
108

Parsing with Zippers (Functional Pearl)

PIERCE DARRAGH, University of Utah, USA

MICHAEL D. ADAMS, University of Michigan, USA

Parsing with Derivatives (PwD) is an elegant approach to parsing context-free grammars (CFGs). It takes the

equational theory behind Brzozowski’s derivative for regular expressions and augments that theory with

laziness, memoization, and fixed points. The result is a simple parser for arbitrary CFGs. Although recent

work improved the performance of PwD, it remains inefficient due to the algorithm repeatedly traversing

some parts of the grammar.

In this functional pearl, we show how to avoid this inefficiency by suspending the state of the traversal in a

zipper. When subsequent derivatives are taken, we can resume the traversal from where we left off without

retraversing already traversed parts of the grammar.

However, the original zipper is designed for use with trees, and we want to parse CFGs. CFGs can include

shared regions, cycles, and choices between alternates, which makes them incompatible with the traditional

tree model for zippers. This paper develops a generalization of zippers to properly handle these additional

features. Just as PwD generalized Brzozowski’s derivatives from regular expressions to CFGs, we generalize

Huet’s zippers from trees to CFGs.

The resulting parsing algorithm is concise and efficient: it takes only 31 lines of OCaml code to implement

the derivative function but performs 6,500 times faster than the original PwD and 3.24 times faster than the

optimized implementation of PwD.

CCS Concepts: • Software and its engineering→Parsers; Syntax ; •Theory of computation→Grammars

and context-free languages.

Additional Key Words and Phrases: Parsing; Derivatives; Zippers; Parsing with Derivatives

ACM Reference Format:

Pierce Darragh and Michael D. Adams. 2020. Parsing with Zippers (Functional Pearl). Proc. ACM Program.

Lang. 4, ICFP, Article 108 (August 2020), 28 pages. https://doi.org/10.1145/3408990

1 INTRODUCTION

Parsing with Derivatives (PwD) [Might et al. 2011] generalizes from Brzozowski derivatives [Brzo-
zowski 1964] of regular expressions to derivatives of context-free grammars (CFGs). Strings of input
tokens can then be parsed by taking derivatives with respect to successive tokens. The result is an
elegant technique for parsing CFGs. However, early implementations of PwD were too slow for
practical use [Might et al. 2011]. Later work implemented a number of optimizations that improved
performance but sacrificed elegance and concision in the code [Adams et al. 2016].

Even with these improvements, there remains an inefficiency: successive derivatives each start
processing at the root of the grammar and often follow a path nearly identical to the immediately
previous derivative. Both Might et al. [2011] and Adams et al. [2016] take a derivative starting at the

Authors’ addresses: Pierce Darragh, University of Utah, School of Computing, 50 S Central Campus Drive, Room 3190, Salt

Lake City, Utah, 84112, USA; Michael D. Adams, University of Michigan, Computer Science and Engineering, Electrical

Engineering and Computer Science, College of Engineering, Bob and Betty Beyster Building, 2260 Hayward Street, Ann

Arbor, Michigan, 48109-2121, USA.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2020 Copyright held by the owner/author(s).

2475-1421/2020/8-ART108

https://doi.org/10.1145/3408990

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 108. Publication date: August 2020.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3408990
https://doi.org/10.1145/3408990


108:2 Pierce Darragh and Michael D. Adams

let derive (p : pos) (t : tok) ((e', m) : zipper) : zipper list =

let rec d↓ (c : cxt) (e : exp) : zipper list =

if p == e.m.start

then (e.m.parents <- c :: e.m.parents;

if p == e.m.end then d′
↑
e.m.result c else [])

else (let m = { start = p; parents = [c]; end = p⊥; result = e⊥ } in

e.m <- m;

d′
↓
m e.e')

and d′
↓
(m : mem) (e' : exp') : zipper list =

match e' with

| Tok (t') -> if t = t' then [(Seq (t, []), m)] else []

| Seq (s, []) -> d↑ (Seq (s, [])) m

| Seq (s, e :: es) -> let m' = { start = m.start; parents = [AltC m];

end = p⊥; result = e⊥ } in

d↓ (SeqC (m', s, [], es)) e

| Alt (es) -> List.concat (List.map (d↓ (AltC m)) !es)

and d↑ (e' : exp') (m : mem) : zipper list =

let e = { m = m⊥; e' = e' } in

m.end <- p;

m.result <- e;

List.concat (List.map (d′
↑
e) m.parents)

and d′
↑
(e : exp) (c : cxt) : zipper list =

match c with

| TopC -> []

| SeqC (m, s, es, []) -> d↑ (Seq (s, List.rev (e :: es))) m

| SeqC (m, s, esL, eR :: esR) -> d↓ (SeqC (m, s, e :: esL, esR)) eR
| AltC (m) -> if p == m.end

then match m.result.e' with

| Alt (es) -> es := e :: !es; []

else d↑ (Alt (ref [e])) m

in d↑ e' m

Fig. 1. Algorithm for derivatives using zippers. See Figure 2 for the corresponding types and constants.

root of the grammar, traverse down the grammar to find a token expression matching the current
token, consume that token expression, and finally traverse up the grammar back to the root. For
the next token, these algorithms again start at the root and traverse down the grammar to find a
token expression matching the next token. In practice, these repeated traversals are redundant due
to the next matching expression often being close to the previous one.

This paper uses zippers [Huet 1997] to avoid the redundant re-traversals in Might et al. [2011] and
Adams et al. [2016] and in so doing eliminates this extra performance cost. The resulting algorithm
is both more concise than PwD and outperforms PwD. Our algorithm is 6,500 times faster than
the original PwD [Might et al. 2011] and 3.24 times faster than an optimized PwD [Adams et al.
2016]. The implementations in Might et al. [2011] and Adams et al. [2016] are, respectively, 196
and 238 lines long once you include all the macros and helpers. However, our implementation of
the derivative is so short that we include it in its entirety as Figure 1 and Figure 2, which are 31
and 14 source lines of code respectively. Even when we include the driver loop and the conversion
from grammars to abstract syntax trees it is still just 83 lines of code (see Appendix B).

However, arriving at the version of the algorithm shown in Figure 1 is not immediately straightfor-
ward. In this paper, we develop Parsing with Zippers (PwZ) incrementally, providing the reasoning
behind each development so that the final algorithm can be understood with clarity.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 108. Publication date: August 2020.



Parsing with Zippers 108:3

type exp = { mutable m : mem; e' : exp' }

and exp' = Tok of tok

| Seq of sym * exp list

| Alt of (exp list) ref

and cxt = TopC

| SeqC of mem * sym * exp list * exp list

| AltC of mem

and mem = { start : pos;

mutable parents : cxt list;

mutable end : pos;

mutable result : exp }

type zipper = exp' * mem

let rec e⊥ = { m = m⊥; e' = Alt (ref []) }

and m⊥ = { start = p⊥; parents = []; end = p⊥; result = e⊥ }

Fig. 2. Types and constants for derivatives using zippers

1.1 Overview

Basics. First, we review the original PwD by starting with derivatives over simple grammars
consisting of only tokens and sequencing (Section 2). Though this grammar is almost trivial, its
simplicity aids in converting the code to use a zipper (Section 3). We then extend our grammar
with choices between alternates (Section 4).

Optimizations. The algorithm in Section 4 is correct for non-cyclic grammars but takes ex-
ponential time in the worst case. To fix the exponential behavior, we introduce memoization for
expressions (Section 5) and contexts (Section 6). We then show that this memoization also makes
the algorithm handle cycles automatically (Section 7). Finally, we show how to eliminate these
memoization tables (Section 8), which results in the code in Figure 1 and Figure 2.
Discussion. We discuss the results returned by our algorithm, some differences from tradi-

tional PwD, whether our algorithm truly generalizes the zipper, and our algorithm’s asymptotic
complexity (Section 9). We then benchmark our implementation (Section 10), discuss related
work (Section 11), and conclude (Section 12).

Appendices. Appendix A contains the artifact for this paper as an embedded file. It includes a
full implementation, several example grammars used as stress tests, and the benchmarks used in
Section 10. Appendix B contains an ASCII version of the code in this paper including driver code
and convenience functions.

1.2 Notation

We use the following notational conventions:

– When a diagram or piece of code is a modification of a previous diagram or piece of code, we
typeset the changes in bold and the unchanged parts in gray.

– Variables are named according to the naming conventions in Figure 3. Variables with the
same type are distinguished by subscripts.

– The types sym, tok, and pos are abstract, and our algorithm does not depend on their concrete
implementation. However, readers can think of them as string, string, and int, respectively.

– The constants s⊥, t⊥, and p⊥ represent dummy sym, tok, and pos values, respectively.
– Uppercase letters (e.g., A, B, or C) represent concrete tokens. This is in contrast to t, which is

used for program variables containing tokens.
– An s suffix in a variable name indicates a list (e.g., e is one exp, but es is a list of exp).

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 108. Publication date: August 2020.



108:4 Pierce Darragh and Michael D. Adams

s ∈ sym Symbols for labeling constructors (Section 2)

t ∈ tok Tokens, where tok ⊆ sym (Section 2)

e ∈ exp Expressions (Section 2)

c ∈ ctx Contexts (Section 3 and Section 4)

z ∈ zipper Zippers (Section 3 and Section 4)

p ∈ pos Input positions (Section 5 and Section 6)

m ∈ mem Memoization records (Section 5 and Section 6)

e' ∈ exp' Expressions without mem (Section 8)

Fig. 3. Types and variable names. Types are explained in the sections noted.

2 PARSING WITH DERIVATIVES

The basic idea behind Parsing with Derivatives (PwD) in both Brzozowski [1964] and Might et al.
[2011] is quite simple. For a given e that is either a regular expression (as in Brzozowski [1964])
or context-free grammar (as in Might et al. [2011]), we first consider the set of strings accepted
by e (i.e., its language, JeK). Given an input token t, we start parsing by computing �t (JeK) , the
Brzozowski derivative of JeKwith respect to t.This is defined as the set of strings that, when prefixed
with t, produce strings in JeK. Formally,�t (JeK) = {F | tF ∈ JeK}, whereF is any string of tokens.
For example, the derivative of JeK = {FOO, BAR, BAZ} with respect to B is �B (JeK) = {AR, AZ}.

