
Theoretical Computer Science 48 (1986) 117-126 
North Holland 

117 

N O T E  

F R O M  R E G U L A R  E X P R E S S I O N S  TO 
D E T E R M I N I S T I C  A U T O M A T A  

Gerard BERRY 
Ecole Nationale Sup~rieure des Mines de Paris, Centre de Mathdmatiques Appliqu6es, Sophia- 
Antipolis, 06560 Valbonne France 

Ravi SETHI 
AT&T Bell Laboratories, Murray Hil~ N Y  07974, U.S.A. 

Communicated by D. Perrin 
Received August 1986 

Abstract. The main theorem allows an elegant algorithm to be refined into an efficient one. The 
elegant algorithm for constructing a finite automaton from a regular expression is based on 
'derivatives of' regular expressions; the efficient algorithm is based on 'marking of' regular 
expressions. 

Derivatives of regular expressions correspond to state transitions in finite automata. When a 
finite automaton makes a transition under input symbol a, a leading a is stripped from the 
remaining input. Correspondingly, if the input string is generated by a regular expression E, then 
the derivative of  E by a generates the remaining input after a leading a is stripped. Brzozowski 
(1964) used derivatives to construct finite automata; the state for expression E has a transition 
under a to the state for the derivative of E by a. This approach extends to regular expressions 
with new operators, including intersection and complement; however, explicit computation of 
derivatives can be expensive. 

Marking of regular'expressions yields an expression with distinct input symbols. Following 
MeNaughton and Yamada (1960), we attach subscripts to each input symbol in an expression; 
(ab+b)*ba becomes (atb2+b3)*b4as. Conceptually, the efficient algorithm constructs an 
automaton for the marked expression. The marks on the transitions are then erased, resulting in 
a nondeterministic automaton for the original unmarked expression. This approach works for the 
usual operations of union, concatenation, and iteration; however, intersection and complement 
cannot be handled because marking and unmarking do not preserve the languages generated by 
regular expressions with these operators. 

1. Introduction 

We study two well-known algorithms for constructing a finite automaton from a 
regular expression. An elegant algorithm due to Brzozowski [6] will be developed 
into an efficient algorithm based on McNaughton and Yamada [11]. Brzozowski's 
algorithm is easily seen to be correct, it accommodates additional operators like 
intersection and complement, and it has recently served as a starting point for 
compiling communicating processes in the Esterel programming language [3] into 
automata [4]. The efficient algorithm is used in fast pattern matchers like egrep, 
distributed as part of the UNIX t operating system. A brief account of grep [14] 

t UNIX is a trademark of AT&T Bell Laboratories. 

0304-3975/86/$3.50 © 1986, Elsevier Science Publishers B.V. (North-Holland) 



118 G. Berry, R. Sethi 

and its cousins, including egrep, appears in [1]. A version of egrep's algorithm is 
described in [2, Section 3.9]. 

The syntax of regular expressions over a set Z of input symbols is (a is a typical 
symbol): 

E::=OlllalE + E l E ' E l E * .  

L(E) denotes the language generated by a regular expression E. L(0) is the empty 
set and L(1) is the set consisting of the empty string e. Note that 0 and 1 are not 
input symbols; they represent the sets of strings ~ and {e}. L(E + F) is the union 
of L(E) and L(F).  L(E.F) consists of strings formed by concatenating a string in 
L(E) with a string in L(F). L(E*) consists of strings formed by concatenating zero 
or more strings from L(E); L(E*) includes the empty string E. 

We write E -- F if L(E) = L(F). The following properties of regular expressions 
will be used without fanfare: 

O+ E m E = E +O, 

O.E =_-Om E.O, 1.E =_ E =_ E.1. 

Using Brzozowski's notation, B(E) stands for 1 if L(E)  contains the empty string; 
otherwise, ~(E) stands for 0. It can be computed from the structure of E: 

8 ( 0 ) = 0 ,  8 ( 1 ) = 1 ,  

8 ( E + F ) = 8 ( E ) + 8 ( F ) ,  

8(E*) = 1. 

