2" + shows "POSIX v2 r2" +using assms +unfolding POSIX_def +apply(auto) apply(drule_tac x="Seq v1 v'" in spec) apply(simp) apply(erule impE) @@ -181,38 +232,7 @@ apply(simp) apply(erule ValOrd.cases) apply(simp_all) -apply(clarify) -oops (*not true*) - -lemma POSIX_SEQ_I: - assumes "POSIX v1 r1" "POSIX v2 r2" - shows "POSIX (Seq v1 v2) (SEQ r1 r2)" -using assms -unfolding POSIX_def -apply(auto) -apply(rotate_tac 2) -apply(erule Prf.cases) -apply(simp_all)[5] -apply(auto)[1] -apply(rule ValOrd.intros) -oops (* maybe also not true *) - -lemma POSIX3_SEQ_I: - assumes "POSIX3 v1 r1" "POSIX3 v2 r2" - shows "POSIX3 (Seq v1 v2) (SEQ r1 r2)" -using assms -unfolding POSIX3_def -apply(auto) -apply (metis Prf.intros(1)) -apply(rotate_tac 4) -apply(erule Prf.cases) -apply(simp_all)[5] -apply(auto)[1] -apply(case_tac "v1 = v1a") -apply(auto) -apply (metis ValOrd.intros(1)) -apply (rule ValOrd.intros(2)) -oops +done lemma POSIX_ALT2: assumes "POSIX (Left v1) (ALT r1 r2)" @@ -220,6 +240,8 @@ using assms unfolding POSIX_def apply(auto) +apply(erule Prf.cases) +apply(simp_all)[5] apply(drule_tac x="Left v'" in spec) apply(simp) apply(drule mp) @@ -229,52 +251,14 @@ apply(simp_all) done -lemma POSIX2_ALT: - assumes "POSIX2 (Left v1) (ALT r1 r2)" - shows "POSIX2 v1 r1" -using assms -unfolding POSIX2_def -apply(auto) -oops - -lemma POSIX_ALT: - assumes "POSIX (Left v1) (ALT r1 r2)" - shows "POSIX v1 r1" -using assms -unfolding POSIX_def -apply(auto) -apply(drule_tac x="Left v'" in spec) -apply(simp) -apply(drule mp) -apply(rule Prf.intros) -apply(auto) -apply(erule ValOrd.cases) -apply(simp_all) -done - -lemma POSIX2_ALT: - assumes "POSIX2 (Left v1) (ALT r1 r2)" - shows "POSIX2 v1 r1" -using assms -apply(simp add: POSIX2_def) -apply(auto) -apply(erule Prf.cases) -apply(simp_all)[5] -apply(drule_tac x="Left v'" in spec) -apply(drule mp) -apply(rule Prf.intros) -apply(auto) -apply(erule ValOrd.cases) -apply(simp_all) -done - - lemma POSIX_ALT1a: assumes "POSIX (Right v2) (ALT r1 r2)" shows "POSIX v2 r2" using assms unfolding POSIX_def apply(auto) +apply(erule Prf.cases) +apply(simp_all)[5] apply(drule_tac x="Right v'" in spec) apply(simp) apply(drule mp) @@ -284,23 +268,6 @@ apply(simp_all) done -lemma POSIX2_ALT1a: - assumes "POSIX2 (Right v2) (ALT r1 r2)" - shows "POSIX2 v2 r2" -using assms -unfolding POSIX2_def -apply(auto) -apply(erule Prf.cases) -apply(simp_all)[5] -apply(drule_tac x="Right v'" in spec) -apply(drule mp) -apply(rule Prf.intros) -apply(auto) -apply(erule ValOrd.cases) -apply(simp_all) -done - - lemma POSIX_ALT1b: assumes "POSIX (Right v2) (ALT r1 r2)" shows "(\v'. (\ v' : r2 \ flat v' = flat v2) \ v2 \r2 v')" @@ -316,7 +283,8 @@ using assms unfolding POSIX_def apply(auto) -apply(rotate_tac 3) +apply (metis Prf.intros(2)) +apply(rotate_tac 2) apply(erule Prf.cases) apply(simp_all)[5] apply(auto) @@ -325,22 +293,6 @@ apply(rule ValOrd.intros) by simp -lemma POSIX2_ALT_I1: - assumes "POSIX2 v1 r1" - shows "POSIX2 (Left v1) (ALT r1 r2)" -using assms -unfolding POSIX2_def -apply(auto) -apply(rule Prf.intros) -apply(simp) -apply(rotate_tac 2) -apply(erule Prf.cases) -apply(simp_all)[5] -apply(auto) -apply(rule ValOrd.intros) -apply(auto) -apply(rule ValOrd.intros) -oops lemma POSIX_ALT_I2: assumes "POSIX