The Brzozowski derivative allows us to consider what strings (e.g., AR and AZ) are allowed to
appear after the current input token (e.g., B). We can parse a string of tokens by successively taking
derivatives with respect to each token in that string. Then we check whether the final language
contains the empty string. If it does, then the string formed by the sequence of tokens is in the
original language, and the parse is considered successful.

We do not directly compute the sets of strings produced by these derivatives as they can be
infinitely large. Instead, Brzozowski [1964] and Might et al. [2011] show that we can compute these
derivatives in terms of grammar expressions (i.e., e) instead of languages (i.e., JeK).

As an example, consider the grammars expressible by the exp type in Figure 4.The Tok constructor
is the grammar that accepts a single token, and the Seq constructor is the grammar that accepts a
sequential concatenation of grammars. These Seq constructors are labeled by symbols of type sym
that we write in this paper as a subscript of Seq (e.g., s in Seqs).

The symbol (sym) in the Seq constructor serves two purposes. First, by labeling the parse tree it
allows clients of the parser to determine which part of a grammar was used for a particular parse.
Second, as explained below, the derivative of a Tok constructor with respect to a token that matches
it is a Seq constructor. In this case, we label the Seq constructor with the token that matched.
This allows clients of the parser to inspect the tokens that were parsed. For example, clients may
want to inspect the source locations of tokens. Thus, we require that tokens (tok) are a subtype of
symbols (sym) (i.e., tok ⊆ sym).

As an example of the exp type, consider the grammar in Figure 5a where we draw arrows from
each Seq constructor to those expressions in its list of children. The only input accepted by this
grammar is the string ABCD. We can take the derivative of this grammar with respect to a token, say
A, by traversing this grammar from left to right until we find a token constructor (Tok). If the Tok
constructor contains a token that matches the token by which we are taking the derivative (A in
this example), we replace the Tok constructor with a Seq constructor that has no children and
contains the current input token (A) in its sym argument.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 108. Publication date: August 2020.



Parsing with Zippers 108:5

type exp = Tok of tok

| Seq of sym * exp list

Fig. 4. Grammar expressions with only tokens and sequencing (i.e., concatenation)

Seqs1

Seqs3

TokDTokC

Seqs2

TokBTokA

(a) Initial grammar

Seqs1

Seqs3

TokDTokC

Seqs2

TokBSeqA

(b) Grammar after the derivative

with respect to token A

Seqs1

Seqs3

TokDTokC

Seqs2

SeqBSeqA

(c) Grammar after the derivative

with respect to token B

Fig. 5. Example grammar and its derivatives

In Figure 5b we have taken the derivative of the grammar from Figure 5a with respect to the
token A. Thus the Tok A expression is replaced by a SeqA constructor with no children. A childless
Seq constructor is a grammar that accepts only the empty string. Thus, the grammar in Figure 5b
accepts only the string BCD, which is what we expect from taking the derivative with respect to the
token A of a language accepting only the string ABCD.

Finally Figure 5c is the derivative of Figure 5b with respect to B. Similar to Figure 5b this involves
replacing TokB with SeqB and results in a grammar that accepts only the string CD.

On the other hand, if the Tok constructor does not contain the token by which we are taking the
derivative (e.g., if we take the derivative of the grammar in Figure 5a with respect to the token E),
then the input should be rejected. To represent this potential for failure, the algorithm’s return
type in Section 3 is an option type, and the algorithm returns None when the derivative fails. From
Section 4 onward, we instead return a list type and return an empty list when the derivative fails.

To parse an entire string of tokens, we take the derivative of the original expression with respect
to the first token in the string. If that succeeds, we get back a new expression. We then take the
derivative of that returned expression with respect to the second token. We repeat this process of
taking a derivative with respect to each successive input token until either a parse fails or all of the
input tokens are consumed. Finally, we accept the input string if and only if the empty string is in
the language of the grammar produced by the final derivative.

3 ZIPPERS

As described in Section 2, derivatives start at the root of a grammar and traverse down the grammar
to find a token expression (Tok). A new exp is created as the result of this derivative. The next
derivative starts at the root of this new exp and performs nearly the same traversal while searching
for the next token (Tok) expression.

Consider the grammar Figure 5. When parsing the token A, we traverse down the exp in Figure 5a
through Seqs1 and Seqs2 to find Tok A. Parsing the second token (e.g., B) traverses down the exp
in Figure 5b through Seqs1 , Seqs2 , and SeqA before finding Tok B. This duplicates the first parse’s
traversal of Seqs1 and Seqs2 .

We avoid this repeated traversal by using a zipper.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 108. Publication date: August 2020.



108:6 Pierce Darragh and Michael D. Adams

type exp = Tok of tok

| Seq of sym * exp list

type cxt = TopC

| SeqC of cxt * sym * exp list * exp list

type zipper = exp * cxt

Fig. 6. Types for the derivative using zippers. Changes relative to Figure 4 in bold.

A zipper [Huet 1997] pairs a tree (called the focus) with a context. A context contains three parts:
a list of left siblings of the focus, a list of right siblings of the focus, and a parent context. A zipper
represents the position of an edge connecting two nodes in a tree, where the focus is the child of
that edge and the context is the parent of that edge. Thus a zipper can efficiently save a position in
a traversal and later resume the traversal from that position.

In Figure 6, we implement our zipper as a pair of an expression (exp) and the context containing
the parts of the grammar around that expression (cxt). The cxt type represents a context by
pointing from child nodes up to parent nodes, starting from the parent of the current focus and
continuing up to the root. The SeqC constructor in cxt contains a parent context that points to the
rest of the context going further up the grammar. It also contains a symbol of type sym obtained
from the original Seq node represented by that SeqC, as well as two lists of exp representing the
left and right siblings of the focus. The TopC context corresponds to the root of the grammar and so
does not itself contain any parent context.

In our figures, we represent the zipper with a black dot (e.g., between TopC and Seqs1 in Figure 8a).
The arrows going up and down from the dot point to the cxt and exp of the zipper, respectively.

To parse the grammar in Figure 5a using our zipper, we first pair the grammar with the TopC
context, producing the zipper in Figure 8a. We then proceed down the leftmost child of Seqs1 ,
following the same traversal pattern that we used in Section 2. This produces the zipper in Figure 8b,
where the focus is Seqs2 and the context is SeqCs1 . The SeqCs1 context has TopC as the next higher
context, an empty list for the focus’s left siblings (because there are no sub-expressions of Seqs1
that are to the left of Seqs2 ), and a singleton list containing Seqs3 for the right siblings. Next, in
Figure 8c, we have moved the focus to the left child of Seqs2 (Tok A), and Seqs2 has become the
context SeqCs2 . SeqCs2 points to Tok B as a right sibling and up to SeqCs1 as its parent context.
Finally, supposing the input token is A, in Figure 8d the derivative replaces Tok A with SeqA. A
childless Seq is a grammar that accepts only the empty string and therefore is used to represent a
successful parse. We also indicate the input token that resulted in this parse by recording it as the
label in the Seq. At this point, we stop and return the zipper as it is: we have successfully parsed
the first token.

If we were to take a derivative with respect to the next token using the algorithm in Section 2, we
would have to re-traverse the entire grammar from the top to get to the next Tok. However, since
we returned a zipper, we can instead use its context to resume exactly where we left off, getting
to Tok B in just one step with the resulting zipper shown in Figure 8e. Thus, we have avoided
the repeated traversal from the root of the grammar as well as any logic needed to handle the
already-parsed SeqA.

The code to implement this zipper-based derivative is in Figure 7. Its execution starts with the
last line of code, d↑ e c, and continues with the two mutually recursive functions, d↓ and d↑,
that handle the parts of the traversal going down and up the grammar, respectively. Note that
throughout this paper we follow the convention that the first and second arguments are being
traversed out of and into, respectively. For example, d↓ is traversing out of (i.e., down from) its first

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 108. Publication date: August 2020.



Parsing with Zippers 108:7

let derive (t : tok) ((e, c) : zipper) : zipper option =

let rec d↓ (c : cxt) (e : exp) : zipper option =

match e with

| Tok (t') -> if t = t' then Some (Seq (t, []), c) else None

| Seq (s, []) -> d↑ (Seq (s, [])) c

| Seq (s, e :: es) -> d↓ (SeqC (c, s, [], es)) e

and d↑ (e : exp) (c : cxt) : zipper option =

match c with

| TopC -> None

| SeqC (c, s, es, []) -> d↑ (Seq (s, List.rev (e :: es))) c

| SeqC (c, s, esL, eR :: esR) -> d↓ (SeqC (c, s, e :: esL, esR)) eR

in d↑ e c

Fig. 7. Code for the derivative using zippers

TopC

Seqs1

Seqs3

TokDTokC

Seqs2

TokBTokA

•

(a) Initial zipper

TopC

SeqCs1

Seqs3

TokDTokC

Seqs2

TokBTokA

•

(b) The zipper after one step

TopC

SeqCs1

Seqs3

TokDTokC

SeqCs2

TokBTokA

•

(c) The zipper after two steps

TopC

SeqCs1

Seqs3

TokDTokC

SeqCs2

TokBSeqA

•

(d) The zipper after three steps and

taking a derivative by token A

TopC

SeqCs1

Seqs3

TokDTokC

SeqCs2

TokBSeqA

•

(e) The zipper after four steps

TopC

SeqCs1

Seqs3

TokDTokC

SeqCs2

SeqBSeqA

•

(f) The zipper after five steps and

taking a derivative by token B

Fig. 8. Using a zipper to compute derivatives

argument c and is traversing into (i.e., down to) its second argument e. On the other hand, d↑ is
traversing out of (i.e., up from) its first argument e and is traversing into (i.e., up to) its second
argument c.

