# HG changeset patch # User Christian Urban # Date 1499180371 -3600 # Node ID 247fc5dd49435cb98f7f17f3b8008783c1a457f6 # Parent 160d0b08471ce5ca6499e19462705f1606604619 isar proofs diff -r 160d0b08471c -r 247fc5dd4943 thys/Lexer.thy --- a/thys/Lexer.thy Sat Jul 01 13:08:48 2017 +0100 +++ b/thys/Lexer.thy Tue Jul 04 15:59:31 2017 +0100 @@ -171,6 +171,9 @@ apply(simp_all add: Ders_def der_correctness Der_def) done + +section {* Lemmas about ders *} + lemma ders_ZERO: shows "ders s (ZERO) = ZERO" apply(induct s) @@ -184,8 +187,9 @@ done lemma ders_CHAR: - shows "ders s (CHAR c) = (if s = [c] then ONE else - (if s = [] then (CHAR c) else ZERO))" + shows "ders s (CHAR c) = + (if s = [c] then ONE else + (if s = [] then (CHAR c) else ZERO))" apply(induct s) apply(simp_all add: ders_ZERO ders_ONE) done diff -r 160d0b08471c -r 247fc5dd4943 thys/LexerExt.thy --- a/thys/LexerExt.thy Sat Jul 01 13:08:48 2017 +0100 +++ b/thys/LexerExt.thy Tue Jul 04 15:59:31 2017 +0100 @@ -362,6 +362,7 @@ apply(auto) using Der_UNION Der_star Star_def by fastforce + lemma ders_correctness: shows "L (ders s r) = Ders s (L r)" apply(induct s arbitrary: r) diff -r 160d0b08471c -r 247fc5dd4943 thys/Positions.thy --- a/thys/Positions.thy Sat Jul 01 13:08:48 2017 +0100 +++ b/thys/Positions.thy Tue Jul 04 15:59:31 2017 +0100 @@ -162,26 +162,57 @@ section {* Ordering of values according to Okui & Suzuki *} -definition val_ord:: "val \ nat list \ val \ bool" ("_ \val _ _") +definition PosOrd:: "val \ nat list \ val \ bool" ("_ \val _ _" [60, 60, 59] 60) +where + "v1 \val p v2 \ p \ Pos v1 \ + pflat_len v1 p > pflat_len v2 p \ + (\q \ Pos v1 \ Pos v2. q \lex p \ pflat_len v1 q = pflat_len v2 q)" + +definition ValFlat_ord:: "val \ nat list \ val \ bool" ("_ \fval _ _") where - "v1 \val p v2 \ (p \ Pos v1 \ - pflat_len v1 p > pflat_len v2 p \ - (\q \ Pos v1 \ Pos v2. q \lex p \ pflat_len v1 q = pflat_len v2 q))" + "v1 \fval p v2 \ p \ Pos v1 \ + (p \ Pos v2 \ flat (at v2 p) \spre flat (at v1 p)) \ + (\q \ Pos v1 \ Pos v2. q \lex p \ (pflat_len v1 q = pflat_len v2 q))" + +lemma + assumes "v1 \fval p v2" + shows "v1 \val p v2" +using assms +unfolding ValFlat_ord_def PosOrd_def +apply(clarify) +apply(simp add: pflat_len_def) +apply(auto)[1] +apply(smt intlen_bigger) +apply(simp add: sprefix_list_def prefix_list_def) +apply(auto)[1] +apply(drule sym) +apply(simp add: intlen_append) +apply (metis intlen.simps(1) intlen_length length_greater_0_conv list.size(3)) +apply(smt intlen_bigger) +done + +lemma + assumes "v1 \val p v2" "flat (at v2 p) \spre flat (at v1 p)" + shows "v1 \fval p v2" +using assms +unfolding ValFlat_ord_def PosOrd_def +apply(clarify) +done -definition val_ord_ex:: "val \ val \ bool" ("_ :\val _") +definition PosOrd_ex:: "val \ val \ bool" ("_ :\val _" [60, 59] 60) where "v1 :\val v2 \ (\p. v1 \val p v2)" -definition val_ord_ex1:: "val \ val \ bool" ("_ :\val _") +definition PosOrd_ex1:: "val \ val \ bool" ("_ :\val _" [60, 59] 60) where "v1 :\val v2 \ v1 :\val v2 \ v1 = v2" -lemma val_ord_shorterE: +lemma PosOrd_shorterE: assumes "v1 :\val v2" shows "length (flat v2) \ length (flat v1)" using assms -apply(auto simp add: val_ord_ex_def val_ord_def) +apply(auto simp add: PosOrd_ex_def PosOrd_def) apply(case_tac p) apply(simp add: pflat_len_simps) apply(simp add: intlen_length) @@ -192,56 +223,64 @@ by (metis intlen_length le_less less_irrefl linear) -lemma val_ord_shorterI: +lemma PosOrd_shorterI: assumes "length (flat v') < length (flat v)" shows "v :\val v'" using assms -unfolding val_ord_ex_def -by (metis Pos_empty intlen_length lex_simps(2) pflat_len_simps(9) val_ord_def) +unfolding PosOrd_ex_def +by (metis Pos_empty intlen_length lex_simps(2) pflat_len_simps(9) PosOrd_def) -lemma val_ord_spreI: +lemma PosOrd_spreI: assumes "(flat v') \spre (flat v)" shows "v :\val v'" using assms -apply(rule_tac val_ord_shorterI) +apply(rule_tac PosOrd_shorterI) by (metis append_eq_conv_conj le_less_linear prefix_list_def sprefix_list_def take_all) - +lemma PosOrd_Left_Right: + assumes "flat v1 = flat v2" + shows "Left v1 :\val Right v2" +unfolding PosOrd_ex_def +apply(rule_tac x="[0]" in exI) +using assms +apply(auto simp add: PosOrd_def pflat_len_simps Pos_empty) +apply(smt intlen_bigger) +done -lemma val_ord_LeftI: +lemma PosOrd_LeftI: assumes "v :\val v'" "flat v = flat v'" shows "(Left v) :\val (Left v')" using assms(1) -unfolding val_ord_ex_def +unfolding PosOrd_ex_def apply(auto) apply(rule_tac x="0#p" in exI) using assms(2) -apply(auto simp add: val_ord_def pflat_len_simps) +apply(auto simp add: PosOrd_def pflat_len_simps) done -lemma val_ord_RightI: +lemma PosOrd_RightI: assumes "v :\val v'" "flat v = flat v'" shows "(Right v) :\val (Right v')" using assms(1) -unfolding val_ord_ex_def +unfolding PosOrd_ex_def apply(auto) apply(rule_tac x="Suc 0#p" in exI) using assms(2) -apply(auto simp add: val_ord_def pflat_len_simps) +apply(auto simp add: PosOrd_def pflat_len_simps) done -lemma val_ord_LeftE: +lemma PosOrd_LeftE: assumes "(Left v1) :\val (Left v2)" shows "v1 :\val v2" using assms -apply(simp add: val_ord_ex_def) +apply(simp add: PosOrd_ex_def) apply(erule exE) apply(case_tac "p = []") -apply(simp add: val_ord_def) +apply(simp add: PosOrd_def) apply(auto simp add: pflat_len_simps) apply(rule_tac x="[]" in exI) apply(simp add: Pos_empty pflat_len_simps) -apply(auto