
We already proved that

If nullable(r) then POSIX (mkeps r) r

holds. This is essentially the “base case” for the correctness proof of the
algorithm. For the “induction case” we need the following main theorem,
which we are currently after:

If (*) POSIX v (der c r) and ` v : der c r
then POSIX (inj r c v) r

That means a POSIX value v is still POSIX after injection. I am not
sure whether this theorem is actually true in this full generality. Maybe it
requires some restrictions.

If we unfold the POSIX definition in the then-part, we arrive at

∀v′. if ` v′ : r and |inj r c v| = |v′| then |inj r c v| �r v
′

which is what we need to prove assuming the if-part (*) in the theorem
above. Since this is a universally quantified formula, we just need to fix a
v′. We can then prove the implication by assuming

(a) ` v′ : r and (b) inj r c v = |v′|

and our goal is

(goal) inj r c v �r v
′

There are already two lemmas proved that can transform the assumptions
(a) and (b) into

(a*) ` proj r c v′ : der c r and (b*) c# |v| = |v′|

Another lemma shows that

|v′| = c# |proj r c v|

Using (b*) we can therefore infer

(b**) |v| = |proj r c v|

The main idea of the proof is now a simple instantiation of the assumption
POSIX v (der c r). If we unfold the POSIX definition, we get

1

∀v′. if ` v′ : der c r and |v| = |v′| then v �der c r v′

We can instantiate this v′ with proj r c v′ and can use (a*) and (b**) in
order to infer

v �der c r proj r c v′

The point of the side-lemma below is that we can “add” an inj to both sides
to obtain

inj r c v �r inj r c (proj r c v′)

Finally there is already a lemma proved that shows that an injection and
projection is the identity, meaning

inj r c (proj r c v′) = v′

With this we have shown our goal (pending a proof of the side-lemma next).

Side-Lemma

A side-lemma needed for the theorem above which might be true, but can
also be false, is as follows:

If (1) v1 �der c r v2,
(2) ` v1 : der c r, and
(3) ` v2 : der c r holds,

then inj r c v1 �r inj r c v2 also holds.

It essentially states that if one value v1 is bigger than v2 then this ordering
is preserved under injections. This is proved by induction (on the definition
of der. . . this is very similar to an induction on r).

The case that is still unproved is the sequence case where we assume r =
r1 · r2 and also r1 being nullable. The derivative der c r is then

der c r = ((der c r1) · r2) + (der c r2)

or without the parentheses

der c r = (der c r1) · r2 + der c r2

In this case the assumptions are

2

(a) v1 �(der c r1)·r2+der c r2 v2
(b) ` v1 : (der c r1) · r2 + der c r2
(c) ` v2 : (der c r1) · r2 + der c r2
(d) nullable(r1)

The induction hypotheses are

(IH1) ∀v1v2. v1 �der c r1 v2 ∧ ` v1 : der c r1 ∧ ` v2 : der c r1
−→ inj r1 c v1 � r1 inj r1 c v2

(IH2) ∀v1v2. v1 �der c r2 v2 ∧ ` v2 : der c r2 ∧ ` v2 : der c r2
−→ inj r2 c v1 � r2 inj r2 c v2

The goal is

(goal) inj (r1 · r2) c v1 �r1·r2 inj (r1 · r2) c v2
If we analyse how (a) could have arisen (that is make a case distinction),
then we will find four cases:

LL v1 = Left(w1), v2 = Left(w2)
LR v1 = Left(w1), v2 = Right(w2)
RL v1 = Right(w1), v2 = Left(w2)
RR v1 = Right(w1), v2 = Right(w2)

We have to establish our goal in all four cases.

Case LR

The corresponding rule (instantiated) is:

len |w1| ≥ len |w2|
Left(w1) �(der c r1)·r2+der c r2 Right(w2)

This means we can also assume in this case

(e) len |w1| ≥ len |w2|

which is the premise of the rule above. Instantiating v1 and v2 in the as-
sumptions (b) and (c) gives us

(b*) ` Left(w1) : (der c r1) · r2 + der c r2
(c*) ` Right(w2) : (der c r1) · r2 + der c r2

3

Since these are assumptions, we can further analyse how they could have
arisen according to the rules of ` : . This gives us two new assumptions

(b**) ` w1 : (der c r1) · r2
(c**) ` w2 : der c r2

Looking at (b**) we can further analyse how this judgement could have
arisen. This tells us that w1 must have been a sequence, say u1 · u2, with

(b***) ` u1 : der c r1
` u2 : r2

Instantiating the goal means we need to prove

inj (r1 · r2) c (Left(u1 · u2)) �r1·r2 inj (r1 · r2) c (Right(w2))

We can simplify this according to the rules of inj:

(inj r1 c u1) · u2 �r1·r2 (mkeps r1) · (inj r2 c w2)

This is what we need to prove. There are only two rules that can be used
to prove this judgement:

v1 = v′1 v2 �r2 v′2
v1 · v2 �r1·r2 v′1 · v′2

v1 �r1 v′1
v1 · v2 �r1·r2 v′1 · v′2

Using the left rule would mean we need to show that

inj r1 c u1 = mkeps r1

but this can never be the case.1 Lets assume it would be true, then also if
we flat each side, it must hold that

|inj r1 c u1| = |mkeps r1|

But this leads to a contradiction, because the right-hand side will be equal to
the empty list, or empty string. This is because we assumed nullable(r1) and
there is a lemma called mkeps flat which shows this. On the other side we
know by assumption (b***) and lemma v4 that the other side needs to be a
string starting with c (since we inject c into u1). The empty string can never
be equal to something starting with c. . . therefore there is a contradiction.

1Actually Isabelle found this out after analysing its argument. ;o)

4

That means we can only use the rule on the right-hand side to prove our
goal. This implies we need to prove

inj r1 c u1 �r1 mkeps r1

Case RL

The corresponding rule (instantiated) is:

len |w1| > len |w2|
Right(w1) �(der c r1)·r2+der c r2 Left(w2)

Test Proof

We want to prove that

nullable(r) implies POSIX(mkeps r) r

We prove this by induction on r. There are 5 subcases, and only the r1 +r2-
case is interesting. In this case we know the induction hypotheses are

(IMP1) nullable(r1) implies POSIX(mkeps r1) r1
(IMP2) nullable(r2) implies POSIX(mkeps r2) r2

and know that nullable(r1 + r2) holds. From this we know that either
nullable(r1) holds or nullable(r2). Let us consider the first case where we
know nullable(r1).

Problems in the paper proof

I cannot verify. . .

5

Isabelle Cheat-Sheet

• The main notion in Isabelle is a theorem. Definitions, inductive pred-
icates and recursive functions all have underlying theorems. If a def-
inition is called foo, then the theorem will be called foo def. Take
a recursive function, say bar, it will have a theorem that is called
bar.simps and will be added to the simplifier. That means the sim-
plifier will automatically Inductive predicates called baz will be called
baz.intros. For inductive predicates, there are also theorems baz.induct
and baz.cases.

• A goal-state consists of one or more subgoals. If there are No more

subgoals! then the theorem is proved. Each subgoal is of the form

J. . . premises . . .K =⇒ conclusion

where premises and conclusion are formulas of type bool.

• There are three low-level methods for applying one or more theorem to
a subgoal, called rule, drule and erule. The first applies a theorem
to a conclusion of a goal. For example

apply(rule thm)

If the conclusion is of the form ∧ , −→ and ∀x. the thm is called

∧ ⇒ conjI
−→ ⇒ impI
∀x. ⇒ allI

Many of such rule are called intro-rules and end with an “I”, or in
case of inductive predicates .intros.

6