As an example of how this code works, the transition from Figure 8a to Figure 8b is handled
by the second Seq clause in d↓, which simply moves the zipper to the first child of the Seq. The
transition from Figure 8b to Figure 8c is handled the same way. The transition from Figure 8c to
Figure 8d is handled by the Tok clause of d↓. Instead of continuing the traversal upwards by calling
d↑, we save our current position by returning the zipper corresponding to Figure 8d. (If the token
does not match, we instead return None to indicate a parse failure.) When processing the next
token, derive resumes this traversal by calling d↑ with the exp and cxt saved in the zipper so that
the traversal continues from where it left off. Then the second SeqC clause of d↑ would call d↓ on

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 108. Publication date: August 2020.



108:8 Pierce Darragh and Michael D. Adams

type exp = Tok of tok

| Seq of sym * exp list

| Alt of exp list

type cxt = TopC

| SeqC of cxt * sym * exp list * exp list

| AltC of cxt

type zipper = exp * cxt

Fig. 9. Types for the derivative using zippers with alternates. Changes relative to Figure 6 in bold.

the next right-hand sibling. This moves the zipper into Tok B, giving us Figure 8e. Lastly, Tok B is
replaced by SeqB and we get Figure 8f.

Since the derivative traverses from left to right, the left siblings of a SeqC do not affect whether
a subsequent parse will be successful or not. However, they are the remains of the successfully-
matched parts of the grammar and could be useful to clients of the parser. Once all the tokens of a
string are parsed and the zipper has gone up to TopC, the resulting focus is the final parse tree to
be returned.

Note the call to List.rev in Figure 7. OCaml uses the “cons” lists typical in functional languages,
where prepending to the left side of a list is much more efficient than appending to the right. This
means that when we finish traversing a child exp of a Seq and add it to the corresponding SeqC’s
list of left children (as in the second SeqC clause of d↑), it is faster to put that exp at the head of the
list of left children. Thus, when all children have been traversed (i.e., when the first SeqC clause of
d↑ runs), we need to reverse the list of children that we use in the new Seq so its children are in the
proper order.

The derive function returns a zipper when the parse succeeds (i.e., when execution reaches
the true branch of the if expression in the Tok clause of d↓). This zipper will then be passed to
derive when we attempt to parse the next token. Consequently, derive assumes that the zipper
passed in as argument represents an in-progress derivative that has just successfully parsed a token
and needs to traverse up the grammar, which is why the first action in derive is a call to d↑. This
poses a problem for us when parsing the very first token of a string as the parse needs to start by
traversing down the grammar. To resolve this, we construct the following zipper (where e is the
grammar to be parsed) that is used as the initial zipper when parsing starts:

(Seq (s⊥, []), SeqC(TopC, s⊥, [], [e])

Traversing up this zipper causes the second SeqC clause of d↑ to run, which starts a traversal down e.
As this is a special case for only the first token, we gloss over this detail in the rest of this paper.

4 ALTERNATES

Grammars made up of only token expressions (Tok) and sequencing (Seq) can accept only a single
string. To support grammars that accept multiple strings, we add the Alt and AltC constructors in
Figure 9 to the exp and cxt types, respectively. (As an invariant, we forbid cycles until Section 7.)

When d↓ comes to an Alt, one might expect that we would traverse into the leftmost child just
as we would for Seq, but this does not reflect the meaning of Alt. Unlike Seq, whose children
represent sequential parts of the input, the children of Alt represent alternate paths for the same

part of the input. Rather than traversing an Alt’s children sequentially, we should traverse them
simultaneously! This is a departure from the usual zippers but can be thought of as if each Alt

represents a non-deterministic choice. When we encounter an Alt, we can lift that non-determinism

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 108. Publication date: August 2020.



Parsing with Zippers 108:9

let derive (t : tok) ((e, c) : zipper) : zipper list =

let rec d↓ (c : cxt) (e : exp) : zipper list =

match e with

| Tok (t') -> if t = t' then [(Seq (t, []), c)] else []

| Seq (s, []) -> d↑ (Seq (s, [])) c

| Seq (s, e :: es) -> d↓ (SeqC (c, s, [], es)) e

| Alt (es) -> List.concat (List.map (d↓ (AltC c)) es)

and d↑ (e : exp) (c : cxt) : zipper list =

match c with

| TopC -> []

| SeqC (c, s, es, []) -> d↑ (Seq (s, List.rev (e :: es))) c

| SeqC (c, s, esL, eR :: esR) -> d↓ (SeqC (c, s, e :: esL, esR)) eR
| AltC (c) -> d↑ (Alt [e]) c

in d↑ e c

Fig. 10. Code for the derivative using zippers with alternates. Changes relative to Figure 7 in bold.

e5

e4

c3c2c1

• • •

(a) Initial zippers

e5

c4

c3

c4

c2

c4

c1

• • •

(b) Zippers after a move down

from Figure 11a that does not

memoize the shared exp

e5

c4

m4

c3c2c1

•

(c) Zippers after a move down

from Figure 11a that does

memoize the shared exp

Fig. 11. Memoizing shared expressions

into the traversal by creating a list of zippers (one for each child of the Alt) that then proceed
independently of each other.

This is implemented in Figure 10 where we change the types of derive, d↓, and d↑ to return
zipper list instead of zipper option. In d↓, we also change the Tok clause and add an Alt

clause. The clauses for Seq remain the same as before, and the Tok clause is changed only slightly
to return a list instead of an option. The interesting case is Alt, where we use List.concat and
List.map to derive each child and concatenate the lists of zippers that result.

The AltC context created by this code does not track the other zippers created from the same
Alt by d↓. Once these zippers split off from each other, they are completely independent, and each
behaves as if it were the only child in the Alt. In d↑, the AltC clause thus matches this behavior by
creating an Alt with only one child. This means that each child of an Alt parsed going down will
produce a separate single-child Alt when going back up.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 108. Publication date: August 2020.



108:10 Pierce Darragh and Michael D. Adams

type exp = Tok of tok

| Seq of sym * exp list

| Alt of exp list

type cxt = TopC

| SeqC of mem * sym * exp list * exp list

| AltC of mem

and mem = { mutable parents : cxt list; result : pos Z⇒ exp list }

type zipper = exp * mem

let mems : (pos * exp) Z⇒ mem = ∅

Fig. 12. Types and values for the derivative using zippers with

shared expressions. Changes relative to Figure 9 in bold.

Alt

Seqs2

e5

Seqs1

e4e3

Fig. 13. A grammar that requires populating the memoization table before parsing sub-grammars

For non-cyclic grammars, this algorithm is semantically correct. However, there remain opportu-
nities to significantly improve its computational complexity.

5 MEMOIZING SHARED EXPRESSIONS

The algorithm in Section 4 can take exponential time if some sub-grammar is shared between
different parts of the grammar. For example, suppose we have the situation in Figure 11a where
multiple zippers have the same focus. Since all of these zippers start parsing at the same place
in the grammar and are identical in the expression, their results will be identical. The algorithm
in Section 4 does not take advantage of this sharing and traverses into e4 multiple times. This is
shown in Figure 11b where multiple copies of the same context, c4, that differ only in what parent
they point to are created for each call that parses with e4. Each time this sort of sharing occurs, the
number of zippers in our list multiplies. Once we add support for cycles (see Section 7), this can
compound and lead to the number of zippers being exponential in the length of the input.

In order to prevent this exponential blowup, we memoize d↓ so that a parse at a particular
position (pos) with a particular expression (exp) is reused by other calls to parse at that position
with that expression. This is only temporary, and in Section 8 we show how to eliminate this
memoization table. We accomplish memoization with the types and values in Figure 12. The global
memoization table mems starts empty (∅) and has type (pos * exp) Z⇒ mem. This type is a mutable
map from pairs of input positions (pos) and expressions (exp) to memoization records (mem). The
result field of mem maps input positions (pos) to lists of expressions (exp). Memoization populates
these maps so that if a parse has already been constructed over a region of input from pBC0AC to p4=3
with an expression e, then mems.get(pBC0AC, e).result.get(p4=3) contains the exp returned by
that parse. Later calls to parse with that expression can use this memoization to avoid redundantly
re-parsing over the same part of the input.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 108. Publication date: August 2020.



Parsing with Zippers 108:11

let derive (p : pos) (t : tok) ((e, c) : zipper) : zipper list =

let rec d↓ (c : cxt) (e : exp) : zipper list =

match mems.get(p, e) with

| Some (m) -> m.parents <- c :: m.parents;

List.concat (List.map (fun e -> d′
↑
e c) m.result.get(p))

| None -> let m = { parents = [c]; result = ∅ } in

mems.put(p, e, m);

d′
↓
m e

and d′
↓
(m : mem) (e : exp) : zipper list =

match e with

| Tok (t') -> if t = t' then [(Seq (t, []), m)] else []

| Seq (s, []) -> d↑ (Seq (s, [])) m

| Seq (s, e :: es) -> d↓ (SeqC (m, s, [], es)) e

| Alt (es) -> List.concat (List.map (d↓ (AltC m)) es)

and d↑ (e : exp) (m : mem) : zipper list =

m.result.put(p, e :: m.result.get(p));

List.concat (List.map (d′
↑
e) m.parents)

and d′
↑
(e : exp) (c : cxt) : zipper list =

match c with

| TopC -> []

| SeqC (m, s, es, []) -> d↑ (Seq (s, List.rev (e :: es))) m

| SeqC (m, s, esL, eR :: esR) -> d↓ (SeqC (m, s, e :: esL, esR)) eR
| AltC (m) -> d↑ (Alt [e]) m

in d↑ e c

Fig. 14. Code for the derivative using zippers with shared expressions. Changes relative to Figure 10 in bold.