8(a)=0, 
8 ( E . F ) = 8 ( E ) . 8 ( F ) ,  

Thus, 8 ( E ) . F  equals F if the empty string is in L(E);  otherwise, B(E) .F equals 
0. Furthermore, E + 8(E) -= E, because E + 0 ---- E and, when E is in L(E),  E + 1 --" E. 

2. Derivatives of regular expressions 

Br'zozowski's algorithm [6] is based on the notion of a 'derivative' of a regular 
expression E with respect to an input symbol a, written a-~E. Informally, if  leading 
a's are stripped from strings in L(E) that start with a, we get the strings generated 
by a-~E. The derivative of aba + bb by a is ba. 

Definition 2.1. Given a regular expression E and a symbol a, the derivative of E by 
a, written a-~E, is defined by 

a -~ = O, a-lO = O, 

a - ~ a = l ,  a-~b=O for b ~ a, 

a-l(  E + F) = a-l E + a-iF, 

a-~(E.F) = a-~E.F + 8(E).a-~F, 

a-l(  E *) = a-IE.E*. 



From regular expressions to deterministic automata 119 

Within expressions, a -1 is treated as a prefix operator with higher precedence than 
+,  •, and * 

Remark 2.2. Additional operators like intersection and complement can be handled 
by adding rules of the form: 

a - l ( E  n F)  = a - l E  c~ a- iF,  a - l ( E  - F) = a - l E  - a-IF.  

Informally, it does not matter if leading a 's  are stripped before or after the operations 
are performed. For example, 

a- l (ab  * n a) =- 1 - (a- l (ab*))  c~ (a - la ) ,  

a - l (ab  * - a) =- b* - 1 -- (a- l (ab*))  - (a - la )  

States in the constructed automaton correspond to regular expressions. There is 
a transition under a from the state for E to the state for a- lE.  The transition under 
a from the state for aba + bb is to the state for ba; the subsequent transition under 
b is to the state for a. It is easier to talk about sequences of transitions if the notion 
of derivatives is generalized from symbols to strings. It is easier to write (ab) - IE  
than b-~(a-~E).  More significantly, the next definition allows us to write w-~E, 
where the string w is any member of a set of strings. 

Definition 2.3. The extension from symbols to the derivative of E by a string is 
defined by 

e - l E  = E, ( w a ) - l E  = a - l ( w - l E ) .  

Within expressions, w -~ is treated as a prefix operator with higher precedence than 
+ ,  ", and * 

Automata will be constructed by explicitly computing derivatives, then derivatives 
of derivatives, and so on, as needed. Convergence is guaranteed by the following 
result from [6]. 

Proposition 2.4. The set o f  derivatives o f  a regular expression is finite, modulo associa- 
tivity, commutativity, and idempotence o f  +;  that is, the set {F[=:lw: F =  w - l E }  has 
a finite number o f  equivalence classes. 

Without associativity, commutativity, and idempotence of + ,  duplicate sub- 
expressions would cause successive derivatives of E = a*(aa)* by a, aa , . . ,  to be 
distinct. These properties allow a sum of expressions to be treated as a set of 
expressions, thereby removing duplicates. 

Algorithm 2.5 (Brzozowski [6]) (Construction o f  a deterministic automaton D accepting 
L (E) ) .  



120 G. Berry, R. Sethi 

start ,,   

Fig. 1. Automaton accepting (ab + b)*ba. 

(1) The states of  D are the distinct derivatives w-lE, for all strings w. Proposition 
2.4 ensures convergence of  this step. 

(2) Construct a t ransi t ion under a from state p to state q if and only if p is for 
derivative w-IE, for some w, and q is for (wa)-lE. 

(3) The state for E is the start state. A state is an accepting state if and only if 
it is for a derivative w-~E, for some w, and 8(w- lE)  = 1; that is, the empty string 
is in L(w-1E). 

Algorithm 2.5 constructs the automaton in Fig. 1. Each state of  the automaton 
is for a derivative of  E = (ab+ b)*ba; the state for w-lE has a transit ion under  a 
to the state for (wa)-lE. 

3. Regular expressions with distinct symbols 

Following McNaughton  and Yamada [11], we mark all input symbols in a regular 
expression to make them distinct. The marks are written as subscripts; a marked 
version of  (ab+ b)*ba is (a~b2+ b3)*b4as, where al and a5 are treated as different 
symbols. 

