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Abstract—Lexers and parsers are often used as front ends
to connect input from the outside world with the internals of
a larger software system. These front ends are natural targets
for attackers who wish to compromise the larger system. A
formally verified tool that performs mechanized lexical analysis
would render attacks on these front ends less effective.

In this paper we present Verbatim, an executable lexer that
is implemented and verified with the Coq Proof Assistant.
We prove that Verbatim is correct with respect to a standard
lexer specification. We also analyze its theoretical complexity
and give results of an empirical performance evaluation. All
correctness proofs have been mechanized in Coq.
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I. INTRODUCTION

Lexers and parsers are often used as front ends to connect
input from the external world with an otherwise trusted
computing base. These front ends are natural targets for
attackers who wish to access the internals of such computing
bases. There is a plentiful pool of such attacks in the real
world, many of which have exploited avoidable implemen-
tation bugs [1]–[7]. A formally verified tool that performs
mechanized lexical analysis would render many of those
attacks far less effective.

In this paper we present Verbatim, an executable lexer
that provably conforms to a standard lexer specification.
Verbatim takes as input a list of lexical rules and a string, and
it uses a technique for regular expression matching based
on the concept of Brzozowski derivatives [8] to tokenize
the string. The resulting list of tokens satisfies a common
specification known as the “maximal munch” principle: each
token is the longest prefix of the remaining input string that
matches a lexical rule.

The Coq development that accompanies this paper is
publicly available online [9]. The development consists of
roughly 700 lines of specification and 1200 lines of proof.

This paper is organized as follows. In Section 2 we
provide background information on lexical analysis, the
maximal munch principle, and Brzozowski derivatives. We
present the Verbatim implementation in Section 3. In Section
4, we discuss how we constructed a provably terminating
lexer implementation in Coq. Section 5 presents our correct-
ness theorems and proof sketches. In Section 6, we discuss
our use of proof automation in the Coq development. We

analyze Verbatim’s runtime complexity and present results of
an empirical performance evaluation in Section 7. In Section
8, we give a brief overview of related work. Finally, in
Section 9 we discuss our plans for future development.

II. BACKGROUND AND SPECIFICATION

Lexical analysis (lexing) is the process of partitioning an
input string into a list of words and assigning a label to each
of these words. A label-word pair is usually called a token.
A lexer performs this process with the help of lexical rules
that specify how to partition the input. Given a set of lexical
rules, we must specify how the lexer is to apply these rules.
In particular, we must specify how the lexer partitions the
input and how the lexer labels a word that matches multiple
rules. In this section, we formalize regexes, regex matching,
the maximal munch principle, and Brzozowski derivatives.

A. Regular Expressions

Regexes inductively denote regular languages. These ex-
pressions are natural interfaces for lexing as they are both
human and machine readable. If a string z is in the language
represented by regex e, we say that z matches e and write
z ' e. We use the canonical, inductive definitions of regexes
(Figure 1) and regex matching (Figure 2) presented in
Software Foundations [10], a popular textbook on interactive
theorem proving in Coq.

We differentiate the empty string λ from the empty regex
ε, which denotes the language {λ}. Additionally, a is the
string consisting solely of symbol a, while [[a]] is the regex
that denotes {a}, the language containing only that string.

We represent a lexical rule as a label-regex pair. We say
that a string z matches a rule (l, e) iff z ' e and we write
z ' (l, e) to represent such a match.

B. Maximal Prefixes

If string z = p ++ s, we say that p is a prefix of z and
we write Prefix p z. Given a list of rules R and a string
z, we say that p is the maximal prefix of z with respect to
R iff p is the longest prefix of z that matches some rule
in R. Under those conditions, we write MaxPref

R
p z (we

formalize this definition in Figure 3).



Symbol a, b ∈ Σ

String z ::= λ | az
Regex e ::= ∅ | ε | [[a]] | e+ e | e · e | e∗

Rule r ::= (z, e)

Token t ::= (z, z)

Figure 1: Definition of strings, regular expressions, lexical rules, and tokens
over an alphabet Σ. For brevity, we write non-empty strings without a
terminal λ. For example, we write a instead of aλ.

