
IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 18, NO. 4, FOURTH QUARTER 2016 2991

A Survey on Regular Expression Matching
for Deep Packet Inspection: Applications,

Algorithms, and Hardware Platforms
Chengcheng Xu, Shuhui Chen, Jinshu Su, Member, IEEE, S. M. Yiu, Member, IEEE,

and Lucas C. K. Hui, Senior Member, IEEE

Abstract—Deep packet inspection (DPI) is widely used in
content-aware network applications such as network intrusion
detection systems, traffic billing, load balancing, and government
surveillance. Pattern matching is a core and critical step in DPI,
which checks the payload of each packet for known signatures
(patterns) in order to identify packets with certain characteris-
tics (e.g., malicious packets that carry viruses or worms). Regular
expression is the major tool for signature description due to its
powerful and flexible expressive ability. However, this flexibil-
ity also brings great challenges for efficient implementation in
practice. Despite of hundreds to thousands of empirical propos-
als, wire-speed matching for large scale regular expressions still
remains a big challenge. The gap between the matching through-
put and the link speed is widening with the ever-increasing
network link speed and pattern scale. This survey begins with
a full-scale application background of DPI and technical back-
ground of regular expression matching in order to provide a
global view and essential knowledge for readers. We then analyze
the challenges in regular expression matching originated from the
state explosion of finite state automaton used for regular expres-
sion matching. The nature of state explosion is analyzed in details,
and the state-of-the-art solutions are grouped into categories of
methods to relieve state expansion and methods to avoid state
explosion, suggestions are also provided for building compact and
efficient automata in different scenarios. Furthermore, propos-
als employing parallel platforms, including field-programmable
gate array, GPU, general multi-processors, and ternary con-
tent addressable memory, to accelerate the matching process are
introduced and thoroughly discussed. We also provide guidelines
for efficient deployment for each of these platforms.

Index Terms—Regular expression matching, deep packet
inspection, pattern matching, content inspection, survey.

I. INTRODUCTION

MODERN network services increasingly rely on the
processing of payload in packets. These services

use signatures identified from the payload to perform load
balancing, application protocol identification, traffic billing,

Manuscript received February 2, 2015; revised October 20, 2015 and March
16, 2016; accepted May 7, 2016. Date of publication May 11, 2016; date
of current version November 18, 2016. This work was supported by the
National Natural Science Foundation of China under Grant 61379148 and
Grant 61202488. (Corresponding author: Jinshu Su.)

C. Xu, S. Chen, and J. Su are with the School of Computer, National
University of Defense Technology, Changsha 410073, China (e-mail:
xuchengcheng@nudt.edu.cn; shchen@nudt.edu.cn; sjs@nudt.edu.cn).

S. M. Yiu and L. C. K. Hui are with the Department of Computer
Science, University of Hong Kong, Hong Kong (e-mail: smyiu@cs.hku.hk;
hui@cs.hku.hk).

Digital Object Identifier 10.1109/COMST.2016.2566669

quality of service control, and network intrusion detection.
Deep Packet Inspection (DPI) is a key component in this
identification process. Given a set of predefined patterns, DPI
matches them with the payload content byte by byte, and
returns whether one or more patterns are identified in the
content.

In early days, exact strings were used to describe the
patterns in DPI. Classical matching algorithms such as
Aho–Corasick (AC) [1], Wu–Manber [2] and SBOM [3] were
used for fast string matching. However, as signatures were
getting more complicated (e.g., with wildcard characters),
using exact strings is no longer an effective representation.
Regular expression became popular and has been widely used
in network applications and devices. For examples, NIDS (net-
work intrusion detection system) of Snort [4] employs regular
expression to describe half of its matching rules. Another
NIDS, Bro [5], and the Linux application protocol classifier [6]
(L7-filter) directly use regular expression to represent all their
rules. In industry, network security devices and hardware
accelerators on network processors, such as Cisco’s security
system [7], Cavium matching engines [8], and matching accel-
erator on IBM PowerEN processor [9], all support regular
expression matching. Regular expression has also been used in
many other areas such as text editors, programming languages,
search engines, and gene sequence matching.

Finite state machine (FSM, also called finite automaton) is a
state machine that can recognize the same language expressed
by regular expression. They are equivalent in semantics. FSM
is useful in regular expression matching. A FSM consists of
a set of nodes called states and a set of directed edges with
labels connecting the nodes. There is an “initial” state and a
set of “accepting” states. Each accepting state represents one
or several signatures (patterns). The matching procedure is
executed as follows. It starts from the initial state and the
first byte of the payload. Each time it reads a byte from
the payload, it jumps to the next state(s) according to labels
on the edges coming out from the current state. Any time
it reaches some accepting states, we say that this payload
matches the corresponding signatures. In most DPI applica-
tions, automaton-based pattern matching is still the dominating
approach for signature matching. Since every single byte in
each payload must be processed and each byte involves one
to several memory accesses, the matching procedure in DPI is
a computation-intensive and time-consuming task and could be

1553-877X c⃝ 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

2992 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 18, NO. 4, FOURTH QUARTER 2016

a major bottleneck of the whole DPI process. Thus, the over-
all DPI performance depends much on the pattern matching
throughput, i.e., the efficiency of FSM matching.

There are two kinds of FSMs, namely nondeterministic
finite automata (NFA) and deterministic finite automata (DFA).
NFA and DFA are equivalent in expression power (i.e., given
an NFA, we can construct an equivalent DFA accepting the
same set of strings and vice versa) but different in processing.
The most fundamental difference is that, any DFA state has
only one transition going to a certain state for each character
while a NFA state may have multiple transitions to differ-
ent states for the same character. Thus, a DFA has only one
active state at any time, whereas the NFA may have multi-
ple active states. As a consequence, DFA has a much better
O(1) time processing cost per step versus O(n2m) processing
cost for NFA, where m is the number of regular expressions
and n is the average length of a regular expression. On the
other hand, as expected, the conversion from NFA to DFA
may blow up the number of states (state explosion) result-
ing in a space consumption which can be as large as O(2nm).
In contrast, the memory consumption is only O(mn) for the
corresponding NFA. In conclusion, NFA and DFA have com-
pletely opposite features in space consumption and memory
bandwidth requirement.

In practice, due to the advancement in networking technolo-
gies (e.g., cloud computing), link speed of core routers can
exceed 100Gbps, which poses a great challenge for wire-speed
pattern matching. Also, the number of malicious signatures
with the increasing number of network applications highly
extends the number of patterns to be matched simultaneously
(e.g., thousands of patterns), which bring a big challenge to
regular expression matching in terms of scalability and storage.
The conventional memory-intensive DFA cannot meet the scal-
ability requirement and the computation-intensive NFA cannot
satisfy the performance demand. Most of current researches
are hunting for a tradeoff between storage and performance.
The final goal is to perform the matching as fast as DFA while
keeping the storage as small as NFA for handling a large set of
regular expressions. On the other hand, parallel platforms in
commodity network devices like FPGA, GPU, Multi-core pro-
cessors, TCAM are also employed to accelerate the matching
process. Besides, solutions for this problem should meet the
requirement of fast update as rules may be altered frequently.
To protect against DOS, each packet should be processed in
an online manner. No packets should cause processing delay
and congestion.

To achieve the above objectives, hundreds of papers have
been published. Though there are some reviews focusing on
some particular areas, very few surveys have been presented
at a systematic level about this topic. In this paper, we aim at
presenting a systematic review of regular expression matching
for DPI, showing the state-of-the-art researches, identifying
knowledge gaps, and providing guidelines for building effi-
cient and compact components for regular expression matching
in DPI.

The rest of the paper is organized as follows. Section II
presents application background of deep packet inspection,
thus providing a global-view for readers, especially general

readers, to better understand this field. Section III provides
essential technical details for automaton-based regular expres-
sion matching, as well as the goals and challenges in practice.
Section IV presents automata optimization, including analyz-
ing the reasons for state explosion, DFA based compression
algorithms, and scalable FAs to avoid state explosion. Parallel
platforms employed for accelerating regular expression match-
ing are presented in Section V, Section VI provides guidelines
of building efficient pattern matching components for DPI
applications, and Section VII concludes the paper.

II. DEEP PACKET INSPECTION FUNDAMENTALS

Though our focus is regular expression matching technolo-
gies for DPI, it is necessary to give a full-scale background
of DPI for better understanding. In this section, we briefly
review fundamental aspects of DPI, including what DPI is, the
applications of DPI, how DPI works, and the existing surveys
on DPI.

A. What is DPI?

Although deep packet inspection (DPI) technology has
appeared more than twenty years, it is not so easy to make
a workable definition of DPI. DPI contains many Internet
technologies such as firewalls, packet capturing or sniffing
techniques which have been around for a very long time. Here,
we first consider the definition of DPI in Wikipedia [10],
then we make a presentation of DPI from a more popu-
lar perspective. We also try to clarify some misconceptions
of DPI.

Deep Packet Inspection (DPI, also called complete packet
inspection and Information extraction or IX) is a form of com-
puter network packet filtering that examines the data part (and
possibly also the header) of a packet as it passes an inspec-
tion point, searching for protocol non-compliance, viruses,
spams, intrusions, or defined criteria to decide whether the
packet may pass through or if it needs to be routed to a dif-
ferent destination, or, for the purpose of collecting statistical
information.

DPI, as the name implies, involves inspecting the packets
passing a specific network point, which is usually a router
or switch, analyzing these packets deeply, and making some
decisions based on the inspection results. It is called “deep”
inspection because the inspection not only includes the packet
headers but also covers the packet payloads. However, a
common misconception is that DPI only concerns about the
payload parts. A better way to understand DPI is to separate
the fundamental functions of DPI from various applications
based on it [11], as many novices may confuse DPI with
upper level applications, such as bandwidth management, net-
work security, user profiling, etc, which will be discussed in
the next subsection. The basic procedures of DPI are recog-
nition and action which is based on the recognition result.
Recognition is to find the characteristics hidden in these pack-
ets, the characteristics may be application protocols, viruses,
worms, or special format data (phone numbers, credit card
numbers). Then, actions may be triggered by the recogni-
tion results, either logging in network analysis or rigorous

XU et al.: SURVEY ON REGULAR EXPRESSION MATCHING FOR DPI 2993

Fig. 1. Various DPI applications from different perspectives, solid line represents primary promoting party, dotted line means secondary promoting party,
and red line means illegal activity.

discarding in security applications. Recognition is the founda-
tion, and action is relied on recognition results and associated
with specific applications. Both of them will be introduced in
the following subsections. The header-payload confusion [12]
is another common misconception that is worth mention-
ing. Packet header contains essential information, such as
source and destination addresses, for it to arrive the destina-
tion through the network, while the payload carries real data,
for instance, files, images, videos, etc. In network architecture,
both OSI model and TCP/IP model have multilayered head-
ers, then where exactly the payload starts from the point of
view of DPI is not clear. In fact, there is no clear demarca-
tion between header and payload, the data in each level is the
header of data in its upper levels. For example, the Ethernet
part is the header of IP packet, and IP part is the header of
TCP packet. In addition, the inspection starting-point is also
related to specific applications.

B. Applications of DPI

Providing an overall classification of DPI applications is a
difficult and tedious task, as multifarious recognition meth-
ods can be combined with multifarious actions for various
applications. Besides, applications in different levels may be
mixed up, which will also aggravate the difficulty of clas-
sification. Some researches [10]–[14] have tried to classify
DPI applications in different levels or from different per-
spectives. Mueller [11] gave six family groupings of DPI
use cases, namely network visibility and bandwidth man-
agement, user profiling, governmental surveillance, network
security, copyright policing, censorship or content regulation.
Bendrath and Mueller [13], [14] summarized similar applica-
tions, in addition he listed ad injection as a common use case.
Documents in Wikipedia [10] introduce applications from
the perspectives of enterprises, internet service providers, and
governments. Here, we present classical DPI applications com-
bined with corresponding organizations in Figure 1, namely
who deploys DPI for what purposes (applications).

As shown in Figure 1, all DPI applications are based on
recognition/identification, say for protocols, L7 applications or

content-based signatures. Mueller [11] has summarized the fol-
lowing characteristics to be identified: protocols, applications,
URLs, media content, text strings, special format data (e.g.,
credit card number, phone number), viruses, malware and other
cyber-intrusions. Different operators have different require-
ments and concern different aspects. For examples, ISPs are
most concerned about efficiency or money, so bandwidth man-
agement is their major interest, enterprises and institutions care
more about intranet data security, while governments mainly
employ DPI for state security and laws enforcement. Besides,
some special applications may involve multilateral partici-
pation, for instance, government surveillance and censorship
need assistance from ISPs. Next, we will briefly introduce sev-
eral classical DPI applications associated with their economic,
political, or social impacts.

1) Network Security: The original use case for which DPI
was developed for is intrusion detection [15]. With the rapid
growth of online banking, online shopping and eGovernment,
attackers are attracted to break into remote computers or net-
work systems to steal sensitive data for profits. Attackers can
leverage weaknesses of the systems to devise sophisticated
malware for hacking, such as viruses, worms, spyware, tro-
jans and other malicious codes. As shown in some recent
reports [16], [17], malware has increased 26% in 2014. There
were more than 317 million new pieces of malware created last
year, nearly one million per day. Symantec has observed that
malware continues to grow in quality, as well as quantity, and
the global infection rate was nearly 36.51% [17]. DPI equipped
network operators have the capability to detect known mal-
ware before they reach their employees or customers. DPI for
network security combines early IDS and latter IPS (intrusion
prevention system). IDS detects threats and triggers alerts. IPS
takes measures to prevent possible threats (e.g., by terminat-
ing the suspected connections). Active IPS is more likely to
be deployed by smaller-scale enterprise or institution networks
rather than by carrier-grade Internet service providers [11].
Besides outside attackers, hacking the intranet from insiders is
also a serious problem. More attention has focused on prevent-
ing sensitive data from leaving the intranet, which also called
data loss prevention (DLP) [18]. DLP employs DPI technology

2994 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 18, NO. 4, FOURTH QUARTER 2016

Fig. 2. Procedures and typical applications of DPI, including bandwidth management and network security.

to explore sensitive information hidden in normal streams,
and block them from leaving the organizational boundary via
some communication protocols. Network forensics [19] is a
sub-branch of digital forensics related to capturing and stor-
ing information of crimes and instructions for legal evidence
or other forms of law enforcement action. Thus, the boundary
between network forensics and lawful government surveillance
are blur as well.

2) Bandwidth Management: As the rapid growth of net-
working media, file-sharing traffic consumes ever more band-
width. ISPs have a strong motivation to deploy DPI for
bandwidth management [20]. Bandwidth management is the
process of controlling the traffic on a network link to avoid
poor network performance or network congestion. Bandwidth
management relies on traffic classification to classify the traf-
fic into different categories based on the recognized protocols
or applications, then applies mechanisms such as traffic shap-
ing, scheduling algorithms, congestion avoidance to each class
of traffic differently. Typical uses of DPI-based bandwidth
management include prioritizing real-time interactive applica-
tions such as online phone calls and online game, rate-limiting
bandwidth-intensive applications such as peer-to-peer (P2P)
networks, and blocking access to undesired applications such
as P2P in an enterprise environment [12]. Figure 2 presents
typical procedures and usages of DPI, including network
security and bandwidth management. According to the Cisco
Visual Networking Index [22], P2P traffic has grown more than
7 petabytes per month in 2014. One of the major missions of
DPI based bandwidth management focuses on managing P2P
traffic. In particular, P2P file sharing can consume heavy net-
work resources, which will put latency-sensitive services such
as VoIP in danger, and this problem will become more serious
with more and more HD video streams being transmitted in
the networks. On the other hand, P2P also presents potential
business opportunity in content distribution network (CDNs)

to transfer large files like live streaming media and on-demand
streaming media [23]. With DPI’s ability of recognizing P2P
applications, service providers can leverage DPI to endow
latency-sensitive traffics like VoIP or IPTV higher priorities
when the network experiences a heavy load, and allow the
bursting of P2P applications when the bandwidth is affluent,
thus to ensure best QoE for all users. Quality of Service
(QoS) guarantee is another type of DPI-based bandwidth
management, where ISPs appealing customers to subscribe
their services by assuring them that specific levels of qual-
ity will be guaranteed for specific types of traffic like VoIP
and IPTV. A common allegation against DPI based bandwidth
management is that it may breach net neutrality. However,
Mochalski and Schulze [12] argued that traffic management
brings neutrality to the network as the network should be
accessible to every user in a fair manner.

3) User Profiling/Ad Injection: With the advent of online
marketing and advertising, a more sophisticated and economic
method is to push the ads to those who may be interested in
them, namely ad injection. Ad injection relies on the knowl-
edge of individual user profile, which can be obtained by
tracking and analyzing which websites an user is surfing and
what he did in the Internet. For instance, if an advertising
company knows that a particular user is interested in elec-
tronic products, it can push him ads of mobile phones, laptop
computers, Bluetooth headsets even when he is just browsing
sport news. Companies like Google leverage cookies, scripts
or plugins embedded in browsers to aggregate information for
user profiling, then assist advertising companies like Sears and
Walmart by inserting relevant ads into users’ web page based
on their profiles. Yontoo browser plugin earned $8 million
by modifying 4.5 million users’ private Facebook sessions for
ad injection in 2013 [24]. Thomas et al. [25] also revealed
that every day about 5.5% of unique IP addresses that visit
Google services have at least one installed with ad injector,

XU et al.: SURVEY ON REGULAR EXPRESSION MATCHING FOR DPI 2995

Fig. 3. Popular methods of generalized and narrow DPI, our focus is automaton-based regular expression matching.

and about 50870 Chrome extensions contain ad injectors. On
the other hand, as ISPs have the ability to inspect every packet
passing through their devices, they also have a strong eco-
nomic intention to generate comprehensive user profiles with
DPI. However, ad injection may affect the customers’ brows-
ing experience, privacy and security. Chrome received more
than 100,000 complaints in July, 2014, and nearly 20% were
about ad injection [25].

4) Copyright Enforcement: The flourishing development of
online file sharing has urged the copyright holders such as
Sony BMG and Universal Music to seek support from ISPs for
copyright enforcement. DPI serves as an online detection tool
to detect whether the inspected traffic contains copyrighted
materials. Unlike other applications, DPI for copyright inspec-
tion cannot employ traditional bit-match or hash methods, as
it should be able to recognize the fragments of copyright con-
tents in different media formats or compression levels [26].
Audible Magic has been promoted by the music industry for
solving the problem with its fingerprinting technology. Rights
holders employ this software to generate a unique signature for
each protected material, and store them in a registry. When the
media traffic passes through the network, the DPI application
calculates a fingerprint for it, and matches this fingerprint with
the fingerprinting database registered by rights holders. By the
time we are working on this paper, Audible Magic has claimed
to have more than 11 million fingerprints of musics, videos
and software in its Global Rights Registry [27]. However, ISPs
have no motivation or obligation to deploy DPI for copyright
enforcement as the returns, if any, only benefit the copyright
holders, but seldom for the ISPs. The entertainment industry
has tried to solve this issue through lawsuits, interested readers
may refer to [13] and [14] for more details.

5) Government Surveillance and Censorship: Almost all
governments in the world request communication providers
including ISPs to provide surveillance or interception capabil-
ities for law enforcement units and national security agencies.
DPI can make a full-scale surveillance of internet traffic as it
can catch and analyze anything flowing through a network,
and make it known to the governments. For example, the
system can record all the activities of a specific IP address,
e-mail address, telephone number or other user accounts.

However, the government has gone far beyond lawful inter-
ception even in U.S., the National Security Agency (NSA)
deployed PRISM [28] worldwide to collect activities of any
person they are interested in. Bendrath [14] summarized the
legal issues and conflicts between the surveillance from U.S.
government and the privacy of citizens. Government content
censorship is another DPI-based application that blocks illegal
contents flowing in the internet. Rather than a specific applica-
tion or communication protocol, the major concern of internet
censorship is the transmitted content. After classification, ille-
gal contents such as pornography and political dissent may be
blocked. Due to the difficulty and high cost of real content-
based censorship, URL blocking has been the most common
from of censorship [11].

C. Methods and Deployment of DPI

In this subsection, we briefly present general procedures
and methods of DPI. Then, we will point out our key con-
cern. The generalized concept of DPI covers inspection of
both packet header and payload content, where the headers
can be used for protocol or application identification with
their fixed formats or statistics characteristics, and the pay-
load can be used separately or combined with packet header
for content-based recognition, either for traffic classification,
NIDS or other purposes. While in a narrow sense, DPI only
indicates definite content-based recognition, and the recogni-
tion process is implemented by matching the payload with
predefined signatures. Referring to the analysis of [29]–[31],
we summarize popular DPI methods as in Figure 3. Except the
narrow pattern matching method, other generalized DPI meth-
ods, namely port-based identification, statistical analysis and
protocol decoding are mainly used for traffic classification.

Port-based approach is the most traditional method for
protocol identification, which achieves the identification by
simply checking the port fields in TCP or UDP headers as
IANA [32] assigns well-known port numbers for popular pro-
tocols. Due to the high efficiency and immune to encryption,
it is widely used for access control lists (ACL) and firewall
rules [33]. However, this method is considered to be inaccurate
as applications like P2P use random ports, some applications

2996 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 18, NO. 4, FOURTH QUARTER 2016

even use ports assigned to other protocols for deception pur-
poses. Reports [34], [35] revealed that port-based methods can
only recognize 30%-70% of traffic generated by certain proto-
cols. Currently, it is still employed for identifying applications
which always use preassigned ports [36].

Statistical analysis is another payload-independent method
for traffic classification. This approach gathers information
such as port numbers, packet length, transport layer protocol,
inter-arrival time of packets in a flow, flow start and stop times-
tamp, etc to characterize the traffic and estimate which appli-
cation or protocol the traffic may belong to. Researchers may
collect different aspects of information and devise customised
statistical methods [37]–[39] for classification. Machine learn-
ing method goes one step further, which combines statistical-
based method and heuristics-based algorithms for automatic
modeling and analysis. Nguyen and Armitage [40] reviewed
related works prior to 2008, interested reader may refer
to Finsterbusch’s survey [29] for recent machine learning
approaches. Roughly speaking, statistical analysis has a higher
classification accuracy compared to port-based approach.
Statistical method is also insensitive to payload encryption.