The construction of  a deterministic automaton D from a regular expression E is 
outlined in Fig. 2. E '  is formed by marking all symbols in E to make them distinct. 
Suppose that an automaton M'  accepts L(E'). We show that unmarking the symbols 
labeling the transitions of  M '  yields a nondeterminist ic automaton M. D can be 
obtained from M by applying the standard subset construction [2, 13]. 

Remark 3.1. The approach of  Fig. 2 does not  extend to regular expressions with 
intersection and complement  operators. Although (ab*)n a =-a, we get (alb2*)n 
a3 ~- 0 because a~ and a3 are distinct. Similarly, (ab*) - a - abb*, but (alb2*) - a3 - 
alb2*. The unmarking homomorphism does not  commute with intersection and 
relative complementation of languages. 

E = E '  = M '  ~ M ~ D 
m a r k  u n m a r k  subset  

symbols  symbo l s  cons t ruc t ion  

Fig. 2. From a regular expression E to a deterministic finite automaton D. 



From regular expressions to deterministic automata 121 

The approach of Fig. 2 works for union, concatenation, and iteration because 
unmarking commutes with these operations on languages. 

Proposition 3.2. Let E' be the regular expression obtained from E by marking all 
symbols to make them distinct. I f  M' is an automaton accepting L(E') ,  then M, a 
nondeterministic automaton accepting L(E),  is obtained by unmarking all the symbols 
labeling the transitions in M'. 

Proof. Let unmark map marked symbols to their original unmarked form. We write 
L(A) for the language accepted by automaton A. 

A structural induction on E establishes that L(E)  = unmark(L(E')). For the basis 
step, note that marking has no effect on 0 and 1, and that unmarking recovers a 
symbol a from its marked counterpart. The inductive step, consisting of cases for 
the operators + , . ,  and *, is not shown. 

For each transition of M '  on a marked symbol, there is a corresponding nondeter- 
ministic transition of M on the unmarked symbol, so M accepts a string w if M'  
accepts a string w' such that w=  unmark(w'). The converse holds as well, so 
L( M) = unmark( L( M') ). 

By construction, L(E ' )=L(M') .  The result L ( E ) = L ( M )  follows by transi- 
tivity. [] 

The main theorem in this section allows each symbol in a marked expression to 
be viewed as a state of an automaton. Figure 3 contains a motivating example for 
the theorem. Each state of the automaton in Fig. 3 is labeled with a symbol 
representing a derivative of the expression (alb2+b3)*b4as. Furthermore, as in 
automata constructed by Algorithm 2.5, the state for C has a transition under a 
marked symbol to a state for the derivative of C by that symbol. By construction, 
all the transitions entering a state are labeled with the same symbol; see, for example, 
the transitions labeled b 3 into the state for C3. All strings that drive the automaton 
from the start state into C3 must therefore be of the form wb3, for some w. By 
construction, if a string wb3 drives the automaton into a state for expression C3, 
then (?3 must equal the derivative by wb  3 of the starting expression Co. Theorem 

start ~ 

~ / /  b3 

d5 

0 
b4 Co = ( a , b 2 + b 3 ) * b 4 a 5  

Cl  = b 2 ( a l b 2 + b 3 ) * b 4 a 5  
C2 = ( a l b 2 + b 3 ) * b 4 a 5  
C 3 = ( a l b 2 + b 3 ) * b 4 a  5 

C4 = a5 
C5 = 1 

Fig. 3. Automaton for (alb2+ b3)*b4a s. 



122 G. Berry, R. Sethi 

3.4 will show that the equivalence between (23 and (wb3)-lCo, for all w, is no 
accident; it follows from the distinctness of all symbols in the expression Co. 

The proof of the main theorem uses the following lemma. 

Lemma 3.3. Given any symbol a, for all strings w, ( wa)-~( E *) is equivalent to a sum 
of  subterms chosen from the set {(va)- lE.E*[wa = uva}. 

ProoL By induction on the length of w. The basis, length 0, follows from the 
definition of derivatives because a-~(E *) = a-aE.E *. For the inductive step, sup- 
pose w = xb. By definition, 

( xba )-1( E*) = a-l(  ( xb )-1(E*) ). 