v2 r2" "\v'. \ v' : r1 \ length (flat v2) > length (flat v')" @@ -348,6 +300,7 @@ using assms unfolding POSIX_def apply(auto) +apply (metis Prf.intros) apply(rotate_tac 3) apply(erule Prf.cases) apply(simp_all)[5] @@ -356,108 +309,6 @@ apply metis done - - -section {* The Matcher *} - -fun - nullable :: "rexp \ bool" -where - "nullable (NULL) = False" -| "nullable (EMPTY) = True" -| "nullable (CHAR c) = False" -| "nullable (ALT r1 r2) = (nullable r1 \ nullable r2)" -| "nullable (SEQ r1 r2) = (nullable r1 \ nullable r2)" - -lemma nullable_correctness: - shows "nullable r \ [] \ (L r)" -apply (induct r) -apply(auto simp add: Sequ_def) -done - -fun mkeps :: "rexp \ val" -where - "mkeps(EMPTY) = Void" -| "mkeps(SEQ r1 r2) = Seq (mkeps r1) (mkeps r2)" -| "mkeps(ALT r1 r2) = (if nullable(r1) then Left (mkeps r1) else Right (mkeps r2))" - -lemma mkeps_nullable: - assumes "nullable(r)" shows "\ mkeps r : r" -using assms -apply(induct rule: nullable.induct) -apply(auto intro: Prf.intros) -done - -lemma mkeps_flat: - assumes "nullable(r)" shows "flat (mkeps r) = []" -using assms -apply(induct rule: nullable.induct) -apply(auto) -done - -text {* - The value mkeps returns is always the correct POSIX - value. -*} - -lemma mkeps_POSIX2: - assumes "nullable r" - shows "POSIX2 (mkeps r) r" -using assms -apply(induct r) -apply(auto)[1] -apply(simp add: POSIX2_def) -oops - -lemma mkeps_POSIX3: - assumes "nullable r" - shows "POSIX3 (mkeps r) r" -using assms -apply(induct r) -apply(auto)[1] -apply(simp add: POSIX3_def) -apply(auto)[1] -apply (metis Prf.intros(4)) -apply(erule Prf.cases) -apply(simp_all)[5] -apply (metis ValOrd.intros) -apply(simp add: POSIX3_def) -apply(auto)[1] -apply(simp add: POSIX3_def) -apply(auto)[1] -apply (metis mkeps.simps(2) mkeps_nullable nullable.simps(5)) -apply(rotate_tac 6) -apply(erule Prf.cases) -apply(simp_all)[5] -apply (metis ValOrd.intros(2) add_leE gen_length_code(1) gen_length_def mkeps_flat) -apply(auto) -apply(simp add: POSIX3_def) -apply(auto) -apply (metis Prf.intros(2)) -apply(rotate_tac 4) -apply(erule Prf.cases) -apply(simp_all)[5] -apply (metis ValOrd.intros(6)) -apply(auto)[1] -apply (metis ValOrd.intros(3)) -apply(simp add: POSIX3_def) -apply(auto) -apply (metis Prf.intros(2)) -apply(rotate_tac 6) -apply(erule Prf.cases) -apply(simp_all)[5] -apply (metis ValOrd.intros(6)) -apply (metis ValOrd.intros(3)) -apply(simp add: POSIX3_def) -apply(auto) -apply (metis Prf.intros(3)) -apply(rotate_tac 5) -apply(erule Prf.cases) -apply(simp_all)[5] -apply (metis Prf_flat_L drop_0 drop_all list.size(3) mkeps_flat nullable_correctness) -by (metis ValOrd.intros(5)) - - lemma mkeps_POSIX: assumes "nullable r" shows "POSIX (mkeps r) r" @@ -466,77 +317,42 @@ apply(auto)[1] apply(simp add: POSIX_def) apply(auto)[1] +apply (metis Prf.intros(4)) apply(erule Prf.cases) apply(simp_all)[5] apply (metis ValOrd.intros) -apply(simp add: POSIX_def) +apply(simp) apply(auto)[1] apply(simp add: POSIX_def) apply(auto)[1] -apply(erule Prf.cases) -apply(simp_all)[5] -apply(auto) -apply (simp add: ValOrd.intros(2) mkeps_flat) -apply(simp add: POSIX_def) -apply(auto)[1] -apply(erule Prf.cases) -apply(simp_all)[5] -apply(auto) -apply (simp add: ValOrd.intros(6)) -apply (simp add: ValOrd.intros(3)) -apply(simp