Protocol decoding is categorized as a class of traffic classi-
fication methods by Finsterbusch et al. [29], however, in our
opinion it can be viewed as a lightweight pattern matching
methodology as it also involves more or less payload inspec-
tion. It recognizes protocols by the characteristic protocol
headers (magic number, session identifiers, etc) as well as the
protocol behavior, which is usually modeled as a protocol state
machine. Thus, this method relies on the re-establishment of
sessions at application-layer with the captured packets. Though
protocol decoding can achieve high accuracy with low false
negative rate [41], it requires a deep understanding of the
protocol and it is expensive for deployment.

Aforementioned methods are dedicated to traffic classifica-
tion, on the other hand, methods based on pattern matching
cover much more than only traffic classification. Network
Intrusion Detection System (NIDS) is a typical application
of pattern matching based DPI, which compares the pay-
load content with a set of predefined signatures or patterns
to detect malwares like viruses, worms, spyware, trojans hid-
den in the content. As the positions where signatures may
appear are unknown beforehand, it is necessary to implement
a thorough matching of each payload byte. Thus it is much
more inefficient compared with traffic identification applica-
tions, which only need to inspect part of the packet payload
or a few packets of a flow. In pattern matching, intuitively,
the patterns can be described in exact string format. However,
due to the insufficiency in expressive power and flexibility of
exact strings, regular expression has become the main repre-
sentation tool in many applications. Our main focus is also
on regular expression matching for DPI. We are now ready
to briefly introduce several kinds of algorithms for pattern
matching.

Heuristic-based matching algorithms are dedicated for exact
string matching, the main idea is to skip as much payload char-
acters as possible according to some heuristics to accelerate
the matching process. During the matching, a window with
length of m covers the characters waiting to be inspected,

and the matching result indicates the next position the win-
dow should slide to. The heuristic is to find the appearance
of patterns’ prefixes in the window’s suffix, and determine the
next position. Readers may refer to [2] and [42]–[47] for more
descriptions and implementation details about heuristic-based
matching.

Hashing-based algorithms [48], [49] also do not compare the
payload content character by character against the patterns. For
each string pattern of length m, a hash value is precomputed.
By computing also a hash value for the currently inspected
substring of length m in the payload, if it matches the hash
value of any pattern (the matching can be done by binary
search), the substrings will be extracted and compared with
the corresponding pattern byte by byte for verification.

A hashing-based method can quickly judge whether a sub-
string in the payload may match a set of patterns, on the
contrary, a filtering-based approach can quickly exclude char-
acters that will definitely not match a pattern. For example,
if a segment does not contain any two-character substrings
of a pattern, it will never contain this pattern. Snort [4] also
employs filtering mechanism for regular expression match-
ing to exclude streams that contain no segment features of
a regular expression.

Automaton-based approaches are the most widely used
methods for pattern matching, either for string matching or
regular expression matching. A finite state automaton is gen-
erated for the patterns before matching, the automaton contains
an initial state and some final states indicating the match-
ing of some patterns, and other intermediate states represent
partial matching situations. The matching process starts from
the initial state, each time a payload character is sent to the
automaton for state migration. If a final state is visited during
the process, the corresponding pattern(s) match is found. The
classical automaton-based Aho–Corsick (AC) algorithm [1]
was proposed in 1975 for multi-string matching. Although the
theoretical time complexity of AC algorithm is independent
of the pattern set size, the matching speed will slow down for
larger pattern set as the cache locality will become worse for
larger state transition table in practice [30]. Some improved
AC algorithms [50]–[52] have been proposed to reduce mem-
ory requirement for automaton storage. Regular expression
matching also relies on finite state automaton, but the power-
ful and flexible expressive ability brings much more challenge,
which we will discuss exhaustively in this paper.

Up to now, we have introduced multifarious applications
and methods for DPI, and claimed that regular expression
matching is the main focus of this survey. Before we discuss
regular expression matching, we provide more information
about DPI first. As we have clarified, DPI is a method not an
application, different applications implement different deploy-
ments and procedures for DPI, also have different abilities and
requirements for DPI.

For DPI, the first step is packet capture. There are several
hardware combinations like cable splitter and port mirror-
ing for packet capture [53]. Packet capture at hundreds of
Mbps is easy with current commodity platforms and soft-
wares, but it is difficult for higher speed like a few Gbps [54].
Antonello et al. [54] ascribed this to high CPU load, as the

XU et al.: SURVEY ON REGULAR EXPRESSION MATCHING FOR DPI 2997

OS kernel must perform heavy preprocessing tasks for pack-
ets before sending them to the user space. Further, the author
made a comparison for CPU load among popular APIs, includ-
ing Libpcap [55], Libpcap-mmap [56], PF_RFING [57] and
libe1000 [58]. All these software methods employ bypassing
default packet handling mechanism for saving CPU resources
when capturing packets from NIC to the user space. Recent
proposals such as PFO [59], netmap [60], PF-RING-DNA [61]
have shown significant improvement in performance through
customizing packet technologies [62]. Intel also released a
set of libraries and drivers called data plane development kit
(DPDK) for fast packet processing [63]. Schneider et al. [64]
analysed packet capture challenges in Ethernet environments
from hardware aspects, and argued that the inherent mem-
ory and system bus throughput is the main limitation. Based
on this, he proposed to distribute the traffics of higher speed
interfaces to a bunch of lower speed interfaces. In addition,
by optimizing the packet processing architecture and providing
flexible software development, multicore processors and net-
work processors can also achieve high performance. As our
main focus is not packet capture, we refer readers to [65]–[67]
for more comprehensive understanding.

Flow-based inspection or packet-based inspection is another
issue in DPI deployment. A flow means a set of packets that
have the same five-tuple (source IP, destination IP, source
port, destination port, protocol number) which can determine
a unique session. For TCP protocol, if the data length at the
transmitter is bigger than maximum segment size (MSS), then
the data should be cut into multiple segments at transport layer
before transmission. These segments will be sent separately
and reconstructed by the receiver at transport layer. Similarly,
for UDP protocols if the data length is bigger than maximum
transmission unit (MTU), the data will be cut into multiple
packets at network layer during transmission, and these pack-
ets will also be reconstructed by the receiver at network layer.
This means that logical integrated content is distributed in mul-
tiple packets, then the content signatures such as protocols or
malware features may locate across multiple packets. Under
this situation, only individual packet-based inspection is not
able to detect cross-packet signatures. In addition, IP frag-
mentation is also employed for DOS attacks such as ping of
death [68] and teardrop [69] which can cause the system to go
down or reboot when performing IP fragments reconstruction.
Some routers or NIDSs maybe unable to detect these features
or attacks as the lack of IP fragments reorganization ability.

Flow-based inspection is a technique which requires the
reconstruction of the packets before they finally reach the
receiver, thus flow-based inspection can achieve a higher
accuracy than single packet-based inspection. However, flow-
based inspection requires much more hardware resources like
CPU, memory and bandwidth for DPI system as it needs
to maintain the connections among different packets from
the same flow. For TCP packets, this is also called TCP
reassembly which fabricates the fragmented or disordered
packets into an integrated block before sending to the match-
ing engine. Experiments from [70] and [71] both demonstrated
that TCP reassembly takes a major part of the whole work-
load. Thus, there is a tradeoff between inspection accuracy

and performance for flow-based inspection. Libnids [72] and
Tcpflow [73] are two open source programs performing TCP
reassembly. Chen et al. [71] also devised a multicore NPU-
based TCP stream reassembly card to improve the stream
reassembly throughput performance. In a carrier-grade net-
work, the ISP backbone network is a multi-link load-balanced
network, and packets of flows are randomly distributed over
different links. DPI modules deployed over different links
even need extra synchronization to guarantee the accuracy for
distributed flows [62]. Though TCP reassembly is related to
flow-based deep packet inspection, we do not mean to involve
it in this survey as TCP reassembly and pattern matching are
separate procedures, and too much discussion may shift the
readers’ attention. On the other hand, as not all applications
require flow-based inspection for high accuracy and our pat-
tern matching dose not aim at a specific application, we will
ignore the reassembly process in this survey, but we recom-
mend interested readers to refer to [74]–[76] for more details
about TCP reassembly.

In addition, most DPI applications require online real-time
recognition of the traffics and make decisions on how to han-
dle them. For instance, the NIDS is required to recognize if
a packet or flow contains viruses or worms in real time, and
determine whether to forward it or just drop it and gener-
ate reports. However, online DPI is much more challenging
compared with offline DPI, which captures packets to disks
and analyzes them with much longer time constraints. In this
survey, we focus on online deep packet inspection.

D. Existing Surveys

In this subsection, we summarize the surveys [29]–[31],
[40], [53], [54], [77], [78] on deep packet inspection in recent
years, and state clearly the motivations of our survey.

The first three surveys [29], [40], [53] mainly focus
on deep packet inspection technologies for Internet traffic
classification, not mainly on pattern matching technologies.
Nguyen and Armitage’s survey [40] focuses solely on sta-
tistical analysis for traffic classification, which belongs to
the generalized payload-independent DPI method, thus is on
a different topic compared to our survey. Callado et al.’s
survey [53] explains the main techniques and problems in
IP traffic identification, it separates the classification meth-
ods into packet-based and flow-based categories. Also, this
survey also focuses more on the techniques available for
traffic analysis, including sampling, signature-matching and
inference, and only one paragraph is for signature-matching.
Finsterbusch’s survey for traffic classification focuses on
payload-based approaches, namely the deep packet inspec-
tion. The authors present a complete analysis of the most
popular open-source traffic classification modules, including
OpenDPI, nDPI, IPP2P, HiPPIE, libprotoident and L7-filter.
These modules involve pattern matching and protocol decod-
ing approaches for traffic classification, and the evaluation
comprises classification accuracy, memory usage, CPU util-
isation, etc, thus can provide general guidelines to design and
implement these modules.

The following two surveys by Lin et al. [30], [31], review
pattern matching approaches for deep packet inspection, but

2998 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 18, NO. 4, FOURTH QUARTER 2016

they mainly focus on exact string matching not the regular
expression matching. Though they share the same automaton-
based method, regular expression is far more complex and
challenging than exact string matching. Lin et al. [30] classi-
fied string matching algorithms into four categories according
the data structures used in these algorithms. Furthermore, the
author analyzed algorithms deployed in three network con-
tent security packages (ClamAV, DansGuardian and Snort),
and designed an algorithm named CRKBT to enhance the
matching performance. Lin et al. [31] focused more on the
implementation issues of string matching, including the abil-
ity to support multigigabit connections and large volumes
of signatures, which is also the main challenges in regular
expression matching.

There are three surveys [54], [77], [78] that are more sim-
ilar to our survey. But the first two works [77], [78] are
much more lightweighted compared with [54] and our paper.
Also, there are many differences between these papers and our
survey in terms of references, organizations, categories, and
technical perspectives, which we will discuss later in detail.
AbuHmed et al. [77] reviewed the implementation techniques
and challenges of deep packet inspection for NIDS from both
software and hardware aspects. Besides, the author also pro-
vided a simple comparison among existing implementations
till 2007. However, the structure is a little bit confusing and
some important materials are missing both in hardware part
and software part. And it only surveyed researches before
2007. On the other hand, Rathod et al.’s survey [78] only
focuses on finite automata algorithms for pattern matching.
Although this paper was published in 2014, it only cites
10 papers in total and some references may not represent
the development in this area. The author casually divided
finite automatons into three categories, which may not be
comprehensive and detail enough.

Among all the mentioned surveys, only Antonello et al.’s
survey [54] published in 2012 has the same focus as our survey
and is more comprehensive. In their paper, the author first pro-
vided essential technical background, including string match-
ing, regular expressions, finite automaton and the automaton
based matching process. Finite automaton is the core tech-
nique for regular expression matching, thus leading to a quick
understanding of regular expression matching for novices.
Subsequently, the author introduced packet capture support
from operating system and made a comparison of CPU load
among current available APIs for packet capture. Hardware
platforms for packet inspection are also mentioned in this
part, but it is not detailed enough and not a major emphasis
of their paper. However, the advancement on parallel hard-
ware platforms make hardware platform a critical factor in
regular expression matching for DPI. This is also a major
motivation for our paper. In addition, an important platform
called ternary content addressable memory (TCAM) is also
missing in their paper. The section named Optimizing DPI
engines accounts for the core part of their paper, where the
authors discussed FA compression algorithms and classified
them into three categories, namely FA grouping algorithms,
FA transitions compression and FA state space compression.
An evaluation of these FA compression techniques is provided

in another paper of the same author [79]. Finally, the author
concluded the challenges for DPI systems, the challenges are
attributed to the increasing signature sets and data exchanging
bottlenecks of hardware and operating system. Guidelines are
also put forward from hardware level to the user space level
in performing a DPI based traffic classification system.

Although we have the same focus, our survey differs from
Antonello’s survey in a number of ways. First, considering
the multifarious applications of DPI, many novices may mix
up the applications and DPI itself. We present an exhaustive
background to promote understanding, namely which organi-
zation deploys DPI at which network level for what purposes.
Moreover, we conclude methods used for DPI, and clearly
defines our study scope as automaton based regular expres-
sion matching. Though these materials have little relation with
technical details, they are necessary to equip the novices with
a global view. Second, although hardware platform plays an
important role in the matching process, none of the exist-
ing surveys have discussed it in details. This motivates a
comprehensive survey for this topic. In addition, we ana-
lyze FA related techniques from a different perspective. We
attribute the regular expression matching challenge to state
explosion, and analyze the causes of explosion from both RE
characteristics and mathematic perspective. Based on whether
degrading or eliminating the explosion, we roughly classify the
FA techniques into two categories, FA compression methods
and scalable FA methods. In each category, we divide them
into more fine-grained categories according to our taxonomic
method. This is also a main contribution of our survey. Finally,
as the latest meaningful survey is published years ago, many
important researches have been published in recent years, it is
necessary to analyze these new researches to understand the
state-of-the-art development in this area. We believe that com-
bining [54] with our survey, readers may achieve a deep and
comprehensive understanding on regular expression matching
techniques for deep packet inspection.

III. AUTOMATON BASED REGULAR EXPRESSION

MATCHING: TECHNICAL BACKGROUND

In this section, we introduce the technical background for
automaton based regular expression matching. We first present
the notion of regular expression and its use in popular DPI
systems. Then, we explain the relationship between regu-
lar expression and finite state automaton (FSA or FA, also
called finite state machine, FSM), which is the core component
of regular expression matching, and illustrate the automaton
based matching process. Finally, two traditional FSM named
nondeterministic finite automata (NFA) and deterministic finite
automata (DFA) are discussed in detail. Additionally, some
other matching issues are also presented here.

A. Regular Expression

In theoretical computer science and formal language theory,
a regular expression is a sequence of characters that define a
search pattern, namely languages or a set of strings. In the
normal case, a regular expression over alphabet ! can rep-
resent a set of strings in !∗ without enumerating them. It

XU et al.: SURVEY ON REGULAR EXPRESSION MATCHING FOR DPI 2999

TABLE I
COMMON METACHARACTERS AND CORRESPONDING MEANINGS

was first proposed by Kleene [80] in 1950s and has been
widely used in programming languages, text editors, network
security, etc.

Each symbol in a regular expression is either a regular
ASCII character or a metacharacter representing some spe-
cial meanings. Unlike an exact string, a regular expression
can represent a set of exact strings with the expressive power
of metacharacters, while an exact string can only represent one
string, i.e., itself. For example, the expression “.∗a+b” repre-
sents any string containing arbitrary number of a followed by
a b. Some of the common metacharacters are listed in Table I.
We simply classify the common metacharacters into three cat-
egories, namely character class, quantification and position. ‘.’,
‘[]’, and ‘[ˆ]’ belong to the first category, each of them can
match a set of characters. For example, a single ‘.’ can match
any of the 256 ASCII character. Some other metacharacters
not listed in this table can also represent a set of characters,
for instance, ‘\d’ matches a digit, ‘\w’ matches an alphanu-
meric character, ‘\s’ matches a whitespace character, etc. The
quantification metacharacters represent to match the preced-
ing element a specified times, ‘∗’ means 0 to more times, ‘?’
means 0 to 1 time, ‘+’ means 1 to more times, etc, as list in
the table. The preceding element maybe a character, a string or
even a sub regular expression. The other type of metacharac-
ters is position metacharacter, which can specify the matching
position. ‘ˆ’ matches the starting position and ‘$’ matches the
ending position of a string or line. The combination of these
metacharacters can describe complex meanings. For example,
the regular pattern of QQ protocol in L7 is “ˆ.?.?\x02.+\x03$”,
which matches the payload starts with 0 to 2 arbitrary charac-
ters, followed by the ASCII value 02, then 1 or more arbitrary
characters, and ends with the ASCII value 03.

In network applications, regular expression matching is
mainly used for application protocol identification and NIDS,
and a regular expression pattern may represent the unique char-
acteristic of an application-level protocol, a virus, a spam or a
malware. Due to the powerful and flexible description ability
of regular expression, it has been widely used in several open
source DPI applications and commercial DPI engines, and the
trend is still growing. For example, the open source NIDS
of Snort [4] involved no regular expression patten in April
2003, to 1131 REs (February 2006), 13605 REs (February
2014), and the proportion is still in growing. Another NIDS,
Bro [5] and Linux application protocol classifier (L7-filter) [6]

even describe all their patterns with regular expression. In the
commercial DPI systems or components, like Cavium match-
ing engines [8], Cisco’s security system [7], IBM PowerEN
processor [9], etc, all support regular expression matching.

B. Finite State Automaton

Before the introduction of finite state automaton, we pro-
vide some basic concepts about alphabet, string, language and
regular language. The alphabet is a nonempty, finite set of
symbols, here it refers in particular to the 256 ASCII code,
and we often use symbol ! for representation. A string is a
finite sequence of symbols chosen from a alphabet ! and a
language is a set of strings chosen from the same !∗. In other
words, a language is just a subset of !∗ or a superset of !.
Regular languages is the simplest class of the four Chomsky
formal languages [81]. Regular expressions are used to denote
the regular languages, they can represent regular languages and
operate on them succinctly. The regular expression matching
problem is to decide whether a given string is a member of
the language defined by some particular regular expression(s).
In the deep packet inspection scenario, the given string is the
payload of a packet or flow.

The finite state automaton is a mathematical model of com-
putation used to design both sequential logic circuits and
computer programs. It is also a typical tool for describing
regular languages, and it is equivalent with regular expres-
sions in regular language description. More precisely speaking,
for any finite state automata M, there exists a regular expres-
sion that describes the same language as M. On the other
hand, for any regular expression R, there exists a finite state
automaton that accepts the same language as R. There are two
traditional finite state machine, named nondeterministic finite
automata (NFA) and deterministic finite automata (DFA). A
deterministic finite automaton M is a 5-tuple (Q,!,σ ,q0,F),
consisting of:

1. a finite set of states, denoted as Q.
2. a finite set of input symbols, denoted as !.
3. a transition function that takes a state and an input sym-

bol as arguments and returns a state, often denoted as
σ . In the graph form of FA, σ is represented as arcs
between states and the symbol labels on these arcs. If p
and q are states, a is an input symbol and σ (p,a)=q, then
there is an arc labeled with a from state p to state q.

3000 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 18, NO. 4, FOURTH QUARTER 2016

Fig. 4. A NFA accepting regular expressions of abcd+, ab[c-z]e+, bc+da,
and bc+.

4. a start state in Q, denoted as q0;
5. a set of final or accepting states F, and F is a subset

of Q.
The language described by a DFA is the set of strings that

it accepts. Next, we illustrate how a DFA decide to whether
accept or reject a string. For a string a1a2a3 · · · an, the DFA
starts from the initial state q0 and reads the first symbol a1.
Then the σ function is invoked to get the next state, suppose
q1 = σ (q0,a1), then DFA enters state q1, this state is also
called the current active state. Then, the DFA reads the next
symbol a2, and consult the next state that equals σ (q1,a2),
here denoted as q2, and takes it as the new current state.
The process is continuing in this manner until the end of the
string, During the process, the DFA visits a sequence of states
q1q2q3 · · · qn, if qn is a member of F, then the DFA accepts
string a1a2a3 · · · an, otherwise the DFA rejects it. This is also
a general matching process of DFA.

Analogously, NFA is also a 5-tuple (Q,!,σ ,q0,F), and the
only difference between NFA and DFA is the transition func-
tion σ . For NFA, σ takes a state and an input symbol as
arguments and returns a subset of Q, not a single state as in
DFA. This difference also leads to the difference in matching
process between NFA and DFA. For DFA, there is only one
current active state as the σ returns only one state for any state
and input symbol. But for NFA, as the σ returns a set of states,
there maybe multiple states that are active in parallel. Despite
of these differences between NFA and DFA, they can accept
the same language defined by a regular expression, namely
they are equivalent in regular language recognition. Next, we
first discuss the general differences between NFA and DFA in
detail, then introduce the generation algorithms from regular
expressions to finite state automatons.

C. NFA vs DFA

To clearly illustrate this issue, we employ the examples in
Becchi’s dissertation [82]. The NFA and DFA accepting reg-
ular expressions of abcd+, ab[c-z]e+, bc+da, and bc+ are
displayed in Figure 4 and Figure 5 separately. These figures
are graph forms of NFA and DFA, where numbers in circles
are state IDs, arrows with symbols represent labeled transi-
tions, state 0 is initial state and the states with double circle
are final states. State transition table is another general form of
finite state automata when store them in memories. It is a con-
ventional, tabular representation of σ function that take two

Fig. 5. A DFA accepting regular expressions of abcd+, ab[c-z]e+, bc+da,
and bc+.

arguments and return one or a set of values. The rows repre-
sent state, columns represent input symbols, and the returned
values indicate corresponding transition states. Attention that
state transition table is more suitable for DFA rather NFA, as
σ function of NFA is an irregular multi-value mapping.