From the inductive hypothesis, (xb)- l (E *) is equivalent to a sum of subterms chosen 
from {(zb)-~E.E*lxb = yzb}. The operator a -1 distributes across a sum: 

a - l (  ~y ( z b ) - l E ' E * ) =  ~ a- l ( (zb)- 'E .E*) .  
X X = M Z  

Applying the rule for • in Definition 2.1, the right-hand side yields 

~'. ( zba) - lE 'E*+ ~.. B( ( zb ) - 'E) 'a - l (E*) .  (1) 
x = y z  x - - - y z  

Each subterm of the form 8((zb)-IE)  is either 0 or 1. Therefore, the second 
summation in (1) equals a-~(E *) = a-~E.E * if it does not equal 0. All terms in (1) 
are therefore of the form (va)-~E.E *, where wa = uva = xba, so the lemma holds. [] 

Theorem 3.4 (Main Theorem). Let all symbols in E be distinct. Given any symbol a, 
for all strings w, ( wa)-IE is either 0 or unique modulo associativity, commutativity, 
and idempotence of +. 

ProoL By structural induction on E. If  E is either 0 or 1, then all derivatives are 
0. Otherwise, if it is a symbol, then the only possible values for its derivatives are 
0 and 1. In the remaining cases, we use the structure of E to expand (wa)-lE. 

Case 1: E = El + E2. It follows from the definition of derivatives that 

(wa)-l(El  + E2) = (wa) -l + (wa)-lE2. (2) 

Since all symbols in E are distinct, if a is in E~, then (wa)-~E2 = 0; otherwise, a is 
in E2 and (wa)-~E1 = O. This case follows from the inductive hypothesis applied to 
the remaining term in (2). 

Case 2: E = El"E2. An auxiliary induction on the length of w establishes 

(wa)-l(El"E2)=(wa)-IEl"E2 + ~ 6(u-lE1) '(va)-lE2.  (3) 
WQ ~ IoJa 

If  a is in El ,  then only the first term on the right-hand side of (3) survives and the 
inductive hypothesis applies to it. Otherwise, a is in E2 and terms of the form 
8(u-lE~).(va)-lE2 are left. Recall that 8(u-iE~) is either 0 or 1, for all u, and from 



From regular expressions to deterministic automata 123 

the inductive hypothesis,  all subterms of  the form (va)-~E2 are equivalent to either 
0 or some fixed term F, so their sum is also either 0 or equivalent to that fixed 
term F. 

Case 3: E = E~*. From Lemma 3.3, (wa)-~(E *) is equivalent to a sum of terms 
chosen from the set {(va)-lE.E*[wa=uva}; a complete characterization of  
(wa)-~(E *) is not needed. From the inductive hypothesis, each nonzero subterm 
(va)-lE must therefore be equivalent to some fixed term F, so any sum of subterms 
of the form (va)-~E.E * is equivalent to F.E*. This final case holds because, being 
such a sum, (wa)-~(E *) is equivalent to F.E* if it is not 0. [] 

The automaton in Fig. 3 is constructed by a refinement of Algorithm 2.5. The 
new algorithm works with a specific set of  derivatives, corresponding to the distinct 
symbols in a marked expression. Since this set is fixed in advance, convergence of  
the new algorithm is immediate; correctness carries over from Algorithm 2.5. 

Definition 3.5. Let all symbols in E be distinct. For all symbols a in E, a continuation 
of a in E is any expression (wa)-IE ~ O. By structural induction on E, such an 
expression must exist; by the above theorem, all such expressions are equivalent. 
We therefore speak of  ' the'  continuation of a in E to refer to some expression in 
the equivalence class. 

Algorithm 3.6 (Construction of a deterministic automaton M' from a marked 
expression E'). 

(1) M '  has a state for the continuation of  each marked symbol in E'.  
(2) Construct  a transit ion under  a from state p to the state for the cont inuat ion 

of a if  and only if p is for some continuation C and C can generate a string with 
a leading a. 

(3) The state for the entire expression E '  is the start state. A state is an accepting 
state if and only if it is for a continuation C and 8(C) = 1. 