(MEMPTY)
λ ' ε

(MCHAR)
a ' [[a]]

(MAPP)
z1 ' e1 z2 ' e2
z1 ++ z2 ' e1 · e2

(MUNIONL)
z ' e1

z ' e1 + e2

(MUNIONR)
z ' e2

z ' e1 + e2

(MSTAR0)
λ ' e∗

(MSTARAPP)
z1 ' e z2 ' e∗

z1 ++ z2 ' e∗

Figure 2: Formal specification of string-regex matching, where a string is
a list of symbols from alphabet Σ and z1 ++ z2 is the concatenation of
strings z1 and z2.

C. Maximal Munch Principle

Regardless of the exact process used to lex an input
string, that process ought to be unambiguous. One popular
specification for unambiguous lexing is the maximal munch
principle [11]. Given an input string z and a list of rules R,
the maximal munch principle says that the first word of z
is the maximal prefix of z with respect to R. If multiple
rules in R match the maximal prefix, we label this first
word according to the matching rule with the least index
in R (see FIRSTTOKEN in Figure 4). If we partition z as
z = p ++ s, where p is the first word of z, then we can
specify the remaining tokens inductively as the tokens of
s. If no maximal munch exists or the remaining suffix is
empty, we specify the remaining suffix as unprocessed. (see
TOKENSNIL and TOKENSCONS in Figure 4).

D. Brzozowski Derivatives

Verbatim’s regex matcher uses a matching algorithm
based on the concept of Brzozowski derivatives. Brzozowski
derivatives are a popular approach to regex matching in the
functional programming community [12], and we used them
as the basis for our lexer because they allow for incremental
matching on a sequence of characters.

Intuitively, the derivative of a language L with respect
to symbol a chops off the a from those strings in L that
begin with a and includes only the resulting suffixes. More

(PREFIX)
p++ s = z

Prefix p z

(MAXPREF)
Prefix p z r ∈ R p ' r

∀p′, Prefix p′ z ∧ len p < len p′ → ∀r′ ∈ R,¬(p′ ' r′)
MaxPref

R
p z

Figure 3: Definition of the maximal prefix of a string z with respect to a
list of lexical rules R.

(FIRSTTOKEN)
p 6= λ MaxPref

R
p z p ' (l, e) (l, e) ∈ R

∀r′, Index
R
r′ < Index

R
(l, e)→ ¬(p ' r′)

FirstToken
R

(l, p) z

(TOKENSNIL)
∀t,¬FirstToken

R
t z

Tokens
R

([ ], z) z

(TOKENSCONS)
z = p++ s

FirstToken
R

(l, p) z Tokens
R

(ts, u) s

Tokens
R

((l, p) :: ts, u) z

Figure 4: Formal specification of the maximal munch principle applied to
a string z and a list of lexical rules R. In TOKENSCONS, the unprocessed
suffix is u, while in TOKENSNIL all of z is unprocessed.

formally:

∂aL = {z | az ∈ L}

Brzozowski showed that this operation preserves regularity,
so the operation can be extended to strings recursively:

∂λL = L

∂azL = ∂z(∂aL)

So if we have a string z and a regular language L, we can
conclude by induction on the string that

z ∈ L⇐⇒ λ ∈ ∂zL

Because regular expressions inductively denote regular
languages, we can extend the concept of a derivative from a
regular language to a regular expression. Intuitively, if regex
e represents language L, then ∂ae = e′ represents ∂aL. The
following recursive algorithm computes the derivative of a



regular expression with respect to a character a:

∂a∅ := ∅
∂aε := ∅

∂a[[b]] := if a == b then ε else ∅
∂a(e1 + e2) := ∂ae1 + ∂ae2

∂a(e1 · e2) := (∂ae1 · e2)

+ (if nullable e1 then ∂ae2 else ∅)

∂a(e∗) := ∂ae · e∗

where nullable r1 evaluates to true if λ ' r1 and false

otherwise. We also compute nullable recursively:

nullable ∅ := false

nullable ε := true

nullable [[b]] := false

nullable (r1 + r2) := nullable r1 ∨ nullable r2
nullable (r1 · r2) := nullable r1 ∧ nullable r2

nullable r∗ := true

III. IMPLEMENTATION

The Verbatim implementation has three main components:
a regex matcher, a maximal prefix finder, and a top-level lex
function. Breaking the implementation into these compo-
nents allowed us to prove the correctness of the development
in a modular fashion.