simp add: pflat_len_simps val_ord_def) +apply(auto simp add: pflat_len_simps PosOrd_def) apply(rule_tac x="ps" in exI) apply(auto) apply(drule_tac x="0#q" in bspec) @@ -252,18 +291,18 @@ apply(simp add: pflat_len_simps) done -lemma val_ord_RightE: +lemma PosOrd_RightE: assumes "(Right v1) :\val (Right v2)" shows "v1 :\val v2" using assms -apply(simp add: val_ord_ex_def) +apply(simp add: PosOrd_ex_def) apply(erule exE) apply(case_tac "p = []") -apply(simp add: val_ord_def) +apply(simp add: PosOrd_def) apply(auto simp add: pflat_len_simps) apply(rule_tac x="[]" in exI) apply(simp add: Pos_empty pflat_len_simps) -apply(auto simp add: pflat_len_simps val_ord_def) +apply(auto simp add: pflat_len_simps PosOrd_def) apply(rule_tac x="ps" in exI) apply(auto) apply(drule_tac x="Suc 0#q" in bspec) @@ -275,16 +314,16 @@ done -lemma val_ord_SeqI1: +lemma PosOrd_SeqI1: assumes "v1 :\val v1'" "flat (Seq v1 v2) = flat (Seq v1' v2')" shows "(Seq v1 v2) :\val (Seq v1' v2')" using assms(1) -apply(subst (asm) val_ord_ex_def) -apply(subst (asm) val_ord_def) +apply(subst (asm) PosOrd_ex_def) +apply(subst (asm) PosOrd_def) apply(clarify) -apply(subst val_ord_ex_def) +apply(subst PosOrd_ex_def) apply(rule_tac x="0#p" in exI) -apply(subst val_ord_def) +apply(subst PosOrd_def) apply(rule conjI) apply(simp) apply(rule conjI) @@ -299,16 +338,16 @@ apply(auto simp add: pflat_len_simps)[2] done -lemma val_ord_SeqI2: +lemma PosOrd_SeqI2: assumes "v2 :\val v2'" "flat v2 = flat v2'" shows "(Seq v v2) :\val (Seq v v2')" using assms(1) -apply(subst (asm) val_ord_ex_def) -apply(subst (asm) val_ord_def) +apply(subst (asm) PosOrd_ex_def) +apply(subst (asm) PosOrd_def) apply(clarify) -apply(subst val_ord_ex_def) +apply(subst PosOrd_ex_def) apply(rule_tac x="Suc 0#p" in exI) -apply(subst val_ord_def) +apply(subst PosOrd_def) apply(rule conjI) apply(simp) apply(rule conjI) @@ -323,21 +362,21 @@ apply(auto simp add: pflat_len_simps) done -lemma val_ord_SeqE: +lemma PosOrd_SeqE: assumes "(Seq v1 v2) :\val (Seq v1' v2')" shows "v1 :\val v1' \ v2 :\val v2'" using assms -apply(simp add: val_ord_ex_def) +apply(simp add: PosOrd_ex_def) apply(erule exE) apply(case_tac p) -apply(simp add: val_ord_def) +apply(simp add: PosOrd_def) apply(auto simp add: pflat_len_simps intlen_append)[1] apply(rule_tac x="[]" in exI) apply(drule_tac x="[]" in spec) apply(simp add: Pos_empty pflat_len_simps) apply(case_tac a) apply(rule disjI1) -apply(simp add: val_ord_def) +apply(simp add: PosOrd_def) apply(auto simp add: pflat_len_simps intlen_append)[1] apply(rule_tac x="list" in exI) apply(simp) @@ -348,7 +387,7 @@ apply(simp add: pflat_len_simps) apply(case_tac nat) apply(rule disjI2) -apply(simp add: val_ord_def) +apply(simp add: PosOrd_def) apply(auto simp add: pflat_len_simps intlen_append) apply(rule_tac x="list" in exI) apply(simp add: Pos_empty) @@ -357,18 +396,18 @@ apply(drule_tac x="Suc 0#q" in bspec) apply(simp) apply(simp add: pflat_len_simps) -apply(simp add: val_ord_def) +apply(simp add: PosOrd_def) done -lemma val_ord_StarsI: +lemma PosOrd_StarsI: assumes "v1 :\val v2" "flat (Stars (v1#vs1)) = flat (Stars (v2#vs2))" shows "(Stars (v1#vs1)) :\val (Stars (v2#vs2))" using assms(1) -apply(subst (asm) val_ord_ex_def) -apply(subst (asm) val_ord_def) +apply(subst (asm) PosOrd_ex_def) +apply(subst (asm) PosOrd_def) apply(clarify) -apply(subst val_ord_ex_def) -apply(subst val_ord_def) +apply(subst PosOrd_ex_def) +apply(subst PosOrd_def) apply(rule_tac x="0#p" in exI) apply(simp add: pflat_len_Stars_simps pflat_len_simps) using assms(2) @@ -376,15 +415,15 @@ apply(auto simp add: pflat_len_Stars_simps pflat_len_simps) done -lemma val_ord_StarsI2: +lemma PosOrd_StarsI2: assumes "(Stars vs1) :\val (Stars vs2)" "flat (Stars vs1) = flat (Stars vs2)" shows "(Stars (v#vs1)) :\val (Stars (v#vs2))" using assms(1) -apply(subst (asm) val_ord_ex_def) -apply(subst (asm) val_ord_def) +apply(subst (asm) PosOrd_ex_def) +apply(subst (asm) PosOrd_def) apply(clarify) -apply(subst val_ord_ex_def) -apply(subst val_ord_def) +apply(subst PosOrd_ex_def) +apply(subst PosOrd_def) apply(case_tac p) apply(simp add: pflat_len_simps) apply(rule_tac x="[]" in exI) @@ -396,74 +435,74 @@ apply(auto simp add: pflat_len_Stars_simps pflat_len_simps) done -lemma val_ord_Stars_appendI: +lemma PosOrd_Stars_appendI: assumes "Stars vs1 :\val Stars vs2" "flat (Stars vs1) = flat (Stars vs2)" shows "Stars (vs @ vs1) :\val Stars (vs @ vs2)" using assms apply(induct vs) apply(simp) -apply(simp add: val_ord_StarsI2) +apply(simp add: PosOrd_StarsI2) done -lemma val_ord_StarsE2: +lemma PosOrd_StarsE2: assumes "Stars (v # vs1) :\val Stars (v # vs2)" shows "Stars vs1 :\val Stars vs2" using assms -apply(subst (asm) val_ord_ex_def) +apply(subst (asm) PosOrd_ex_def) apply(erule exE) apply(case_tac p) apply(simp) -apply(simp add: val_ord_def pflat_len_simps intlen_append) -apply(subst val_ord_ex_def) +apply(simp add: PosOrd_def pflat_len_simps intlen_append) +apply(subst PosOrd_ex_def) apply(rule_tac x="[]" in exI) -apply(simp add: val_ord_def pflat_len_simps Pos_empty) +apply(simp add: PosOrd_def pflat_len_simps Pos_empty) apply(simp) apply(case_tac a) apply(clarify) -apply(auto simp add: pflat_len_simps val_ord_def pflat_len_def)[1] +apply(auto simp add: pflat_len_simps PosOrd_def pflat_len_def)[1] apply(clarify) -apply(simp add: val_ord_ex_def) +apply(simp