The matching process takes state 0 as the initial active
state, and process the input symbols byte by byte. For each
step, the NFA reads one symbol and query all the destina-
tion states for current active states and symbol, and takes
these states as active states for next step. A match is reported
each time a final state is visited, indicating that the corre-
sponding substring is accepted by the NFA. For example, the
matching process for input text abcda can be represented as
(0)

a−→(0,1,2)
b−→(0,3,4,5,6)

c−→(0,7,8,9,10)
d−→(0,11,12)

a−→
(0,1,2,14), where the accepted states are underlined. In this
example, three matches are reported, meaning that the corre-
sponding substrings abc, abcd, and abcda are accepted by the
regular expressions. During the process, the active state set
size varies from 1 to 5, and the total number of state traver-
sals is 21. As each state traversal involves at least one memory
access, the matching for string abcda requires at least 21 mem-
ory accesses. In addition, active state set size also provides a
measurement for memory bandwidth requirement and process-
ing time. In some worst situations, all the NFA states maybe
active simultaneously, which means that all the NFA states
should be visited for the next input symbol.

For DFA, as each state has one and only one transi-
tion for each symbol in the alphabet, the size of active
state set is always one during the matching process. For
instance, the matching process of string abcda is as follows
(0)

a−→(1)
b−→(3)

c−→(5)
d−→(8)

a−→(10). As each input sym-
bol only involves one state traversal, this leads to deterministic
and limited memory bandwidth requirement. This makes DFA
more attractive compared with NFA when implementing on
memory-centric architectures.

On the other hand, NFA performs much better than DFA in
storage requirement. In general, the number of NFA state is
linear with the length of corresponding regular expression. But
the conversion from NFA to DFA may bring state expansion
or even state explosion, if a NFA has n states, the correspond-
ing DFA state number can be as large as 2n in the worst
case. For example, the Snort rule “AUTH\s[ˆ\n]{100}” used for
detecting IMAP authentication overflow attack contains over

XU et al.: SURVEY ON REGULAR EXPRESSION MATCHING FOR DPI 3001

TABLE II
TIME AND SPACE COMPLEXITY COMPARISONS OF NFA AND DFA IN VARIOUS STRATEGIES

TABLE III
THE MAPPING BETWEEN DFA STATES IN FIGURE 5

AND NFA STATES SET IN FIGURE 4

1013 DFA states. When compiling multiple regular expres-
sions together, this problem becomes more complex. Table II
concludes worst case comparisons between NFA and DFA for
various strategies.

For m regular expressions, there are two methods to handle
them: compiling them individually into m finite automatons or
compiling them into an integrated automaton [83]. For NFA,
these two methods have no difference both in time complexity
and space complexity. But for DFA, the integrated automaton
can decrease the processing complexity from O(m) to O(1),
which means that one memory lookup is enough to process
an input symbol against all the regular expressions. While, the
number of states may increase from O(m2n) to O(2mn) in the
worst case.

D. From Regular Expression to Finite State Automata

The common way to compile regular expressions involves
three steps: compiling the regular expressions to NFA, con-
verting NFA to corresponding DFA, DFA minimization.

Several algorithms [84]–[86] can be employed to generate
the NFA from a given regular expression. For a set of REs, first
a NFA is built for each RE, then a public initial state is added
to combine these NFAs to an integrated NFA with ϵ-transition.
Generally, the NFA for given regular expressions is not unique.
Becchi and Crowley [87] proposed a variant of the NFA to
DFA conversion algorithm to optimize the traditional NFA,
and the optimized NFA can achieve a smaller state size and
active state set size.

Then the integrated NFA is converted to an equivalent DFA
through subset construction algorithm [88]. In essence, any
DFA state represents a distinct set of NFA states which can
be active at the same time. The algorithm is to explore all
the possible active NFA state sets and mark them with unique
identifiers, namely the DFA state ID. Table III provides the
relationship between DFA states in Figure 5 and NFA states

in Figure 4. It starts from the initial NFA state and keeps
running until all the sets of potentially simultaneous active
NFA states have been found. The following Algorithm 1
describes the classical subset construction algorithm. Queue
and all_subsets are the main structures which separately main-
tains subsets waiting for processing and subsets that have been
assigned DFA IDs. Whileloop and internal forloop are the
main processes in Algorithm 1. For each loop in while, a nfa
set is popped from the queue of unprocessed <nfaset,dfaid>.
Then, in the internal for loop, a nfa set named nfaset_c is
computed for each character c in !. If nfaset_c does not
exist in all_subsets which record all appeared nfa sets, a new
DFA id named dfaid_c is assigned to nfaset_c, and <nfaset_c,
dfaid_c> is added to both queue and all_subsets. Subset con-
struction is very time-consuming as each new generated NFA
subset should be compared with all existed NFA subsets to
determine whether to regard the current NFA subset as a new
DFA state. For example, suppose we already have 999999 DFA
states and corresponding NFA subsets, when a new NFA sub-
set is generated, it should be compared with all the 999999
subsets to see whether it has already existed. In addition, each
subset comparison may relate to O(n) state comparison, where
n is the NFA size. This is very challenging for applications
like NIDS where the patterns need to be updated frequently.

The final step is DFA minimization, which transforms the
given DFA into an equivalent DFA with minimum number of
states. These two DFA recognize the same regular language,
and the minimum DFA is unique. The minimization process
is implemented by removing or merging DFA states without
changing the languages it accepts. Several algorithms are pub-
lished in the automata theory textbooks [86], and Hopcroft’s
method remains the most efficient algorithm [89]. This algo-
rithm has worst case time complexity of O(n log n), and the
average case complexity is even O(n log log n), where n is
the state number of original DFA. Although DFA minimiza-
tion can decrease the state number to some extent, this linear
reduction is negligible in comparison with DFA’s exponential
expansion.

E. Goals and Challenges

1) Goals: The DPI system should satisfy some specific
objectives to support the ever-increasing link speed and pat-
tern scale. Here, we present the design criteria [90], [91] in
DPI system.

1. Deterministic high performance: The system should
provide wire-speed processing rates of multiple tens of
gigabits per second to meet the real time inspection
requirement. In addition, the throughput should be inde-
pendent of input stream and pattern characteristics to
guarantee a deterministic performance.

3002 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 18, NO. 4, FOURTH QUARTER 2016

Algorithm 1 Classical Subset Construction Algorithm
Converting NFA to DFA
Require:

NFA N = (Q, !, σ , q0, F)
Ensure:

DFA D = (Q′, !, σ ′, q′0, F′)
1: Q′←∅; F′←∅; queue ← ∅; all_subsets ← ∅;

nfaset←{q0}; dfaid←0; dfa_num←1;
2: push(queue, <nfaset, dfaid>)
3: all_subsets←all_subsets ∪ < nfaset, dfaid >

4: Q′←Q′∪{dfaid}
5: while queue̸=∅ do
6: <nfaset, dfaid> = pop(queue)
7: for each c∈! do
8: nfaset_c← ∪

s∈nfaset
σ (s, c)

9: if nfaset_c is found in all_subsets’s nfaset domain
then

10: dfaid_c ←dfaid corresponding to nfaset_c in
all_subsets

11: else
12: dfaid_c←++dfa_num
13: Q′ = Q′ ∪ {dfaid_c}
14: if nfaset_c ∩ {F}̸=∅ then
15: F′ = F′ ∪ {dfaid_c}
16: end if
17: push(queue, <nfaset_c, dfaid_c>)
18: add <nfaset_c, dfaid_c> to all_subsets
19: end if
20: σ ′(dfaid, c)←dfaid_c
21: end for
22: end while

2. Scalability of patterns The system should be able to
support patterns of a considerable scale without degrad-
ing the performance substantially, and the scale and
complexity of patterns depend on specific applications.
For network intrusion detection system, the pattern scale
maybe hundreds of thousands. This requires succinct
memory structures of the corresponding automata to
fulfill the memory space limitations.

3. Dynamic update The update performance is a crucial
factor for DPI applications especially for NIDS, because
the attack characteristics change rapidly, the system must
react quickly.

4. Additional functions In practice, millions of sessions
maybe opened concurrently, and these packet flows are
processed in an interleaved fashion, by storing and
retrieving the scanning state for each session. To guar-
antee the wire-speed throughput, small session state is
required to minimize the context switching overhead. In
addition, the system should enable the user to customize
specific subset of patterns to inspect, as in Snort.

2) Challenges: The challenges mainly originate from the
issues between the hardware resource limitations and the
ever-increasing link speed and pattern scale. As DFA has a rel-
atively high matching efficiency, most researches apply DFA

for regular expression matching on memory based architec-
tures. In practice, DFA is organized as a two-dimensional
matrix and stored in the memory. Each time the matching
engine reads an input character, then inquires the matrix once
for the next active state through simple address calculation
based on the current active state and the input character. As
the engine’s calculation speed is always faster than memory
access, thus for a given input sequence, the processing time is
mainly determined by the memory access latency. Thus for a
better performance, the DFA should be stored in faster mem-
ories. However, most fast memories have very small capacity,
usually not more than 10 MB. This capacity can only hold an
original DFA with 20k states, which is much smaller than a
modern DFA.

On the other hand, with the rapid growth of patterns in var-
ious applications, the size of DFA expands in a squared or
even exponential speed. For example, the number of rules in
Snort has been more than 10 thousands, which further widens
the capacity gap between the space of fast memories and that
the DFA memory requirements. As massive redundancy exists
in state transition table of DFA, a natural method is to com-
press the table to fulfill the memory space limitations. The
resulting DFA-like FSM structure is more compact and irreg-
ular than that of DFA, thus demands more memory accesses
for processing a symbol. A responsible compression algorithm
should consider the memory bandwidth requirement as well
as compression ratio, early researches mainly focused on this
direction. Compilation time is another factor which should be
concerned because each time a new NFA subset is built the
subset should be contrasted with all the existing subsets.

Traditional compression methods could achieve compres-
sion ratios over 90% on the basis of DFA, in some cases how-
ever, the explosion even makes the DFA construction infeasible
under the current general computing capabilities. State explo-
sion is the core issue in regular expression matching (REM),
neither memory requirement nor matching throughput will be
a problem without state explosion. To restrain state explosion,
many efforts have been made from several directions as clas-
sified in Section IV-C. These novel FSMs are called scalable
FAs which avoid state explosion with novel compact struc-
tures. However, matching efficiency remains a problem for
these FAs in practice. In a nutshell, the growth in scale and
complexity of patterns bring a tremendous challenge for the
employment of DFA. For practical implementations, a sophis-
ticated FSM must be scalable to support a large set of patterns.
Table IV summarizes FSM solutions and memory/efficiency
results with the increasing pattern scale and complexity. In
the next section, we first analyze reasons for state explosion
from perspectives of both pattern features and NFA relation-
ships, then discuss and category the DFA based compression
algorithms and scalable FAs thoroughly.

On the other hand, the existing link speed of backbone
Internet has reached up to 40 Gbps (OC-768) with the
rapid spread of various applications such as big data, HD
video, cloud computing. And the link speed of current fast
Ethernet has even risen to 100 Gbps, traditional architectures
are unbearable to support for the ever-increasing speed [92].
As mentioned above, the performance is mainly decided by

XU et al.: SURVEY ON REGULAR EXPRESSION MATCHING FOR DPI 3003

TABLE IV
FSM SOLUTIONS AND MEMROY/EFFICIENCY RESULTS

memory access latency. Even with the SRAM of 250 MHz
frequency and 3 cycles latency, a single DFA engine can only
reach 0.67 Gbps, which is two orders of magnitude lower than
requirement. Hence, the throughput is a great challenge for
DPI systems. As parallel platforms, such as FPGA, GPU and
TCAM, are widely used in modern network devices, many
implementations employed these platforms for pattern match-
ing. Each processing unit is regarded as a matching engine,
and multiple streams are processed separately and concur-
rently on these units, resulting a linear speedup in throughput.
Issues about matching acceleration on parallel platforms will
be presented in Section V.

IV. AUTOMATA OPTIMIZATIONS

Pattern matching is a core and critical step, as well as a
bottleneck, in DPI applications. In the past years, substantial
efforts have been put in optimizing automaton-based pattern
matching in order to improve the overall performance of DPI.
This section serves a summary on what have been done in
this aspect including recent results. As we discussed, state
expansion or explosion is the primary obstacle for imple-
menting DFA based regular expression matching. We first
analyze the reasons of state explosion from the aspects of
pattern characteristics and the semantic relationships among
NFA states. Then, the classical and significant DFA compress-
ing algorithms are discussed and categorized, including the
novel researches published in recent few years. These algo-
rithms can reduce memory storage requirement only on the
basis of DFA, but for some scenarios of large or complex rule
sets the DFA generation is even infeasible. Another kind of
automatons can fix this problem, and we named them as scal-
able FAs, indicating that they are able to support complex and
large scale pattern sets. In addition, we also classify them into
different categories as Grouping FAs, semi-determined FAs
and Decomposed FAs in detail. Finally, we also provide the
readers with suggestions of automata optimizations in different
scenarios.

A. Analyzing State Explosion

With the ever-increasing scale and complexity of pattern
sets, there is also an exponential growth in the number of states
if we want to construct a DFA to capture all these patterns.
This explosion even makes it infeasible to construct a DFA
under the current general computing capabilities. We have
tried to compile half (57 regular expressions) of the rules in
L7-filter with Becchi’s compiler called RegEx Processor [93]
in our server, the program kept on running even when the DFA
state number has exceeded 50 million, for which the space
cost was already more than 50 GB. This storage requirement

TABLE V
RAPID STATE INFLATION FOR TYPICAL PATTERNS

Fig. 6. DFA for expression “ˆA+[ˆ\n]{3}B.”

exceeds far beyond most current network equipments. We will
try to provide a detailed description on the reasons for the state
explosion from two perspectives: pattern features and NFA
relationships.

1) Analyzing State Inflation From Perspective of Pattern
Features: Some studies [94], [95] investigated the causes of
state explosion and proposed instructions to avoid or solve it.
State explosion generates from the ambiguity of metacharac-
ters in regular expressions because massive states are needed
to record all possible input sequences. While not all combina-
tions of metacharacters can cause state explosion, Yu et al. [94]
summarized some special models which could lead to rapid
state inflation. Generally, there are two kinds of inflation, infla-
tion when compiling a single expression and inflation when
compiling multiple expressions together.

The former inflation mainly rises from the combination
of length restrictions with wildcards such as ‘.’ and large
character classes which can cause an inflation of polynomial
magnitude or even exponential magnitude. Table V shows the
typical pattern structures which can cause rapid state inflation
in a single rule.

When an expression starts with a start anchor ‘ˆ’ and con-
tains a wildcard with a length restriction k, if the wildcard has
overlaps with the prefix, the expression will have an inflation
of O(k2). Take the expression “ˆA+[ˆ\n]{3}B” as an exam-
ple, the DFA is shown in figure 6. The character class “[ˆ\n]”
overlaps with the prefix ‘A’, hence, the input character ‘A’ can
be matched as part of the prefix “A+” as well as the part of
“[ˆ\n]{3}”. To keep the matching correctness, the DFA must
be able to record all the possibilities. In this example, states
from 1 to 10 are used to omit the ambiguity in the expression.
For an expression with length restriction of k of this type, k2

states are needed to record all the matching paths.

3004 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 18, NO. 4, FOURTH QUARTER 2016

Fig. 7. DFA for pattern “. ∗ A.{2}B.”

Fig. 8. DFA structure for “sub1. ∗ sub2” and “sub3. ∗ sub4.”

Despite the above polynomial inflation, a more rapid infla-
tion of exponential size arises if the expression starts with “.∗”.
In this type, the pattern also has length restriction for the wild-
card which overlaps with the prefix. A DFA example for the
expression “.∗A.{2}B” is shown in figure 7. This kind of pat-
terns have more ambiguity because in any step of the matching
process, the occurrence of ‘A’ can represent the start for a new
matching instance. Thus, any state should have individual tran-
sitions for input ‘A’ which resulting more intermediate states.
For a pattern of this type with a length restriction of k, O(2k)

states are required to omit the ambiguity.
In practice, a more popular situation for state explosion

occurs when compiling multiple patterns into a single DFA
even each of these patterns has no state inflation. This kind of
explosion is mainly caused by “.∗” inside the patterns [95]
which can represent any input sequence. When compiling
multiple patterns together, each “.∗” in a certain pattern
will generate duplications for all the other patterns. Suppose
that we have two patterns expressed as “sub1. ∗ sub2” and
“sub3. ∗ sub4”, each “subi” represents a sub-pattern and the
integrated DFA structure is shown in figure 8. In this figure,
the ellipses denote FAs for the sub-patterns. As we can see,
“.∗” in pattern 1 duplicates the FA for pattern 2, namely the
FA for “sub3. ∗ sub4” inside the dotted circle. Similarly, “.∗”
in pattern 2 generates the FA for pattern 1 inside the dotted
circle. In practice, most of the patterns contain multiple “.∗”,
each “.∗” in a pattern will duplicate FAs for all the other pat-
terns. Hence, the interaction among these patterns causes the
state inflation much more rapid.

2) Analyzing State Inflation From Perspective of NFA
Relationships: Recent studies [96], [97] have exploited the
origin of state inflation from the perspective of relationships
of NFA states. First, we present the relationships of NFA states
and the corresponding DFA states by semantics. Then, we
define the relationships of NFA states and list all three kinds
of relationships. Third, we discuss which kind of relationship
could cause state inflation and how much expansion it causes.

An NFA is often formalized as a quintuple M=(Q,!,σ ,q0,F),
where Q is the set of finite states, ! is the input alphabet, σ

is the transition function, q0 ∈Q is the start state, and F⊆Q is
a set of accepting states. As for a current NFA state s and an
input symbol c, σ may have multiple destinations, meaning
a set of next NFA states. Subset algorithm is to search all
such NFA sets, within which the NFA states could be active
concurrently, and each NFA set is regarded as a DFA state.
In other words, a DFA state represents a set of corresponding
NFA states which can be activated concurrently by some input
sequences.

In a NFA state transition graph, there are many paths from
the initial state q0 to a given state q. Each path is correspond-
ing to an identical input sequence, and all these sequences are
languages recognized by state q, denoted as L(q). The rela-
tionship between two NFA states means the relationship of
their corresponding language sets, which can be summarized
as exclusive, conflict, inclusive according to [97].

1) Exclusive: Two NFA states p and q are exclusive means
there is no interaction between L(p) and L(q), there
exists no string s satisfying that after traversing s, p and
q are both active.

2) Conflict: The conflict relationship should meet three
conditions, for NFA state p and q, L(p) ∩ L(q) ̸= ∅,
L(p) ̸⊂ L(q), and L(q) ̸⊂ L(p), denoting that they
can identify some same strings but neither state can be
represented by the other.

3) Inclusive: States p includes q means that L(q) ⊂ L(p),
denoting any string activating state q will also activate
state p.

All NFA relationships have been listed above, next we
quantify state inflation in DFA generation according these rela-
tionships. As has been discussed, each DFA state represents a
set of NFA states which can be active concurrently, and differ-
ent DFA states represents different combination of NFA states.
Thus, we only need to consider which kind of NFA state rela-
tionship could introduce concurrently active NFA state set. If
any two NFA states are exclusive, no new subset will be gen-
erated during the NFA to DFA conversion, which means that
each NFA state represents a DFA state and the state num-
ber is the same after conversion. If any two NFA states are
inclusive, all the languages sets for all NFA states must have
the relationship of totally ordered set relation. The language
set identified by any combination of NFA states equals to the
smallest language set identified by these states, implying that
no combination of NFA states can identify a new language
set. Thus, no state inflation occurs.

The only exception is the conflict relationship. For a NFA
with conflict relationship for any pair of NFA states, if the
number of NFA state |Q| = 2, the corresponding DFA has three

XU et al.: SURVEY ON REGULAR EXPRESSION MATCHING FOR DPI 3005

states, representing as NFA state set of {qn1}, {qn2} and {qn1,
qn2}. When increasing |Q| to 3, at least three more DFA states
will be generated, denoted as {qn3}, {qn1, qn3} and {qn2, qn3}.
If qn3 is conflict with {qn1, qn2}, an additional state {qn1, qn2,
qn3} will be appended. In general, by adding a new NFA state
which is conflict with all existing NFA states, the number of
corresponding DFA state will increase at least |Q|+1 and at
most |Q|+1+|D|+1, where |D| is the corresponding DFA state
number before adding the new NFA state. According to this
law, a NFA with conflict relationship for any pair of NFA
states will produce at least 3 + (2 + 1)+ (3 + 1)+ . . .+|Q| =
|Q||Q + 1|/2 DFA states and at most 3 + (3 + 1) + (7 + 1) +
. . . + 2|Q|−1 = 2|Q| − 1 DFA states. This result is consistent
with Yu’s analysis in Table V.

B. State Transition Table Compression Algorithms

As DFA has an excellent matching performance with nat-
urally high space complexity, most software methods focused
on DFA state transition table (STT) compression [51], [79],
[87], [98]–[110]. The STT is a kind of standard representation
for FSM. It is a two-dimensional matrix, the rows represent
DFA states and the columns represent input characters. For
an ASCII alphabet, the number of column is 256. The ele-
ment in row i and column j indicates the next transition state
when a current state i receives an input j. Therefore, the space
requirement of a DFA with n states is n ∗ |!|. While in prac-
tice, the STT has massive redundancies from both intra-state
transitions and inter-state transitions.

A sophisticated compression algorithm can achieve a reduc-
tion ratio of more than 95%. The nature of compression is
to trade off time for space, leading to an inevitable sacrifice
in performance. Therefore, a responsible compression algo-
rithm must consider the memory lookup requirements as well
as compression ratio. The current compression algorithms are
divided into three categories: state merging [98], alphabet
re-encoding [87], [99], [105], [106], and transition compress-
ing [51], [79], [98], [100]–[104], [106]–[110]. State merging
and alphabet re-encoding can reduce the number of STT from
state dimension and input dimension respectively, while transi-
tion compression replaces redundant transitions with compact
representations. As state merging and alphabet re-encoding
only work well for small scale DFAs, most researches focus
on compression of transitions.