However, there is a complication. Memoization tables are usually populated only once a result is
returned, but consider what happens if we do this with the grammar in Figure 13. When parsing
with the Alt, the first child (Seqs1 ) starts a call to parse with the shared parse expression e3. Suppose
the token being parsed is found in e3. In that case, a zipper positioned inside e3 is returned and
waits for the next input token. The second child of the Alt (i.e., Seqs2 ) also starts a call to parse
with e3. However, the zipper from the first parse has not yet traversed out of e3, so there is no
memoization record, and the parser starts a redundant call to parse with e3. To prevent this, we
need to make this call stop and wait for the result from the first call.

If we add a memoization record to mems before any recursive calls, we can detect that a call has
already started by checking if there is a corresponding entry in mems. When a result is returned,
we restart any calls that were waiting for it. We implement this using the parents field of mem.
When a call stops and waits, its cxt is added to parents. When a result exp is returned, that exp is
passed to d↑ along with those contexts.

This memoization is implemented in Figure 14 where we add p, the position of the current token,
as a parameter to derive and (with slight modifications) rename d↓ and d↑ to d

′
↓
and d′

↑
, respectively.

The d′
↓
and d′

↑
functions continue to contain the core parsing logic but are now wrapped with new

implementations of d↓ and d↑ that implement memoization. The main difference in d′
↓
and d′

↑
is

that they save and restore m to and from each SeqC and AltC. This tracks what memoization record
to pass to any eventual calls to d↑.

In d↓, we first use mems.get(p, e) to check if there is a memoization record for the current
input position, p, and expression, e. If mems contains such a record, then the Some clause runs with

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 108. Publication date: August 2020.



108:12 Pierce Darragh and Michael D. Adams

c1

m1

Alt

e3e2

•

(a) Initial zipper

c1

m1

AltC

m3

e3

•

AltC

m2

e2

•

(b) Zippers after a move

down from Figure 15a

c1

m1

AltC

m3

e3

•

Alt

e′
2

(c) Zippers after

e2 in Figure 15b

finishes parsing

c1

m1

Alt

e′
3

e′
2

(d) Zippers after

e3 in Figure 15c

finishes parsing

Fig. 15. Memoizing shared contexts

the memoization record m. Since there is an entry in mems for p and e, we know that the parse we
are about to start has already been started. Therefore, instead of calling d′

↓
to do that parse, we add

the current context, c, to m.parents so that any future results are passed to c. Since some results
may already have been produced, we also pass those results to the context c by applying d′

↑
to all

the exp in m.result.get(p).
If there is no memoization record for p and e, the None clause executes. This means that this is

the first call to parse at input position p with expression e. To ensure that later calls stop and wait
for our results, we add a memoization record, m, to mems before proceeding to parse with a call
to d′

↓
. This memoization record, m, also contains c as one of its parent contexts waiting for a result.

When d↑ is called with a result e, we simply save e in m.result for any later parsing calls, and
we pass e to any waiting contexts in m.parents.

As an example, consider again Figure 11. When going down from c1 in Figure 11a, a new
memoization record, m4, is created. When c2 and c3 also go down into e4, they find this memoization
record. Instead of traversing into e4, which would lead to Figure 11b and the exponential behavior
wewish to avoid, they add themselves to the parents of m4.This results in the structure in Figure 11c.
Any results that eventually come from e4 are then shared between c1, c2, and c3, which prevents
the potentially exponential behavior.

6 MEMOIZING SHARED CONTEXTS

While the memoization table in Section 5 eliminates exponential behavior when going down the
grammar with d↓ over a shared exp, another exponentiality remains when going up with d↑ over a
shared cxt. This is due to Alt expressions in situations like in Figure 15a. When traversing down
the Alt, d′

↓
creates two different AltC contexts that then proceed independently but have a shared

context, as shown in Figure 15b. When the parsing process returns a result exp, the shared context
is not taken advantage of. Instead, the two results are passed to the context separately. Like with

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 108. Publication date: August 2020.



Parsing with Zippers 108:13

type exp = Tok of tok

| Seq of sym * exp list

| Alt of (exp list) ref

type cxt = TopC

| SeqC of mem * sym * exp list * exp list

| AltC of mem

and mem = { mutable parents : cxt list; result : pos Z⇒ exp }

type zipper = exp * mem

let mems : (pos * exp) Z⇒ mem = ∅

Fig. 16. Types and values for the derivative using zippers with shared

expressions and contexts. Changes relative to Figure 12 in bold.

shared expressions, this shared context multiplies the number of zippers in a way that could lead
to the number of zippers being exponential in the length of the input.

To solve this, we memoize over cxt in addition to exp. We then detect sharing of a context and
fuse all of the exp passed up to that context into a single Alt containing all of those results.

We take advantage of the fact that all AltC created from an Alt share the same memoization
record. For example, in Figure 15b this is m1. When a result is produced, say Alt [e′

2
] constructed

after parsing the e2 branch of Alt [e2; e3], it is added to the result field of m1. This causes the
situation in Figure 15c where m1 points to the Alt on the left as one of its results, but the AltC on
the right has not yet returned and thus points to m1 as its parent.

Then when another result is produced that ends at the same input position, say the Alt [e′
3
]

produced by parsing the e3 branch of Alt [e2; e3], we do not add it to m1 as a new result. Instead,
we add its lone child as an additional child of the Alt that is already in the result of m1. This
produces the outcome in Figure 15d where the result is a single Alt containing both the e′

2
and e′

3

results instead of having a separate Alt result for each.
Figure 16 contains the types and values to implement the memoization of shared contexts. To

allow results to be added to an Alt after the Alt is constructed, the Alt constructor now contains
a mutable reference to its children that is of type (exp list) ref, which can be updated as new
children are produced.

Code for this algorithm is in Figure 17. The main change is in the AltC clause of d′
↑
where we add

each new child to an existing result rather than produce a new Alt. Because of this, there is at most
one entry at any given input position in the result field of a memoization record. The result field
thus now maps to a single exp instead of a list of exp. Note that the order in which children of an
Alt are added to the result does not matter because an Alt represents non-deterministic choice.

Another change is in the second Seq clause of d′
↓
and corresponds to the Alt introduced in

traditional PwD when the first child of a Seq is nullable. Parsing with a single Seq can produce
multiple new Seq that all start and end at the same position, which happens if there are multiple
positions that can be the boundary between the children of that Seq. For example, consider parsing
the string AAA with the grammar e1 ::= e2 e2; e2 ::= A | AA. The first and second children of
e1 could be A and AA, respectively, or they could be AA and A. This results in two Seq that could be
returned. Multiple iterations of this doubling could cause exponential behavior. To avoid this we
introduce a parent AltC that both Seq are returned to. This wraps all the returned Seq in a single
Alt, so parents of e1 have only one grammar result to deal with. In the code, this is implemented
by setting the parents of the SeqC passed to d↓ to be [AltC m] instead of m.parents.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 108. Publication date: August 2020.



108:14 Pierce Darragh and Michael D. Adams

let derive (p : pos) (t : tok) ((e, m) : zipper) : zipper list =

let rec d↓ (c : cxt) (e : exp) : zipper list =

match mems.get(p, e) with

| Some (m) -> m.parents <- c :: m.parents;

(match m.result.get(p) with

| Some e -> d′
↑
e c

| None -> [])

| None -> let m = { parents = [c]; result = ∅ } in

mems.put(p, e, m);

d′
↓
m e

and d′
↓
(m : mem) (e : exp) : zipper list =

match e with

| Tok (t') -> if t = t' then [(Seq (t, []), m)] else []

| Seq (s, []) -> d↑ (Seq (s, [])) m

| Seq (s, e :: es) -> let m' = { parents = [AltC m]; result = ∅ } in

d↓ (SeqC (m', s, [], es)) e

| Alt (es) -> List.concat (List.map (d↓ (AltC m)) !es)

and d↑ (e : exp) (m : mem) : zipper list =

m.result.put(p, e);

List.concat (List.map (d′
↑
e) m.parents)

and d′
↑
(e : exp) (c : cxt) : zipper list =

match c with

| TopC -> []

| SeqC (m, s, es, []) -> d↑ (Seq (s, List.rev (e :: es))) m

| SeqC (m, s, esL, eR :: esR) -> d↓ (SeqC (m, s, e :: esL, esR)) eR
| AltC (m) -> (match m.result.get(p) with

| Some (Alt (es)) -> es := e :: !es; []

| None -> d↑ (Alt (ref [e])) m)

in d↑ e m

Fig. 17. Code for the derivative using zippers with expression

and context sharing. Changes relative to Figure 14 in bold.

7 CYCLES

Up to this point, we have not addressed what happens when a grammar contains cycles or, more
specifically, left recursion. Most recursive-descent parsers have trouble with left recursion as they
will follow it in an infinite loop. However, with the memoization added in Section 5 and Section 6,
our parser already handles cycles automatically.1

To see how this works, consider the situation in Figure 18a where the zipper is about to start
down into the Alt in the left-recursive grammar e1 ::= e1 A | B, and suppose the first input
token is B. When d↓ traverses into the Alt, both children are traversed by d↓. The Tok B child is
straightforward and results in the SeqB in Figure 18b. (Recall that Alt represents non-determinism,
so we can process children in any order.) This leaves the Seqs child. Initially, the derivative proceeds

1OCaml’s let rec supports cyclic values so long as the right-hand sides of the let rec bindings are “statically constructive”

[Leroy et al. 2020, Section 8.1]. This can be achieved by using only constructor applications and variables in those bindings.

For presentational simplicity, this is the approach we use this paper. However, since function calls are not statically

constructive, this precludes the use of smart constructors and other abstractions.

An alternative is to wrap exp with the Lazy.t type and use the lazy keyword to break cycles in the let rec bindings.

This requires inserting into the code for derive a few calls to Lazy.force and uses of the lazy keyword, but otherwise

does not change the algorithm.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 108. Publication date: August 2020.