The states of  automaton in Fig. 3 are labeled with continuations of  marked input  
symbols in the expression (albe+ b3)*b4as. For all i, 1 ~< i<~ 5, Ci is the cont inuat ion 
of the symbol marked /, and Co represents the entire expression. Although the 
automata constructed by the new algorithm can have more states--compare Fig. 3 
and Fig. 1-- the  new algorithm compensates by not checking expressions for 
equivalence. The next section Shows that  the continuations in Fig. 3 need not  be 
computed explicitly either. 

4. A fast algorithm 

Algorithm 3.6 can be improved. Since each continuation is uniquely determined 
by an input symbol, a regular expression with n marked symbols will lead to an 
automaton with n + 1 states---a start state and a state for each symbol. Instead of  



124 G. Berry, R. Sethi 

complete continuations, the second step of the algorithm needs only the set of 
leading symbols in strings generated by the continuations. These sets are related to 
'follow sets' defined below. 

Definition 4.1 

f i r s t (E)={alave  L(E)}, followE ( a ) = { b l uabv e L(E)}. 

Expressions of the form E !, where ! is a new endmarker symbol, are used below 
to avoid special cases in the computation of follow sets for the 'last' symbols that 
can be generated by E. If a is such a last symbol, then followE,.(a) will contain !. 

Proposition 4.2. Let all symbols in E be distinct and, for all a, let Co be the continuation 
of a in E. Then, Va: first(Col)=followE,.(a). 

Proof. Brzozowski's [6] observation that every regular expression E can be represen- 
ted as an infinite sum of terms of the form w.w-lE, formalizes the idea that the 
derivative of w-rE is formed by stripping a prefix w from strings generated by E. 
Restating the result for the derivatives of E by strings of the form wa, we find that 

E =-- 8(E) = ~ wa.(wa)-lE. 

From Theorem 3.4, (wa)'-lE is either 0 or Ca, so 

~ ! -  ~(B).!+ y~ wa.Co.! (4) 
(wa)-lE~o 

For all a, symbol a appears just before Co in the right-hand side of (4), sofirst(Co [) 
is a subset of follow~ ,( a ). 

For the converse, suppose b is in follow~,(a). Then, for some u and v, uabv!~ 
L(E!), and from (4) uabv!~L(ua.Co.!). Hence, b must be in first( Ca !). [] 

An algorithm for computing follow sets is given in [2, Section 3.9]. A related 
algorithm is illustrated in Fig. 4. The figure contains a syntax tree for the expression 

/ 
a, {2} 

/ 
• {1,3,4} 

/ 
, { 4 }  
I 

+ {1,3,4} 

• O  

• {!) 

/ 
b, {5} 

b3 {1,3,4} 

b2 {1,3,4} 
Fig. 4. Follow sets for subexpressions of (atb2+ b3)*b4as!. 

t O 

05 {!} 



From regular expressions to deterministic automata 125 

(a, b2+bs)*b4as!, where ! is an endmarker. For clarity, follow sets are written in 
terms of integer subscripts on the marked symbols. The notion of follow sets is 
generalized from symbols to subexpressions represented by nodes in the syntax tree. 
To the right of  each node appears the set of symbols that can follow the last symbol 
generated by the subexpression at the node. Alternatively, the set can be thought 
of  as an attribute inherited by the node. Proceeding top down from the root with 
~, the set at a node is accumulated until the leaf for a symbol a is reached with 
follow~,.( a ). 

The rules used for computing the sets in Fig. 4 are summarized in the next 
proposition. 

Proposition 4.3. Let E be a regular expression with distinct symbols. F, defined by the 
rules below, is such that F(E, {!}) yields a set o f  pairs of  the form ( a, followE:(a)). The 
rules are: 

v( E, + s)  = F(E,, S) u V( E2, S), 

F( E,. E2, S) = F(E,,first(E2 u 8(E.2). S) w F(E2, S), 

F( E,*, S) = F(E, ,first(E,) u S), 

F( a, S) = ( a, S), F(1, S ) = ~ ,  F(0, S) = ~ .  