1) State Merging Algorithms: Becchi and Cadambi [98]
proposed a state merging algorithm which merges states with
some same destinations into one state. State merging reduces
the row number of the transition table. For simplicity, we
employ an example to clarify the main idea.

Figure 9(a) shows a simple DFA, we omit transitions lead-
ing to state 0 for convenience. In the state merging algorithm,
two states can be merged if they have one or more destina-
tion(s) that are the same no matter whether the destinations
have the same input labels. For example, state 3 and state 4
have a destination to state 5, even the labels e and f are not
the same, they can still be merged into one state as shown
in Figure 9(b). To maintain the validity, the author employed
labels to distinguish the original states where label 0 represents

Fig. 9. A simple example for state merging.

state 3 and label 1 represents state 4. Further, transition c.0
means that state 1 transfers to state 3_4 with a label of 0 when
receiving character c while transition e/0 means that state 3_4
with a label of 0 transfers to state 5 when receiving charac-
ter e. As we can see, the merging of state 3 and state 4 creates
another merging opportunity for state 1 and state 2, and they
can be further merged into state 1_2 as shown in Figure 9(c).

As the requirement for merging is very low and dynamic
merging creates more merging opportunities, the algorithm
can get a memory reduction of 90%. However, to achieve
the best compression, the algorithm needs to compute the
weights between any two states in every merging iteration,
which results in a computational complexity of O(n3 log(n))

where n is the number of the original DFA states. In addition,
the data structure of compressed DFA requires three times of
memory accesses in processing an input character.

2) Alphabet Re-Encoding Algorithms: It is observed that
in most cases, some input characters are equivalent which
means that for any given state s, the next destinations for
these characters are always same. To reduce the columns of
transition matrix, alphabet re-encoding [87], [99], [105], [106]
merges equivalent characters and re-encodes the input alpha-
bet. Taking figure 10 as an example, figure 10(a) represents the
STT of an original DFA and figure 10(b) indicates the DFA
after alphabet re-encoding. As we can see, in figure 10(a) for
any given state s, σ (s, a) = σ (s, b) and σ (s, d) = σ (s, e),
which means that a is equivalent with b and d is equiv-
alent with e. Therefore, the alphabet can be encoded as
figure 10(b), where equivalent characters are merged and re-
encoded. For correct addressing, each input symbol should be
mapped to the equivalent character class through a mapping
table. Kong et al. [105] observed that, in many cases a set of
characters may behave equivalently for the vast majority of
states and only a few states behave individually on these char-
acters, which limits the further character merging. For a more
compact transition table, Kong et al. [105] divided the entire
states into multiple subsets without overlapping and generated
an individual mapping table for each subset.

3006 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 18, NO. 4, FOURTH QUARTER 2016

Fig. 10. Example for alphabet re-encoding.

Alphabet re-encoding can get a space reduction linear with
alphabet reduction, which is 40% in this example. However,
in the new DFA, the input characters must be mapped to
the new alphabet before matching, which will increase the
processing procedures. To decrease additional mapping cost,
Brodie et al. [99] devised a hardware circuit called ECI to per-
form the conversion in one cycle. Becchi and Crowley [106]
also proposed to cache the mapping table and pipeline the
access to accelerate the mapping procedure.

3) Algorithms of Transition Compression: The previous
methods perform compression through reducing the num-
bers of rows or columns of the original STT, while in this
subsection, compression methods mainly exploit redundancy
among transitions. Due to the powerful expressive ability of
regular expression, a regular expression may represent thou-
sands of strings and the DFA must track any possible input
sequence. Hence, massive redundancy exists among the transi-
tions. There are two kinds of transition redundancy: intra-state
redundancy and inter-state redundancy. The former redun-
dancy indicates that for a given state, it has only a few
distinct destinations, which is much less than the alphabet
number |!|. Meanwhile, there are massive equivalent tran-
sitions among different states, especially in neighbor states.
Equivalent transitions between states means that these states
have same destinations for some identical characters.

The former redundancy can be effectively addressed by
bitmap encoding [51]. It is observed that, for a given state,
most of its transitions point to a same destination, especially
to the initial state, and this special destination is called default
transition. Tuck proposed a basic bitmap encoding [51] to omit
these default transitions. Instead of recording destinations of
every alphabet character, bitmap encoding only stored unde-
fault transitions and the bitmap was employed to lookup these
transitions. Suppose a state has transitions as figure 11(a),
then we can get a bitmap representation in figure 11(b). In
figure 11(b), the bit in the bitmap indicates whether the tran-
sition is undefault for a given character and the compact
transition table only stores undefault transitions. For an unde-
fault transition, the destination can be indexed by adding the
number of 1s before that bit to the base transition number.
With the traditional transition matrix, the 256 transitions need
1024 bytes while the bitmap encoding only needs 56 bytes.

However, as the existence of same destinations, there is still
some redundancy in the transition table. As in figure 11(b),
both of state 1 and state 5 are the same destinations for
multiple transitions. Becchi and Cadambi [98] introduced an
indirect pointer table to solve this problem. In this scheme, the

Fig. 11. A simple example for bitmap encoding.

Fig. 12. Bitmap encoding with indirect pointer table for figure 11.

indirect pointer table is employed as the index to the transition
table and the transition table only needs to store the distinct
destinations. Figure 12 shows the example for figure 11(b). In
figure 12, the bitmap indicates addresses to the pointer table,
then the corresponding pointers can be used to index the des-
tination states in the transition table. As the alphabet size is
much bigger than the undefault transitions, the space cost of
indirect pointer table can be very small. In figure 12, the space
for pointer table is 12 bits and the total space cost is 396 bits.
In practice, the space can be much smaller than bitmap encod-
ing while the cost is one more memory access for each input
character.

The main disadvantage for bitmap is the counting of 1
before a certain position and multiple memory accesses for a
long bitmap. While this issue can be resolved by dividing the
long bitmap into multiple short bitmaps and appending each
bitmap with additional bits indicating the number of 1s before
it. Thus for each input symbol, only a short bitmap need to
be accessed and the counting is confined in this short bitmap.
Similar with bitmap encoding, Becchi and Crowley [106] pro-
posed indirect addressing for intra-state redundancy. In indirect
addressing, a state identifier is represented with labeled tran-
sitions information, which can allow a single memory access
for every input symbol at the cost of a space-cost encoding
and time-cost hash computation.

Further, Qi et al. [110] proposed a bitmap-based two-
dimensional DFA compression algorithm, which can achieve
high compression from both intra-state transitions and inter-
state transitions. For intra-state compression, the algorithm
uses an advanced bitmap technique which can supports fast
bitmap computation. For inter-state compression, it employs
a 2-stage grouping algorithm which efficiently compress

XU et al.: SURVEY ON REGULAR EXPRESSION MATCHING FOR DPI 3007

inter-state redundancy meanwhile maintaining the intra-state
position information for fast lookup. In addition, the author
also devised a hardware lookup engine for high-performance
lookup.

Antonello et al. [79] proposed another novel compres-
sion algorithm called ranged compressed deterministic finite
automaton (RCDFA) to reduce the intra-state redundancy
without additional memory lookups. The author observed
that there exists large consecutive transitions going to the
same destination state for many states. Rather than using
bitmaps, RCDFA represents these consecutive transitions as
a unique ranged transition, thus involves no additional mem-
ory lookups. Experimental result shows that RCDFA can
achieve 97% compression ratio over the original DFA. Further,
with three optimizations and advanced layouts, a enhanced
RCDFA [109] is proposed to achieve additional compres-
sion or decrease the average number of characters inspected.
The author observed that, there is no need to report all the
appearance of a pattern as the leftmost matched instance suf-
fices. By relaxing this requirement, three optimizations namely
removing nonforward states, removing acceptance state’s tran-
sitions and removing states reachable only from acceptance
states are equipped with RCDFA. In addition, three encod-
ing algorithms named Relative Linear Encoding, Adaptive
Linear Encoding and Hard-Coded Encoding are also presented
for representing (compressed) DFAs. With these optimiza-
tions, the advanced RCDFA can reach a high and steady
compression ratio of around 98% and 32 times performance
on average.

Many compression algorithms [100]–[104], [106], [107]
focused on the equivalent transitions between different states
and a majority of them were based on the research of
Kumar et al. [100]. Kumar et al. proposed a new representa-
tion D2FA to omit equivalent transitions among different states.
Take the transition table in Figure 13 as an example, most
states have the same destination for the identical input and the
only exception is input c for state 2. In D2FA, for a group of
states with equivalent transitions, it only stores equivalent tran-
sitions once in a state and adds a default transition to this state
for the other states. Figure 14 shows the D2FA representation
for Figure 13. In matching process, if there is no destina-
tion for a given character, the current state follows the default
destination without consuming the character until a labeled
transition appears for the input character. As there is only
one default transition for each state, it’s important to choose
appropriate default transitions to achieve largest compression.
Kumar et al. [100] employed algorithms for maximum weight
spanning tree problem of undirected graph and picked some
states as roots to determine the directions of default tran-
sitions. In practice, D2FA can get a significant compression
ratio of 95% at the cost of multiple memory accesses for a
character. As there is no limitations for default transitions,
the default transition paths can be very long, meaning fre-
quent memory accesses for an input character. To guarantee
the worst case performance, a bounded diameter for the span-
ning tree was proposed to limit the length of default transitions,
which made a tradeoff between compression ratio and worst
case performance. However, constructing such a maximum

Fig. 13. Transition table with massive equivalent transitions.

Fig. 14. D2FA representation for figure 13.

spanning tree is NP-hard, and there is no guarantee to generate
a smallest D2FA.

Furthermore, to avoid exhaustively default traversal in
D2FA, Kumar et al. [101] proposed an improved content
addressed D2FA (CD2FA). In CD2FA, each state is associ-
ated with a content label, which contains transition information
indicating which set of characters have labeled transitions for
the states along the default transition path. For a given input
character without defined transition on the current state, a hash
function directly locates the first state in the default path which
has a labeled transition for the character via content label.
With this content label, any input character can be processed
in one memory access by skipping the intermediate states in
default path. As the content label is very small, usually 32
bits or 64 bits, it remarkably limits the bounded diameter
for the spanning tree which will have a negative impact on
compression ratio.

Based on D2FA, Becchi and Crowley [102] proposed a sim-
ple but effective method called backwards labeled transitions
to overcome the inefficient throughput in D2FA. All states
are attached with a depth label which indicates the minimum
number of states to be visited from the initial state to the
states. The backwards labeled transitions only allow default
transitions from big-depth states to small-depth states. This
straightforward limitation achieves a significant improvement
in matching throughput, which requires not more than 2N
memory accesses for an input sequence with length of N. In
this mechanism, any character processing involves a label tran-
sition and the depth increment is not more than 1. For a string
with length of N, the depth increase for all characters will not
exceed N. Meanwhile, as default transition only goes back-
ward, any default transition will cause the depth of the current
state to decrease at least 1. Hence, the number of total default
transitions during processing will not exceed N. Essentially,
the limitation for the direction of default transitions from big-
depth states to small-depth states is to purposefully choose the
states with smaller depth as the roots. It is mainly based on
the observations that most packets match none of the rules

3008 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 18, NO. 4, FOURTH QUARTER 2016

and most transitions will go back to the initial state or their
neighbors during processing. As states with smaller depth are
more likely to be visited, choosing them as roots of default
transitions can avoid massive unneeded transitions. Further,
Becchi and Crowley [106] extended this method by limiting
that the depth difference should be more than k for any default
transitions, which leads to a memory access of N(k + 1)/k
for an input sequence with length of N. With this extension,
the balance of storage requirement and memory bandwidth
of D2FA can be tuned with the factor of k. Experimental
results show that, compared with D2FA, A-DFA can achieve
comparable compression ratio with lower memory bandwidth
requirements or greater compression ratio for a given memory
bandwidth limitation.

As D2FA and above refined automatons are constructed on
the basis of DFA, the generation of DFA is a remaining prob-
lem when state explosion results in an infeasible DFA. To
avoid state explosion in DFA generation, Patel et al. [107]
proposed a “Minimize the Union” framework which constructs
separate D2FAs for each pattern and merges multiple D2FAs
into a final D2FA. As there is no need to generate an integrated
DFA aforehand, this mechanism appears much more space-
and time-efficient. Experimental results show that this method
performs an average of 1500 times less memory and 155 times
faster compared with traditional D2FA. They can even con-
struct a D2FA with over 80000000 DFA states consumes only
1 GB memory space and 77 mins.

Considering that D2FA only achieves transition sharing
among states, Liu and Torng [108] proposed an overlay
automata called OD2FA to achieve further state sharing by
merging multiple DFA states originating from the same NFA
state into a super-state. Each regular expression is compiled to
an individual OD2FA, then all individual OD2FAs are merged
into an integrated OD2FA, thus to avoid the building of the
integrated DFA.

Ficara et al. [103] proposed another compact representation
called σFA which mainly focused on the massive redundancy
between adjacent states. For any state, σFA only stores the
transitions which are different with its parents. The parent rela-
tionship is defined as follows: if state s has any transition to
state t, then state s is a parent of state t. A σFA transition table
for DFA in figure 13 can be represented as in figure 15. Before
matching, all the transitions of initial state is saved in a local
transition set in local memory which represents the transitions
for the current state. The matching process is continuously
getting the next state from local transition set and updating
it with the transitions of the next active state. The update of
local transition set only involves transitions which are differ-
ent with the previous active state and the number of different
transitions between adjacent states is around 10 in practice.
Further, a char− state compression is proposed to reduce the
bits to represent the addresses of states in slow off-chip mem-
ory. The direct benefit is that the update operation can be
completed in one memory access to the off-chip memory. As
the computation and operations on local memory can be neg-
ligible compared with memory access to the off-chip memory,
the performance can be approximated as one memory access
per character.

Fig. 15. σFA representation for figure 13.

TABLE VI
COMPARISONS AMONG CLASSICAL TRANSITION

COMPRESSION ALGORITHMS

σFA combines compression with matching process, thus,
there is no need to additionally save the redundant information.
While for a given character, a state need to store the transition
as long as the transition is different any of its parents’ transi-
tions. In figure 15, the σFA stores transitions of character c for
state 1, 3, 4 as state 2 has the different transition for character
c and state 2 is parents of these states. Thus compression of
σFA is less effective than D2FA. Further, Ficara proposed an
improved σFA called σNFA [104] which can remove the com-
pression limitations while maintaining the same performance
as σFA.

Table VI shows a comparison among some of above pro-
posals. Except for compression ratio and memory bandwidth
requirements, time complexity and space complexity are also
selected as comparison metrics. In general, compared with
transition compression methods, state merging algorithms
have a much higher time complexity of O(n3 log(n)) and
more memory access requirements to process each symbol.
Similarly, alphabet re-encoding algorithms only work well
for small-scale DFAs. Thus, transition compression are more
widely used in practice and we only make comparisons for
these methods. D2FA has the best compression ratio but the
memory access number is uncertain as no limitation has made
to default transitions. A-DFA achieves a certain upper bound
for memory bandwidth by limiting the direction of default
transitions, which will sacrifice a little compression ratio. With
the assistance of char − state compression, σFA performs
well both in compression ratio and memory bandwidth. As
the metrics of compression ratio and memory bandwidth are
associated with regular expression sets and input streams, a
fair and accurate comparison should be made under same
conditions for engaged readers, and we only list the average
performances here.

C. Scalable FAs

An increasing number of researches [90], [94]–[97],
[111]–[118] have focused on state explosion and many new

XU et al.: SURVEY ON REGULAR EXPRESSION MATCHING FOR DPI 3009

kinds of matching automata have been designed to support
large scale pattern matching. Unlike traditional DFAs or com-
pressed DFAs discussed in the previous subsection, these
automata can compile hundreds to thousands of patterns to
an integrated FA without state explosion, which are very use-
ful when DFA is infeasible for large complex patterns. These
automata are more NFA-like, and we call these automata scal-
able FAs to distinguish them from traditional DFA or DFA-like
automata which cannot solve state explosion. In addition, not
like the compressing methods, scalable FAs are not constructed
on the basis of DFA. Besides avoiding state explosion, these
automata must also consider about the matching performance.
Hence, most scalable FAs are combined with special hardware
architectures to accelerate the matching process. In this sub-
section we will introduce the scalable FAs, and the hardware
architectures will be discussed in Section V.

We classify the scalable FAs into the following catalogs,
named multi-FA based on rule grouping [90], [94], [97], [111],
semi-determined FA [95], [96], [112], [116], FA based on rule
decomposition [112]–[115], [117]–[119], etc.

1) Multi-FA Based on Rule Grouping: As analyzed pre-
viously, compiling multiple patterns into a single DFA
may cause state explosion even when all the patterns
have linear state numbers when compiled separately, and
this phenomenon is called pattern interaction. Rule group-
ing [90], [94], [97], [111] is a nature method to group the
rules into multiple groups and generate a DFA for each group
to avoid state explosion. As different combinations of pat-
terns have different magnitude of interactions, the goal of rule
grouping is to divide the patterns interacting seriously into
different groups and leaving the patterns in the same group
with least interaction. The hardware foundation of multi-FA is
multiple processing units such as multi-core processors, GPUs,
and each unit is responsible for a group of patterns. The DFAs
are stored in the local memories of these units, and a stream is
processed on all the units concurrently byte by byte resulting
a time complexity of O(1).

To perform the grouping process, Yu et al. [94] proposed
a greedy heuristic algorithm. Firstly, the algorithm computes
whether the given arbitrary pair of rules have interaction,
which means that the number of states when compiling the pair
of rules together is bigger than the sum of states when com-
piling them separately. Then the results are used to construct
a graph which indicates the interaction relationships between
each pair of rules, in which each vertex represents a rule and
the edge between two states means the interaction between two
rules. Every time when selecting a new rule group, the algo-
rithm selects a rule which has the least interaction with all the
other rules, then, it chooses the next rule which has the least
interaction with the rules in the new group one by one until the
memory requirement exceeds the storage in a single matching
engine. van Lunteren [90] discussed the grouping method for
exact string rules, which has similar ideas with [94]. Further,
Rohrer et al. [111] quantified the rule grouping based on [94].
Yu et al. [94] only defined whether two rules have interac-
tion while Rohrer et al. [111] also computed how much they
interact and the quantization brought an optimal or approxi-
mate optimal grouping. However, the quantization for rules’

interaction relies on the construction of these DFAs, where the
subset algorithm is extremely time-cost.

Previous grouping algorithms all rely on DFA generation,
thus consume much time and memory space. Liu et al. [97]
proposed an algorithm of DFA estimator, which can quickly
estimate the DFA size of a given regular set without generat-
ing the DFA. Based on the DFA size estimation, a grouping
algorithm of RegexGrouper was devised to implement fast
grouping. As DFA generation is saved in this method, it per-
forms much better in time and space consumption. Take the
rules of L7-filter for example, RegexGrouper groups them into
7 DFAs with total states of 15578 with 3.2 minutes, compared
with prior art of 279.3 minutes and 29047 states.

Though multi-FA can relieve state inflation to a certain
extent, a stream must be matched with all the FAs to get the
final result, which results the linear decline in performance
with the number of groups increasing. In addition, rule group-
ing methods have no effects on single rule’s state inflation.
In recent studies, rule grouping is mainly used as auxiliary
methods in pattern matching.

2) Semi-Determined FA: The determination from NFA to
DFA brings a time complexity of O(1) as well as the state
explosion. However, most of the DFA states have never or
rarely been accessed during the matching process. Therefore,
some studies [95], [96], [112], [116] considered controlling
the state explosion by adjusting the degree of determination.
These FAs combine the benefits of NFA and DFA, and we
call this kind of FA semi-determined FA.

To solve the problem of state explosion,
Becchi and Crowley [95] proposed a hybrid FA in [95]. As
discussed, the explosion is mainly caused by the “dot− star”
conditions and character class with counting constraints. To
restrain the expansion of DFA states, the subset construction
stops at the NFA states which correspond to the state of
“dot− star” constraint or the first state of character class with
counting constraint. The construction result is a hybrid FA
constituted of a head DFA followed by multiple independent
NFAs, and the special states connecting the head DFA and
tail NFAs are called border states. Figure 16(a) shows the
structure of a hybrid FA. The hybrid FA has some good
features: 1) the matching process starts with a DFA state; 2)
tail NFA states will keep inactive until the border states are
accessed; 3) there are no transitions from tail NFA states to
head DFA states. During matching process, there is always
an active DFA state and the tail NFA will be activated each
time the corresponding border state is reached. Certainly, the
explosion can be solved by stopping the subset construction
once meeting the special NFA states which may cause state
explosion. As the tail NFA may be activated repeatedly, it is
still a tradeoff between memory occupancy and the memory
bandwidth in nature. To further reduce the worst case in
tail NFA, Becchi also made some improvements. For tail
NFAs introduced by “dot − star” constraints, they can be
further converted to tail DFAs through subset construction, as
shown in figure 16(b). For tail NFAs introduced by counting
constraints, extra counters are imported to replace the massive
NFA states used for counting. In addition, the tradeoff can be
adjusted by controlling the size of head DFA.

3010 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 18, NO. 4, FOURTH QUARTER 2016

Fig. 16. Hybrid FA example.

To achieve expected results, the rules for matching must
satisfy some features. For example, for a long complex pat-
tern, the counter constraint or “dot− star” should not exist in
the head or front of the pattern, otherwise, the corresponding
hybrid FA will have a long complex NFA or the pattern will
make a big contribution to state expansion. Kumar et al. [112]
proposed another similar hybrid scheme, which split the pat-
terns into frequently visited prefixes and rarely visited suffixes,
and the prefixes are compiled as a DFA for fast pattern
matching. The main objective is to generate a simple prefix-
DFA, which can process most streams without activating the
suffix-FAs. Furthermore, the splitting position is determined by
computing the activation probabilities of different NFA states
with training traces, which is more purposeful than Becchi’s
method.