Parsing with Zippers 108:15

m1

Alt

TokBSeqs

TokA

•

(a) Initial zipper

m1

AltC

m3

SeqB

•

AltC

m2

SeqCs

TokA

(b) Zipper after Figure 18a

consumes the input token B

m1

AltC

m2

SeqCs

m4

SeqA

•

Alt

SeqB

SeqCs

TokA

(c) Zipper after Figure 18b

consumes the input token A

Fig. 18. Zippers parsing the string BAA with the left-recursive grammar e1 ::= e1 A | B

normally: the parser traverses to the Seqs child of the Alt and builds up the AltC context on the
left of Figure 18b. It then traverses into the Seqs, and then into the left child of Seqs. In the process,
it builds the SeqCs context.

Once d↓ processes the left child of Seqs, the algorithm starts to interact with the cycle. When
first traversing the Alt in Figure 18a, m1 was added to the mems table for that Alt at the current
input position. When d↓ goes through the cycle and traverses to the Alt for a second time, it
finds m1. Instead of traversing into the Alt, the Some clause of d↓ runs and adds SeqCs to the
parents field of m1. This adds the curved arrow in Figure 18b and delays the current parse until the
previously-started parse completes.

This leaves us with the structure in Figure 18b. Whereas most recursive-descent parsers are faced
with the dilemma of choosing how many times to descend into a left recursion, we simply convert
the cycle in the grammar into a cycle in the context. This allows us to postpone making this choice
until further parsing reveals how many repetitions are needed.

When the next token is parsed, the zipper below m3 in Figure 18b moves up through the right-
hand AltC and builds the Alt in Figure 18c. As it continues moving up, it finds the two parents
in m1: one recursive, and one non-recursive. Traversing up any further causes the algorithm to
proceed through both parents.

Traversing up through the non-recursive case simply results in the zipper being moved up to the
surrounding context. This case is not specifically relevant here.

In the recursive case, though, an upward traversal causes the algorithm to loop back down
to SeqCs, and then into the right-hand child of SeqCs, Tok A. In the process of performing this
traversal, a new SeqCs is constructed (as shown in bold in Figure 18c). This SeqCs contains the
result that came from SeqB through the right-hand AltC as its left child, which is an Alt with child
SeqB. The new (right-hand) SeqCs also copies the memoization record from the original (left-hand)
SeqCs, so now each SeqCs points to m2 as its parent. At this point, the zipper’s focus is Tok A.
Assuming the next input token is A, Tok A is replaced with SeqA, and the traversal state is saved as
a zipper whose focus is that new SeqA, leaving us with the resulting structure in Figure 18c.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 108. Publication date: August 2020.



108:16 Pierce Darragh and Michael D. Adams

m1

AltC

m2

SeqCs

m5

SeqA

•

Alt

Seqs

SeqAAlt

SeqB

SeqCs

TokA

Fig. 19. Zipper after Figure 18c consumes the input token A

All of this effectively results in unfolding one loop of the cycle. If the next token is another A,
another loop will be unfolded to produce Figure 19. In this way, our algorithm transparently handles
left recursion by creating a cyclic context that it unfolds only as needed.

Note that even pathological cases are handled automatically by this algorithm. For example, the
grammar in Figure 20a differs from Figure 18a by replacing Tok A with Seqs2 , a Seq that has no
children and thus matches the empty string. As a consequence, when parsing the string containing
only B, the final parse result should contain trees for every possible number of recursions through
Seqs1 (i.e., this part of the grammar is non-expanding). Many parsing algorithms have trouble with
this and consider such a grammar to be malformed, but our algorithm automatically handles this
case. First, the derivative taken with respect to B produces the zipper in Figure 20b. This zipper
has replaced TokB with SeqB and has a loop in its context. That loop represents the indeterminate
number of times the parse could have traversed through Seqs1 . When the next token is parsed, the
zipper moves up and out of this part of the grammar and produces the final parse tree in Figure 20c,
where the loop in this result represents the arbitrary number of recursions through Seqs1 that
could have been traversed.

The algorithm is now functionally complete and can handle any grammar or input string. In the
next section, we improve performance by removing the memoization tables.

8 ELIMINATING MEMOIZATION TABLES

The algorithm in Figure 17 involves three table lookups. One is mems.get(p, e) in d↓. The other
two are m.result.get(p) in both the Some clause of d↓ and the AltC clause of d′

↑
. The use of these

tables can be costly in terms of both time and space. Fortunately, we can eliminate these tables if
we are willing to make exp be mutable.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 108. Publication date: August 2020.



Parsing with Zippers 108:17

Alt

TokBSeqs1

Seqs2

(a) Initial grammar

m1

SeqBAltC

m2

SeqCs1

Seqs2

•

(b) Grammar after parsing B

Alt

SeqBSeqs1

Seqs2

(c) Final parse tree

Fig. 20. Parsing the string B with a grammar that has a non-expanding

production (i.e., e1 ::= e1 e2 | B; e2 ::= Y)

All three table lookups are indexed by p, the current input position. Furthermore, our algorithm
never starts parsing a token until it has finished with the preceding token. This means we can
throw away table entries for input positions older than the current position, as they are no longer
needed. Thus, since m.result.get(p) is indexed by only p, we can choose to keep only the most
recent entry. Thus in Figure 21, instead of keeping a table in m, we store p as m.end along with its
corresponding result exp as m.result. Whenever parsing a new token causes a new result to be
produced, the existing entry is overwritten with the new exp. The p that we store in m.end allows
us to know whether the result exp is for the current input token.

This also eliminates the p argument in mems.get(p, e), but this lookup is still indexed by e.
Fortunately, instead of a table indexed by e, we can store each entry as a mutable field inside the
exp to which it corresponds.

This leads to the types and values in Figure 21. The exp type is renamed to exp'. The new exp

type stores a mem record along with an exp'. The start field of that mem is the input position for
which the mem is valid. If start is at any point not equal to the current input position, the entry is
considered stale and should be ignored.

Likewise, in mem, the result mapping is replaced by a result field containing only the most
recent value, and end is the input position for which result is valid. As with start, if end is not
equal to the current input position, then result is stale and should be ignored.

Finally, we define m⊥, which is used by d↑ when creating a new exp and represents when the
mems table has no entries for that exp. Because m⊥.start does not match the pos of any input
token, m⊥ is always considered stale and is replaced with a fresh mem whenever the parser reaches
an exp containing it.

These changes produce the final version of our algorithm in Figure 22, which contains no table
lookups but can still handle any grammar without exponential time complexity.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 108. Publication date: August 2020.



108:18 Pierce Darragh and Michael D. Adams

type exp = { mutable m : mem; e' : exp' }

and exp' = Tok of tok

| Seq of sym * exp list

| Alt of (exp list) ref

and cxt = TopC

| SeqC of mem * sym * exp list * exp list

| AltC of mem

and mem = { start : pos;

mutable parents : cxt list;

mutable end : pos;

mutable result : exp }

type zipper = exp' * mem

let rec e⊥ = { m = m⊥; e' = Alt (ref []) }

and m⊥ = { start = p⊥; parents = []; end = p⊥; result = e⊥ }

Fig. 21. Types and values for the derivative using zippers without memoization tables. Changes

relative to Figure 16 in bold. Except for highlighting, this figure is identical to Figure 2.

9 DISCUSSION

9.1 Differences from Traditional PwD

Aside from the use of a zipper and developing the main technical contribution of this paper (i.e.,
how to get zippers to work on the shared regions, cycles, and alternates found in CFGs), we note
that our algorithm has two differences from the traditional PwD algorithm.

First, the derivative in Brzozowski [1964], Might et al. [2011], and Adams et al. [2016] checks
whether the first child of a Seq is a grammar that accepts the empty string (i.e., that child is
“nullable”). If the first child is nullable, then the derivative traverses into both the first child and

the second child of the parent Seq. This is because a nullable grammar corresponds to a successful
parse, though it may be possible to parse it further (e.g., due to repetitions or certain kinds of
alternates). Thus the derivative also traverses into the second child. Our technique does not check
for nullability, though it achieves the same result. Instead of explicitly checking whether the first
child is nullable before attempting to traverse into it, PwZ simply traverses into it. If that child is
already nullable, our algorithm will automatically continue to the second child.

Second, we use =-ary grammars instead of the binary grammars used by Brzozowski [1964],
Might et al. [2011], and Adams et al. [2016]. By this, we mean that our Seq and Alt constructors
can have any number of children instead of requiring exactly two. A consequence of this is that
where Might et al. [2011] and Adams et al. [2016] use dedicated Epsilon and Empty constructors
to represent grammars that accept only the empty string and no strings, respectively, we use
childless Seq and Alt constructors, respectively. We do this for two reasons. First, this change
simplifies the memoization of shared contexts in Section 6 as well as the handling of the Alt that
can be introduced by taking the derivative of a Seq. Second, our benchmarks in Section 10 show
that that our algorithm performs 1.4 times faster when using =-ary grammars instead of binary
grammars. (A similar speed improvement is not seen with traditional PwD.)

9.2 Zipperness

The original zipper [Huet 1997] was designed for traversing trees. However, in this paper we
have extended the zipper to support alternates, shared expressions, shared contexts, and cycles,
so it is fair to ask whether our data structure is still a zipper. We argue that ours is one possible
generalization of zippers, though there may be other generalizations.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 108. Publication date: August 2020.



Parsing with Zippers 108:19

let derive (p : pos) (t : tok) ((e', m) : zipper) : zipper list =

let rec d↓ (c : cxt) (e : exp) : zipper list =

if p == e.m.start

then (e.m.parents <- c :: e.m.parents;

if p == e.m.end then d′
↑
e.m.result c else [])

else let m = { start = p; parents = [c]; end = p⊥; result = e⊥ } in

e.m <- m;

d′
↓
m e.e'

and d′
↓
(m : mem) (e' : exp') : zipper list =

match e' with

| Tok (t') -> if t = t' then [(Seq (t, []), m)] else []

| Seq (s, []) -> d↑ (Seq (s, [])) m

| Seq (s, e :: es) -> let m' = { start = m.start; parents = [AltC m];

end = p⊥; result = e⊥ } in

d↓ (SeqC (m', s, [], es)) e

| Alt (es) -> List.concat (List.map (d↓ (AltC m)) !es)

and d↑ (e' : exp') (m : mem) : zipper list =

let e = { m = m⊥; e' = e' } in

m.end <- p;

m.result <- e;

List.concat (List.map (d′
↑
e) m.parents)

and d′
↑
(e : exp) (c : cxt) : zipper list =

match c with

| TopC -> []

| SeqC (m, s, es, []) -> d↑ (Seq (s, List.rev (e :: es))) m

| SeqC (m, s, esL, eR :: esR) -> d↓ (SeqC (m, s, e :: esL, esR)) eR
| AltC (m) -> if p == m.end

then match m.result.e' with

| Alt (es) -> es := e :: !es; []

else d↑ (Alt (ref [e])) m

in d↑ e' m

Fig. 22. Code for the derivative using zippers without memoization tables. Changes relative

to Figure 17 in bold. Except for highlighting, this figure is identical to Figure 1.