add: PosOrd_ex_def) apply(rule_tac x="nat#list" in exI) -apply(auto simp add: val_ord_def pflat_len_simps intlen_append)[1] +apply(auto simp add: PosOrd_def pflat_len_simps intlen_append)[1] apply(case_tac q) -apply(simp add: val_ord_def pflat_len_simps intlen_append) +apply(simp add: PosOrd_def pflat_len_simps intlen_append) apply(clarify) apply(drule_tac x="Suc a # lista" in bspec) apply(simp) -apply(auto simp add: val_ord_def pflat_len_simps intlen_append)[1] +apply(auto simp add: PosOrd_def pflat_len_simps intlen_append)[1] apply(case_tac q) -apply(simp add: val_ord_def pflat_len_simps intlen_append) +apply(simp add: PosOrd_def pflat_len_simps intlen_append) apply(clarify) apply(drule_tac x="Suc a # lista" in bspec) apply(simp) -apply(auto simp add: val_ord_def pflat_len_simps intlen_append)[1] +apply(auto simp add: PosOrd_def pflat_len_simps intlen_append)[1] done -lemma val_ord_Stars_appendE: +lemma PosOrd_Stars_appendE: assumes "Stars (vs @ vs1) :\val Stars (vs @ vs2)" shows "Stars vs1 :\val Stars vs2" using assms apply(induct vs) apply(simp) -apply(simp add: val_ord_StarsE2) +apply(simp add: PosOrd_StarsE2) done -lemma val_ord_Stars_append_eq: +lemma PosOrd_Stars_append_eq: assumes "flat (Stars vs1) = flat (Stars vs2)" shows "Stars (vs @ vs1) :\val Stars (vs @ vs2) \ Stars vs1 :\val Stars vs2" using assms apply(rule_tac iffI) -apply(erule val_ord_Stars_appendE) -apply(rule val_ord_Stars_appendI) +apply(erule PosOrd_Stars_appendE) +apply(rule PosOrd_Stars_appendI) apply(auto) done -lemma val_ord_trans: +lemma PosOrd_trans: assumes "v1 :\val v2" "v2 :\val v3" shows "v1 :\val v3" using assms -unfolding val_ord_ex_def +unfolding PosOrd_ex_def apply(clarify) apply(subgoal_tac "p = pa \ p \lex pa \ pa \lex p") prefer 2 @@ -471,35 +510,35 @@ apply(erule disjE) apply(simp) apply(rule_tac x="pa" in exI) -apply(subst val_ord_def) +apply(subst PosOrd_def) apply(rule conjI) -apply(simp add: val_ord_def) +apply(simp add: PosOrd_def) apply(auto)[1] -apply(simp add: val_ord_def) -apply(simp add: val_ord_def) +apply(simp add: PosOrd_def) +apply(simp add: PosOrd_def) apply(auto)[1] using outside_lemma apply blast -apply(simp add: val_ord_def) +apply(simp add: PosOrd_def) apply(auto)[1] using outside_lemma apply force apply auto[1] -apply(simp add: val_ord_def) +apply(simp add: PosOrd_def) apply(auto)[1] apply (metis (no_types, hide_lams) lex_trans outside_lemma) -apply(simp add: val_ord_def) +apply(simp add: PosOrd_def) apply(auto)[1] by (smt intlen_bigger lex_trans outside_lemma pflat_len_def) -lemma val_ord_irrefl: +lemma PosOrd_irrefl: assumes "v :\val v" shows "False" using assms -by(auto simp add: val_ord_ex_def val_ord_def) +by(auto simp add: PosOrd_ex_def PosOrd_def) -lemma val_ord_almost_trichotomous: +lemma PosOrd_almost_trichotomous: shows "v1 :\val v2 \ v2 :\val v1 \ (intlen (flat v1) = intlen (flat v2))" -apply(auto simp add: val_ord_ex_def) -apply(auto simp add: val_ord_def) +apply(auto simp add: PosOrd_ex_def) +apply(auto simp add: PosOrd_def) apply(rule_tac x="[]" in exI) apply(auto simp add: Pos_empty pflat_len_simps) apply(drule_tac x="[]" in spec) @@ -510,8 +549,8 @@ assumes "v1 :\val v2" "v2 :\val v1" shows "False" using assms -apply(auto simp add: val_ord_ex_def val_ord_def) -using assms(1) assms(2) val_ord_irrefl val_ord_trans by blast +apply(auto simp add: PosOrd_ex_def PosOrd_def) +using assms(1) assms(2) PosOrd_irrefl PosOrd_trans by blast lemma WW2: assumes "\(v1 :\val v2)" @@ -519,17 +558,17 @@ using assms oops -lemma val_ord_SeqE2: +lemma PosOrd_SeqE2: assumes "(Seq v1 v2) :\val (Seq v1' v2')" shows "v1 :\val v1' \ (v1 = v1' \ v2 :\val v2')" using assms -apply(frule_tac val_ord_SeqE) +apply(frule_tac PosOrd_SeqE) apply(erule disjE) apply(simp) apply(auto) apply(case_tac "v1 :\val v1'") apply(simp) -apply(auto simp add: val_ord_ex_def) +apply(auto simp add: PosOrd_ex_def) apply(case_tac "v1 = v1'") apply(simp) oops @@ -605,7 +644,7 @@ apply(simp) done -lemma val_ord_trichotomous_stronger: +lemma PosOrd_trichotomous_stronger: assumes "\ v1 : r" "\ v2 : r" shows "v1 :\val v2 \ v2 :\val v1 \ (v1 = v2)" oops @@ -827,224 +866,199 @@ apply(rule CPrf.intros) done -lemma Posix_val_ord: +section {* The Posix Value is smaller than any other Value *} + +lemma Posix_PosOrd: assumes "s \ r \ v1" "v2 \ CPTpre r s" shows "v1 :\val v2" using assms -apply(induct arbitrary: v2 rule: Posix.induct) -apply(simp add: CPTpre_def) -apply(clarify) -apply(erule CPrf.cases) -apply(simp_all) -apply(simp add: val_ord_ex1_def) -apply(simp add: CPTpre_def) -apply(clarify) -apply(erule CPrf.cases) -apply(simp_all) -apply(simp add: val_ord_ex1_def) -(* ALT1 *) -prefer 3 -(* SEQ case *) -apply(subst (asm) (3) CPTpre_def) -apply(clarify) -apply(erule CPrf.cases) -apply(simp_all) -apply(case_tac "s' = []") -apply(simp) -prefer 2 -apply(simp add: val_ord_ex1_def) -apply(clarify) -apply(simp) -apply(simp add: val_ord_ex_def) -apply(simp (no_asm) add: val_ord_def) -apply(rule_tac x="[]" in exI) -apply(simp add: pflat_len_simps) -apply(simp only: intlen_length) -apply (metis Posix1(2) append_assoc append_eq_conv_conj drop_eq_Nil not_le) -apply(subgoal_tac "length (flat v1a) \ length s1") -prefer 2 -apply (metis L_flat_Prf1 Prf_CPrf append_eq_append_conv_if append_take_drop_id drop_eq_Nil) -apply(subst (asm) append_eq_append_conv_if) -apply(simp) -apply(clarify) -apply(drule_tac