The Verbatim matcher takes a regex and a string as
input, and recursively takes derivatives of the regex for each
character in the string. If the resulting regex is nullable,
the matcher returns true, and otherwise returns false.
We say that this matcher does incremental matching; while
consuming a string, it checks at each character whether or
not the current regex is nullable. If the current regex is
nullable, the prefix consumed thus far matches the original
regex.

We use this matcher to construct a function,
maxpref_one, that finds the maximal prefix for a
single lexical rule.

maxpref_one : String -> Rule

-> option (String * String)

In addition to returning the maximal prefix, the function also
returns the complementary suffix of this prefix.

Given a matcher and a string z, we could find the maximal
prefix by applying the matcher to each prefix of z. The time
complexity of this operation would be quadratic. Instead,
maxpref_one exploits incremental matching and makes just
one pass over the string. The last character in the string that
produces a nullable regex corresponds to the last character
of the maximal prefix. If no character in the string produces

a nullable regex, there is no maximal prefix and the finder
returns None. For instance,

maxpref_one bb (l1, [[a]]) = None

because no prefix of bb matches [[a]]. Specifically, ∂b[[a]] = ∅
and ∂b∅ = ∅. Neither ∅ nor [[a]] is nullable. Because none
of the encountered regexes are nullable, Verbatim recognizes
that there is no maximal prefix.

We create a maximal prefix finder for a list of regexes by
wrapping the singleton finder in a function called max_pref.

max_pref : String -> list Rule

-> Label * option (String * String)

This function takes a string and a list of rules and, if
possible, returns the longest prefix matching any rule, the
complementary suffix, and the label associated with the
earliest matching rule. Otherwise, the function returns None
if no maximal prefix can be found for any rule.

Next, we have our workhorse function

lex′ : String -> list Rule

-> (list Token) * String

which takes as input a string and the rules with which to
lex that string, and returns as output a list of tokens and
the unprocessed suffix of the input string. As seen in Figure
5, the lex′ function repeatedly calls max_pref; each call
produces a single token and a remaining suffix that serves
as input to a recursive lex′ call. The function terminates
when max_pref returns an empty prefix or None.

Finally, our top-level function, lex, calls lex′ with ap-
propriate initial values.

A challenging aspect of implementing Verbatim was
defining lex′ in a provably terminating way. In the next
section, we sketch the function’s termination proof and
discuss our Coq mechanization of this proof.

IV. TERMINATION

To avoid logical inconsistencies, all Coq functions must
terminate provably. When a function is primitively recursive
on one of its arguments, Coq is able to infer that the
function terminates. Here, “primitively recursive” means that
the function calls itself on a syntactic subterm of one of its
arguments.

Intuitively, the lex′ function must terminate because
it makes recursive calls on proper suffixes of the input
string. However, the function obtains a suffix via a call
to max_pref, and Coq’s termination checker is unable to
detect the fact that max_pref returns a proper suffix of its
input. It was straightforward to prove that max_pref returns
a proper suffix of its input, but it was challenging to leverage
that proof to obtain a provably terminating lex′ definition.

As depicted in Figure 6, we solved this problem with a
recursion technique in which lex′ takes as an additional



1 Fixpoint lex’ (in_str : String) (rules : list Rule)
2
3 : (list Token) ∗ String :=
4 match max_pref in_str rules
5
6 with
7 | (_, None) => ([], in_str)
8 | (_, Some ([], _)) => ([], in_str)
9 | (label, Some (prf_hd :: prf_tl, suffix)) =>

10
11 match lex’ rules suffix
12 with
13 | (tkns, rest) =>
14 ((( label, prf_hd :: prf_tl) :: tkns), rest)
15 end
16 end.

Figure 5: This definition of lex′ captures the function’s semantics, but it
does not compile, because Coq is unable to detect the fact that max_pref
(line 4) returns a suffix of its in_str argument that is structurally
smaller than in_str.

1 Fixpoint lex’ (in_str : String) (rules : list Rule)
2 (Ha : Acc lt (length in_str)) {struct Ha}
3 : (list Token) ∗ String :=
4 match max_pref in_str rules as mpref’
5 return max_pref in_str rules = mpref’ −> _
6 with
7 | (_, None) => fun _ => ([], in_str)
8 | (_, Some ([], _)) => fun _ => ([], in_str)
9 | (label, Some (prf_hd :: prf_tl, suffix)) =>

10 fun Heq =>
11 match (lex’ rules suffix
12 (acc_rec_call _ _ _ _ _ _ Ha Heq)) with
13 | (tkns, rest) =>
14 ((( label, prf_hd :: prf_tl) :: tkns), rest)
15 end
16 end eq_refl.