Clement and Kahn [8] have adapted the above rules to construct a Typol [7] 
implementation. The Typol specification is built up of sequents of the form 
S~-E, : (first, 8, F), where first =first(E~), 8 = rS(EO, and F = F(E1, S). Their rule for 
E," E2 is 

first(E2) u 8(E2)" S~-E1 :(first,, rS~, F,) S~E2: (first2, 82, F2) 
S~-E,'E2: (first, w 81"82, F1U F2) 

Once first and follow sets are computed, Algorithm 3.6 is improved into Algorithm 
4.4 below. 

Algorithm 4.4 (Fast construction of a deterministic automaton M'  from a marked 
expression E'). 

(1) M'  has a start state plus a state for each marked symbol ai in E'. 
(2) Construct a transition from the start state to the state for ai if and only if 

ai ~first(E'); construct a transition from the state for bj to the state for a~ if and 
only if ai ~ followE,:( bi). 

(3) The start state is an accepting state if  and only if  8(E') = 1; the state for a~ 
is an accepting state if and only if ! ~followE,,(ai). 



126 G. Berry, R. Sethi 

5. Discussion 

We no longer need to choose between the simpler and more general approach 
based on derivatives of regular expressions and the efficient approach based on 
marking and follow sets. Theorem 3.4 and Proposition 4.2 relate the two approaches, 
so the derivative approach can be used as the starting point for constructing automata. 
These results also verify the correctness of algorithms based on marking and follow 
sets. 

Regular expressions with union, concatenation, and iteration operators suffice for 
specifying patterns in strings [1, 14]. Additional operators are used in applications 
like protocol validation [5, 9] and communication between processes [3, 10, 12]. 
The idea of marking and unmarking symbols in regular expressions does not always 
extend to additional operators; see the examples involving intersection and comple- 
ment in Remark 3.1. The idea of follow sets can, however, be used even if marking 
cannot. 

Acknowledgments 

We thank A1 Aho, Dominique C16ment, and Gilles Kahn for helpful comments. 

References 

[1] A.V. Aho, Pattern matching in strings, in: R.V. Book, ed., Formal Language Theory (Academic 
Press, New York, 1980 325-347. 

[2] A.V. Aho, R. Sethi and J.D. Ullman, Compilers: Principles, Techniques, and Tools (Addison-Wesley, 
Reading, MA 1986). 

[3] G. Berry and L. Cosserat, The Esterel synchronous programming language and its mathematical 
semantics, in: S.D. Brookes, A~W. Roscoe and G. Winskel, eds., Seminar in Concurrency, Lecture 
Notes in Computer Science 197 (Springer, Berlin, 1985). 

[4] G. Berry, P. Couronne and G. ~onthier, The ESTEREL v2.1 System Manuals, Tech. Rept., Ecole 
des Mines/INRIA, 1986. 

[5] G.V. Bochmann, Communication protocols and error recovery procedures, A CM Operating Systems 
Review 9(3) (1975) 45-50. 

[6] J.A. Brzozowski, Derivatives of regular expressions, £. A C M  11(4) (1964) 4812494. 
[7] D. Clement, J. Despeyroux, T. Despeyroux, L. Hascoet and G. Kahn, Natural semantics on the 

computer, Tech. Rept. No. 416, INRIA, Sophia-Antipolis, 1985. 
[8] D. Clement and G. Kahn, Personal communication, February 1986. 
[9] G.J. Holzmann, A theory for protocol validation, IEEE Trans. Comput. C-31(8) (1982) 730-738. 

[10] J. Katzenelson and R.P. Kurshan, S/R: A language for specifying protocols and other coordinating 
processes, 5th Phoenix Conf. on Computer Communications (1986) 286-292. 

[11] R. McNauthton and H. Yamada, Regular expressions and state graphs for automata, IRE Trans. 
on Electronic CompuL EC-9(1) (1960) 38-47. 

[12] R. MilneL A complete inference system for a class of regular behaviours, J. Comput. System ScL 
28 (1984) 439-466. 

[13] M.O. Rahin and D. Scott, Finite automata and their decision problems, IBMJ. Res. Develop. 3(2) 
(1959) 114-125. 

[14] K. Thompson, Regular expression search algorithm, Comm. ACM 11(6) (1968) 419-422. 