Traditional zippers have a plug operation that successively traverses up the context of a zipper
until it reaches the top and then returns the resulting expression. This operation can be thought of
as “forgetting” the zipper’s position, meaning it converts zippers to expressions by reconstructing
the material in their contexts. We can implement an equivalent operation for our zippers as shown
in Figure 23. Note that the argument p must be a fresh pos that has not previously been used. Also
note the similarity to d↑ and d′

↑
in derive. This is because in both cases, the code is traversing up

the grammar. Applying the plug function after taking derivatives with respect to some sequence
of tokens produces an expression equivalent (modulo the difference in Section 9.1) to the result
produced by Might et al. [2011] and Adams et al. [2016] after taking the derivative with respect to
the same tokens. Thus, through the lens of plug, our zipper is comparable to the traditional zipper.

Traditional zippers also allow arbitrarily navigating up, down, left, or right from any given zipper.
Although our algorithm only moves left-to-right, our zipper could be navigated the same as regular
zippers. However, we did not develop this functionality because it would have no use within the
context of our algorithm.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 108. Publication date: August 2020.



108:20 Pierce Darragh and Michael D. Adams

let plug (p : pos) (zs : zipper list) : exp list =

let rec pl (e' : exp') (m : mem) : exp list =

let e = { m = m⊥; e' = e' } in

m.end <- p;

m.result <- e;

List.concat (List.map (pl' e) m.parents)

and pl' (e : exp) (c : cxt) : exp list =

match c with

| TopC -> [e]

| SeqC (m, s, esL, esR) -> pl (Seq (s, (List.rev esL) @ (e :: esR))) m

| AltC (m) -> if p == m.end

then match m.result.e' with

| Alt (es) -> es := e :: !es; []

else pl (Alt (ref [e])) m

in List.concat (List.map (fun (e', m) -> pl e' m) zs)

Fig. 23. Code for plugging a zipper

Lastly, our algorithm utilizes memoization based on parsed input positions (i.e., pos). It is not
clear how this generalizes to non-parsing contexts, but we do not believe this precludes our result
from being considered a form of zipper.

Therefore, we claim that our zipper is one generalization of zippers, but other problem domains
may require other generalizations of zippers.

9.3 Asymptotic Complexity

We conjecture that our algorithm is cubic in the length of the input parsed assuming no Seq in
the initial grammar has more than two children.2 However, we have not been able to prove it so.
For example, we have measured the number of recursive calls when parsing the highly ambiguous
grammar e ::= A | e e on different lengths of input. This grammar triggers worst-case behavior
in most parsing algorithms. The results shown in Figure 24 perfectly match a cubic fitting line.3

Thus while this test is not proof, it suggests that our algorithm is indeed cubic.
Adams et al. [2016] proved that PwD is cubic by uniquely labeling all allocations and showing

that the number of possible labels is cubic. Our algorithm is designed to be a version of PwD that
elides the extra traversals in PwD, so a similar analysis might apply to our algorithm. However,
there are two complications. First, memoization and in particular the mutable parents field in the
mem type mean the analysis must take account of mutation. Second, unlike PwD where traversals
up the grammar are merely the return path of function calls that traverse down the grammar,
traversals down the grammar are in d↓ while their corresponding traversals up the tree are split
into the separate d↑ function.

These complications have stymied our attempt at proving the asymptotic bound of our algorithm,
though we hope future work will succeed at doing so.

10 BENCHMARKS

We tested the performance of our parsing algorithm by parsing the files in the Python Standard
Library, version 3.4.3 [Python Software Foundation 2015a], using a grammar derived from the

2This assumption is required by most parsing algorithms in order for them to be cubic, and there are a number of standard

algorithms for converting grammars into such a form.
3Specifically the curve 1

2
G
3 + 2.5G

2 + 11G + 9 though we must caution that the constants in this polynomial are dependent

on the size of the grammar.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 108. Publication date: August 2020.



Parsing with Zippers 108:21

0 100 200 300 400 500
0

2 · 107

4 · 107

6 · 107

Number of tokens in input

N
u
m
b
er

o
f
re
cu

rs
iv
e
ca

ll
s

Measurement

Cubic fitting curve

Fig. 24. Number of recursive calls when parsing e ::= A | e e

Python 3.4.3 specification [Python Software Foundation 2015b]. The Python Standard Library
includes 659 Python files, which have sizes of up to 26,125 tokens.

For efficiency reasons, the version of our parser used for benchmarking adds zippers to a global
work list instead of returning lists of zippers as is done in Figure 1. We did not benchmark the
algorithms in the other figures as they are intermediate forms and are only for expository purposes.

We also implemented a one-token lookahead and benchmarked our parser both with and without
this lookahead. This lookahead was implemented by adding a boolean array to each exp. This array
is indexed by token types and is true at a particular index if the token type for that index can appear
as the first token of that exp or the exp accepts the empty string and that token type can follow
that exp. These arrays are pre-computed for the initial grammar, and thus the time to compute
these arrays is not included as part of the parse times in our benchmarks.

We compared the performance of our algorithm to PwD [Might et al. 2011], optimized PwD
[Adams et al. 2016], Menhir [Pottier and Régis-Gianas 2019], and dypgen [Onzon 2012]. Note that
Menhir and dypgen are parser generators, which gives them a performance advantage over the
other implementations.

The PwD implementations are based on versions provided by the authors of Might et al. [2011]
and Adams et al. [2016] that we ported from Racket to OCaml. Menhir uses LR(:) parsing, and
Dypgen uses GLR parsing. Both are well-known parsing systems for OCaml. To accommodate
Menhir’s use of LR(:), we reformulated 10 (out of 82) productions in the Python grammar. Including
all helper and driver functions, PwD [Might et al. 2011], optimized PwD [Adams et al. 2016], and
our algorithm were 196, 238, and 83 lines of OCaml code, respectively.

We ran the tests with OCaml 4.05.0, Menhir version 20200211, and dypgen version 20120619.
These were run on a Digital Ocean dedicated-CPU “general purpose” machine. It had a 2.30 GHz
Intel Xeon Gold 6140 CPU with 8GB of RAM and ran Ubuntu 20.04 LTS. We tokenized files in
advance and loaded those tokens into memory before benchmarking started, so that only parsing
time was measured when benchmarking. We used the core_bench library [Jane Street 2014] to
measure timings. PwD was so slow that we timed out any parse longer than 72 seconds. The largest
input it parsed without timing out was 439 tokens. The final results are presented in Figure 25 and
are normalized to measure parse time per input token.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 108. Publication date: August 2020.



108:22 Pierce Darragh and Michael D. Adams

0 5,000 10,000 15,000 20,000 25,000

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Number of tokens in input

Se
co

n
d
s
p
er

to
k
en

p
ar
se
d

PwD [Might et al. 2011]

Optimized PwD [Adams et al. 2016]

PwZ (this paper) without lookahead

PwZ (this paper) with lookahead

Menhir

dypgen

Fig. 25. Performance versus other parsers

Note that PwD shows up only in the upper left corner of Figure 25 around 10
−2 seconds per

token. Also the results for Menhir and dypgen are so similar that many of their symbols (a dot for
Menhir and a circle for dypgen) overlap. Finally, the dense part of the graph on the left where the
symbols overlap contain what one would extrapolate from the results to the right.

Our parser ran a geometric mean of 1.42 times faster with lookahead than without. With
lookahead, our parser ran a geometric mean of 6,500 times faster than PwD, 3.24 times faster than
optimized PwD, 24.0 times slower than Menhir, and 24.1 times slower than dypgen.

The relative ease with which our algorithm achieves its performance is notable. This is especially
so given that the parser in Adams et al. [2016] requires “compaction” as well as several optimizations
and tunings, but our parser surpasses its performance without such effort.

Binary versus=-ary. Asmentioned previously, the algorithmwe present uses =-ary grammars (i.e.,
grammars supporting any number of children) whereas Might et al. [2011] and Adams et al.
[2016] use binary grammars (i.e., grammars with only two children). This choice is based on
two considerations. First, handling the AltC introduced when traversing down a Seq is more
complicated in the binary version of PwZ. Second, the performance measurements in Figure 26 and
Figure 27 show that, for PwZ, =-ary is 1.41 times faster than binary. We implemented both binary
and =-ary versions of PwZ as well as both PwD [Might et al. 2011] and optimized PwD [Adams
et al. 2016]. They were run on the same system and with the same system configuration as the
results in Figure 25. Neither PwZ implementation uses lookahead in this comparison.

We note that using =-ary grammars significantly harms the performance of PwD, does not
significantly affect the performance of optimized PwD, and slightly helps the performance of PwZ.
We do not know why the effect is different in all three cases, but we conjecture that it might be due
to an effect similar to that observed by both Might et al. [2011] and Adams et al. [2016], where stacks
of intermediate grammar nodes accumulate and thus slow down traversal through the grammar.
Due to its multi-way branching, =-ary PwZ is less prone to these sorts of accumulations. Might
et al. [2011] and Adams et al. [2016] solve this by a what they call a “compaction” algorithm. In
theory, we could implement the same for PwZ, but the interaction with the zipper, contexts, and
memoization makes this a non-trivial task. It would be interesting future work to see whether this
improves the performance of binary PwZ to match that of =-ary PwZ.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 108. Publication date: August 2020.