Figure 6: The actual definition of lex′ includes an additional parameter,
Ha (line 2), which is a proof that the length of the input string is accessible
in the standard “less than” relation on natural numbers. In the lex′

recursive call (line 11), the acc_rec_call function (line 12) constructs
a proof that the length of the suffix argument is accessible in the same
relation. This proof term is structurally smaller than Ha; therefore, lex′
is structurally recursive on its accessibility proof parameter.

parameter a proof that the string’s length is accessible in a
well-founded relation. A well-founded relation is one that
contains no infinite descending sequences. For example, the
standard < relation on natural numbers is well-founded
because a descending sequence from any natural number
must eventually end at zero. Informally, an element x is
accessible in a well-founded relation R if every element
y < x is also accessible. Note that the least element in
R is “trivially” accessible according to this definition; for
example, zero is accessible in < because no natural number
is less than zero.

The concept of accessibility enables us to define lex′

in a provably terminating way. Suppose that string z′ is a
proper suffix of z, and Acc<(z) is a proof that the length
of z is accessible in the < relation. In this case, one can
obtain a corresponding proof term for z′, Acc<(z′), that is
a syntactic subterm of Acc<(z). We take advantage of this
fact by adding an accessibility proof term as a parameter
to lex′; the function becomes structurally recursive on this
proof term.

V. CORRECTNESS

We prove the following properties of Verbatim and its
specification:

1) Soundness: If Verbatim produces a tokenization for
its input, then that tokenization is correct according to
our maximal munch specification.

2) Uniqueness: According to the specification, there is
only one way to tokenize a string with a given list of
rules.

3) Completeness: If a tokenization for a given input
string is correct according to the specification, then
Verbatim outputs exactly that tokenization.

A. Soundness

Our soundness theorem says that the output of the top-
level lex function partitions and labels the input correctly.

∀t u z R,
lex R z = (t, u)

∧ rules_are_unambiguous R

→ Tokens
R

(t, u) z

Here z is the string to be lexed, R is a list of lexical rules, t is
the list of tokens that lex produces, and u is the unprocessed
suffix of z.

The predicate rules_are_unambiguous holds when the
rules map each label to exactly one regex. We introduced
this constraint to make the proof more tractable. Without
the constraint, it becomes much more difficult to show that
the lexer correctly handles certain syntactically valid but
unintuitive lists of rules. For instance, consider the following
rules:

R = [(l1, [[a]]∗); (l2, [[b]]∗); (l1, [[b]])]

The input string b matches both the second and third rules.
This string ought to be labeled l2 because (l2, [[b]]∗) ap-
pears earlier and our disambiguation strategy prefers earlier
rules. But the presence of a later matching rule, (l1, [[b]]),
which has the same label as an earlier non-matching rule,
(l1, [[a]]∗), complicates the proof. We would have to show
that in cases like this one, Verbatim chooses the label of the
earliest matching rule—not the earliest label associated with
any matching rule. This kind of rule list is unlikely to appear
in practice, so we opted to disallow it. This requirement does
not limit the expressiveness of the lexer—if the user would



like multiple regexes to have the same label, they can simply
union the regexes.

The proof of this theorem goes by strong induction on the
length of the input string. The primary difficulty is showing
that the first token produced by lex′ really is the first token
of the input, as defined by FirstToken. Although it is
relatively easy to show that the word of the first token is
a maximal prefix, it is harder to show that lex′ gives the
word a correct label. This difficulty lies in the fact that we
must label the word according to the least-indexed (earliest)
matching rule. In Section 6, we discuss our proof of “sound
labeling” further.

B. Uniqueness

The Uniqueness lemma says that according to our speci-
fication, there is only one way to correctly lex a string with
a given list of rules. This result is important in and of itself
because unambiguity is a cornerstone of lexing, but it is also
important because, when paired with Soundness, it proves
the Completeness of our lexer. The lemma is as follows:

∀t u t′ u′ z R,
Tokens

R
(t, u) z

∧ Tokens
R

(t′, u′) z

→ (t, u) = (t′, u′)

Because Tokens
R

is defined inductively on the first token,
this lemma follows from the fact that the first token is
unique. Intuitively, we know that the first token is unique
because there is only one maximal prefix and because tokens
are labeled according to the earliest matching rule.