Above two mechanisms both exploited hybrid FAs with a
fast prefix-DFA and multiple associating slow suffix-NFAs with
the assumption that most benign streams can only visit a small
prefix portion of patterns in NIDS. However, it is vulnera-
ble as attackers can easily construct malicious packets which
activate the suffix-NFAs quickly and remain activation among
these suffix-NFAs. Yang proposed another kind of novel semi-
determined FA named SFA in [96]. The author proved that
state explosion is caused by conflicting NFA states. The goal
of SFA is to separate these conflicting states into p constituents,
each constituent is compiled to a DFA which is called cDFA
and transitions exist among different cDFAs. Figure 17 shows
an exemplified SFA structure. These p cDFAs work in par-
allel and each of them has an initial state. Upon receiving
an input character, each cDFA will take a transition inside
itself and at most one transition to each of other p−1 cDFAs,
which means that each cDFA may have p next active states
when processing a character. Yang defined priority for states
in the same cDFA, hence, there is only one active state any-
time in a cDFA. The transitions inside a cDFA is deterministic
and transitions among cDFAs are nondeterministic. SFA sep-
arates time complexity of a single NFA to multiple cDFAs
running simultaneously and cooperatively. In fact, it is also a
grouping method, but this grouping is more purposeful and
precise compared with grouping in last subsection. The meth-
ods in last subsection group with unit of regular expression
and different groups have no relationship. While for SFA, the
grouping works with unit of NFA state, and different groups
have connections. However, when encountering a NFA with
a large number of conflicting state pairs, the corresponding
SFA will have massive cDFAs, resulting a significant decline
in performance.

A recently proposed TFA [116] is a real sense of
semi-determined FA between NFA and DFA. In traditional

Fig. 17. Structure for an exemplified SFA.

automatons, the current matching situation is represented as
a DFA state or a set of NFA states which can be as more
as the total NFA state numbers. While in TFA, the substitu-
tion is a set of TFA states with upper limitation of b, where
each TFA state is represented as a combination of selected
NFA states. A Set Split Table is generated to map each DFA
state (represented as NFA state set) to the corresponding TFA
state set. For each input symbol, multiple active TFA states
inquires their next NFA states simultaneously, then these NFA
states are combined to index the corresponding TFA states as
next TFA states. With well-designed encoding, the TFA state
number can be orders of magnitude lower than that of DFA
while limiting active states to a upper bound of b. In con-
clusion, TFA achieves balance of memory space and memory
bandwidth by exploiting sophisticated combinations of NFA
states. Compared with other scalable FA solutions, the struc-
ture and matching process are more regular, which means that
TFA is more suitable to deployed on parallel platforms for
acceleration. However, TFA construction involves a time cost
NP-hard Set Split Problem, moreover, the algorithm relies on
the generation of an integrated DFA.

3) FA Based on Rule Decomposition: As analyzed above,
state explosion is mainly caused by metacharacters of wild-
card or character class with closures such as “.∗”, “[a− z]∗”
and character class with counting constraints. Some stud-
ies [112]–[115], [117]–[119] proposed attaching additional
variables or instructions to states to record the matching
process instead of using DFA states to represent all the
possible matching sequences. We call this kind of FAs as
decomposed FAs.

A wildcard closure or character class closure in a pattern
can match both the same pattern and the other patterns. Thus,
multiple partial matches should be recorded to cover all kinds
of input sequences, and each combination of multiple partial
match requires a DFA state for representation. When multiple
patterns with closures are compiled together, the combination
number of multiple partial matches can expand exponentially.
Kumar et al. [112] proposed a History based Finite Automaton
(H-FA) which attaches some states with additional variables
to record key events when matching, such as a closure caused
by “.∗”. There may be multiple transitions from a state labeled
with the same character, while only one transition will be taken
based on the variables. At the same time, the variables will
be updated during matching process. Take two simple patterns
“ab[ˆa]∗c” and “efg” as an example, the corresponding NFA,
DFA and H-FA are shown in Figure 18. The DFA has 10 states
while the H-FA has only 7 states and a flag. The flag has two
states, 0 or 1. The transition from state 0 to state (0, 1) will

XU et al.: SURVEY ON REGULAR EXPRESSION MATCHING FOR DPI 3011

Fig. 18. Corresponding NFA, DFA and H-FA for patterns
“ab[ˆa]∗c” and “efg.”

trigger the unset operation, and the transition from state (0, 1)

to state 0 will trigger the set operation. In fact, the flag with
state 1 means that the matching process meets the sequence of
“ab” followed by characters of “[ˆa]”. When the current state
0 receive the character ‘c’, the next transition will relay on
the state of the flag, if the flag state is 0, the next transition is
state 0, otherwise, the next transition is state (0, 3). The H-FA
can accept same sequences as the NFA and DFA, while it has
fewer states than DFA and only need access one state for each
input character. For character class with counting constraints,
DFA also needs large states to simulate all the possible com-
binations. Kumar introduced counter mechanism to deal with
such issues, which generated a H-cFA on the basis of H-FA.
Take the patterns “ab[ˆa]{4}c” and “efg” as an example, the
corresponding H-cFA is shown in figure 19. In this figure, a
counter is responsible for the counting constraints. The tran-
sition from state (0, 1) to state 0 set the counter value to 4,
and the positive counter is decremented by one for each input
character. The corresponding DFA need 20 states for these two
patterns, while the H-cFA only needs 6 state, which is even
less than NFA states.

Similarly, Smith et al. [113], [114] built a formal model
XFA [113], [114] for this kind of finite automaton. A XFA is
a 7-tuple (Q, V, !, σ , U, (q0,v0), F), where V is a set of
variables, U is per-state update function Q×V→V which is
also called instructions defines how the variables are updated

Fig. 19. H-cFA for “ab[ˆa]{4}c” and “efg.”

on states, (q0,v0) is the initial state and initial variable values,
F⊆Q×V is the accepting combinations of state and variable
values. An improved feature compared with H-FA is that
any state for a given character only has one transition. The
construction algorithm first compiles each pattern to individ-
ual XFA, then combines them to an integrated XFA. While
the combination operation may cause massive variables and
instructions replicating among states, resulting the XFA with
large variables and instructions per state.

H-FA and XFA are the representative solutions for decom-
posed FAs, however, some inherent weaknesses still exist in
practice. First, they require human expert to assist automa-
ton construction, which is inefficient and error-prone. Second,
the complex matching process makes it hard for ASIC imple-
mentation. Third, the auxiliary variables and instructions will
be replicated multiple times when compiling multiple patterns
into an integrated FA.

On the basis of H-FA and XFA, some novel methods for
wildcard or character class closures [115], [117] and count-
ing constraints [118] have been proposed in recent years.
Wang and Li [115] also proposed to partition a complex
pattern into multiple simple segments and record their con-
nections in a compact table. While this method only works
for explosion caused by “.∗”. Further, Wang et al. [119]
extended this method to a complete algorithm PaCC (Partition,
Compression, and Combination). First, each regular expression
is partitioned into multiple segments without semantic overlap-
ping, thus to guarantee the semantic equivalence. Then, these
segments are compiled into individual DFAs with specific
compression method. A small and compact relation mapping
table (RMT) is employed to record the relationships of these
segments which are represented with DFA states. Experimental
results show that with the selected Snort and Bro rule sets,
PaCC consumes proportional memory space and achieves 1.7
Gbps per core on a HP Z220 SFF workstation.

Recently, Yu et al. [117] pointed out limitations of labels
for closures in traditional XFA. First, for patterns like “prefix.∗
suffix”, there should be no overlapping between prefix and
suffix, as XFA matches prefix and suffix in parallel. Second, for
patterns like “prefix[ˆc1. . .ck]suffix”, if an excluded character
ci occurs in the suffix, erroneously match or mismatch may
appear for some sequences. For these deficiencies, the author
proposed to attach minimum number of labels on generic state
transitions to keep functional equivalence. In addition, to avoid
massive replications of labeled transitions when merging mul-
tiple patterns, the logic associated to labels are moved from

3012 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 18, NO. 4, FOURTH QUARTER 2016

TABLE VII
COMPARISONS AMONG DIFFERENT KINDS OF SCALABLE FAS

transitions to states by adding some jumping transitions for
equivalence. Further, two optimizations named label forward-
ing and label splitting are proposed to reduce the complexity
of the automaton. Experimental evaluation shows that, the
proposed automaton provides better memory space consump-
tion and bandwidth requirement than multiple DFA, better
worst-case guarantee than hybrid-FA and H-FA, and can also
represent the patterns that not supported by traditional XFA.

For wildcard or character class with counting constraints,
a counter is introduced to restrain state expansion. However,
a single counter cannot guarantee full match especially when
wildcard or character class overlaps with the prefix. Take a
single pattern “. ∗ a.{3}b” as example, a single counter will
miss all the three matches in sequence “aaaacbbb”. In fact, a
new counter should be allocated anytime the matching process
matches the prefix of counting constraints to avoid missing
any match. Upon processing a character, all activated counter
instances need to be updated, resulting massive memory band-
width consumption. Becchi and Crowley [118] made some
improvements by recording the difference of the instance with
its previous instance rather than the exact value. As the dif-
ferences are fixed, only the first counter instance need to be
updated for each character, and when the biggest counter com-
plete the counting, the value of next counter is calculated
with the difference. In addition, some proposals for count-
ing constraints implemented on reconfigured hardware will be
discussed in Section V.

Finally, combined with [119], we make a general com-
parison among the three kinds of scalable FAs as listed in
Table VII. State explosion is the main issue in practice, thus
following discussions are made under conditions of large pat-
tern sets. As grouping methods need to generate a DFA for
each pattern group, the time cost and memory requirement is
very high if the group number is small enough. In addition to
DFA generation, grouping process also makes a great contri-
bution to time consumption. Accordingly, efficient DFAs also
result in a high matching performance. By comparison, hybrid
methods only need to generate part of the DFA, which brings
significant savings to time and space consumption. Meanwhile,
hybrid FAs can achieve relatively high performance for most
benign streams. Decomposed FAs perform best in time and
space complexity, but they can not provide satisfactory perfor-
mance as lots of labels and counters need to be accessed and

updated during matching. In addition, automatic construction
is more difficult for decomposed FAs compared with grouping
and hybrid methods.

V. HARDWARE ACCELERATION

In hardware implementations, the architecture can be
divided into two categories, field-programmable gate arrays
(FPGA) based architecture and memory based architecture.
Existing studies mainly implement NFA or NFA-like FSM on
FPGA based architecture while DFA or DFA-like FSM are
applied on memory based architecture. In FPGA implemen-
tations [120]–[132], each state is mapped to a circuit, and
the natural parallelism in hardware circuits can be exploited
to overcome the concurrent accesses required by NFA. But
FPGA does not support fast dynamic updates, so it is not
applicable in network security applications where signature
rules are altered frequently. Memory based architecture can be
defined as a processing unit with a memory unit, where the
processing can be ASICs, Single Instruction Multiple Data
(SIMD) processors or GPUs, network processors, and gen-
eral purpose microprocessors. The memory unit is used to
store the SST of FSM, while the processing unit is respon-
sible for packet inspection. Every time an input character
arrives, the processor inquires the STT in memory for the
next active state(s). DFA or DFA-like FSM is more suitable
for this model as it has a deterministic O(1) time cost. And for
a given input sequence, the matching speed is only determined
by memory access latency. While most high-speed memo-
ries have a capacity of not more than 10 Mbyte, which is
far less than needed, and they are very expensive in general.
Oppositely, latencies for large capacity memories are orders of
magnitudes longer, which will severely decrease the matching
performance. Current researches exploited massive parallelism
in GPU [96], [133]–[141], NPU, General multi-core proces-
sors [142]–[148], TCAM [149]–[154] to hide the memory
access latency. In practice, thousands to millions of streams
are processed at the same time in coarse-grained parallelism.
When the current being processed stream is blocked due to
long memory access latency, the matching engine switches
to the next stream rapidly. The matching speed for a single
stream is not improved but the overall throughput is raised to
hundreds to thousands times by these means. Some researches

XU et al.: SURVEY ON REGULAR EXPRESSION MATCHING FOR DPI 3013

TABLE VIII
IMPLEMENTATION ALTERNATIVES FOR SIGNATURE MATCHING

even designed dedicated ASICs [90], [91], [155]–[160] com-
bined with special FAs and matching mechanisms for a higher
improvement.

Smith et al. [137] provided a qualitative comparison
among these architectures for pattern matching, as shown
in Table VIII. Among these platforms, ASICs provide the
highest performance and area/engergy efficiency, but they
have high system design cost and poor flexibility. FPGAs
provide a better flexibility compared with ASIC, but they
achieve lower speeds and consumes much more power. On
the other hand, general purpose microprocessors has the best
flexibility and lowest design cost, but they also achieve the
lowest performance. GPUs/SIMDs and network processors
perform medially among these architectures. Network pro-
cessors like Cisco QuantumFlow, IBM PowerNP, Intel IXP
target on a superscalar architecture with network-specific
functionality to increase efficiency without sacrificing design
cost or programmability, and minimize non-recurring cost.
Smith et al. [137] Both network processors and GPUs/SIMDs
utilize massive multi-threading resource to excavate the
packet-level parallelism to hide memory access latencies. But
compared with the one single instruction on many data streams
in GPUs/SIMDs, network processors perform inefficiently as a
set of identical instructions are executed on many data streams
repeatedly and independently. In the following subsections,
we will introduce the merits and disadvantages of the archi-
tectures, and analyze their suitability in regular expression
matching.

In general, software solutions generate sophisticated FAs
and appropriate representations which sacrifice performance
for the reduction in storage. While hardwares provide plat-
forms and matching mechanisms for the software solutions,
and excavate potential improvement in performance. The
links between them are storage organizations and matching
mechanisms.

A. FPGA Based REM

NFA based REM requires to maintain a large set of con-
current active states, which brings a big challenge to the
memory bandwidth. While, the inherent massive parallel logics
in FPGA provide an appropriate platform for NFA to achieve
high throughput matching. In 1982, Floyd and Ullman [120]
first proposed to translate an NFA to integrated circuits.
Sidhu and Prasanna [121] later proposed one-hot encoding
scheme to represent NFA states on FPGA, and devised logic
structures for basic grammars (as shown in figure 20), which

Fig. 20. Logic structure for (a) single character (b) N1|N2 (c) N1N2 (d) N1*.

laid the foundation for NFA based REM on FPGA. Further,
Lin et al. [122] extended the logic structures implemen-
tation for other five metacharacters on the basis of [121].
Yang et al. [123] improved the NFA construction algorithm
to generate a modular NFA which can be more conveniently
translated to FPGA circuits. Yang placed the flip flop after
logic gate rather than before it to overlap latencies of character
matching and state transition for a higher clock rate.

Despite the inherent high parallelism in FPGA, there
are also some inherent challenges in practice. 1) inabil-
ity of supporting large scale patterns as the limitation
of hardware resources, 2) inefficiency in throughput when
encountering with large scale and complex patterns, because
more patterns occupy more circuits which will cause the
decline in chip frequency, 3) time-consuming for updating
patterns, because any rule changes will cause recompila-
tion of automaton and the time-cost resynthesis of circuits,
4) unable to support multiple sessions concurrently. As hard-
ware resource utilization and throughput are main issues in
FPGA based REM, current researches can be classified into
speed-oriented algorithms [124]–[126] and resource-oriented
algorithms [127]–[132]. Speed-oriented algorithms mainly
relied on multi-stride NFAs to process multi-character per
clock, while, multi-stride NFA would definitely cause the
inflation of NFA which requires more hardware resources.
Resource-oriented algorithms explored more compact hard-
ware representations including more compact structures for
NFA, more efficient implementations for complex syntaxes

3014 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 18, NO. 4, FOURTH QUARTER 2016

Fig. 21. Parallel processing architecture for Hogwash NIDS.

and shared circuits for different patterns to improve resource
utilization. A higher utilization would be benefit for both chip
clock and scalability in patterns.

In speed-oriented algorithms, Cho et al. [124] first proposed
an architecture to process multi-character per clock. Cho et al.
indicated that traditional simple firewalls can only provide lim-
ited security as they only check the packet header, and higher
security would depend on multi-layer rule based inspection.
It first checks the fields in the packet header, then performs
computation-intensive pattern matching process on the pay-
load part. However, most of the existing rule based software
firewalls implemented on general purpose CPUs inspect the
rules one by one, leading to inevitable performance degra-
dation with the increase in the number of rules. The author
devised a parallel inspection mechanism for the Hogwash fire-
wall system [161] based on FPGA, as shown in Figure 21.
Hogwash was a lightweight NIDS which employed 105 signa-
ture rules to block about 95 percent attacks in 2002. The 32-bit
packet stream is dispatched to all rule units concurrently, and
each rule unit is responsible for a specific Hogwash rule. It
first checks the packet header with the predefined rule header,
if matched, the payload data is sent to the content pattern
match logic for further pattern matching. In addition to the
parallelism of rule processing, four bytes are compared con-
currently each time in the content pattern match stage, thus to
highly improve the overall throughput. The system achieved
a throughput of 2.88 Gbps on the Altera EP20K series FPGA
chips. But it only worked for exact string matching, also it did
not implement the TCP reassembly function.

Yamagaki et al. [125] proposed a novel NFA construction
algorithm which iterated the traditional algorithm k times to
generate a k-stride NFA. The experiments were targeted on
Altera Stratix II (EP2S180) FPGA [162] with 2691 Snort regu-
lar expressions containing no quantifiers, and the results show
that the 1-stride NFA achieves a throughput of 1.25 Gbps,
while the 4-stride reaches 3.63 Gbps at the cost of 20% more
LUTs. T.S.H [126] utilized block memory on FPGA to devise
a NFA consuming q characters per clock, the results on Xilinx
FPGA (Virtex 6) with snort REs also report a similar through-
put of 3.2 Gbps, but neither the number of patterns nor pattern
characteristics is provided.

Resource-oriented algorithms can be classified into
NFA reduction [127], [128], implementations for com-
plex syntaxes [129]–[131] and circuits sharing for sub-
patterns [122], [129], [132]. Košař and Kořsenek [127]
proposed to divide NFA states to conflicting states and no-
conflicting states, which are then mapped as NFA and DFA,
and the DFA part are stored in block memory. Experiment
results on groups of L7 and Snort signatures show that,
NFA-Split architecture reduces more than 38% of LUTs and
more than 43% of flip-flops for all selected sets of regular
expressions only at the cost of a few kilobytes of memory.
Košař et al. [128] improved NFA reduction algorithms before
mapping it to FPGA, and results show that it was able to
decrease the number of LUT-FF pairs by 65.55% for Snort
ftp signatures.

Despite of NFA reduction, many studies emphasize on opti-
mizing implementations for complex syntaxes especially for
character class with counting constraints. Traditional meth-
ods for repetitions were duplicating the sub-expression circuits
multiple times which was too luxury to implement on FPGA.
Bisop et al. [129] exploited Xilinx shift register lookup
tables (SRL16) to implement single character repetitions.
Experimental results show that this method can support 500
REs from Snort v2.4 using 25K logic cells, and achieves 2
Gbps throughput on Virtex2 device and 2.9 Gbps on Virtex4
device. Further, Faezipour and Nourani [130] introduced a new
basic building block to handle repetitions for arbitrary sub-
expressions rather than just a single character, while it might
have uncertainty when encountering with overlaps between
adjacent character classes. Simulation results verify that this
approach achieves 40% area savings for the entire Snort v2.7
set without sacrificing the performance. Wang et al. [131] pro-
posed a counter based algorithm named MIN-MAX to handle
repetitions of complex character classes, where the massive
circuits were replaced by counters in block memory. It is
proved that MIN-MAX also supports overlapped matching
when REs are inherently collision free or safe. A case study
on subset of Snort REs shows that, 74% memory bits can be
saved compared with conventional NFA-based designs.

Sharing sub-expression circuit is another way to save cir-
cuits, Bispo proposed prefix sharing in [129], while infix
sharing and suffix sharing is hard to implement because the
sharing circuits must remember the before matching paths.
Lin et al. [122] and Hieu et al. [132] exploited implementa-
tions for infix and suffix sharing. Lin et al. [122] argued that
his proposal can achieve an average of 28% in area reduction
on Snort rule sets and 38% on the patterns from the industry
company Trend Micro. In addition, the circuit delay is also
improved as it reduces the fan-out load of the payload input
and routing complexity, the approach contributes to an aver-
age of 22% in circuit delay reduction both on Snort rule sets
and Trend Micro sets. Hieu et al. [132] proposed an efficient
NFA-based regular expression matching engine (ENREM) on
FPGA, the ENREM employs a novel infix and suffix sharing
architecture with several optimizations to reduce the required
circuit area. The experimental results with Snort rule sets
on Xilinx Virtex-II Pro XC2VP-50 FPGA show that, com-
pared with traditional approaches ENREM can reduce 42%

XU et al.: SURVEY ON REGULAR EXPRESSION MATCHING FOR DPI 3015

TABLE IX
CURRENT RESEARCH PROGRESS ON FPGA PLATFORMS

LUTs and 32% FlipFlops while maintains throughput from
1.45 Gbps to 2.35 Gbps.

For all the related studies, the credible throughput for a
medium rule set based on FPGA circuits was not more than
10 Gbps. Table IX presents current research progress on FPGA
platforms in recent several years.

B. GPU Based REM

With the rapid deployment of GPU in various scientific
applications, some proposals [96], [133]–[141] targeted GPU
as REM platform for its massive hardware parallelism (more
than 1000 threads) and high memory bandwidth (almost 100
Gbps). The nature is to utilize the massive threads to hide
latencies caused by global memory accesses. Firstly, we will
introduce the architecture of GPUs, mainly NVIDIA GPUs
with the programming model of Compute Unified Device
Architecture (CUDA). Then, the general REM process on GPU
and the main issues are discussed. Finally, we will evaluate
the related works, and provide guidelines for building good
REM engines on GPU platforms.