add: POSIX_def) -apply(auto)[1] -apply(erule Prf.cases) -apply(simp_all)[5] -apply(auto) -apply (simp add: ValOrd.intros(6)) -apply (simp add: ValOrd.intros(3)) -apply(simp add: POSIX_def) -apply(auto)[1] -apply(erule Prf.cases) -apply(simp_all)[5] -apply(auto) -apply (metis Prf_flat_L mkeps_flat nullable_correctness) -by (simp add: ValOrd.intros(5)) - - -lemma mkeps_POSIX2: - assumes "nullable r" - shows "POSIX2 (mkeps r) r" -using assms -apply(induct r) -apply(simp) -apply(simp) -apply(simp add: POSIX2_def) -apply(rule conjI) -apply(rule Prf.intros) -apply(auto)[1] -apply(erule Prf.cases) -apply(simp_all)[5] -apply(rule ValOrd.intros) -apply(simp) -apply(simp) -apply(simp add: POSIX2_def) -apply(rule conjI) -apply(rule Prf.intros) -apply(simp add: mkeps_nullable) -apply(simp add: mkeps_nullable) -apply(auto)[1] +apply (metis mkeps.simps(2) mkeps_nullable nullable.simps(5)) apply(rotate_tac 6) apply(erule Prf.cases) apply(simp_all)[5] -apply(rule ValOrd.intros(2)) +apply (simp add: mkeps_flat) +apply(case_tac "mkeps r1a = v1") apply(simp) -apply(simp only: nullable.simps) +apply (metis ValOrd.intros(1)) +apply (rule ValOrd.intros(2)) +apply metis +apply(simp) +apply(simp) apply(erule disjE) apply(simp) -thm POSIX2_ALT1a -apply(rule POSIX2_ALT) -apply(simp add: POSIX2_def) -apply(rule conjI) -apply(rule Prf.intros) -apply(simp add: mkeps_nullable) -oops +apply (metis POSIX_ALT_I1) +apply(auto) +apply (metis POSIX_ALT_I1) +apply(simp add: POSIX_def) +apply(auto)[1] +apply (metis Prf.intros(3)) +apply(rotate_tac 5) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(simp add: mkeps_flat) +apply(auto)[1] +apply (metis Prf_flat_L nullable_correctness) +apply(rule ValOrd.intros) +by metis section {* Derivatives *} @@ -570,6 +386,7 @@ | "injval (SEQ r1 r2) c (Left (Seq v1 v2)) = Seq (injval r1 c v1) v2" | "injval (SEQ r1 r2) c (Right v2) = Seq (mkeps r1) (injval r2 c v2)" + section {* Projection function *} fun projval :: "rexp \ char \ val \ val" @@ -721,11 +538,170 @@ using assms by (metis list.inject v4_proj) +lemma injval_inj: "inj_on (injval r c) {v. \ v : der c r}" +apply(induct c r rule: der.induct) +unfolding inj_on_def +apply(auto)[1] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(auto)[1] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(auto)[1] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(auto)[1] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(auto)[1] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(clarify) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(clarify) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(clarify) +apply (metis list.distinct(1) mkeps_flat v4) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(clarify) +apply(rotate_tac 6) +apply(erule Prf.cases) +apply(simp_all)[5] +apply (metis list.distinct(1) mkeps_flat v4) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +done + lemma t: "(c#xs = c#ys) \ xs = ys" by (metis list.sel(3)) +lemma t2: "(xs = ys) \ (c#xs) = (c#ys)" +by (metis) + +fun zeroable where + "zeroable NULL = True" +| "zeroable EMPTY = False" +| "zeroable (CHAR c) = False" +| "zeroable (ALT r1 r2) = (zeroable r1 \ zeroable r2)" +| "zeroable (SEQ r1 r2) = (zeroable r1 \ zeroable r2)" + +lemma "\(nullable r) \ \(\v. \ v : r \ flat v = [])" +by (metis Prf_flat_L nullable_correctness) + +lemma proj_inj_id: + assumes "\ v : der c r" + shows "projval r c (injval r c v) = v" +using assms +apply(induct c r arbitrary: v rule: der.induct) +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(simp) +apply(case_tac "c = c'") +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(simp) +apply(case_tac "nullable r1") +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(auto)[1] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(auto)[1] +apply (metis list.distinct(1) v4) +apply(auto)[1] +apply (metis mkeps_flat) +apply(auto) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(auto)[1] +apply(simp add: v4) +done + +(* +lemma + assumes "\ v : der c r" "flat v \ []" + shows "injval r c v \r mkeps r" +using assms +apply(induct c r arbitrary: v rule: der.induct) +apply(simp_all) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(case_tac "c = c'") +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(auto)[1] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(clarify) +apply (metis ValOrd.intros(6)) +apply(clarify) +apply (metis ValOrd.intros(4) drop_0 drop_all le_add2 list.distinct(1) list.size(3) mkeps_flat monoid_add_class.add.right_neutral nat_less_le v4) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(clarify) +apply(rule ValOrd.intros) +apply(simp) +defer +apply(rule ValOrd.intros) +apply metis +apply(case_tac "nullable r1") +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(clarify) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(clarify) +defer +apply(clarify) +apply(rule ValOrd.intros) +apply metis +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(clarify) +defer +apply(subst mkeps_flat) +oops +*) + lemma Prf_inj: - assumes "v1 \(der c r) v2" "\ v1 : der c r" "\ v2 : der c r" + assumes "v1 \(der c r) v2" "\ v1 : der c r" "\ v2 : der c r" (*"flat v1 = flat v2"*) shows "(injval r c v1) \r (injval r c v2)" using assms apply(induct arbitrary: v1 v2 rule: der.induct) @@ -762,6 +738,656 @@ apply(simp_all)[5] apply(simp) apply(rule ValOrd.intros) +apply(clarify) +apply(rotate_tac 3) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(clarify) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(clarify) +apply(subst v4) +apply(simp) +apply(subst v4) +apply(simp) +apply(simp) +apply(rule ValOrd.intros) +apply(clarify) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(rule ValOrd.intros) +apply(clarify) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +(* SEQ case*) +apply(simp) +apply(case_tac "nullable r1") +apply(simp) +defer +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(clarify) +apply(erule ValOrd.cases) +apply(simp_all)[8] +apply(clarify) +apply(rule ValOrd.intros) +apply(simp) +apply(clarify) +apply(rule ValOrd.intros(2)) +apply metis +using injval_inj +apply(simp add: inj_on_def) +apply metis +(* SEQ nullable case *) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(clarify) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(clarify) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(clarify) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(clarify) +apply(erule ValOrd.cases) +apply(simp_all)[8] +apply(clarify) +apply(erule ValOrd.cases) +apply(simp_all)[8] +apply(clarify) +apply(rule