In the proof development, we suppose that the
FirstToken property holds for tokens (l, w) and (l′, w′).
We then show that w and w′ are of the same length and
are prefixes of the same string and hence w = w′. We then
establish that the rules associated with l and l′ are either
the same or that one is earlier than the other. In the first
case l = l′ and we’re done. In the latter case we derive a
contradiction: according to the FirstToken definition, the
higher-indexed rule cannot match the maximal prefix, but
both rules match w. Hence (l, w) = (l′, w′) and the first
token is unique.

C. Completeness

This theorem says that the output of lex is uniquely
correct.

∀t u z R,
Tokens

R
(t, u) z

∧ rules_are_unambiguous R

→ lex R z = (t, u)

This theorem follows directly from Soundness and
Uniqueness. Suppose

1) Tokens
R

(t, u) z
2) rules_are_unambiguous R
3) lex R z = (t′, u′), for some t′, u′

Through Soundness, we can conclude from (2) and (3) that

Tokens
R

(t′, u′) z

Then by Uniqueness and (1), we can conclude that

(t′, u′) = (t, u)

Then by substitution into (3) we have

lex R z = (t, u)

Hence Completeness follows from Soundness and Unique-
ness.

VI. PROOF AUTOMATION

In this section, we describe how we made judicious use
of Coq’s proof search facilities to prove a difficult lemma
that requires intensive case analysis.

Coq is a tool for proving theorems interactively. The
interactivity manifests as a window containing a set of
hypotheses and a goal, which represent the premises and
conclusion of a theorem, respectively. The user manipulates
the state of the goal and the hypotheses by applying “tactics”
until the goal is trivially true or until one of the hypotheses
is false. In either case, Coq has constructed a proof of the
theorem.

Proofs often involve many, potentially nested, subproofs.
For instance, if a hypothesis contains an if-then-else expres-
sion, we might use the destruct tactic to do case analysis on
the branches of that expression. Each branch produces a new
hypothesis in place of the prior one as well as a new subgoal.
We would then have to prove each of the new subgoals.

Coq provides support for semi-automated proof search;
users can write custom tactics that analyze the current
hypotheses and goal in order to determine how to manipulate
the proof state. We take advantage of this facility in our proof
of sound labeling (first mentioned in Section V-A).

The lemma is as follows: On a list of rules R and an
input string z, suppose that the function max_pref returns
a label l, prefix p, and suffix s. Additionally, suppose that p
is the maximal prefix of z with respect to some rule (l, e)
in R. We wish to show that for all (l′, e′) in R, if (l′, e′)
comes before (l, e), then p is not the maximal prefix of z
with respect to (l′, e′).

This lemma may have been the most challenging in the
entire development. The proof is as follows. Because (l′, e′)
appears before (l, e) in R, we know that R has the following
general form:

R = R1 ++ [(l′, e′)] ++R2 ++ [(l, e)] ++R3



where R1 consists of the elements before (l′, e′), R2

consists of the elements between (l′, e′) and (l, e), and
R3 consists of the elements after (l, e).

When max_pref is applied to the partition above, the
function must decide which of the five sublists contains the
rule that produces the maximal prefix. Applying max_pref

to the partition produces an expression that contains many
if-then-else clauses. Each condition of these clauses imposes
a constraint on the length of a possible maximal prefix. We
use a custom tactic to do case analysis on all of these if-
then-else clauses. Because there are many nested clauses, the
analysis produces 625 subgoals, each of which comes with
a different set of constraints on the length of the maximal
prefix.

Recall, though, that we assumed the maximal prefix is
p. We can therefore check p against the constraints that the
case analysis generates. In all cases, the constraints force one
of two conclusions: either (1) p is not the maximal prefix
of z with respect to (l′, e′), or (2) at least one constraint
is inconsistent with our assumption that p is the maximal
prefix. In case (1), we have proven the conclusion of our
original lemma. In case (2), there is a contradiction and thus
the implication is vacuously true.