1) Introduction to GPU Architecture: GPU is comprised of
a set of streaming multiprocessors (SMs) where each SM is
a multiprocessor with multiple processores running in single
instruction multiple data (SIMD) mode. A unit of work issued
from the host CPU to GPU is called a kernel, and the kernel is
executed as many different threads organized in thread blocks.
Each multiprocessor can execute multiple thread blocks, and
they are further organized into wraps. Each wrap is a potion
of active group that contains same number of threads, and the
threads from a same wrap are executed by one multiprocessor
in a SIMD mode. Further, multiple active wraps are scheduled
in time-sliced mode, thus to fully utilize the computational
resources of GPU.

The processors within a same SM share the instruction unit,
thus they can execute the same instruction simultaneously
just through assigning different execution context to differ-
ent threads. But when any control flow instruction leads the
threads to different execution paths (eg, due to the different
outcomes of a conditional branch), a wrap divergence occurs.
The wrap divergence can highly reduce the overall throughput,
because the threads must be serialized, and the threads goes
back to the same execution path only when all the threads
reach to the same end [133].

The layered memory of GPU is consisted of low latency
on-chip shared memory (each for a SM), high latency off-
chip global memory, constant memory, and texture memory.
The shared memory can be manipulated explicitly by the pro-
grammer, and threads in the same block communicate with
the shared memory and threads in different blocks have no
interaction. The constant, texture and global memory can be
read or write by the host computer, but the content is persis-
tent across kernel launched by the same application [134]. In
addition, as texture and constant memory are cached, reads
from them are much faster than the global memory.

2) Matching Processes: In REM, GPU is the coprocessor
of CPU. CPU is responsible for pattern compilation, pattern
deployment, packet receiving and transferring. CPU sends the
compiled FSM and packets to GPU, GPU focuses on pat-
tern matching and transfers the matching results back to CPU.
Refer to [133], we devised a figure, as shown in Figure 22, to
provide a classical matching process on GPU platforms, Next,
we will discuss these processes in detail.

The first step is to collect packets from network interface
and transfer them to GPU memory. Considering the overhead
of transferring each packet separately, small transfers are often
merged into a larger one and transferred to the GPU in a
batch. In addition, packets need to be organized into groups
according to their five-tuples (source IP, destination IP, source
port, destination port, protocol number), because applications
like snort organize the patterns in groups and each packet only
need to matched with the patterns that have same five-tuples.
The transfer becomes complex when the signature in a TCP
stream cross through multiple packets, then the TCP stream
reassembly function is required to reconstruct tcp stream as
in modern NIDS. In this situation, a thread needs record the
partial matching results and keep on processing the subsequent
packets from the same stream sequentially.

The second step is pattern matching on GPU, and this
involves the deployment of automatons and packets, and the
configuration of parallel matching process. As has declared
above, wrap divergence would highly decrease the overall per-
formance, it is crucial to control the divergence as less as
impossible. The AC algorithm in string matching and DFA in
regular matching are suit for this architecture, because each
time they read a byte and inquire the transition table to move
to the next state, there is no divergence during the matching
process. The deployment of DFA state transition table and

3016 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 18, NO. 4, FOURTH QUARTER 2016

Fig. 22. A classical implementation of regular expression matching for DPI on GPU platform.

packets is another issue needs attention, and texture memory
performs better than global memory for two main reasons.
First, texture memory can be read in a random mode, which
is suit for DFA matching as its irregular access across the
transition table, while the accesses in global memory must
be coalesced [163]. Second, texture memory is cached, which
largely reduce the latencies when cache hit occurs. But when
state explosion occurs, the global memory also should be
selected for automaton storage.

Accesses to packets are regular and sequential, so multiple
bytes can be fetched once to avoid latencies and bandwidth
consumption. While, accesses to automaton are irregular and
random, because state migration is erratic. To fully utilize the
high memory bandwidth, hardware controller tries to coalesce
smaller accesses from different threads into fewer and larger
accesses [135]. The limitation is that, the coalesced accesses
must lay in the same naturally-aligned 256-byte area, thus how
to organize the automaton and matching algorithm to meet the
limitation is another main design issue.

Among current researches, many parallel mechanisms have
been proposed on GPU platforms, which will be discussed in
the next subsection detailedly. A classical method is to assign a
single packet to each thread. Each thread block contains same
number of threads and processes equal number of packets in
a batch target. A minor disadvantage is that, the packet length
may vary in the same thread block, thus all threads must wait
until all threads have finished. The final step is to transfer the
matching results back to the host CPU. Matching results for

each packet will be written in specified positions and copied
to host memory when the kernel finishes.

3) Researches: Gnort [133] proposed by Vasiliadis is the
first prototype of GPU based intrusion detection system. The
multi-pattern AC matching algorithm [1] is implemented on
NVIDIA GeForce 8600GT card (32 stream processors orga-
nized in 4 multiprocessors, operating at 1.2 GHz with 512 MB
of memory) and Intel Pentium 4 processor (3.4 GHz, 2 GB
memory), and the system reaches a maximum throughput of
2.3 Gbps with 1000 Snort string patterns whose size varied
from 5 to 25 bytes. While AC is only useful for exact string
matching, the complex regular patterns are left to CPU for
processing. Furthermore, the author also realized that current
motherboards supported multiple GPUs, thus it was feasible to
build the clusters of GPUs to achieve faster intrusion detection
systems.

Latter, Vasiliadis et al. [134] extended the architecture of
Gnort for supporting both string and regular expression match-
ing. The author indicated that exact strings could not fulfill
the description of signatures completely in current NIDS for
two reasons. First, strings are unable to accurately describe
the attack characteristics, this may increase the number of
false positives. Second, the same string literal maybe shared
among multiple rules, which would also bring false positives.
On the contrary, regular expressions are much more flexible
and expressive than simple strings, they can support a much
wider attack signatures, thus they are widely used in NIDS,
spam filtering, and virus scanners applications.

XU et al.: SURVEY ON REGULAR EXPRESSION MATCHING FOR DPI 3017

Each rule in Snort NIDS is composed of two parts, the
rule header and rule options. The rule header describes the
packet header informations such as source and destination
IP addresses, ports, transport layer protocols, as well as the
actions when matched, while the rule options mainly describe
the payload signatures. There are two main fields in rule
options, content field for string matching and pcre field for
regular expression matching, and early versions of Snort only
support string matching. Each rule is compiled separately in
Snort NIDS, thus it had to match a given packet against all the
regular expressions that fulfill the packet header one by one.
To reduce the number of regular expressions to be matched,
Snort employs string matching to pre-filter the regular expres-
sions that can not be matched. Take the following rule for
example, “alert tcp any any -> any 21 (content:“PASS”;
pcre:“/ˆPASS\s*\n/smi”;)”. The ’PASS’ in content field is
an exact sub-string of the pcre field, thus the packets match
the regular expression of ‘/ˆPASS\s*\n/smi’ must contain the
‘PASS’ string. In other words, if the content field is not
matched, the pcre part could be never matched. Snort extracts
fixed string in each regular expression and compiled them into
an integrated FSA, then only those rules whose content field
are matched require further regular expression matching.

Vasiliadis et al. [134] adopted the same matching mech-
anism, string pre-filter is conducted in CPU, and GPU is
responsible for regular expression matching. But not all regu-
lar expressions are processed on GPU, it compiles each regular
expression to a separate DFA with the upper limitation of
5000 states (remaining expressions are processed by CPU with
NFAs). Regardless of the packet transfer overhead, the system
reaches at most 16 Gbps with an NVIDIA GeForce 9800 GX2
card (two PCBs, each is an Geforce 8800 GTS 512) and regu-
lar expressions of Snort 2.6 deployed in texture memory. The
author also evaluated the overall performance of the Snort IDS,
although the overall performance only reaches 800 Mbit/s, it
is still 8 times higher than the CPU implementation. Further,
even matching each packet with 20 regular expressions, the
overall throughput can remains over 700 Mbit/s on GPU.

Vasiliadis et al. [136] also explored the performance effect
of different memory hierarchies on a new Fermi architec-
ture GPU, named GTX 480, and some valuable experiments
were concluded on this device as follows. First, when fetching
packets from GPU global memory, 16B per time per thread
results in a significant increase for processing performance, as
it greatly reduces the number of memory transactions. Second,
when the thread number is moved from 12288 to 16834,
a throughput degradation is observed, thus the thread num-
ber of 12288 is a good configuration for GTX 480. Third,
both texture and global memory are equipped with caches in
Fermi architecture, thus utilizing both of them can reach a bet-
ter performance. In fact, the experimental comparisons show
that global memory fit better for state table accesses, while
packet accesses performs better on texture memory. Finally,
the scheme achieve a throughput of 6.49 Gbps for small pack-
ets and 29.7 Gbps for full-payload packets with pure-DFA
solution.

Smith et al. [137] analyzed the characters of GPU from
memory, control-flow and concurrency, demonstrating that

GPU is suit for REM. DFA is most suit for GPU acceler-
ation as it has no divergence in searching phase, but DFA
has the state explosion problem. Smith et al. [137] imple-
mented a matching prototype system on G80 GPU with both
DFAs and XFAs representation for three signature sets of FTP,
SMTP and HTTP from both Cisco Systems [164] and Snort,
and compares with multiprocessors of Pentium4 and Niagara.
Results show that, GPU solutions can achieve an average
8.6× and 6.7× speedups for DFAs and XFAs. However,
Yu and Becchi [138] later indicated that XFA is only suit for
regular expressions that can be broken into non-overlapping
sub-patterns.

Cascarano et al. [135] proposed a novel NFA based match-
ing engine named iNFAnt on GPU. As NFA has no state
explosion, large and complex rule sets such as Snort and L7
can stored in small texture memory. In addition, massive hard-
ware parallelism can be employed to track the active NFA
states to offset the traversal cost for each input symbol. To
efficiently coalesce memory accesses, the author designed a
sophisticated NFA representation called symbol-first represen-
tation where transitions were stored as <source, destination>
and sorted by the triggering symbol. In the matching algo-
rithm, each packet is assigned to a different thread block for
coarse-grained parallelism. For a given symbol, each thread in
the related block is responsible for a transition of this symbol
for fine-grained parallelism. As transitions for the same symbol
are adjacent in memory, the accesses can be easily coalesced.
The traversal algorithm omits much divergence in traditional
NFA matching process, and exploits all the available band-
width efficiently. The experiment compares iNFAnt on an
nVidia GeForce 260 GTX graphics card with HFA [95] on a
4-core Xeon machine running at 3 GHz, with a simple http set,
a moderate Snort 534 set [165] and the complex L7-filter set.
The throughput of non-stride NFAs are comparable to though
lower than HFAs, but with the assistance of multistriding and
self-loop optimizations, they performs much better than HFA
solutions. However, the overall throughput only reaches about
1.5 Gbps for Snort534 and 1.0 Gbps for L7-filter at most.

Zu et al. [139] declared that they solved the limitations
of iNFAnt, namely the poor worst-case behavior and unpre-
dictable performance. The main idea is divide the overall NFA
states into compatible groups, where states in the same group
can not be active concurrently. This idea is similar with the
SFA [96] proposed by Yang. But as we have analyzed, it is
a huge task as the classification involves the exploration of
all possible NFA activations, namely the DFA generation pro-
cess. Thus, it is only suit to small and simple rule sets without
state explosion. Therefore, the comparisons with iNFAnt is not
unfair only on small and simple rule sets.

Lin et al. [140] proposed a novel parallel exact
string matching algorithm named Parallel Failureless Aho–
Corasick (PFAC) on GPUs. To efficiently exploit the massive
parallel resources, the author introduced a series of optimiza-
tions, including reducing the latency of transition table lookup,
reducing global memory transactions, eliminating output table
accesses, coalesced writing to the global memory, avoiding
bank conflict of shared memory, and enhancing communica-
tion between CPU and GPU. The experiment was conducted

3018 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 18, NO. 4, FOURTH QUARTER 2016

on NIVIDIA GTX580 GPU with string patterns from Snort
V2.8 and input traces from DEFCON [166], and the per-
formance reaches a throughput of 143.16 Gbps, 14.74 times
higher than the baseline system with original AC algorithm
on 4 cores of Intel Core i7-950. However, this algorithm only
works for exact strings matching.

Yu and Becchi [138], [141] indicated that most current GPU
based solutions aim at achieving good performance on small
rule sets, and iNFAnt is the first proposal that can be eas-
ily applied to pattern sets of arbitrary size and complexity.
The author focused on the regular sets with practical com-
plexity and size, and explored the advantages and shortages
of different automaton implementations based on GPU. By
observing that only several NFA states are active in most
processing steps and NFA states can be divided into com-
patible groups, Yu applied three optimizations to the original
iNFAnt, as detailed in [138]. Further, the matching efficiency
of grouping DFAs (uncompressed) [167] and the compressed
A-DFA [106] are analyzed detailedly from algorithmic per-
spective, and an enhanced compressed DFA is proposed to
reduce warp divergence and thread underutilization of com-
pressed DFA. Final experiments were conducted on CPU (Intel
Xeon E5620) based NFA and DFA, and GPU (NVIDIA GTX
480 GPU) based NFA, optimized NFA, DFA, compressed
DFA, enhanced compressed DFA, with different level of pat-
tern sets and trace sets. Results show that the original DFA
outperforms other solutions for its computation regularity, and
it is scalable to the number of packet flows that processed in
parallel. However, it is not scalable to complex and large rule
sets, as the space requirement may far exceeds the capacity of
GPU memory. In addition, throughput of these solutions are
all below 0.3 Gbps for the tested rule sets.

In a nutshell, GPU is an available device for REM as high
latencies can be hidden by massive threads. The limitations
for GPU are divergences in searching phase and memory
access coalescence, both of which are related to automaton
representation. DFA and NFA have opposite characteristics in
automaton size and matching divergence. The authentic per-
formance [138] for large complex rule set based on GPU is
not more than 0.3 Gbps.

C. General Purpose Multi-Core Processors Based REM

Multi-core processor is a basic and widely used parallel
platform. Though the number of parallel execution units is
orders lower than GPU, multi-core processor has much more
hardware resources for each unit, such as caches, registers,
higher clock frequency, and more flexible execution model.
Thus, it is convenient to employ the multiple cores as parallel
matching engines for pattern matching.

A straightforward method to exploit parallelism is to assign
one flow to each execution unit, and multiple flows are pro-
cessed in parallel and independently. Scarpazza et al. [142]
implemented a DFA based pattern matching system on IBM
Cell Broadband Engine processor, which contains 8 process-
ing elements called SPE. Each SPE is comprised of a SIMD
processor, some registers, local store memory (256KB), etc.
As the main memory cannot be accessed directly by SPE,

only the local store memory can be used for STT storage.
Each SPE is assigned a distinct flow for matching, paral-
lelism exists between different SPEs for different flows. In
addition, the author further exploited the SIMD characteristic
to process 16 flows in parallel on one SPE, which achieved
another 2.51 times performance improvement than sequential
processing. As local memory is very limited, the throughput
can reach 40 Gbps for small DFAs with not more than 1500
states. For larger DFA sizes, it needs assistance of dynamic
STT replacement from main memory, which will cause serious
performance degradation.

Further, Jiang et al. [143] proposed a similar parallel archi-
tecture called Parallel DFA (PDFA). As in traditional parallel
matching algorithm, the DFA is stored in an identical memory
module, which can be accessed only once every time. When
multiple access requirements from different engines arrive at
the same time, these accesses must be processed in a sequen-
tial manner. Jiang devised a mechanism to split the DFA into
multiple partitions and mapped them into different memory
modules which can be accessed concurrently. Thus, multiple
accesses can be distributed to different modules to extract the
potential parallelism in memory access. The experiments for
Snorts web rule set and L7-filter reaches a throughput of only
about 1 Gbps.

The above articles [142], [143] exploited parallelism among
different flows, modern researches [144]–[147] also focused on
parallelism inside the same flow. In traditional methods, the
characters in a flow must be processed one by one, because the
current state can be only achieved from the previous state and
character, thus the time complexity is definite O(n) for input
size of n. Holub and Štekr [144] firstly proposed to divide a
flow into multiple chunks without overlapping, each core is
assigned a chunk and the chunks are processed in parallel.
Except for the first chunk, no core knows the initial state for
its chunk. Thus, each chunk must assume all the DFA states
as initial states and makes mappings to all the corresponding
final states which will bring huge computation cost. Then, the
partial results are joined to achieve the final state. The speedup
is O(|P|/|Q|) where |P| is number of cores and |Q| is the num-
ber of DFA states. This means it is effective only when DFA
state number is less than the core number. To break the limi-
tations of large assumed initial states, the author exploited the
k-local characters of the DFA. K-local automaton means that,
any state will transfer to the same state for an identical string
with length of k, and all k-length strings have this feature. If
a chunk is assigned additional k last characters from the pre-
vious chunk, it is easy to get the definite initial state without
assumption. Though the parallel run of k-local DFA can reach
a speedup of O(|P|), it is apparently rare to encounter such
kind of DFAs in practice.

Instead of employing all states as initial states for a chunk,
Luchaup et al. [145], [146] proposed a speculative parallel
pattern matching (SPPM) approach which only speculatively
selects a definite state as initial state for all the chunks. The
observation is that a few hot states are destination states for
most transitions, the access frequencies are orders of mag-
nitude than other states. In addition, each processing unit
should keep a history buffer to save all the traversal states

XU et al.: SURVEY ON REGULAR EXPRESSION MATCHING FOR DPI 3019

corresponding to each character of its chunk. The validation
process is sequential from first chunk to last chunk. For a
given chunk, the validated last state of its previous chunk is
compared with the assumed initial state. If equal, the specula-
tion is right and the last state in its history buffer is a validated
state. Else, the chunk should be rematched from the right state
until the current state for a character is equal to the state in
the same position of the history buffer. If this happens, the
rest characters need not to be rematched and the last state is
still a validated state. The worst case is that a whole chunk is
rematched, but this rarely happens. Performance gains from
quick validation rather than accurate speculation for initial
states. Experiment results show that average rematched length
for a chunk is about 2, which is far less than chunk size and
will result in a near linear speedup.

Ko et al. [147] proposed another approach called reverse
lookahead symbols to limit the number of speculative initial
states. Rather than assuming all states as initial states for a
chunk, the author utilize the last few characters from previous
chunk to eliminate some states which can never be the initial
states for this chunk. As given the character sequence, none of
these eliminated states can be reached from any state, while
this elimination may introduce massive computation. In addi-
tion, the author also discussed methods for balance workload
among processing units.

Further Najam et al. [168], combined the speculative idea
with multi-stride DFA, aiming to achieve a higher speedup.
While, the multi-stride representation will definitely result in
large expansion, even the authors declared that they propose a
transition compression algorithm using alphabet compression
table to limit the memory usage of multi-stride DFA. Thus, this
proposal only works for very small DFAs, as we speculated,
the biggest DFA in experiments only contains 13490 states.

Articles in [142]–[147] all employed DFA as automa-
ton representation which cannot handle the state explosion.
Yang and Prasanna [148] exploited a NFA-like representa-
tion SR-NFA on multi-core structure. With assistance of rule
grouping, the compact SR-NFA can be entirely stored in the
level-2 even level-1 cache, which will contribute much to per-
formance improvement. The prototype on an 8-core 2.6 GHz
Opteron platform can achieve 2.2 Gbps throughput for large
rule sets.

The above researches in this subsection only focus on
exploiting parallelism for the pattern matching process in
DPI applications, and most of them only employ string or
regular expression signatures of Snort to detect whether a
packet contains attack characteristics. Simple packet based
pattern matching can only achieve limited and stateless detec-
tion, modern network security monitoring systems require
sophisticated analysis of protocols at a higher semantic level,
even incorporating context correlated across multiple connec-
tions and hosts [169]. Sommer listed a series of applications
that require global analysis, for example, worm scan detec-
tion [170] requires to record the initiation requests of all
connections; contact graph analysis [171] is used to detect
new worms, but it requires a global connection information
during a time window; stepping-stone detection [172] requires
correlating packet timing across multiple connections.

Signature matching is only a small portion of the whole
process, for example, the preceding TCP stream reassembly
is even more difficult than simple string matching. Thus, par-
allelism exploitation based on multi-core platforms should be
conducted from a global perspective, not just for the pattern
matching part. To fully exploit the potential global parallelism,
Paxson et al. [173] divided the process of high level network
analysis applications into multiple stages and discussed them
in detail, as shown in Figure 23. The rectangular boxes repre-
sent different stages of process, and the semantic level of them
is increasing from left to right. The arrows indicate the data
flow from low level to high level, and the thickness of an arrow
represents the magnitude of data flow or how many threads
are needed to process them concurrently. Furthermore, fan-out
arrows represent that for a given data flow multiple analysis
can be executed concurrently on multiple threads, and fan-in
arrows represent that multiple data flow should be gathered for
higher level analysis. And the numbers below each stage indi-
cate the magnitude of relevant parallelism that can be achieved
under a 1-10 Gbps link.

To exploit the potential parallelism for each stage, we need
to discuss them in detail. The first stage called stream demux is
a sequential process, which demultiplexes the received packets
for per-flow analysis. For a link of 1-10 Gbps, the magnitude
of flows would be about 104. This means that the next TCP
reassembly stage for these 104 independent streams could be
performed concurrently. Even commodity multi-core platforms
do not contain so many threads, each thread can still process a
subset of these streams independently and parallelly. Then the
next stage is the high level protocol analysis, today the simple
port number is inadequate to identify most of the application
protocols. A better method is to run multiple possible protocol
parsers concurrently to confirm which application the flow is.
Thus the protocol analysis stage can provide much more paral-
lelism than TCP stream reassembly, in this figure it is labeled
as 105. After the protocol analysis procedure, only one appli-
cation protocol is selected as the protocol of the given flow,
thus the fan-in arrows indicate that the parallelism of next
stage declines to the same as TCP reassembly.

Through the application protocol analysis, we can extract
a series of application-level activities such as the parameter-
ization of requests, error conditions, status codes associated
with replies, signature matches, items, and so on [169], which
are also called ‘events’. Then for the next stage, multiple
events which come from different flows but share the same
host or flow type could be gathered for an aggregate level
analysis. Sommer explained this with the example of scan
detection, it is necessary to gather statistics for a given host,
how many servers it tried to connect and with what methods.
Finally, at a even higher level of global analysis, we gather
the events not only from the same host but also from multiple
different hosts. ‘Content sifting’ [174] is a classical exam-
ple for this level, in order to detect the propagation of the
worms, it needs to analyze multiple traffic flows from different
hosts.