ValOrd.intros(1)) +apply(simp) +apply(rule ValOrd.intros(2)) +apply metis +using injval_inj +apply(simp add: inj_on_def) +apply metis +apply(clarify) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(clarify) +apply(erule ValOrd.cases) +apply(simp_all)[8] +apply(clarify) +apply(simp) +apply(rule ValOrd.intros(2)) +prefer 2 +apply (metis list.distinct(1) mkeps_flat v4) +defer +apply(clarify) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(clarify) +apply(rotate_tac 6) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(clarify) +apply(erule ValOrd.cases) +apply(simp_all)[8] +apply(clarify) +apply(simp) +apply(rule ValOrd.intros(2)) +prefer 2 +apply (metis list.distinct(1) mkeps_flat v4) +defer +apply(clarify) +apply(erule ValOrd.cases) +apply(simp_all)[8] +apply(clarify) +apply(rule ValOrd.intros(1)) +apply(metis) +apply(drule_tac x="v1" in meta_spec) +apply(rotate_tac 7) +apply(drule_tac x="projval r1 c (mkeps r1)" in meta_spec) +apply(drule meta_mp) + +defer +apply(erule ValOrd.cases) +apply(simp_all del: injval.simps)[8] +apply(simp) +apply(clarify) +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(clarify) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(clarify) +apply(rule ValOrd.intros(2)) + + +lemma POSIX_ex: "\ v : r \ \v. POSIX v r" +apply(induct r arbitrary: v) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(rule_tac x="Void" in exI) +apply(simp add: POSIX_def) +apply(auto)[1] +apply (metis Prf.intros(4)) +apply(erule Prf.cases) +apply(simp_all)[5] +apply (metis ValOrd.intros(7)) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(rule_tac x="Char c" in exI) +apply(simp add: POSIX_def) +apply(auto)[1] +apply (metis Prf.intros(5)) +apply(erule Prf.cases) +apply(simp_all)[5] +apply (metis ValOrd.intros(8)) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(auto)[1] +apply(drule_tac x="v1" in meta_spec) +apply(drule_tac x="v2" in meta_spec) +apply(auto)[1] +defer +apply(erule Prf.cases) +apply(simp_all)[5] +apply(auto)[1] +apply (metis POSIX_ALT_I1) +apply (metis POSIX_ALT_I1 POSIX_ALT_I2) +apply(case_tac "nullable r1a") +apply(rule_tac x="Seq (mkeps r1a) va" in exI) +apply(auto simp add: POSIX_def)[1] +apply (metis Prf.intros(1) mkeps_nullable) +apply(simp add: mkeps_flat) +apply(rotate_tac 7) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(case_tac "mkeps r1 = v1a") +apply(simp) +apply (rule ValOrd.intros(1)) +apply (metis append_Nil mkeps_flat) +apply (rule ValOrd.intros(2)) +apply(drule mkeps_POSIX) +apply(simp add: POSIX_def) + +apply metis +apply(simp) +apply(simp) +apply(erule disjE) +apply(simp) + +apply(drule_tac x="v2" in spec) + +lemma POSIX_ex2: "\ v : r \ \v. POSIX v r \ \ v : r" +apply(induct r arbitrary: v) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(rule_tac x="Void" in exI) +apply(simp add: POSIX_def) +apply(auto)[1] +apply(erule Prf.cases) +apply(simp_all)[5] +apply (metis ValOrd.intros(7)) +apply (metis Prf.intros(4)) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(rule_tac x="Char c" in exI) +apply(simp add: POSIX_def) +apply(auto)[1] +apply(erule Prf.cases) +apply(simp_all)[5] +apply (metis ValOrd.intros(8)) +apply (metis Prf.intros(5)) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(auto)[1] +apply(drule_tac