Because of the large number of subproofs required for this
lemma, we rely heavily on automation to make the problem
tractable. We are able to solve all 625 subproofs using just
nine distinct tactics.

For example, many subgoals (465/625) have the following
form:

(l1, e1) = (l2, e2)
(l2, e2) = (l3, e3) ... (ln−1, en−1) = (ln, en)
max_pref z R = (l1, o) max_pref z R 6= (ln, o)

⊥
Since the conclusion is ⊥ (false), we must derive a

contradiction in the hypotheses. We solve this category of
subgoals in part with a custom tactic inj_all, which takes
hypotheses like (l1, e1) = (l2, e2) and produces the hypothe-
ses l1 = l2 and e1 = e2. If we apply this tactic repeatedly,
we arrive at the fact that l1 = ln. After substitution, the
proof state is

max_pref z R = (l1, o) max_pref z R 6= (l1, o)

⊥
At this point, we can finish the subgoal by deriving a
contradiction from the hypotheses.

Another sizable portion of subgoals (92/625) have this
form:

len p0 < len p1
(x, max_pref_one z r0) = (x′, Some(p0, s0))
(y, max_pref_one z r1) = (y′, Some(p1, s1))

max_pref_one z r0 = Some(p, s)
max_pref_one z r1 = Some(p, s)

⊥

After substituting and applying inj_all, we reach the
following state:

len p0 < len p1 p = p0 p = p1

⊥

From this state, we can derive the hypothesis len p < len p,
which is a contradiction.

The final category of subgoals (68/625) have the following
form:

(x, max_pref_one z r) = (x′, None)
max_pref_one z r = Some y

⊥

By substituting and applying inj_all, we produce the
contradictory hypothesis Some y = None .

None of these subgoals were particularly difficult concep-
tually. The problem was that there were hundreds of trivial
subgoals. Once we identified the categories of subgoals
described above, we were able to solve them using proof
automation.

VII. PERFORMANCE EVALUATION

For a specific list of lexical rules, Verbatim has quadratic
theoretical time complexity with respect to the length of the
input string. Even if the maximal prefix is short, Verbatim
must scan the entire input in order to rule out longer
possibilities.

For example, consider Verbatim’s behavior on the single-
ton list of rules R = [(A, [[a]])] and the input string aaa. To
find the first token, it will perform the following calculations:

1) ∂a[[a]] = ε, which is nullable. Therefore, a might be
the maximal prefix.

2) ∂aε = ∅, which is not nullable. Therefore, aa cannot
be the maximal prefix.

3) ∂a = ∅, which is not nullable. Therefore, aaa cannot
be the maximal prefix.

Therefore, a is the first maximal prefix and (A, a) is the first
token. Verbatim will then find the second token, repeating
steps 1 and 2. To find the third token, it will repeat step 1.
In this case there were 3 + 2 + 1, operations, but if the input
string were an, Verbatim would perform n+ (n− 1) + ...+
2 + 1 operations.

We know then that the runtime is O(tn) where t is the
number of tokens produced. In the worst case, each token is
a single character, so t = n. Therefore, the overall theoretical
complexity is O(n2).

To confirm this complexity empirically, we extracted the
Verbatim source code to OCaml, instantiated a JSON lexer,1

and evaluated its performance. The data set used in the
evaluation was a collection of gross domestic product (GDP)

1The lexer currently does not support escape sequences, such as those
for Unicode characters. Escape sequences do not appear in our evaluation
data set.



Figure 7: Verbatim execution time on JSON inputs. Each point represents
the average execution time over five trials; there was little variance across
trials for a given input.

statistics [13] formatted as a JSON list. This list contains
60 entries. We took 30 prefixes of this dataset, each prefix
containing two more GDP entries than the previous one.
We ran Verbatim on each of these prefixes five times and
recorded the lexer’s execution time for each trial.

We ran the evaluation on a laptop with 15.3 GB of
RAM, 8 1.8 GHz cores, and Ubuntu 18.04. We used the
4.11.0+flambda version of OCaml and compiled with the
-O3 flag.

The results of our empirical tests, depicted in Figure
7, confirm that Verbatim has O(n2) time complexity. A
quadratic regression returned a correlation coefficient of
0.99996. Because a coefficient close to 1 indicates a good fit,
a quadratic function accurately models the empirical results.