x="v1a" in meta_spec) -apply(drule meta_mp) -apply(auto simp add: CPTpre_def)[1] -using append_eq_conv_conj apply blast -apply(subst (asm) (2)val_ord_ex1_def) -apply(erule disjE) -apply(subst val_ord_ex1_def) -apply(rule disjI1) -apply(rule val_ord_SeqI1) -apply(simp) -apply(simp) -apply (metis Posix1(2) append_assoc append_take_drop_id) -apply(simp) -apply(drule_tac x="v2b" in meta_spec) -apply(drule meta_mp) -apply(auto simp add: CPTpre_def)[1] -apply (simp add: Posix1(2)) -apply(subst (asm) val_ord_ex1_def) -apply(erule disjE) -apply(subst val_ord_ex1_def) -apply(rule disjI1) -apply(rule val_ord_SeqI2) -apply(simp) -apply (simp add: Posix1(2)) -apply(subst val_ord_ex1_def) -apply(simp) -(* ALT *) -apply(subst (asm) (2) CPTpre_def) -apply(clarify) -apply(erule CPrf.cases) -apply(simp_all) -apply(clarify) -apply(case_tac "s' = []") -apply(simp) -apply(drule_tac x="v1" in meta_spec) -apply(drule meta_mp) -apply(auto simp add: CPTpre_def)[1] -apply(subst (asm) val_ord_ex1_def) -apply(erule disjE) -apply(subst (asm) val_ord_ex_def) -apply(erule exE) -apply(subst val_ord_ex1_def) -apply(rule disjI1) -apply(rule val_ord_LeftI) -apply(subst val_ord_ex_def) -apply(auto)[1] -using Posix1(2) apply blast -using val_ord_ex1_def apply blast -apply(subst val_ord_ex1_def) -apply(rule disjI1) -apply (simp add: Posix1(2) val_ord_shorterI) -apply(subst val_ord_ex1_def) -apply(rule disjI1) -apply(case_tac "s' = []") -apply(simp) -apply(subst val_ord_ex_def) -apply(rule_tac x="[0]" in exI) -apply(subst val_ord_def) -apply(rule conjI) -apply(simp add: Pos_empty) -apply(rule conjI) -apply(simp add: pflat_len_simps) -apply (smt intlen_bigger) -apply(simp) -apply(rule conjI) -apply(simp add: pflat_len_simps) -using Posix1(2) apply auto[1] -apply(rule ballI) -apply(rule impI) -apply(case_tac "q = []") -using Posix1(2) apply auto[1] -apply(auto)[1] -apply(rule val_ord_shorterI) -apply(simp) -apply (simp add: Posix1(2)) -(* ALT RIGHT *) -apply(subst (asm) (2) CPTpre_def) -apply(clarify) -apply(erule CPrf.cases) -apply(simp_all) -apply(clarify) -apply(case_tac "s' = []") -apply(simp) -apply (simp add: L_flat_Prf1 Prf_CPrf) -apply(subst val_ord_ex1_def) -apply(rule disjI1) -apply(rule val_ord_shorterI) -apply(simp) -apply (simp add: Posix1(2)) -apply(case_tac "s' = []") -apply(simp) -apply(drule_tac x="v2a" in meta_spec) -apply(drule meta_mp) -apply(auto simp add: CPTpre_def)[1] -apply(subst (asm) val_ord_ex1_def) -apply(erule disjE) -apply(subst val_ord_ex1_def) -apply(rule disjI1) -apply(rule val_ord_RightI) -apply(simp) -using Posix1(2) apply blast -apply (simp add: val_ord_ex1_def) -apply(subst val_ord_ex1_def) -apply(rule disjI1) -apply(rule val_ord_shorterI) -apply(simp) -apply (simp add: Posix1(2)) -(* STAR empty case *) -prefer 2 -apply(subst (asm) CPTpre_def) -apply(clarify) -apply(erule CPrf.cases) -apply(simp_all) -apply(clarify) -apply (simp add: val_ord_ex1_def) -(* STAR non-empty case *) -apply(subst (asm) (3) CPTpre_def) -apply(clarify) -apply(erule CPrf.cases) -apply(simp_all) -apply(clarify) -apply (simp add: val_ord_ex1_def) -apply(rule val_ord_shorterI) -apply(simp) -apply(case_tac "s' = []") -apply(simp) -prefer 2 -apply (simp add: val_ord_ex1_def) -apply(rule disjI1) -apply(rule val_ord_shorterI) -apply(simp) -apply (metis Posix1(2) append_assoc append_eq_conv_conj drop_all flat.simps(7) flat_Stars length_append not_less) -apply(drule_tac x="va" in meta_spec) -apply(drule meta_mp) -apply(auto simp add: CPTpre_def)[1] -apply (smt L.simps(6) L_flat_Prf1 Prf_CPrf append_eq_append_conv2 flat_Stars self_append_conv) -apply (subst (asm) (2) val_ord_ex1_def) -apply(erule disjE) -prefer 2 -apply(simp) -apply(drule_tac x="Stars vsa" in meta_spec) -apply(drule meta_mp) -apply(auto simp add: CPTpre_def)[1] -apply (simp add: Posix1(2)) -apply (subst (asm) val_ord_ex1_def) -apply(erule disjE) -apply (subst val_ord_ex1_def) -apply(rule disjI1) -apply(rule val_ord_StarsI2) -apply(simp) -using Posix1(2) apply force -apply(simp add: val_ord_ex1_def) -apply (subst val_ord_ex1_def) -apply(rule disjI1) -apply(rule val_ord_StarsI) -apply(simp) -apply(simp add: Posix1) -using Posix1(2) by force +proof (induct arbitrary: v2 rule: Posix.induct) + case (Posix_ONE v) + have "v \ CPTpre ONE []" by fact + then show "Void :\val v" + by (auto simp add: CPTpre_def PosOrd_ex1_def elim: CPrf.cases) +next + case (Posix_CHAR c v) + have "v \ CPTpre (CHAR c) [c]" by fact + then show "Char c :\val v" + by (auto simp add: CPTpre_def PosOrd_ex1_def elim: CPrf.cases) +next + case (Posix_ALT1 s r1 v r2 v2) + have as1: "s \ r1 \ v" by fact + have IH: "\v2. v2 \ CPTpre r1 s \ v :\val v2" by fact + have "v2 \ CPTpre (ALT r1 r2) s" by fact + then have "\ v2 : ALT r1 r2" "flat v2 \pre s" + by(auto simp add: CPTpre_def prefix_list_def) + then consider + (Left) v3 where "v2 = Left v3" "\ v3 : r1" "flat v3 \pre s" + | (Right) v3 where "v2 = Right v3" "\ v3 : r2" "flat v3 \pre s" + by (auto elim: CPrf.cases) + then show "Left v :\val v2" + proof(cases) + case (Left v3) + have "v3 \ CPTpre r1 s" using Left(2,3) + by (auto simp add: CPTpre_def prefix_list_def) + with IH have "v :\val v3" by simp + moreover + have "flat v3 \spre flat v \ flat v3 = flat v" using as1 Left(3) + by (simp add: Posix1(2) sprefix_list_def) + ultimately have "Left v :\val Left v3" + by (auto