Parsing with Zippers 108:23

500 1,000 1,500 2,000 2,500

10
−5

Number of tokens in input

Se
co

n
d
s
p
er

to
k
en

p
ar
se
d

PwD (binary)

PwD (=-ary)

Optimized PwD (binary)

Optimized PwD (=-ary)

PwZ (binary)

PwZ (=-ary)

Fig. 26. Performance of binary versus =-ary parsers

100 200 300 400 500

10
−5

10
−4

10
−3

10
−2

10
−1

Number of tokens in input

Se
co

n
d
s
p
er

to
k
en

p
ar
se
d

PwD (binary)

PwD (=-ary)

Optimized PwD (binary)

Optimized PwD (=-ary)

PwZ (binary)

PwZ (=-ary)

Fig. 27. Figure 26 zoomed out to show PwD

11 RELATED WORK

Parsing with Derivatives. Using derivatives to parse languages was first suggested by Brzozowski
[1964] for regular expressions and by both Might et al. [2011] and Danielsson [2010] for context-free
grammars (CFGs). For regular expressions, derivatives sometimes outperform traditional techniques
[Owens et al. 2009]. However, they initially had poor performance for CFGs and were impractical to
use [Might et al. 2011]. Later work [Adams et al. 2016] improved the performance of Parsing with
Derivatives but requires optimizations and tunings that make the code less elegant. Our algorithm
does not require these optimizations but outperforms even the optimized Parsing with Derivatives.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 108. Publication date: August 2020.



108:24 Pierce Darragh and Michael D. Adams

As explained in Section 9.2 and modulo the differences in Section 9.1, calling plug at any point
in PwZ produces the same grammar that PwD would produce at the same point. Thus we consider
our algorithm to be a variant of PwD.

Zippy LL(1) Parsing with Derivatives. Edelmann et al. [2020], a publication concurrent with ours,
describes and formally verifies an LL(1) parser that is based on zippers and PwD.Themain difference
from our work is that our algorithm does full CFG while Edelmann et al. [2020] is restricted to LL(1)
grammars. As a consequence, our algorithm has to deal with cycles and ambiguities in a way that
Edelmann et al. [2020] does not. This also means Edelmann et al. [2020] can use a traditional zipper,
whereas we have to generalize the zipper to handle cycles and ambiguities. On the other hand,
the algorithm in Edelmann et al. [2020] is formally verified, while ours is not. We speculate that
the proof techniques used in Edelmann et al. [2020] might provide insights about how to formally
verify our algorithm.

GLL Parsing. Our algorithm has some similarities to GLL parsing [Scott and Johnstone 2010,
2013]. Both are recursive-decent parsers that handle arbitrary CFGs, and GLL’s shared-packed
parse forest (SPPF) and graph-structured stack (GSS) are similar in structure to our exp and cxt,
respectively. However, our algorithm is a parser, and GLL is a parser generator. The difference is
similar to the one between an interpreter (our algorithm) and a compiler (GLL). Nevertheless, a
sufficiently smart partial evaluator might be able to transform our algorithm into a parser generator.
We suspect that such a partially evaluated algorithm would closely correspond to GLL.

Derivatives of Types. McBride [2001] shows that the context type (e.g., cxt) used in a zipper type
can be mechanically generated from the type over which the zipper traverses (e.g., exp). McBride
[2001] calls this taking the derivative of a type. That both Brzozowski [1964] and McBride [2001]
call their techniques a “derivative” is not a complete coincidence. They both have the same structure
and laws as the partial derivative from calculus. What is surprising is that these two derivatives,
which use two different interpretations of exp (i.e., as a grammar in Brzozowski [1964] and as a
data structure in McBride [2001]), combine so well. A deeper understanding of the connection
between them might provide further insights about combining them as we do in this paper.

Clowns and Jokers. McBride [2008] also describes a variant of the one-hole context that uses
different types for the values to the left and right of the hole. We could take advantage of this
by noting that an exp to the left of the current hole never contains a token expression (Tok). The
technique in McBride [2008] would let the types reflect such a distinction and have one type for
the left siblings that does not contain Tok and one type for the right siblings that contains Tok. We
chose not to implement this in favor of presentational simplicity.

Continuations and parsing. Johnson [1995] describes a top-down parsing technique that uses
memoized continuations. Like our algorithm, it does before-the-call memoization, and the process
of memoizing continuations has a very similar structure to how we manipulate the mems table
and mem records in Figure 17. The entry-continuations and entry-results in Johnson [1995]
correspond, respectively, to the parents and result fields of mem in Figure 16.

However, there are also some differences. The algorithm in Johnson [1995] expects a list of all
input tokens from the outset, but our parser parses one token at a time. In addition, the algorithm
in Johnson [1995] is merely a recognizer and does not produce parse trees whereas our algorithm
does. Johnson [1995] alludes to the possibility of extracting sparse packed parse forests from the
memoization tables but says that “a straightforward implementation attempt would probably be
very complicated”. Finally, Johnson [1995] does not address performance and does not eliminate
the memoization tables as we describe in Section 8.

Item Sets. A number of parsing algorithms use item sets to represent their parsing state. These
item sets contain items of the form 〈- → U • V, 8〉 , where - is a non-terminal, U and V are strings

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 108. Publication date: August 2020.



Parsing with Zippers 108:25

of terminals and non-terminals, and 8 is an input position. For example, Earley [1970] uses one item
set per input position. The item 〈- → U • V, 8〉 being in the item set for position 9 means that a
parse for the production - → UV was started at position 9 , the input between positions 9 and 8

is parsed by U , and the production - → UV is looking for a string that starts at position 9 and is
parsed by V .

These item sets have some similarity to SeqC contexts, where U and V are the left and right
siblings, 8 is the start field of the mem stored in the SeqC context, and 9 is the input position in
scope when the SeqC context is being processed (i.e., the p argument to derive).

However, there are a number of differences in how these algorithm operate. PwZ operates by
traversing over the grammar, while parsers based on item sets operate by finding the fixed points of
item sets for successive input tokens. Also, PwZ represents choices between alternatives explicitly
using Alt and AltC and explicitly represents where a sub-parse is called from using parent pointers
in its contexts. Parsers based on item sets represent choices between alternatives implicitly by items
being in the same item set and implicitly represent where a sub-parse is called from by looking up
items in item sets at particular positions.

12 CONCLUSION

Parsing with Derivatives has long suffered from impractically slow performance. Recent improve-
ments [Adams et al. 2016] have mitigated this, but require several optimizations and tunings that
make the code less elegant. By introducing a zipper, we achieve good performance without needing
such tweaks. The resulting parser is also concise: the algorithm in Figure 22 lacks only a driver
loop, yet takes only 31 lines of code. Despite its brevity, our algorithm is 6,500 times faster than
PwD [Might et al. 2011] and 3.24 faster than optimized PwD [Adams et al. 2016].

This generalization of zippers is specific to CFGs but suggests that it may be possible to generalize
the zipper to other data structures that have shared regions, cycles or choices between alternates.
We encourage future work that explores these possibilities.

A ARTIFACT

The artifact for this paper is both an embedded file in this document and available on the web
at https://github.com/pdarragh/parsing-with-zippers-paper-artifact. The version em-
bedded in this document is commit c5c0830, which has tag icfp-2020-artifact. It includes a
full implementation, several example grammars used as stress tests, and the benchmarks used in
Section 10. To save a copy right click the following filename and select “Save Attachment As…”.

Artifact File: parsing-with-zippers-paper-artifact.zip

B SOURCE CODE

This appendix contains code for the algorithm described by this paper in an ASCII form suitable
for copying and pasting into a source file. Due to limitations of LaTeX and PDF, such a copy will
not preserve indentation. Thus, as an alternative, you can right click a file name and select “Save
Attachment As…” to save a properly indented version of the code.This code is split into separate files
for presentation purposes, but it can all be placed in the same source file if the open statements at
the top of each file are removed. Also, the types in pwz_abstract_types.ml can easily be changed
as the rest of the code treats them as abstract.

B.1 pwz_abstract_types.ml

type pos = int ref (* Using ref makes it easy to create values that are not pointer equal *)

let p_bottom = ref (-1)

type sym = string

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 108. Publication date: August 2020.

https://github.com/pdarragh/parsing-with-zippers-paper-artifact


108:26 Pierce Darragh and Michael D. Adams

let s_bottom = "<s_bottom>"

type tok = string

let t_eof = "<t_eof>"

B.2 pwz_types.ml

open Pwz_abstract_types

type exp = { mutable m : mem; e' : exp' }

and exp' = Tok of tok

| Seq of sym * exp list

| Alt of (exp list) ref

and cxt = TopC

| SeqC of mem * sym * exp list * exp list

| AltC of mem

and mem = { start_pos : pos;

mutable parents : cxt list;

mutable end_pos : pos;

mutable result : exp }

type zipper = exp' * mem

let rec e_bottom = { m = m_bottom; e' = Alt (ref []) }

and m_bottom = { start_pos = p_bottom; parents = []; end_pos = p_bottom; result = e_bottom }

B.3 pwz_derive.ml

open Pwz_abstract_types

open Pwz_types

let derive (p : pos) (t : tok) ((e', m) : zipper) : zipper list =

let rec d_d (c : cxt) (e : exp) : zipper list =

if p == e.m.start_pos

then (e.m.parents <- c :: e.m.parents;

if p == e.m.end_pos then d_u' e.m.result c else [])

else (let m = { start_pos = p; parents = [c]; end_pos = p_bottom; result = e_bottom } in

e.m <- m;

d_d' m e.e')

and d_d' (m : mem) (e' : exp') : zipper list =

match e' with

| Tok (t') -> if t = t' then [(Seq (t, []), m)] else []

| Seq (s, []) -> d_u (Seq (s, [])) m

| Seq (s, e :: es) -> let m' = { start_pos = m.start_pos; parents = [AltC m];

end_pos = p_bottom; result = e_bottom } in

d_d (SeqC (m', s, [], es)) e

| Alt (es) -> List.concat (List.map (d_d (AltC m)) !es)

and d_u (e' : exp') (m : mem) : zipper list =

let e = { m = m_bottom; e' = e' } in

m.end_pos <- p;

m.result <- e;

List.concat (List.map (d_u' e) m.parents)

and d_u' (e : exp) (c : cxt) : zipper list =

match c with

| TopC -> []

| SeqC (m, s, es, []) -> d_u (Seq (s, List.rev (e :: es))) m

| SeqC (m, s, es_L, e_R :: es_R) -> d_d (SeqC (m, s, e :: es_L, es_R)) e_R

| AltC (m) -> if p == m.end_pos

then match m.result.e' with

| Alt (es) -> es := e :: !es; []

| _ -> failwith "Not an Alt."

else d_u (Alt (ref [e])) m

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 108. Publication date: August 2020.