In a word, to fully utilize the power of multi-core plat-
forms for DPI applications, we must structure the applications
in parallel from a global perspective, divide the procedures

3020 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 18, NO. 4, FOURTH QUARTER 2016

Fig. 23. The parallelism exhibit in a high level network analysis pipeline.

into multiple stages where each stage can be executed con-
currently. Furthermore, we should also pay attention to the
memory access patterns of the applications, not only to the
execution models, as the memory access speed can completely
dominate the final performance. Here we do not extend this
issue for space limitation, interested readers may refer to [169]
for deeper understanding.

In a nutshell, general purpose multi-core processors does not
work as well as GPU devices. Compared with GPU devices,
they have more advanced hardware characteristics, like larger
caches, higher clock frequencies, and more flexible execu-
tion models, but the parallel resources are orders lower. The
advanced features of multi-core processors only benefit to the
speedup of a single thread, not to the overall throughput.
In addition, the high-speed large cache memory of multi-
core processors can not be managed by user, thus it is not
convenient to utilize hot states to achieve a high cache hit
ratio. Current researches mainly focus on speculative match-
ing, which also only benefit to the single stream not the overall
performance. In our opinion, general purpose multi-core pro-
cessor is not a recommended platform compared with the more
powerful GPU devices.

D. TCAM Based REM

Ternary content addressable memory (TCAM) is widely
deployed in network devices for packet classification and rout-
ing. TCAM is kind of memory consisting of a set of entries,
and all the entries can be searched parallelly with high speed.
Each entry is a bit vector, where each bit has three states,
namely 0, or 1, or ‘*’ (do not care). In addition, the entries
are usually organized according to their values, namely the
upper entry with the smaller value. As the existence of ‘*’
bit, an input value may match multiple entries. TCAM always
returns the index of the first matched entry, namely the small-
est entry index. A basic TCAM matching example [149] is
shown in Figure 24, for input value ‘1000’, TCAM return
the first matched entry ‘100*’, namely the 2th entry. In addi-
tion, the entry width is configurable, according to the customer
requirement.

In today’s network environment, thousands of new mali-
cious worms and viruses spread fast everyday. Traditional
prevention method is an end-host based mechanism, which

Fig. 24. A simple example for TCAM lookup.

installs new patches or updates the security software for
individual hosts. However, this method is inefficient when
encountering with new fast-spread worms, as the spread speed
is far more faster than the reaction speed of end hosts.
It is too hard to install new patches or update the secu-
rity database for an enterprise with large clients on a short
time. Thus the network based detection mechanism is an
effective supplementary for end host detection, and it relies
on inspecting packet payloads at critical forwarding points,
mainly the routers. However, pattern matching is a rather time-
cost procedure, traditional software-only method can not fulfill
the ever-increasing link speed. For the wide deployment of
TCAM in current network devices, it has also been targeted
to accelerate the pattern matching process.

When replaced with the string patterns, the TCAM can be
utilized for string matching. Gokhale et al. [175] employed
binary CAM for string matching, for m string patterns with
fixed length of w, the method occupies mw bytes of CAM
space, and provides a deterministic time complexity of O(n)

for any input sequence with length of n. Later, Yu et al. [149]
proposed algorithms for arbitrary long string patterns, even for
complex patterns like negation and correlated patterns. Based
on the 1768 string patterns of ClamAV [176] virus database,
the author devised a packet based anti virus system which
achieved nearly the OC-48 line rates (2.5 Gbps) with only
240 KB TCAM space.

Traditional algorithms lookup the TCAM one time for
each input character, Sung et al. [150] pushed a step further
to process multiple characters for each TCAM lookup. The
algorithm uses an m-byte jumping window pattern-matching
scheme, at the cost of enlarged TCAM space requirement.

XU et al.: SURVEY ON REGULAR EXPRESSION MATCHING FOR DPI 3021

This scheme reported a throughput of 10 Gbps for 2247
string patterns from Snort, with the TCAM space of 9 Mbit.
Alicherry et al. [151] also devised a novel multiple string
matching algorithm which can process multiple characters
each time, and some optimizations for memory requirement
reduction were also provided in this paper. Experimental
results show that, this mechanism works well for virus datasets
of ClamAV. Yun [177] devised a novel state encoding scheme
for TCAM based Aho–Corasick multistring matching algo-
rithm. On the other hand, Zheng et al. [178] focused on how
to develop parallelism as well as improve power efficiency for
TCAM based string matching. Based on the work of [149],
Zheng proposed to partition both individual flows and the pat-
tern set. Flow partition indicates dividing a flow into multiple
sequential segments for parallel matching, while pattern par-
tition means group the pattern set into multiple subsets thus
they can be matched individually and selectively. These early
TCAM based pattern matching methods [149]–[151], [175]
are devised mainly for exact string matching, even with
some extensions [149], these methods cannot support all the
metacharacters in regular expressions.

Unlike string matching on TCAM, regular expression
matching on TCAM mainly employs the DFA representation.
Meiners et al. [154] summarized three reasons for why TCAM
is suitable for regular expressions matching. First, the ternary
nature and first-match semantics make it capable for encoding
a large DFA. Second, except for the low memory access laten-
cies, any memory access can finish in a constant time with its
high-parallel lookup ability, regardless of the entry number.
Third, TCAM is an off-the-shelf chip that has been widely
used in modern network devices.

In DFA based regular expression matching mechanism on
TCAM, the transitions are organized as entries for matching.
Each entry is physically consist of a TCAM part and an associ-
ated SRAM part, where the source state and input symbol are
stored in TCAM for index, and the destination state is stored
in SRAM. Take a simple pattern “a. ∗ b” as an example, the
corresponding DFA and TCAM table are shown in Figure 25.
The ternary bit ‘*’ can match both ‘0’ and ‘1’, which is
very beneficial to DFA compression. As most DFA states
have only a few destinations, even with no other compression
techniques, TCAM encoding can achieve a big compression
ratio without sacrificing performance. In this example, each
state can be represented with two entries. In matching pro-
cess, the current state and input symbol are compared with all
the TCAM entries concurrently, and the position of the first
matched entry is returned in one cycle. Then, the position
is used to access the corresponding SRAM part for the next
state.

Though the basic encoding can achieve much compression,
it is still a great challenge to encode large DFA in small
TCAMs, even given the largest available TCAM chip with
the capacity of 72 Mbit, not to mention that the majority of
its space will be used for routing and flow table management.
Efforts have been made to further merge entries [153], [154]
and avoid state explosion [152], [154]. Entry merging utilizes
the ternary characteristics and longest prefix match seman-
tics of TCAM to merge transitions of intra-state or inter-state.

Fig. 25. DFA and TCAM organization for pattern “a. ∗ b.”

Fig. 26. The improved TCAM organization with shadow encoding for pattern
“a. ∗ b.”

Thus, traditional compression algorithms such as D2FA [100]
and σFA [103] are not suitable for TCAM encoding.

Meiners et al. [153] proposed two approaches to reduce
the memory requirement of DFA representation on TCAM,
separately named as transition sharing and table consoli-
dation. The basic idea is to merge multiple DFA transi-
tions into one entry by leveraging the ternary characteris-
tics of TCAM and redundancies in DFA transition table.
Meiners et al. [153] divided the redundancies into two cat-
egories, the character redundancy where transitions share the
same source state and destination state while differs in the
labeled characters, and the state redundancy where transitions
share same labeled character and destination state while differs
in source states. Transition sharing method includes character
bundling method and shadow encoding method. Basic encod-
ing (Meiners et al. [153] named it as character bundling)
can only merging intra-state transitions, namely the character
redundancy, through introducing ternary bits in input sym-
bol field. In practice, massive redundancy still exists among
states, for instance, state 1 has the same destination state
for labeled transition ‘a’ and default transition with state 2.
Meiners et al. [154] proposed shadow encoding algorithm
to reduce intra-state redundancy by introducing ternary bit
in source state filed. With shadow encoding, the entries in
Figure 25 can be further organized as in Figure 26, where two
more entries can be saved. The sophisticated shadow encoding
algorithm involves determining the best order of state tables
organized in TCAM, identifying the entries to remove, choos-
ing binary IDs for each state. Readers could refer to the more
complex example in [153] for a better understanding.

Table consolidation means merging transition tables of mul-
tiple states into a single one. The motivation behind this idea
is that different transition tables may share similar structures
like the common entries, even they do not have the same
decisions. Due to these shared structures, multiple similar
entries can be merged into one entry, and the decision part in

3022 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 18, NO. 4, FOURTH QUARTER 2016

SRAM maintains multiple destination states for these merged
transitions, thus to reduce the space requirement of TCAM
entries. Table consolidation is also about merging entries, but
it is a state-grained merging, while the transition sharing is
only a transition-grained merging. Meiners also indicated that
the origin of similar structures comes from the ‘.*’ in reg-
ular expressions, which create deferment trees with lots of
structural similarity. Experimental results show that, a DFA
with 25000 states occupies only 0.59 Mb TCAM space for
entry storage with optimizations of transition sharing and table
consolidation.

Meiners further appended variable striding mechanism, thus
to consume multiple characters per TCAM lookup. However,
this will definitely increase the space requirement for the
memory-scare TCAMs. For eight DFAs varies from 6533
states to 13825 states, they reported a throughput between 10
and 19 Gbps on a TCAM chip of 2.36 Mb.

The above entry merging algorithms are compression mech-
anism of DFA state transitions in nature, and they are effective
for small scale DFAs. However, even they can achieve a
approximately linear compression, it is still invalid when
encountering large and complex rule sets, where DFA gen-
eration is even infeasible. As described in Section IV-A,
state explosion is mainly caused by ‘.∗’ and large character
class repetitions. Peng et al. [152] leveraged the relationships
between NFA states and DFA states to devise a two-segment
state encoding mechanism which can efficiently inhibit state
inflation. The two-segment state encoding method can effi-
ciently merge DFA states that originate from the same NFA
states, and it mainly aims at state replication caused by ‘.∗’.
Experimental results show that, for Snort pattern sets with
DFA size ranging from 13825 to 190951, the deflation method
achieves up to two orders of magnitude lower for DFA size
and TCAM entries. However, this method depends on com-
puting the relationships between DFA states and NFA states,
thus it cannot avoid the time-consuming DFA generation
process.

As for another origination of state explosion, namely
the wide character class with counting constraint,
Meiners et al. [154] proposed to employ the counting-
DFA [118] to handle the counters. Counting-DFA utilizes
extra scratch memory as counters, thus to prevent the
quadratic or even exponential expansion of counting con-
straint. Regardless of the limitations of counting-DFA
analyzed in Section IV-C, the complex processing of counters
will result in a sharp decrement in matching performance.

Huang et al. [179] proposed a TCAM-based matching
automaton called CFA, to solve the scalable problem for large
and complex rule sets. In fact, CFA is a concise representa-
tion of XFA. Considering the transition expansion problem in
XFA, Huang proposed three compression techniques, transi-
tion compression, character compression and state compres-
sion. They are actually similar with optimizations proposed
by Meiners et al. [153], experimental results reported that for
a Bro set with 3644 DFA states, CFA reduces up to 83% of
TCAM space and power consumption compared to optimized
DFA and achieves a throughput up to 10.9 Gbps. For Bro
sets with hundreds of thousands of DFA states, the reduction

ratio can reach up to 95%. With assistance of multi-stride
mechanism, the throughput can also reach up to several Gbps.

In a nutshell, TCAM is suit for pattern matching for its pow-
erful parallel searching and high-speed memory access. String
matching has achieved great improvement on TCAM, but it
is still a great challenge to achieve satisfied performance for
regular expressions. DFA is the most efficient representation
for matching, but the space of TCAM severely limits the scale
of DFA, and DFA is even infeasible when encountering the
practical large and complex rule sets. Thus, the general multi-
stride method for improving RE matching speed is unpractical
in practice. In addition, TCAM also suffers high cost and high
power consumption. TCAMs cost about 30 times more money
per bit than DDR SRAMs, and consume 150 times more power
per bit than SRAMs [83].

VI. GUIDELINES FOR BUILDING EFFICIENT

PATTERN MATCHING COMPONENTS

In this section, we provide guidelines of building efficient
pattern matching components for DPI applications. As we
have declared, we would like to focus on the pattern match-
ing process rather than a whole DPI system or a specific DPI
application. But for supplementary, we also recommend that
readers may refer to [54] for instructions to avoid packet loss
when capturing packets on network cards and to accelerate
packet transfer with improved operating system. In addition,
the design of a specific DPI system should be considered from
a global view in practise. As we have discussed in Section V-C,
to fully exploit the potential global parallelism, we should
divide the high level network analysis into multiple stages and
estimate the potential parallel degree for each step, thus we
can balance the throughput for each stage and achieve a better
overall performance.

When focusing on the pattern matching process, we pre-
fer to discuss it from two aspects, namely building efficient
automatons and exploiting parallel platforms. The automatons
are the core components for pattern matching, they provide
compact and efficient structures for the signature sets, while
the hardware platforms extract the potential parallelism for
the matching mechanisms. Though there exists some rela-
tionship between the automatons and lower level platforms
to some extent, they are still very independent in general as
most automatons can be implemented in any platform. Thus,
we can discuss them separately.

A. Guidelines for Building Efficient Automata

In this subsection, we present guidelines for building effi-
cient automata in different applications and different levels
of pattern scale and complexity. The presentation starts from
small and simple pattern set to the challenging large and
complex pattern set.

For exact string matching applications, like the string pat-
terns in antivirus system ClamAV [176] and Web content
filtering system DansGuardian [180], the original DFA is the
most appropriate choice as DFA scale is linear with pattern
length. Thus the popular platforms can support thousands of
patterns even in fast memories, and any input character only

XU et al.: SURVEY ON REGULAR EXPRESSION MATCHING FOR DPI 3023

requires one memory access. We strongly recommend the open
source RegEx Processor [93] as the compiler for both NFA and
DFA generation. RegEx Processor optimizes the original NFA
to minimize the number of states and the number of transi-
tions, for NFA to DFA conversion, it employs the prefix tree
to significantly reduce the compilation complexity. In addi-
tion, RegEx Processor also provides transition diagram file for
DFA, which can be displayed by the open source graph visu-
alization software Graphviz [181]. Furthermore, if the DFA
scale is small enough, multi-stride DFA can be employed to
further improve the matching efficiency. Multi-stride DFA can
read and process multiple characters at the same time, but
the memory requirement of primitive multi-stride DFA is sev-
eral orders of magnitude greater than original DFA, thus only
works well for very small scale DFA.

For small-scale RE sets or the mixture with exact string
patterns, the original DFA is also appropriate. But when the
memory requirement exceeds the limit of fast memories, the
automaton will be deployed on large but slow memories, like
DRAM, which may lead to a rapid decline in performance.
If the DFA scale is not more than one order of the amount
of fast memories, the compression algorithm in Section IV-B
can be adopted to reduce the memory requirement as most
compression algorithms can achieve a compression ratio of
more than 90%. Then, the compressed FA can be loaded
into fast memories for rapid memory access. On the other
hand, the compressed FA will increase the memory access
times, thus the compression algorithm should be selected pru-
dently to achieve a better performance. We do not recommend
state merging algorithms and alphabet re-encoding algorithms
as they only work well for smaller DFAs, the STT com-
pression algorithms like D2FA [100], the advanced version
CD2FA [101] and A−DFA [106] , FECAN [110], σFA [103]
are good choices. RCDFA [79], [109] is a superior model, as
it also optimizes the matching process to maintain comparable
matching complexity to the original DFA.

Except for the traditional compression methods, another
strategy which leverages the access model of state transition
table is worthy of mentioning. In this way, we utilize the orig-
inal state transition table of DFA rather than compress it. In
general, the accesses to a given DFA will exhibit the following
scenario. A few states have very high access frequency, while
most states have very low access frequency or even no access.
With this access model, we can deploy these few states in fast
memories and other states in low large memories to achieve an
overall better performance. Readers may refer to [182], where
Chen employs Markov model [183] to compute the access
probabilities.

With the continued growth in pattern scale or complexity,
the DFA maybe too huge to compress, or the DFA is even
infeasible in many situations like Snort and L7-filter. In these
cases, the compressed FAs are not good choices due to the
huge memory requirement. Then, NFA and scalable FAs are
the remaining choices. NFA is not advised for its bad and
unstable performance. Rule grouping can achieve a relatively
stable performance due to its regular data structures, but it is
not a wise choice for applications that will frequently update
the patterns like NIDS, because the construction time is very

long as discussed before. Even with the recently proposed
estimating method [97], the computation time is still unaccept-
able for fast update requirements. In addition, rule grouping is
limited to the unsupported pattern like “AUTH\s[ˆ\n]{100}”.
In fact, rule grouping is very suitable for parallel plat-
forms as different rule sets can be distributed to different
engines for parallel processing. In practice, we strongly recom-
mend Semi-determined FAs especially Becchi and Crowley’s
Hybrid-FA [95] for NIDS or other network security appli-
cations. As most network streams are benign, these packets
cannot match the malicious signatures, they are not even
similar with them. In other words, most streams will keep
running in the DFA part and never advance to the NFA
part, thus can achieve a relatively high performance on the
whole. On the contrary, semi-determined FAs are not recom-
mended for traffic classification applications, as most streams
would match some traffic signatures. Decomposed FAs replace
states with auxiliary variables and instructions, thus they
can compile very complex patterns which maybe challeng-
ing for rule grouping FAs or semi-determined FAs. However,
the performance maybe not very good due to the massive
instruction fetching and variable calculation. Recently pub-
lished researches [117], [119] have made some improvements
for this issue, and make them more attractive for very complex
pattern sets.

B. Guidelines to Utilize Parallel Platforms Efficiently

Among all the parallel platforms, FPGA is the only cir-
cuit based mechanism, and it is most suitable for NFA
implementation. Here, we first provide several guidelines for
implementing regular expression matching on FPGA plat-
forms. First of all, updating speed is the major limitation
of FPGA platforms as it involves time-consuming resynthe-
sis of the circuits. Any changes in the rule set requires the
recompilation of the automaton, resynthesis, replacement and
routing of the circuits [133]. Thus, it is not very suitable for
scenarios where signatures are altered frequently like NIDS
or virus detection system. In general, the implementation
includes three steps: converting regular expressions to corre-
sponding NFA, NFA reduction and mapping NFA to circuits.
NFA generation can refer to the standard compilation algo-
rithms [84]–[86]. NFA reduction is very crucial in FPGA
implementation, because NFA reduction not only reduces the
required LUTs and FlipFlops to support more regular expres-
sions, but also provides higher chip frequency and lower circuit
delay, which can result in a higher matching throughput. The
NFA reduction involves both state reduction and transition
reduction, thus there needs a balance between these two con-
tradictory factors in practice. For NFA reduction, readers may
refer to [129] for prefix sharing and [122], [132] for infix
sharing and suffix sharing. In addition, complex syntaxes like
character class with counting constraints would occupy large
hardware resource in traditional mapping mechanism. This
can be improved with counter block approaches proposed
in [130] and [131]. In addition, if the NFA is small or sim-
ple enough, multi-stride NFA [125], [126] can be employed
to further improve the matching throughput.

3024 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 18, NO. 4, FOURTH QUARTER 2016

Except for the traditional circuit-based automaton architec-
ture, FPGA can also be configured as a memory based archi-
tecture, which means that the FPGA circuits are compiled to
matching engines and the fast on-chip bank memories are uti-
lized to store the DFA state transition table. Chen and Lu [182]
provided a typical implementation on this architecture, where
the author employs two-level memories for transition table
storage. The first-level memory leverages the fast on-chip
memory banks to cache the frequently accessed states (also
called hot states), and the second-level large DRAM is used
to hold the whole transition table of DFA, thus to achieve a
high overall performance. With 9 matching engines running
independently and parallelly, the performance reaches to 29.6
Gbps on Altera Stratix II EP2S 180 with moderate DFA.

ASICs have high area/energy and speed, but they also have
high system design cost and poor flexibility, thus they only suit
for large scale industry production not for common researches.
For other memory based parallel platforms, SIMD processors,
mainly GPUs have the most abundant parallel execution units.
Thus they can perform better than the superscalar network pro-
cessors and general purpose multi-core processors in general,
and current high throughputs in experiments are most achieved
on GPU platforms. However, they are very sensitive to irregu-
lar memory accesses and divergences in execution path. Thus
they are more suitable for DFA or DFA-like automatons, which
have more regular access model and less divergences. On the
other hand, network processors and general purpose multi-core
processors have much more hardware resources for each exe-
cution unit, so they can sustain more complex access models
and divergences, meaning that they are more suitable for more
complex automatons.

GPU is usually equipped as a coprocessor in DPI sys-
tems, and the programming model is a little complex for
novices. Here we list some practical guidelines for building
DPI systems with GPUs. The guidelines mainly include packet
transferring from CPU to GPU, the set of packet buffer size,
the choice for matching automatons, the deployment of pack-
ets and automatons on GPU memory, reading packets from
GPU memory to threads, the parallel matching process, and
other optimizing suggestions.

GPU cannot read packets directly from network interface,
thus GPU needs to read the packets in CPU memory via
PCIe bus, which connects the GPU card with host system.
Though multi-lane PCIe bus can reach the peak performance
of tens of Gbps, it may suffer large overhead when encoun-
tering small packet transfers, dropping to only a few several
Gbps. Thus, it is preferable to copy the packets to GPU in
batches rather than transfer them separately. A separate buffer
in CPU memory can be allocated for holding the packets tem-
porarily, whenever the buffer gets full, the packets can be
transferred to GPU in a batch. For further improvement, the
buffer memory type can be configured as page-locked mem-
ory, which is kind of memory maps no virtual address and can
not be swapped out from the main memory. In addition, DMA
technique can be employed for the transfer from page-locked
memory to GPU, thus releasing the CPU for other works.
Double buffering technique is also recommended for page-
locked memory, when a buffer is full and copied to GPU, the

other buffer is still available for CPU to store the new coming
packets.