x="v1" in meta_spec) +apply(drule_tac x="v2" in meta_spec) +apply(auto)[1] +apply(simp add: POSIX_def) +apply(auto)[1] +apply(rule ccontr) +apply(simp) +apply(drule_tac x="Seq v va" in spec) +apply(drule mp) +defer +apply (metis Prf.intros(1)) + + +oops + +lemma POSIX_ALT_cases: + assumes "\ v : (ALT r1 r2)" "POSIX v (ALT r1 r2)" + shows "(\v1. v = Left v1 \ POSIX v1 r1) \ (\v2. v = Right v2 \ POSIX v2 r2)" +using assms +apply(erule_tac Prf.cases) +apply(simp_all) +unfolding POSIX_def +apply(auto) +apply (metis POSIX_ALT2 POSIX_def assms(2)) +by (metis POSIX_ALT1b assms(2)) + +lemma POSIX_ALT_cases2: + assumes "POSIX v (ALT r1 r2)" "\ v : (ALT r1 r2)" + shows "(\v1. v = Left v1 \ POSIX v1 r1) \ (\v2. v = Right v2 \ POSIX v2 r2)" +using assms POSIX_ALT_cases by auto + +lemma Prf_flat_empty: + assumes "\ v : r" "flat v = []" + shows "nullable r" +using assms +apply(induct) +apply(auto) +done + +lemma POSIX_proj: + assumes "POSIX v r" "\ v : r" "\s. flat v = c#s" + shows "POSIX (projval r c v) (der c r)" +using assms +apply(induct r c v arbitrary: rule: projval.induct) +defer +defer +defer +defer +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(simp add: POSIX_def) +apply(auto)[1] +apply(erule Prf.cases) +apply(simp_all)[5] +apply (metis ValOrd.intros(7)) +apply(erule_tac [!] exE) +prefer 3 +apply(frule POSIX_SEQ1) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(case_tac "flat v1 = []") +apply(subgoal_tac "nullable r1") +apply(simp) +prefer 2 +apply(rule_tac v="v1" in Prf_flat_empty) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(simp) +apply(frule POSIX_SEQ2) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(simp) +apply(drule meta_mp) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(rule ccontr) +apply(subgoal_tac "\ val.Right (projval r2 c v2) : (ALT (SEQ (der c r1) r2) (der c r2))") +apply(rotate_tac 11) +apply(frule POSIX_ex) +apply(erule exE) +apply(drule POSIX_ALT_cases2) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(drule v3_proj) +apply(simp) +apply(simp) +apply(drule POSIX_ex) +apply(erule exE) +apply(frule POSIX_ALT_cases2) +apply(simp) +apply(simp) +apply(erule +prefer 2 +apply(case_tac "nullable r1") +prefer 2 +apply(simp) +apply(rotate_tac 1) +apply(drule meta_mp) +apply(rule POSIX_SEQ1) +apply(assumption) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(rotate_tac 7) +apply(drule meta_mp) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(rotate_tac 7) +apply(drule meta_mp) +apply (metis Cons_eq_append_conv) + + +apply(erule Prf.cases) +apply(simp_all)[5] +apply(simp add: POSIX_def) +apply(simp) +apply(simp) +apply(simp_all)[5] +apply(simp add: POSIX_def) + + +lemma POSIX_proj: + assumes "POSIX v r" "\ v : r" "\s. flat v = c#s" + shows "POSIX (projval r c v) (der c r)" +using assms +apply(induct r arbitrary: c v rule: rexp.induct) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(simp add: POSIX_def) +apply(auto)[1] +apply(erule Prf.cases) +apply(simp_all)[5] +apply (metis ValOrd.intros(7)) + +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(simp add: POSIX_def) +apply(auto)[1] +apply(erule Prf.cases) +apply(simp_all)[5] +apply (metis ValOrd.intros(7)) +apply(erule_tac [!] exE) +prefer 3 +apply(frule