simp add: PosOrd_ex1_def PosOrd_LeftI PosOrd_spreI) + then show "Left v :\val v2" unfolding Left . + next + case (Right v3) + have "flat v3 \spre flat v \ flat v3 = flat v" using as1 Right(3) + by (simp add: Posix1(2) sprefix_list_def) + then have "Left v :\val Right v3" using Right(3) as1 + by (auto simp add: PosOrd_ex1_def PosOrd_Left_Right PosOrd_spreI) + then show "Left v :\val v2" unfolding Right . + qed +next + case (Posix_ALT2 s r2 v r1 v2) + have as1: "s \ r2 \ v" by fact + have as2: "s \ L r1" by fact + have IH: "\v2. v2 \ CPTpre r2 s \ v :\val v2" by fact + have "v2 \ CPTpre (ALT r1 r2) s" by fact + then have "\ v2 : ALT r1 r2" "flat v2 \pre s" + by(auto simp add: CPTpre_def prefix_list_def) + then consider + (Left) v3 where "v2 = Left v3" "\ v3 : r1" "flat v3 \pre s" + | (Right) v3 where "v2 = Right v3" "\ v3 : r2" "flat v3 \pre s" + by (auto elim: CPrf.cases) + then show "Right v :\val v2" + proof (cases) + case (Right v3) + have "v3 \ CPTpre r2 s" using Right(2,3) + by (auto simp add: CPTpre_def prefix_list_def) + with IH have "v :\val v3" by simp + moreover + have "flat v3 \spre flat v \ flat v3 = flat v" using as1 Right(3) + by (simp add: Posix1(2) sprefix_list_def) + ultimately have "Right v :\val Right v3" + by (auto simp add: PosOrd_ex1_def PosOrd_RightI PosOrd_spreI) + then show "Right v :\val v2" unfolding Right . + next + case (Left v3) + have w: "v3 \ CPTpre r1 s" using Left(2,3) as2 + by (auto simp add: CPTpre_def prefix_list_def) + have "flat v3 \spre flat v \ flat v3 = flat v" using as1 Left(3) + by (simp add: Posix1(2) sprefix_list_def) + then have "flat v3 \spre flat v \ \ v3 : r1" using w + by(auto simp add: CPTpre_def) + then have "flat v3 \spre flat v" using as1 as2 Left + by (auto simp add: prefix_list_def sprefix_list_def Posix1(2) L_flat_Prf1 Prf_CPrf) + then have "Right v :\val Left v3" + by (simp add: PosOrd_ex1_def PosOrd_spreI) + then show "Right v :\val v2" unfolding Left . + qed +next + case (Posix_SEQ s1 r1 v1 s2 r2 v2 v3) + have as1: "s1 \ r1 \ v1" "s2 \ r2 \ v2" by fact+ + have IH1: "\v3. v3 \ CPTpre r1 s1 \ v1 :\val v3" by fact + have IH2: "\v3. v3 \ CPTpre r2 s2 \ v2 :\val v3" by fact + have cond: "\ (\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = s2 \ s1 @ s\<^sub>3 \ L r1 \ s\<^sub>4 \ L r2)" by fact + have "v3 \ CPTpre (SEQ r1 r2) (s1 @ s2)" by fact + then obtain v3a v3b where eqs: + "v3 = Seq v3a v3b" "\ v3a : r1" "\ v3b : r2" + "flat v3a @ flat v3b \pre s1 @ s2" + by (force simp add: prefix_list_def CPTpre_def elim: CPrf.cases) + then have "flat v3a @ flat v3b \spre s1 @ s2 \ flat v3a @ flat v3b = s1 @ s2" + by (simp add: sprefix_list_def) + moreover + { assume "flat v3a @ flat v3b \spre s1 @ s2" + then have "Seq v1 v2 :\val Seq v3a v3b" using as1 + by (auto simp add: PosOrd_ex1_def PosOrd_spreI Posix1(2)) + } + moreover + { assume q1: "flat v3a @ flat v3b = s1 @ s2" + then have "flat v3a \pre s1" using eqs(2,3) cond + unfolding prefix_list_def + by (smt L_flat_Prf1 Prf_CPrf append_eq_append_conv2 append_self_conv) + then have "flat v3a \spre s1 \ (flat v3a = s1 \ flat v3b = s2)" using q1 + by (simp add: sprefix_list_def append_eq_conv_conj) + then have q2: "v1 :\val v3a \ (flat v3a = s1 \ flat v3b = s2)" + using PosOrd_spreI Posix1(2) as1(1) q1 by blast + then have "v1 :\val v3a \ (v3a \ CPTpre r1 s1 \ v3b \ CPTpre r2 s2)" using eqs(2,3) + by (auto simp add: CPTpre_def) + then have "v1 :\val v3a \ (v1 :\val v3a \ v2 :\val v3b)" using IH1 IH2 by blast + then have "Seq v1 v2 :\val Seq v3a v3b" using q1 q2 as1 + unfolding PosOrd_ex1_def + by (metis PosOrd_SeqI1 PosOrd_SeqI2 Posix1(2) flat.simps(5)) + } + ultimately show "Seq v1 v2 :\val v3" unfolding eqs by blast +next + case (Posix_STAR1 s1 r v s2 vs v3) + have as1: "s1 \ r \ v" "s2 \ STAR r \ Stars vs" by fact+ + have IH1: "\v3. v3 \ CPTpre r s1 \ v :\val v3" by fact + have IH2: "\v3. v3 \ CPTpre (STAR r) s2 \ Stars vs :\val v3" by fact + have cond: "\ (\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = s2 \ s1 @ s\<^sub>3 \ L r \ s\<^sub>4 \ L (STAR r))" by fact + have cond2: "flat v \ []" by fact + have "v3 \ CPTpre (STAR r) (s1 @ s2)" by fact + then consider + (NonEmpty) v3a vs3 where + "v3 = Stars (v3a # vs3)" "\ v3a : r" "\ Stars vs3 : STAR r" + "flat v3a @ flat (Stars vs3) \pre s1 @ s2" + | (Empty) "v3 = Stars []" + by (force simp add: CPTpre_def prefix_list_def elim: CPrf.cases) + then show "Stars (v # vs) :\val v3" + proof (cases) + case (NonEmpty v3a vs3) + then have "flat (Stars (v3a # vs3)) \spre s1 @ s2 \ flat (Stars (v3a # vs3)) = s1 @ s2" + by (simp add: sprefix_list_def) + moreover + { assume "flat (Stars (v3a # vs3)) \spre s1 @ s2" + then have "Stars (v # vs) :\val Stars (v3a # vs3)" using as1 + by (metis PosOrd_ex1_def PosOrd_spreI Posix1(2) flat.simps(7)) + } + moreover + { assume q1: "flat (Stars (v3a # vs3)) = s1 @ s2" + then have "flat v3a \pre s1" using NonEmpty(2,3) cond + unfolding prefix_list_def + by (smt L_flat_Prf1 Prf_CPrf append_Nil2 append_eq_append_conv2 flat.simps(7)) + then have "flat v3a \spre s1 \ (flat v3a = s1 \ flat (Stars vs3) = s2)" using q1 + by (simp add: sprefix_list_def append_eq_conv_conj) + then have q2: "v :\val v3a \ (flat v3a = s1 \ flat (Stars vs3) = s2)" + using PosOrd_spreI Posix1(2) as1(1) q1 by blast + then have "v :\val v3a \ (v3a \ CPTpre r s1 \ Stars vs3 \ CPTpre (STAR r) s2)" + using NonEmpty(2,3) by (auto simp add: CPTpre_def) + then have "v :\val v3a \ (v :\val v3a \ Stars vs :\val Stars vs3)" using IH1 IH2 by blast + then have "Stars (v # vs) :\val Stars (v3a # vs3)" using q1 q2 as1 + unfolding PosOrd_ex1_def + by (metis PosOrd_StarsI PosOrd_StarsI2 Posix1(2) flat.simps(7) val.inject(5)) + } + ultimately show "Stars (v # vs) :\val v3" unfolding NonEmpty by blast + next + case Empty + have "v3 = Stars []" by fact + then show "Stars (v # vs) :\val v3" + unfolding PosOrd_ex1_def using cond2 + by (simp add: PosOrd_shorterI) + qed +next + case (Posix_STAR2 r v2) + have "v2 \ CPTpre (STAR r) []" by fact + then have "v2 = Stars []" using CPTpre_subsets by auto + then show "Stars [] :\val v2" + by (simp add: PosOrd_ex1_def) +qed -lemma Posix_val_ord_stronger: +lemma Posix_PosOrd_stronger: assumes "s \ r \ v1" "v2 \ CPT r s" shows "v1 :\val v2" -using assms -apply(rule_tac Posix_val_ord) -apply(assumption) -using CPT_CPTpre_subset by auto +using assms Posix_PosOrd +using CPT_CPTpre_subset by blast -lemma Posix_val_ord_reverse: +lemma Posix_PosOrd_reverse: assumes "s \ r \ v1" shows "\(\v2 \ CPT r s. v2 :\val v1)" using assms -by (metis Posix_val_ord_stronger less_irrefl val_ord_def - val_ord_ex1_def val_ord_ex_def val_ord_trans) +by (metis Posix_PosOrd_stronger less_irrefl PosOrd_def + PosOrd_ex1_def PosOrd_ex_def PosOrd_trans) -lemma val_ord_Posix_Stars: +lemma PosOrd_Posix_Stars: assumes "(Stars vs) \ CPT (STAR r) (flat (Stars vs))" "\v \ set vs. flat v \ r \ v" and "\(\vs2 \ PT (STAR r) (flat (Stars vs)). vs2 :\val (Stars vs))" shows "(flat (Stars vs)) \ (STAR r) \ Stars vs" @@ -1066,15 +1080,15 @@ apply(auto simp add: CPT_def PT_def)[1] apply(erule Prf.cases) apply(simp_all) -apply (metis CPrf_stars Cons_eq_map_conv Posix_CPT Posix_STAR2 Posix_val_ord_reverse list.exhaust list.set_intros(2) map_idI val.distinct(25)) +apply (metis CPrf_stars Cons_eq_map_conv Posix_CPT Posix_STAR2 Posix_PosOrd_reverse list.exhaust list.set_intros(2) map_idI val.distinct(25)) apply(clarify) apply(drule_tac x="Stars (a#v#vsa)" in spec) apply(simp) apply(drule mp) apply (meson CPrf_stars Prf.intros(7) Prf_CPrf list.set_intros(1)) -apply(subst (asm) (2) val_ord_ex_def) +apply(subst (asm) (2) PosOrd_ex_def) apply(simp) -apply (metis flat.simps(7) flat_Stars val_ord_StarsI2 val_ord_ex_def) +apply (metis flat.simps(7) flat_Stars PosOrd_StarsI2 PosOrd_ex_def) apply(auto simp add: CPT_def PT_def)[1] using CPrf_stars apply auto[1] apply(auto)[1] @@ -1088,7 +1102,7 @@ apply(simp) apply(drule mp) using Prf.intros(7) apply blast -apply(subst (asm) (2) val_ord_ex_def) +apply(subst (asm) (2) PosOrd_ex_def) apply(simp) prefer 2 apply(simp) @@ -1107,20 +1121,20 @@ apply(rotate_tac 3) apply(erule Prf.cases) apply(simp_all) -apply (metis CPrf_stars intlen.cases less_irrefl list.set_intros(1) val_ord_def val_ord_ex_def) +apply (metis CPrf_stars intlen.cases less_irrefl list.set_intros(1) PosOrd_def PosOrd_ex_def) apply(drule_tac x="Stars (v#va#vsb)" in spec) apply(drule mp) apply (simp add: Posix1a Prf.intros(7)) apply(simp) -apply(subst (asm) (2) val_ord_ex_def) +apply(subst (asm) (2) PosOrd_ex_def) apply(simp) -apply (metis flat.simps(7) flat_Stars val_ord_StarsI2 val_ord_ex_def) +apply (metis flat.simps(7) flat_Stars PosOrd_StarsI2 PosOrd_ex_def) proof - fix a :: val and vsa :: "val list" and s\<^sub>3 :: "char list" and vA :: val and vB :: "val list" assume a1: "s\<^sub>3 \ []" assume a2: "s\<^sub>3 @ concat (map flat vB) = concat (map flat vsa)" assume a3: "flat vA = flat a @ s\<^sub>3" - assume a4: "\p. \ Stars (vA # vB) \val p Stars (a # vsa)" + assume a4: "\p. \ (Stars (vA # vB) \val p (Stars (a # vsa)))" have f5: "\n cs. drop n (cs::char list) = [] \ n < length cs" by (meson drop_eq_Nil not_less) have f6: "\ length (flat vA) \ length (flat a)" @@ -1128,189 +1142,201 @@ have "flat (Stars (a # vsa)) = flat (Stars (vA # vB))" using a3 a2 by simp then show False - using f6 f5 a4 by (metis (full_types) drop_eq_Nil val_ord_StarsI val_ord_ex_def val_ord_shorterI) + using f6 f5 a4 by (metis (full_types) drop_eq_Nil PosOrd_StarsI PosOrd_ex_def PosOrd_shorterI) qed +section {* The Smallest Value is indeed the Posix Value *} -lemma val_ord_Posix: - assumes "v1 \ CPT r s" "\(\v2 \ PT r s. v2 :\val v1)" +lemma PosOrd_Posix: + assumes "v1 \ CPT r s" "\v2 \ PT r s. \ v2 :\val v1" shows "s \ r \ v1" using assms -apply(induct r arbitrary: s v1) -apply(auto simp add: CPT_def PT_def)[1] -apply(erule CPrf.cases) -apply(simp_all) -(* ONE *) -apply(auto simp add: CPT_def)[1] -apply(erule CPrf.cases) -apply(simp_all) -apply(rule Posix.intros) -(* CHAR *) -apply(auto simp add: CPT_def)[1] -apply(erule CPrf.cases) -apply(simp_all) -apply(rule Posix.intros) -prefer 2 -(* ALT *) -apply(auto simp add: CPT_def PT_def)[1] -apply(erule CPrf.cases) -apply(simp_all) -apply(rule Posix.intros) -apply(drule_tac x="flat v1a" in meta_spec) -apply(drule_tac x="v1a" in meta_spec) -apply(drule meta_mp) -apply(simp) -apply(drule meta_mp) -apply(auto)[1] -apply(drule_tac x="Left v2" in spec) -apply(simp) -apply(drule mp) -apply(rule Prf.intros) -apply(simp) -apply (meson val_ord_LeftI) -apply(assumption) -(* ALT Right *) -apply(auto simp add: CPT_def)[1] -apply(rule Posix.intros) -apply(rotate_tac 1) -apply(drule_tac x="flat v2" in meta_spec) -apply(drule_tac x="v2" in