VIII. RELATED WORK

Most related work falls into two categories: automata
theory and lexical analysis. Much of the work on verified
lexical analysis and regex matching resides outside of the
Coq literature. Within automata theory, work that uses
Brzozowski derivatives to convert regexes to DFAs is of
particular interest, as adding this component is one of our
possible next steps.

In terms of automata theory, Almeida et al. [14] present
a derivative-based function for computing the support of a
regex: a set of regexes that can be used to produce a non-
deterministic finite automaton (NFA) for the original one.
The authors implement this function in Coq and prove its
correctness. They are not concerned with lexical analysis in
particular, and they have not produced an NFA that could
be used in a matcher or a lexer.

Coquand and Siles [15] discuss Brzozowski derivatives
in the context of proving regex equivalence. The authors
give a detailed exposition of the finiteness of Brzozowski’s
construction in Coq. They show that a regex has only a
finite number of derivatives up to a notion of similarity.
Because derivatives correspond to states in Brzozowski’s
DFA construction, their finiteness result could help prove
the termination of this construction.

As for lexical analysis, the RockSalt security policy
checker for native code [16] includes a verified regex-to-
DFA construction based on Brzozowski derivatives. The
authors use this construction to produce a recognizer rather
than a lexer. The x86 grammar they are interested in is un-
ambiguous, so they do not need to employ a disambiguation
strategy such as the maximal munch principle.

Hardin [17] describes a large project that includes a
regex-to-DFA construction based on Brzozowski derivatives,
implemented in HOL4. The algorithm is proved correct
and used as part of a lexer. The paper does not describe
the lexer in great detail, so it is difficult to compare the
work to Verbatim. However, the termination and correctness
arguments are likely to be quite different from ours, because
HOL4 and Coq are based on different underlying logics.

Lopes et al. [18] discuss a Brzozowski derivative-based
matcher. The authors implemented a function that takes as
input a regular expression e and a string s, and outputs a
proof that s matches e (in the case that they do match). Their
tool does not produce labeled tokens and does not employ
a disambiguation strategy.

Ausaf et al. [19] discuss a lexer that is based on Br-
zozowski derivatives and implemented with Isabelle/HOL.
This tool is similar in scope to Verbatim. Like Verbatim, the
tool matches regexes without using intermediate automata.
Whereas Verbatim uses a list of lexical rules as input to
the top-level lexer, this tool uses a disjunction of regular
expressions. Despite this difference in representation, both
tools use the maximal munch principle and prefer ”earlier”
rules for disambiguation. In the interest of error reporting,
Verbatim is capable of partial lexing. The tool discussed in
this paper returns None if it is unable to lex the string com-
pletely. Both tools produce labeled tokens. The authors of
this paper do not discuss the theoretical runtime complexity
of their tool, nor do they discuss any empirical results.

Nipkow [20] formalized the conversion of regular expres-
sions to deterministic finite automata (DFAs) and verified a
lexer in Isabelle/HOL, but he did not produce an executable
program suitable for lexing.

IX. FUTURE DIRECTIONS

Although we have an executable lexer that satisfies a
widely-used correctness specification, its underlying algo-
rithm is somewhat naive. Matching directly on regexes using
Brzozowski derivatives can be expensive. It would be more
efficient to match using a DFA. The cost of building the
DFA would be comparable to computing the Brzozowski
derivatives during runtime, but a DFA can be computed
before lexing. Throughout this work, we strove to keep
the lexer agnostic to the implementation of the matcher,
so swapping in a DFA-based matcher should be relatively
straightforward.

By swapping in a DFA-based matcher, we could also
achieve linear worst-case complexity through memoization



[21]. As it stands, we are scanning almost the entire input
for every token. In the worst case, there will be many cases
where we start at some state (or regex) q and consume the
same suffix s, never touching an accepting state (or nullable
regex) along the way. In this case, we know that the state-
suffix pair (q, s) will never produce a longer prefix. It is
possible to keep track of these non-productive pairs and short
circuit the prefix search when the lexer reaches one of them.
Reps shows that this memoization technique enables lexers
to achieve linear worst-case complexity.

Finally, we are interested in combining our lexer with
a verified parser, such as the LL(1) parser that Lasser et
al. [22] present. The resulting pipeline would vet program
inputs in a fully verified manner, helping to defend systems
against malicious input.
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