POSIX_SEQ1) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(case_tac "flat v1 = []") +apply(subgoal_tac "nullable r1") +apply(simp) +prefer 2 +apply(rule_tac v="v1" in Prf_flat_empty) +apply(erule Prf.cases) +apply(simp_all)[5] + + +lemma POSIX_proj: + assumes "POSIX v r" "\ v : r" "\s. flat v = c#s" + shows "POSIX (projval r c v) (der c r)" +using assms +apply(induct r c v arbitrary: rule: projval.induct) +defer +defer +defer +defer +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(simp add: POSIX_def) +apply(auto)[1] +apply(erule Prf.cases) +apply(simp_all)[5] +apply (metis ValOrd.intros(7)) +apply(erule_tac [!] exE) +prefer 3 +apply(frule POSIX_SEQ1) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(case_tac "flat v1 = []") +apply(subgoal_tac "nullable r1") +apply(simp) +prefer 2 +apply(rule_tac v="v1" in Prf_flat_empty) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(simp) +apply(rule ccontr) +apply(drule v3_proj) +apply(simp) +apply(simp) +apply(drule POSIX_ex) +apply(erule exE) +apply(frule POSIX_ALT_cases2) +apply(simp) +apply(simp) +apply(erule +prefer 2 +apply(case_tac "nullable r1") +prefer 2 +apply(simp) +apply(rotate_tac 1) +apply(drule meta_mp) +apply(rule POSIX_SEQ1) +apply(assumption) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(rotate_tac 7) +apply(drule meta_mp) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(rotate_tac 7) +apply(drule meta_mp) +apply (metis Cons_eq_append_conv) + + +apply(erule Prf.cases) +apply(simp_all)[5] +apply(simp add: POSIX_def) +apply(simp) +apply(simp) +apply(simp_all)[5] +apply(simp add: POSIX_def) + +done +(* NULL case *) +apply(simp add: POSIX_def) +apply(auto)[1] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply (metis ValOrd.intros(7)) +apply(rotate_tac 4) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(simp) +prefer 2 +apply(simp) +apply(frule POSIX_ALT1a) +apply(drule meta_mp) +apply(simp) +apply(drule meta_mp) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(rule POSIX_ALT_I2) +apply(assumption) +apply(auto)[1] + +thm v4_proj2 +prefer 2 +apply(subst (asm) (13) POSIX_def) + +apply(drule_tac x="projval v2" in spec) +apply(auto)[1] +apply(drule mp) +apply(rule conjI) +apply(simp) +apply(simp) + +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +prefer 2 +apply(clarify) +apply(subst (asm) (2) POSIX_def) + +apply (metis ValOrd.intros(5)) +apply(clarify) +apply(simp) +apply(rotate_tac 3) +apply(drule_tac c="c" in t2) +apply(subst (asm) v4_proj) +apply(simp) +apply(simp) +thm contrapos_np contrapos_nn +apply(erule contrapos_np) +apply(rule ValOrd.intros) +apply(subst v4_proj2) +apply(simp) +apply(simp) +apply(subgoal_tac "\(length (flat v1) < length (flat (projval r2a c v2a)))") +prefer 2 +apply(erule contrapos_nn) +apply (metis nat_less_le v4_proj2) +apply(simp) + +apply(blast) +thm contrapos_nn + +apply(simp add: POSIX_def) +apply(auto)[1] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(clarify) +apply(rule ValOrd.intros) +apply(drule meta_mp) +apply(auto)[1] +apply (metis POSIX_ALT2 POSIX_def flat.simps(3)) +apply metis +apply(clarify) +apply(rule ValOrd.intros) +apply(simp) +apply(simp add: POSIX_def) +apply(auto)[1] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(clarify) +apply(rule ValOrd.intros) +apply(simp) + +apply(drule