Parsing with Zippers 108:27

in d_u e' m

B.4 pwz_driver.ml

open Pwz_abstract_types

open Pwz_types

open Pwz_derive

let init_zipper (e : exp) : zipper =

let e' = Seq (s_bottom, []) in

let m_top = { start_pos = p_bottom; parents = [TopC]; end_pos = p_bottom; result = e_bottom } in

let c = SeqC (m_top, s_bottom, [], [e; { m = m_bottom; e' = Tok t_eof }]) in

let m_seq = { start_pos = p_bottom; parents = [c]; end_pos = p_bottom; result = e_bottom } in

(e', m_seq)

let unwrap_top_zipper ((e', m) : zipper) : exp =

match m.parents with

| [SeqC ({ parents = [TopC] }, s_bottom, [e; _], [])] -> e

| _ -> failwith "Invalid top zipper."

let parse (ts : tok list) (e : exp) : exp list =

let rec parse' (p : pos) (ts : tok list) (z : zipper) : zipper list =

match ts with

| [] -> derive p t_eof z

| t :: ts' -> List.concat (List.map (fun z' -> parse' (ref (!p + 1)) ts' z') (derive p t z)) in

List.map unwrap_top_zipper (parse' (ref 0) ts (init_zipper e))

type ast = Ast of sym * ast list

let list_product (l1 : 'a list) (l2 : ('a list) list) : ('a list) list =

List.concat (List.map (fun l -> List.map (List.cons l) l2) l1)

let rec ast_list_of_exp (e : exp) : ast list =

match e.e' with

| Tok _ -> []

| Seq (l, es) -> List.map (fun es' -> Ast (l, es'))

(List.fold_right list_product (List.map ast_list_of_exp es) [[]])

| Alt (es) -> List.concat (List.map ast_list_of_exp !es)

let ast_list_of_exp_list (es : exp list) : ast list =

List.concat (List.map ast_list_of_exp es)

B.5 pwz_plug.ml

open Pwz_abstract_types

open Pwz_types

let plug (p : pos) (zs : zipper list) : exp list =

let rec pl (e' : exp') (m : mem) : exp list =

let e = { m = m_bottom; e' = e' } in

m.end_pos <- p;

m.result <- e;

List.concat (List.map (pl' e) m.parents)

and pl' (e : exp) (c : cxt) : exp list =

match c with

| TopC -> [e]

| SeqC (m, s, es_L, es_R) -> pl (Seq (s, (List.rev es_L) @ (e :: es_R))) m

| AltC (m) -> if p == m.end_pos

then match m.result.e' with

| Alt (es) -> es := e :: !es; []

| _ -> failwith "Not an Alt."

else pl (Alt (ref [e])) m

in List.concat (List.map (fun (e', m) -> pl e' m) zs)

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 108. Publication date: August 2020.



108:28 Pierce Darragh and Michael D. Adams

REFERENCES

Michael D. Adams, Celeste Hollenbeck, and Matthew Might. 2016. On the complexity and performance of parsing with

derivatives. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation

(Santa Barbara, CA, USA) (PLDI ’16). ACM, New York, NY, USA, 224–236. https://doi.org/10.1145/2908080.2908128

Janusz A. Brzozowski. 1964. Derivatives of Regular Expressions. Journal of the ACM (JACM) 11, 4 (Oct. 1964), 481–494.

https://doi.org/10.1145/321239.321249

Nils Anders Danielsson. 2010. Total parser combinators. In Proceedings of the 15th ACM SIGPLAN international conference on

Functional programming (Baltimore, Maryland, USA) (ICFP ’10). ACM, New York, NY, USA, 285–296. https://doi.org/10.

1145/1863543.1863585

Jay Earley. 1970. An efficient context-free parsing algorithm. Communications of the ACM (CACM) 13, 2 (Feb. 1970), 94–102.

https://doi.org/10.1145/362007.362035

Romain Edelmann, Jad Hamza, and Viktor Kunčak. 2020. Zippy LL(1) Parsing with Derivatives. In Proceedings of the 41st

ACM SIGPLAN Conference on Programming Language Design and Implementation (London, UK) (PLDI ’20). ACM, New

York, NY, USA, 1036–1051. https://doi.org/10.1145/3385412.3385992

Gérard Huet. 1997. The Zipper. Journal of Functional Programming 7, 05 (Sept. 1997), 549–554. https://doi.org/10.1017/

S0956796897002864

Jane Street. 2014. core_bench. https://github.com/janestreet/core_bench version 109.58.01.

Mark Johnson. 1995. Memoization in top-down parsing. Computational Linguistics 21, 3 (Sept. 1995), 405–417. http:

//dl.acm.org/citation.cfm?id=216261.216269

Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy, and Jérôme Vouillon. 2020. The OCaml system:

release 4.10. https://ocaml.org/releases/4.10/htmlman/

Conor McBride. 2001. The Derivative of a Regular Type is its Type of One-Hole Contexts. strictlypositive.org/diff.pdf

Conor McBride. 2008. Clowns to the left of me, jokers to the right (pearl): dissecting data structures. In Proceedings of the

35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (San Francisco, California, USA)

(POPL ’08). ACM, New York, NY, USA, 287–295. https://doi.org/10.1145/1328438.1328474

Matthew Might, David Darais, and Daniel Spiewak. 2011. Parsing with derivatives: a functional pearl. In Proceedings of the

16th ACM SIGPLAN International Conference on Functional Programming (Tokyo, Japan) (ICFP ’11). ACM, New York, NY,

USA, 189–195. https://doi.org/10.1145/2034773.2034801

Emmanuel Onzon. 2012. dypgen: Self-extensible parsers and lexers for OCaml. http://dypgen.free.fr/ version 20120619.

Scott Owens, John Reppy, and Aaron Turon. 2009. Regular-expression derivatives re-examined. Journal of Functional

Programming 19, 02 (March 2009), 173–190. https://doi.org/10.1017/S0956796808007090

François Pottier and Yann Régis-Gianas. 2019. Menhir. http://gallium.inria.fr/~fpottier/menhir/ version 20190626.

Python Software Foundation. 2015a. Python 3.4.3. https://www.python.org/downloads/release/python-343/

Python Software Foundation. 2015b. The Python Language Reference: Full Grammar specification. https://docs.python.org/

3/reference/grammar.html

Elizabeth Scott and Adrian Johnstone. 2010. GLL Parsing. Electronic Notes in Theoretical Computer Science 253, 7 (Sept. 2010),

177–189. https://doi.org/10.1016/j.entcs.2010.08.041

Elizabeth Scott and Adrian Johnstone. 2013. GLL parse-tree generation. Science of Computer Programming 78, 10 (Oct. 2013),

1828–1844. https://doi.org/10.1016/j.scico.2012.03.005

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 108. Publication date: August 2020.

https://doi.org/10.1145/2908080.2908128
https://doi.org/10.1145/321239.321249
https://doi.org/10.1145/1863543.1863585
https://doi.org/10.1145/1863543.1863585
https://doi.org/10.1145/362007.362035
https://doi.org/10.1145/3385412.3385992
https://doi.org/10.1017/S0956796897002864
https://doi.org/10.1017/S0956796897002864
https://github.com/janestreet/core_bench
http://dl.acm.org/citation.cfm?id=216261.216269
http://dl.acm.org/citation.cfm?id=216261.216269
https://ocaml.org/releases/4.10/htmlman/
strictlypositive.org/diff.pdf
https://doi.org/10.1145/1328438.1328474
https://doi.org/10.1145/2034773.2034801
http://dypgen.free.fr/
https://doi.org/10.1017/S0956796808007090
http://gallium.inria.fr/~fpottier/menhir/
https://www.python.org/downloads/release/python-343/
https://docs.python.org/3/reference/grammar.html
https://docs.python.org/3/reference/grammar.html
https://doi.org/10.1016/j.entcs.2010.08.041
https://doi.org/10.1016/j.scico.2012.03.005

	Abstract
	1 Introduction
	1.1 Overview
	1.2 Notation

	2 Parsing with Derivatives
	3 Zippers
	4 Alternates
	5 Memoizing shared expressions
	6 Memoizing shared contexts
	7 Cycles
	8 Eliminating memoization tables
	9 Discussion
	9.1 Differences from Traditional PwD
	9.2 Zipperness
	9.3 Asymptotic Complexity

	10 Benchmarks
	11 Related work
	12 Conclusion
	A Artifact
	B Source Code
	B.1 pwzabstracttypes.ml[text/plain]pwzabstracttypes.mlpwz_abstract_types.ml-0.5em 
	B.2 pwztypes.ml[text/plain]pwztypes.mlpwz_types.ml-0.5em 
	B.3 pwzderive.ml[text/plain]pwzderive.mlpwz_derive.ml-0.5em 
	B.4 pwzdriver.ml[text/plain]pwzdriver.mlpwz_driver.ml-0.5em 
	B.5 pwzplug.ml[text/plain]pwzplug.mlpwz_plug.ml-0.5em 

	References