meta_spec) -apply(drule meta_mp) -apply(simp) -apply(drule meta_mp) -apply(auto)[1] -apply(drule_tac x="Right v2a" in spec) -apply(simp) -apply(drule mp) -apply(rule Prf.intros) -apply(simp) -apply(drule val_ord_RightI) -apply(assumption) -apply(auto simp add: val_ord_ex_def)[1] -apply(assumption) -apply(auto)[1] -apply(subgoal_tac "\v2'. flat v2' = flat v2 \ \ v2' : r1a") -apply(clarify) -apply(drule_tac x="Left v2'" in spec) -apply(simp) -apply(drule mp) -apply(rule Prf.intros) -apply(assumption) -apply(simp add: val_ord_ex_def) -apply(subst (asm) (3) val_ord_def) -apply(simp) -apply(simp add: pflat_len_simps) -apply(drule_tac x="[0]" in spec) -apply(simp add: pflat_len_simps Pos_empty) -apply(drule mp) -apply (smt intlen_bigger) -apply(erule disjE) -apply blast -apply auto[1] -apply (meson L_flat_Prf2) -(* SEQ *) -apply(auto simp add: CPT_def)[1] -apply(erule CPrf.cases) -apply(simp_all) -apply(rule Posix.intros) -apply(drule_tac x="flat v1a" in meta_spec) -apply(drule_tac x="v1a" in meta_spec) -apply(drule meta_mp) -apply(simp) -apply(drule meta_mp) -apply(auto)[1] -apply(auto simp add: PT_def)[1] -apply(drule_tac x="Seq v2a v2" in spec) -apply(simp) -apply(drule mp) -apply (simp add: Prf.intros(1) Prf_CPrf) -using val_ord_SeqI1 apply fastforce -apply(assumption) -apply(rotate_tac 1) -apply(drule_tac x="flat v2" in meta_spec) -apply(drule_tac x="v2" in meta_spec) -apply(simp) -apply(auto)[1] -apply(drule meta_mp) -apply(auto)[1] -apply(auto simp add: PT_def)[1] -apply(drule_tac x="Seq v1a v2a" in spec) -apply(simp) -apply(drule mp) -apply (simp add: Prf.intros(1) Prf_CPrf) -apply (meson val_ord_SeqI2) -apply(assumption) -(* SEQ side condition *) -apply(auto simp add: PT_def) -apply(subgoal_tac "\vA. flat vA = flat v1a @ s\<^sub>3 \ \ vA : r1a") -prefer 2 -apply (meson L_flat_Prf2) -apply(subgoal_tac "\vB. flat vB = s\<^sub>4 \ \ vB : r2a") -prefer 2 -apply (meson L_flat_Prf2) -apply(clarify) -apply(drule_tac x="Seq vA vB" in spec) -apply(simp) -apply(drule mp) -apply (simp add: Prf.intros(1)) -apply(subst (asm) (3) val_ord_ex_def) -apply (metis append_Nil2 append_assoc append_eq_conv_conj flat.simps(5) length_append not_add_less1 not_less_iff_gr_or_eq val_ord_SeqI1 val_ord_ex_def val_ord_shorterI) -(* STAR *) -apply(auto simp add: CPT_def)[1] -apply(erule CPrf.cases) -apply(simp_all)[6] -using Posix_STAR2 apply blast -apply(clarify) -apply(rule val_ord_Posix_Stars) -apply(auto simp add: CPT_def)[1] -apply (simp add: CPrf.intros(7)) -apply(auto)[1] -apply(drule_tac x="flat v" in meta_spec) -apply(drule_tac x="v" in meta_spec) -apply(simp) -apply(drule meta_mp) -apply(auto)[1] -apply(drule_tac x="Stars (v2#vs)" in spec) -apply(simp) -apply(drule mp) -using Prf.intros(7) Prf_CPrf apply blast -apply(simp add: val_ord_StarsI) -apply(assumption) -apply(drule_tac x="flat va" in meta_spec) -apply(drule_tac x="va" in meta_spec) -apply(simp) -apply(drule meta_mp) -using CPrf_stars apply blast -apply(drule meta_mp) -apply(auto)[1] -apply(subgoal_tac "\pre post. vs = pre @ [va] @ post") -prefer 2 -apply (metis append_Cons append_Nil in_set_conv_decomp_first) -apply(clarify) -apply(drule_tac x="Stars (v#(pre @ [v2] @ post))" in spec) -apply(simp) -apply(drule mp) -apply(rule Prf.intros) -apply (simp add: Prf_CPrf) -apply(rule Prf_Stars_append) -apply(drule CPrf_Stars_appendE) -apply(auto simp add: Prf_CPrf)[1] -apply (metis CPrf_Stars_appendE CPrf_stars Prf_CPrf Prf_Stars list.set_intros(2) set_ConsD) -apply(subgoal_tac "\ Stars ([v] @ pre @ v2 # post) :\val Stars ([v] @ pre @ va # post)") -apply(subst (asm) val_ord_Stars_append_eq) -apply(simp) -apply(subst (asm) val_ord_Stars_append_eq) -apply(simp) -prefer 2 -apply(simp) -prefer 2 -apply(simp) -apply (simp add: val_ord_StarsI) -apply(auto simp add: PT_def) -done +proof(induct r arbitrary: s v1) + case (ZERO s v1) + have "v1 \ CPT ZERO s" by fact + then show "s \ ZERO \ v1" unfolding CPT_def + by (auto elim: CPrf.cases) +next + case (ONE s v1) + have "v1 \ CPT ONE s" by fact + then show "s \ ONE \ v1" unfolding CPT_def + by(auto elim!: CPrf.cases intro: Posix.intros) +next + case (CHAR c s v1) + have "v1 \ CPT (CHAR c) s" by fact + then show "s \ CHAR c \ v1" unfolding CPT_def + by (auto elim!: CPrf.cases intro: Posix.intros) +next + case (ALT r1 r2 s v1) + have IH1: "\s v1. \v1 \ CPT r1 s; \v2 \ PT r1 s. \ v2 :\val v1\ \ s \ r1 \ v1" by fact + have IH2: "\s v1. \v1 \ CPT r2 s; \v2 \ PT r2 s. \ v2 :\val v1\ \ s \ r2 \ v1" by fact + have as1: "\v2\PT (ALT r1 r2) s. \ v2 :\val v1" by fact + have as2: "v1 \ CPT (ALT r1 r2) s" by fact + then consider + (Left) v1' where + "v1 = Left v1'" "s = flat v1'" + "v1' \ CPT r1 s" + | (Right) v1' where + "v1 = Right v1'" "s = flat v1'" + "v1' \ CPT r2 s" + unfolding CPT_def by (auto elim: CPrf.cases) + then show "s \ ALT r1 r2 \ v1" + proof (cases) + case (Left v1') + have "v1' \ CPT r1 s" using as2 + unfolding CPT_def Left by (auto elim: CPrf.cases) + moreover + have "\v2 \ PT r1 s. \ v2 :\val v1'" using as1 + unfolding PT_def Left using Prf.intros(2) PosOrd_LeftI by force + ultimately have "s \ r1 \ v1'" using IH1 by simp + then have "s \ ALT r1 r2 \ Left v1'" by (rule Posix.intros) + then show "s \ ALT r1 r2 \ v1" using Left by simp + next + case (Right v1') + have "v1' \ CPT r2 s" using as2 + unfolding CPT_def Right by (auto elim: CPrf.cases) + moreover + have "\v2 \ PT r2 s. \ v2 :\val v1'" using as1 + unfolding PT_def Right using Prf.intros(3) PosOrd_RightI by force + ultimately have "s \ r2 \ v1'" using IH2 by simp + moreover + { assume "s \ L r1" + then obtain v' where "v' \ PT r1 s" + unfolding PT_def using L_flat_Prf2 by blast + then have "Left v' \ PT (ALT r1 r2) s" + unfolding PT_def by (auto intro: Prf.intros) + with as1 have "\ (Left v' :\val Right v1') \ (flat v' = s)" + unfolding PT_def Right by (auto) + then have False using PosOrd_Left_Right Right by blast + } + then have "s \ L r1" by rule + ultimately have "s \ ALT r1 r2 \ Right v1'" by (rule Posix.intros) + then show "s \ ALT r1 r2 \ v1" using Right by simp + qed +next + case (SEQ r1 r2 s v1) + have IH1: "\s v1. \v1 \ CPT r1 s; \v2 \ PT r1 s. \ v2 :\val v1\ \ s \ r1 \ v1" by fact + have IH2: "\s v1. \v1 \ CPT r2 s; \v2 \ PT r2 s. \ v2 :\val v1\ \ s \ r2 \ v1" by fact + have as1: "\v2\PT (SEQ r1 r2) s. \ v2 :\val v1" by fact + have as2: "v1 \ CPT (SEQ r1 r2) s" by fact + then obtain + v1a v1b where eqs: + "v1 = Seq v1a v1b" "s = flat v1a @ flat v1b" + "v1a \ CPT r1 (flat v1a)" "v1b \ CPT r2 (flat v1b)" + unfolding CPT_def by(auto elim: CPrf.cases) + have "\v2 \ PT r1 (flat v1a). \ v2 :\val v1a" + proof + fix v2 + assume "v2 \ PT r1 (flat v1a)" + with eqs(2,4) have "Seq v2 v1b \ PT (SEQ r1 r2) s" + by (simp add: CPT_def PT_def Prf.intros(1) Prf_CPrf) + with as1 have "\ Seq v2 v1b :\val Seq v1a v1b \ flat (Seq v2 v1b) = flat (Seq v1a v1b)" + using eqs by (simp add: PT_def) + then show "\ v2 :\val v1a" + using PosOrd_SeqI1 by blast + qed + then have "flat v1a \ r1 \ v1a" using IH1 eqs by simp + moreover + have "\v2 \ PT r2 (flat v1b). \ v2 :\val v1b" + proof + fix v2 + assume "v2 \ PT r2 (flat v1b)" + with eqs(2,3,4) have "Seq v1a v2 \ PT (SEQ r1 r2) s" + by (simp add: CPT_def PT_def Prf.intros Prf_CPrf) + with as1 have "\ Seq v1a v2 :\val Seq v1a v1b \ flat v2 = flat v1b" + using eqs by (simp add: PT_def) + then show "\ v2 :\val v1b" + using PosOrd_SeqI2 by auto + qed + then have "flat v1b \ r2 \ v1b" using IH2 eqs by simp + moreover + have "\ (\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = flat v1b \ flat v1a @ s\<^sub>3 \ L r1 \ s\<^sub>4 \ L r2)" + proof + assume "\s3 s4. s3 \ [] \ s3 @ s4 = flat v1b \ flat v1a @ s3 \ L r1 \ s4 \ L r2" + then obtain s3 s4 where q1: "s3 \ [] \ s3 @ s4 = flat v1b \ flat v1a @ s3 \ L r1 \ s4 \ L r2" by blast + then obtain vA vB where q2: "flat vA = flat v1a @ s3" "\ vA : r1" "flat vB = s4" "\ vB : r2" + using L_flat_Prf2 by blast + then have "Seq vA vB \ PT (SEQ r1 r2) s" unfolding eqs using q1 + by (auto simp add: PT_def intro: Prf.intros) + with as1 have "\ Seq vA vB :\val Seq v1a v1b" unfolding eqs by auto + then have "\ vA :\val v1a \ length (flat vA) > length (flat v1a)" using q1 q2 PosOrd_SeqI1 by auto + then show "False" + using PosOrd_shorterI by blast + qed + ultimately + show "s \ SEQ r1 r2 \ v1" unfolding eqs + by (rule Posix.intros) +next + case (STAR r s v1) + have IH: "\s v1. \v1 \ CPT r s; \v2\PT r s. \ v2 :\val v1\ \ s \ r \ v1" by fact + have as1: "\v2\PT (STAR r) s. \ v2 :\val v1" by fact + have as2: "v1 \ CPT (STAR r) s" by fact + then obtain + vs where eqs: + "v1 = Stars vs" "s = flat (Stars vs)" + "\v \ set vs. v \ CPT r (flat v)" + unfolding CPT_def by (auto elim: CPrf.cases dest!: CPrf_stars) + have "Stars vs \ CPT (STAR r) (flat (Stars vs))" + using as2 unfolding eqs . + moreover + have "\v\set vs. flat v \ r \ v" + proof + fix v + assume a: "v \ set vs" + then obtain pre post where e: "vs = pre @ [v] @ post" + by (metis append_Cons append_Nil in_set_conv_decomp_first) + then have q: "\v2\PT (STAR r) s. \ v2 :\val Stars (pre @ [v] @ post)" + using as1 unfolding eqs by simp + have "\v2\PT r (flat v). \ v2 :\val v" unfolding eqs + proof (rule ballI, rule notI) + fix v2 + assume w: "v2 :\val v" + assume "v2 \ PT r (flat v)" + then have "Stars (pre @ [v2] @ post) \ PT (STAR r) s" + using as2 unfolding e eqs + apply(auto simp add: CPT_def PT_def intro!: Prf_Stars)[1] + using CPrf_Stars_appendE CPrf_stars Prf_CPrf apply blast + by (meson CPrf_Stars_appendE CPrf_stars Prf_CPrf list.set_intros(2)) + then have "\ Stars (pre @ [v2] @ post) :\val Stars (pre @ [v] @ post)" + using q by simp + with w show "False" + using PT_def \v2 \ PT r (flat v)\ append_Cons flat.simps(7) mem_Collect_eq + PosOrd_StarsI PosOrd_Stars_appendI by auto + qed + with IH + show "flat v \ r \ v" using a as2 unfolding eqs + using eqs(3) by blast + qed + moreover + have "\ (\vs2\PT (STAR r) (flat (Stars vs)). vs2 :\val Stars vs)" + proof + assume "\vs2 \ PT (STAR r) (flat (Stars vs)). vs2 :\val Stars vs" + then obtain vs2 where "\ Stars vs2 : STAR r" "flat (Stars vs2) = flat (Stars vs)" + "Stars vs2 :\val Stars vs" + unfolding PT_def + apply(auto elim: Prf.cases) + apply(erule Prf.cases) + apply(auto intro: Prf.intros) + apply(drule_tac x="[]" in meta_spec) + apply(simp) + apply(drule meta_mp) + apply(auto intro: Prf.intros) + apply(drule_tac x="(v#vsa)" in meta_spec) + apply(auto intro: Prf.intros) + done + then show "False" using as1 unfolding eqs + apply - + apply(drule_tac x="Stars vs2" in bspec) + apply(auto simp add: PT_def) + done + qed + ultimately have "flat (Stars vs) \ STAR r \ Stars vs" + by (rule PosOrd_Posix_Stars) + then show "s \ STAR r \ v1" unfolding eqs . +qed unused_thms