meta_mp) +apply(auto)[1] +apply (metis POSIX_ALT2 POSIX_def flat.simps(3)) +apply metis +apply(clarify) +apply(rule ValOrd.intros) +apply(simp) + + +done +(* EMPTY case *) +apply(simp add: POSIX_def) +apply(auto)[1] +apply(rotate_tac 3) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(drule_tac c="c" in t2) +apply(subst (asm) v4_proj) +apply(auto)[2] + +apply(erule ValOrd.cases) +apply(simp_all)[8] +(* CHAR case *) +apply(case_tac "c = c'") +apply(simp) +apply(erule ValOrd.cases) +apply(simp_all)[8] +apply(rule ValOrd.intros) +apply(simp) +apply(erule ValOrd.cases) +apply(simp_all)[8] +(* ALT case *) + + +unfolding POSIX_def +apply(auto) +thm v4 + +lemma Prf_inj: + assumes "v1 \(der c r) v2" "\ v1 : der c r" "\ v2 : der c r" "flat v1 = flat v2" + shows "(injval r c v1) \r (injval r c v2)" +using assms +apply(induct arbitrary: v1 v2 rule: der.induct) +(* NULL case *) +apply(simp) +apply(erule ValOrd.cases) +apply(simp_all)[8] +(* EMPTY case *) +apply(erule ValOrd.cases) +apply(simp_all)[8] +(* CHAR case *) +apply(case_tac "c = c'") +apply(simp) +apply(erule ValOrd.cases) +apply(simp_all)[8] +apply(rule ValOrd.intros) +apply(simp) +apply(erule ValOrd.cases) +apply(simp_all)[8] +(* ALT case *) +apply(simp) +apply(erule ValOrd.cases) +apply(simp_all)[8] +apply(rule ValOrd.intros) apply(subst v4) apply(clarify) apply(rotate_tac 3) @@ -769,13 +1395,16 @@ apply(simp_all)[5] apply(subst v4) apply(clarify) +apply(rotate_tac 2) apply(erule Prf.cases) apply(simp_all)[5] apply(simp) apply(rule ValOrd.intros) apply(clarify) +apply(rotate_tac 3) apply(erule Prf.cases) apply(simp_all)[5] +apply(clarify) apply(erule Prf.cases) apply(simp_all)[5] apply(rule ValOrd.intros) @@ -805,10 +1434,37 @@ apply(simp_all)[5] apply(erule Prf.cases) apply(simp_all)[5] +apply(clarify) +defer +apply(simp) +apply(erule ValOrd.cases) +apply(simp_all del: injval.simps)[8] +apply(simp) +apply(clarify) +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(clarify) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(clarify) +apply(rule ValOrd.intros(2)) + + + + +done + + +txt {* +done (* nullable case - unfinished *) apply(simp) apply(erule ValOrd.cases) -apply(simp_all)[8] +apply(simp_all del: injval.simps)[8] +apply(simp) apply(clarify) apply(simp) apply(erule Prf.cases) @@ -820,12 +1476,9 @@ apply(simp_all)[5] apply(clarify) apply(simp) -apply(case_tac "injval r1 c v1 = mkeps r1") -apply(rule ValOrd.intros(1)) -apply(simp) -apply (metis impossible_Cons le_add2 list.size(3) mkeps_flat monoid_add_class.add.right_neutral v4) apply(rule ValOrd.intros(2)) -apply(drule_tac x="proj r1 c" in spec) +oops +*} oops lemma POSIX_der: diff -r 26b71a36f55f -r d86d685273ce thys/Test.txt --- a/thys/Test.txt Mon Feb 09 00:46:25 2015 +0000 +++ b/thys/Test.txt Thu Feb 26 12:41:55 2015 +0000 @@ -1,3 +1,7 @@ +<<<<<<< local +test2 +======= test test file +>>>>>>> other diff -r 26b71a36f55f -r d86d685273ce thys/notes.pdf Binary file thys/notes.pdf has changed diff -r 26b71a36f55f -r d86d685273ce thys/notes.tex --- a/thys/notes.tex Mon Feb 09 00:46:25 2015 +0000 +++ b/thys/notes.tex Thu Feb 26 12:41:55 2015 +0000 @@ -348,5 +348,8 @@ \end{tabular} \end{center} +\subsection*{Problems in the paper proof} + +I cannot verify \end{document}