Packet buffer size is also a design parameter that needs to
be considered. Vasiliadis et al. [133] has explored the impact
of buffer size on the overall system performance, including
the packet capture, decoding, classification and transferring.
Results show that, the transfer cost decreases with the incre-
mental buffer size, and remains stable for a specific buffer size.
As the optimal buffer size is related to the specific devices,
extra experiments are required to determine the optimal value.
It a little complex when TCP stream reassembly is required in
some applications, especially in modern NDISs, where packets
from same from are aggregated into a single stream to inspect
signatures across multiple packets. Then, the buffer organiza-
tion should consider the reassembly factor. While this is out
of our matching scope, readers may refer to related researches
for deep understanding.

The choice of finite automaton is a main issue in practice.
The original DFA is most suitable to GPU architectures for
its regular data structure and matching process, only one state
needs to be traversed for each input character, independent
of the pattern set and trace. Thus, as long as the DFA scale
is not exceeding the space of GPU global memory, DFA is
the first choice. Otherwise, other kind of FAs like compressed
DFAs or NFA-like automatons can be employed for pattern
matching. For large and complex rule sets, the iNFAnt and its
enhanced version are strongly recommend for the following
reasons. First, as iNFAnt is NFA based automaton, thus can
scale to large and complex pattern sets without state explosion.
Second, the symbol-first representation utilizes much of the
available bandwidth, and omits much divergence in traditional
NFA. In a nutshell, the basic principle is to avoid irregular
representations, thus to avoid divergences.

Following are the deployments of automatons and pack-
ets on GPU memories. As faster memories always result in
higher performance, it is better to deploy them on faster mem-
ories, like texture memories as they are cached on chip. A
hit in cache would reduce the memory access latency from
hundreds of cycles to several cycles, bringing a big improve-
ment for overall performance. For older GPU architectures,
texture memory is a good choice if the space is sufficient. For
new GPU architectures like Fermi architecture, global mem-
ory is also cached on chip and performs as well as texture
memory. Then the deployment would be more flexible, users
may determine a optimal scheme with aforehand experiments.
In addition, software-managed fast on-chip memory can also
help to reduce memory access latencies [137], like the shared
memory of NVIDIA GPUs, and the stream register file of
Imagin [184]. As we have discussed before, some hot states
can be chose to deployed on these on-chip memories through
profiling the rule sets and traces.

The next step is to fetch the packet bytes from GPU texture
or global memory to the matching threads. Experiments [136]
show that reducing the number of memory accesses can bring
a significant improvement in the overall performance. Due
to the regular and sequential access to packet content, it
is beneficial to fetch multiple bytes one time. In general,
each packet is assigned to a thread for matching, then how

XU et al.: SURVEY ON REGULAR EXPRESSION MATCHING FOR DPI 3025

many threads should be set to achieve the best performance?
Vasiliadis et al. [136] argued that it is related to the internal
GPU thread scheduler, thus experiments should be conducted
aforehand to determine the optimal thread number.

Strictly speaking, TCAM cannot be called an execution plat-
form, it is a kind of memory. Although most modern network
devices have equipped TCAM, it is impractical to implement
the pattern matching process with the whole TCAM, because
most of its space has been used for fast routing and flow table
management. In addition, TCAM is usually very expensive
and energy-consuming. Thus, it is recommended that we can
leverage residual TCAM resource for auxiliary processing.

VII. CONCLUSION

Regular expression matching is a core component for many
deep packet inspection applications, where the packet payload
should be inspected against a set of patterns. In this paper, we
have comprehensively surveyed the issues for regular expres-
sion matching of deep packet inspection from a systematic
perspective. Sufficient application background as well as tech-
nical background are provided for deep packet inspection,
thus readers from general fields can achieve a global and
deep understanding for DPI quickly. We explained how regu-
lar expression is used for DPI and what are the challenges in
practice. Except for hardware cost, power consumption and
fast update, the biggest challenge is to fulfill the through-
put requirement under conditions of rapid growing link speed
and pattern sets with current hardware platforms. Automaton
based regular expression matching is a state traversal pro-
cess driven by the payload bytes, each time the matching
engine reads a payload byte, and inquires the automaton for
the next state(s). As the automaton is deployed in memories,
matching speed is mainly determined by the memory access
latencies.

Large and complex pattern set results in exponential grow-
ing memory requirement which is several orders more than
the capacity of modern high speed memories. While, the
speed that big-capacity memories can provide is several orders
lower than the link speed. Thus, the main goal is to min-
imize the storage requirement with not much sacrifice in
performance. Current researches can be classified to software
solutions and hardware solutions roughly. Software solutions
solve state expansion problems through exploiting compact
representations for finite automatons, while the cost is more
irregular automatons which require more memory access oper-
ations or computations when matching. Hardware solutions
leverage massive hardware parallelism to accelerate matching
throughput. However, most hardware platforms have inherent
shortages which cannot fully satisfy the requirement for DPI.
We also provide guidelines for building practical automatons
for different scenarios, as well as how to efficiently leverage
hardware platforms, like FPGAs and GPUs.

The current credible throughput for large complex pattern
sets is not more than 1 Gbps. To keep up with the growing link
speed, there still needs a lot of innovative researches from both
hardware and software. Both the convenience and troubles

come from the powerful expressive ability of regular expres-
sion. It is also necessary to exploit other kinds of expressions
in theory. In addition, sophisticated FAs may bring consid-
erable memory reduction and performance improvement, but
they must be combined with specific hardware circuits, thus
innovation from hardware architecture is also essential to sup-
port high speed REM. It is also a new direction to combine
different devices on the same chip or board to fully utilize
their advantages. Furthermore, by guaranteeing a defined error
probability, the system may require less hardware resource
and achieve a better performance. This is especially useful for
NIDS applications, as whether generated manually or auto-
matically, practical patterns brings intrinsic false positives and
false negatives in the match detection [82].

In addition, pattern matching can be combined with other
techniques like heavy hitter, port scan and change detection
for NIDS applications [82], because pattern matching is appli-
cable only when the features of malicious traffic are known
and the packet payload is not encrypted. Becchi et al. [185]
has advanced to the direction of accelerating regular expres-
sion matching over compressed HTTP. Techniques in regular
expression such as memory compression algorithms and pro-
tocol classification can also be extended to other areas, like
computational linguistics and structured data parsing.

ACKNOWLEDGMENT

The authors are grateful to the editors and reviewers for their
kind and valuable comments that greatly improve the quality
of the paper.

REFERENCES

[1] A. V. Aho and M. J. Corasick, “Efficient string matching: An aid to
bibliographic search,” Commun. ACM, vol. 18, no. 6, pp. 333–340,
1975.

[2] S. Wu and U. Manber, “A fast algorithm for multi-pattern search-
ing,” Dept. Comput. Sci., Univ. Arizona, Tucson, AZ, USA,
Tech. Rep. TR-94-17, 1994.

[3] C. Allauzen and M. Raffinot, “Factor oracle of a set of words,” Institute
Gaspart-Monge, University de Marne-la-vallee, Champs-sur-Marne,
France, Tech. Rep. TR-99-11, 1999.

[4] Snort v2.9. (2014). [Online]. Available: http://www.snort.org/
[5] Bro Intrusion Detection System. (2014). [Online]. Available:

http://www.bro.org/
[6] Application Layer Packet Classifier for LINUX. (2009). [Online].

Available: http://l7-filter.sourceforge.net/
[7] Cisco IOS IPS Deployment Guide. Accessed on Jun. 10, 2015. [Online].

Available: http://www.cisco.com/
[8] Cavium, OCTEON5860. Accessed on Jun. 10, 2015. [Online].

Available: http://www.cavium.com/OCTEON_MIPS64.html/
[9] IBM PowerEN PME Public Pattern Sets WiKi. (2012). [Online].

Available: https://www.ibm.com/developerworks/mydeveloperworks/
wikis/home?lang=en#/wiki/PowerEN%20PME%20Public%20Pattern%
20Sets/page/Welcome/

[10] Deep Packet Inspection From Wikipedia. Accessed on
Jun. 27, 2015. [Online]. Available: https://en.wikipedia.org/wiki/
Deep_packet_inspection/

[11] M. Mueller, “DPI technology from the standpoint of Internet gov-
ernance studies: An introduction,” School Inf. Studies, Syracuse
Univ., Syracuse, NY, USA, Tech. Rep., 2011. [Online]. Available:
http://dpi.ischool.syr.edu/Technology_files/WhatisDPI-2.pdf

[12] K. Mochalski and H. Schulze, “Deep packet inspection: Technology,
applications & net neutrality,” White Paper, 2009, pp. 1–12.

[13] R. Bendrath and M. Mueller, “The end of the net as we know it? Deep
packet inspection and Internet governance,” New Media Soc., vol. 13,
no. 7, pp. 1142–1160, 2011.

3026 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 18, NO. 4, FOURTH QUARTER 2016

[14] R. Bendrath, “Global technology trends and national regulation:
Explaining variation in the governance of deep packet inspection,”
in Proc. Int. Studies Annu. Conv., New York, NY, USA, Feb. 2009,
pp. 15–18.

[15] I. Sourdis, “Designs and algorithms for packet and content inspec-
tion,” Ph.D. dissertation, TU Delft, Delft Univ. Technol., Delft, The
Netherlands, 2007.

[16] K. Haley, “Internet security threat report,” Symantec, Mountain View,
CA, USA, 2015. [Online]. Available: https://www4.symantec.com/
mktginfo/whitepaper/ISTR/21347931_GA-internet-security-threat-
report-volume-20-2015-appendices.pdf/

[17] Pandalabs Report Q1 2015. (2015). [Online]. Available:
http://www.pandasecurity.com/mediacenter/src/uploads/2015/05/
PandaLabs-Report_Q1-2015.pdf/

[18] M. Wedel and A. Roessler, “Data loss prevention,” U.S.
Patent 7 185 238, Feb. 27, 2007.

[19] K. Ruan, J. Carthy, T. Kechadi, and M. Crosbie, “Cloud forensics,”
in Advances in Digital Forensics VII. Heidelberg, Germany: Springer,
2011, pp. 35–46.

[20] H. Asghari, M. Van Eeten, J. M. Bauer, and M. Mueller, “Deep
packet inspection: Effects of regulation on its deployment by Internet
providers,” in Proc. 41st Res. Conf. Commun. Inf. Internet Policy,
Arlington, VA, USA, Sep. 2013. .

[21] C.-S. Moon and S.-H. Kim, “A study on the integrated security system
based real-time network packet deep inspection,” Int. J. Security Appl.,
vol. 8, no. 1, pp. 113–122, 2014.

[22] Cisco Visual Networking Index: Forecast and Methodology, 2014-
2019. (2015). [Online]. Available: http://www.cisco.com/c/en/us/
solutions/collateral/service-provider/ip-ngn-ip-next-generation-
network/white_paper_c11-481360.html

[23] Advanced DPI: Intelligent Security and Insight Add Up to Opportunity,
Strategic White Paper, Alcatel Lucent. (2008). [Online]. Available:
http://www.bitpipe.com/detail/RES/1201637172_856.html

[24] K. David. (2013). Ad-Injecting Trojan Targets Mac Users on Safari,
Firefox, and Chrome. [Online]. Available: http://arstechnica.com/
apple/2013/03/

[25] K. Thomas et al., “Ad injection at scale: Assessing deceptive advertise-
ment modifications,” in Proc. IEEE Security Privacy, San Jose, CA,
USA, 2015, pp. 151–167.

[26] M. Mueller, A. Kuehn, and S. M. Santoso, “Policing the network:
Using dpi for copyright enforcement,” Surveillance Soc., vol. 9, no. 4,
pp. 348–364, 2012.

[27] Automatic Content Recognition Content Identification Solutions Trusted
by Industry Leaders. (2015). [Online]. http://www.audiblemagic.com/
index.php?m=view&key=13

[28] Prism (Surveillance Program), From Wikipedia, the Free
Encyclopedia. (2015). [Online]. Available: https://en.wikipedia.org/
wiki/PRISM_(surveillance_program)

[29] M. Finsterbusch, C. Richter, E. Rocha, J.-A. Muller, and K. Hanssgen,
“A survey of payload-based traffic classification approaches,”
IEEE Commun. Surveys Tuts., vol. 16, no. 2, pp. 1135–1156,
2nd Quart. 2014.

[30] P.-C. Lin, Z.-X. Li, Y.-D. Lin, Y.-C. Lai, and F. C. Lin, “Profiling
and accelerating string matching algorithms in three network content
security applications,” IEEE Commun. Surveys Tuts., vol. 8, no. 2,
pp. 24–36, 2nd Quart. 2006.

[31] P.-C. Lin, Y.-D. Lin, Y.-C. Lai, and T.-H. Lee, “Using string match-
ing for deep packet inspection,” Computer, vol. 41, no. 4, pp. 23–28,
Apr. 2008.

[32] Service Name and Transport Protocol Port Number Registry.
(2015). [Online]. http://www.iana.org/assignments/service-names-
port-numbers/service-names-port-numbers.xhtml

[33] Y. Qi, L. Xu, B. Yang, Y. Xue, and J. Li, “Packet classification
algorithms: From theory to practice,” in Proc. IEEE INFOCOM,
Rio de Janeiro, Brazil, 2009, pp. 648–656.

[34] A. W. Moore and K. Papagiannaki, “Toward the accurate identification
of network applications,” in Passive and Active Network Measurement.
Heidelberg, Germany: Springer, 2005, pp. 41–54.

[35] A. Madhukar and C. Williamson, “A longitudinal study of P2P traffic
classification,” in Proc. 14th IEEE Int. Symp. Model. Anal. Simulat.
Comput. Telecommun. Syst. (MASCOTS), Monterey, CA, USA, 2006,
pp. 179–188.

[36] M. Dusi, F. Gringoli, and L. Salgarelli, “Quantifying the accuracy of
the ground truth associated with Internet traffic traces,” Comput. Netw.,
vol. 55, no. 5, pp. 1158–1167, 2011.

[37] P. Piskac and J. Novotny, “Using of time characteristics in data flow
for traffic classification,” in Managing the Dynamics of Networks and
Services. Heidelberg, Germany: Springer, 2011, pp. 173–176.

[38] J. Y. Chung, B. Park, Y. J. Won, J. Strassner, and J. W. Hong,
“Traffic classification based on flow similarity,” in IP Operations and
Management. Heidelberg, Germany: Springer, 2009, pp. 65–77.

[39] E. Rocha, P. Salvador, and A. Nogueira, “Detection of illicit network
activities based on multivariate Gaussian fitting of multi-scale traf-
fic characteristics,” in Proc. IEEE Int. Conf. Commun. (ICC), Kyoto,
Japan, 2011, pp. 1–6.

[40] T. T. T. Nguyen and G. Armitage, “A survey of techniques for Internet
traffic classification using machine learning,” IEEE Commun. Surveys
Tuts., vol. 10, no. 4, pp. 56–76, 4th Quart. 2008.

[41] F. G. O. Risso, M. Baldi, O. Morandi, A. Baldini, and P. Monclus,
“Lightweight, payload-based traffic classification: An experimental
evaluation,” in Proc. IEEE Int. Conf. Commun., Beijing, China, 2008,
pp. 5869–5875.

[42] R. S. Boyer and J. S. Moore, “A fast string searching algorithm,”
Commun. ACM, vol. 20, no. 10, pp. 762–772, 1977.

[43] A. C.-C. Yao, “The complexity of pattern matching for a random
string,” SIAM J. Comput., vol. 8, no. 3, pp. 368–387, 1979.

[44] Z. Galil, “On improving the worst case running time of the
Boyer–Moore string matching algorithm,” Commun. ACM, vol. 22,
no. 9, pp. 505–508, 1979.

[45] R. N. Horspool, “Practical fast searching in strings,” Softw. Pract.
Experience, vol. 10, no. 6, pp. 501–506, 1980.

[46] G. Navarro, “Flexible pattern matching,” J. Appl. Stat., vol. 31, 2002.
[47] R.-T. Liu, N.-F. Huang, C.-H. Chen, and C.-N. Kao, “A fast string-

matching algorithm for network processor-based intrusion detec-
tion system,” ACM Trans. Embedded Comput. Syst., vol. 3, no. 3,
pp. 614–633, 2004.

[48] R. Muth and U. Manber, “Approximate multiple string search,”
in Combinatorial Pattern Matching. Heidelberg, Germany: Springer,
1996, pp. 75–86.

[49] R. M. Karp and M. O. Rabin, “Efficient randomized pattern-matching
algorithms,” IBM J. Res. Develop., vol. 31, no. 2, pp. 249–260, 1987.

[50] M. Norton, Optimizing Pattern Matching for Intrusion Detection,
Sourcefire, Inc., Columbia, MD, USA, 2004.

[51] N. Tuck, T. Sherwood, B. Calder, and G. Varghese, “Deterministic
memory-efficient string matching algorithms for intrusion detection,”
in Proc. 23rd Annu. Joint Conf. IEEE Comput. Commun. Soc.
(INFOCOM), vol. 4. Hong Kong, 2004, pp. 2628–2639.

[52] L. Tan and T. Sherwood, “A high throughput string matching architec-
ture for intrusion detection and prevention,” in Proc. ACM SIGARCH
Comput. Archit. News, vol. 33, no. 2, 2005, pp. 112–122.

[53] A. Callado et al., “A survey on Internet traffic identification,” IEEE
Commun. Surveys Tuts., vol. 11, no. 3, pp. 37–52, 3rd Quart. 2009.

[54] R. Antonello et al., “Deep packet inspection tools and techniques in
commodity platforms: Challenges and trends,” J. Netw. Comput. Appl.,
vol. 35, no. 6, pp. 1863–1878, 2012.

[55] The Libpcap Project. (2015). [Online]. Available:
http://sourceforge.net/projects/libpcap/

[56] LibpcapMMAP. (2012). [Online]. Available: http://public.lanl.gov/cpw/
[57] Pf_Ring:HighSpeed Packet Capture, Filtering and Analysis.

(2015). [Online]. Available: http://www.ntop.org/products/
packetcapture/pf_ring/

[58] UserSpace e1000 Driver Library. (2015). [Online]. Available:
http://sourceforge.net/projects/libe1000/

[59] N. Bonelli, A. Di Pietro, S. Giordano, and G. Procissi, “On multi–
gigabit packet capturing with multi–core commodity hardware,” in
Passive and Active Measurement. Heidelberg, Germany: Springer,
2012, pp. 64–73.

[60] L. Rizzo, “Netmap: A novel framework for fast packet I/O,” in Proc.
USENIX Annu. Tech. Conf., Boston, MA, USA, 2012, pp. 101–112.

[61] L. Rizzo, L. Deri, and A. Cardigliano. (2012). 10 gbit/s Line Rate
Packet Processing Using Commodity Hardware: Survey and New
Proposals. [Online]. Available: http://luca.ntop.org/10g.pdf

[62] N. Kim, G. Choi, and J. Choi, “A scalable carrier-grade DPI system
architecture using synchronization of flow information,” IEEE J. Sel.
Areas Commun., vol. 32, no. 10, pp. 1834–1848, Oct. 2014.

[63] DPDK: Data Plane Development Kit. (2015). [Online]. Available:
http://dpdk.org/

[64] F. Schneider, J. Wallerich, and A. Feldmann, “Packet capture in
10Gigabit Ethernet environments using contemporary commodity hard-
ware,” in Passive and Active Network Measurement. Heidelberg,
Germany: Springer, 2007, pp. 207–217.

XU et al.: SURVEY ON REGULAR EXPRESSION MATCHING FOR DPI 3027

[65] L. Deri et al., “Improving passive packet capture: Beyond device
polling,” in Proc. SANE, Amsterdam, The Netherlands, 2004,
pp. 85–93. [Online]. Available: http://luca.ntop.org/Ring.pdf

[66] S. Alcock, P. Lorier, and R. Nelson, “Libtrace: A packet capture and
analysis library,” ACM SIGCOMM Comput. Commun. Rev., vol. 42,
no. 2, pp. 42–48, 2012.

[67] R. Hofstede et al., “Flow monitoring explained: From packet capture
to data analysis with NetFlow and IPFIX,” IEEE Commun. Surveys
Tuts., vol. 16, no. 4, pp. 2037–2064, 4th Quart. 2014.

[68] Ping of Death. (2015). [Online]. Available: http://insecure.org/
sploits/ping-o-death.html

[69] Teardrop IP Fragmentation (Teardrop). (2015). [Online].
http://www.iss.net/security_center/reference/vuln/TearDrop.htm

[70] S. Egorov and G. Savchuk, “SNORTRAN: An optimizing compiler
for snort rules,” Fidelis Security Systems, 2002. [Online]. Available:
https://dl.packetstormsecurity.net/papers/IDS/SNORTRAN-wp.pdf

[71] S. Chen, R. Lu, and X. S. Shen, “SRC: A multicore NPU-based TCP
stream reassembly card for deep packet inspection,” Security Commun.
Netw., vol. 7, no. 2, pp. 265–278, 2014.

[72] Libnids. (2010). [Online]. Available: http://libnids.sourceforge.net/
[73] TCPflow. (2015). [Online]. Available: https://github.com/

simsong/tcpflow
[74] G. Wagener, A. Dulaunoy, and T. Engel, “Towards an estimation

of the accuracy of TCP reassembly in network forensics,” in Proc.
2nd Int. Conf. Future Gener. Commun. Netw. (FGCN), vol. 2. 2008,
pp. 273–278.

[75] M. Zhang and J.-B. Ju, “Space-economical reassembly for intru-
sion detection system,” in Information and Communications Security.
Heidelberg, Germany: Springer, 2003, pp. 393–404.

[76] S. Dharmapurikar and V. Paxson, “Robust TCP stream reassembly in
the presence of adversaries,” in Proc. USENIX Security, Baltimore,
MD, USA, 2005, pp. 65–80.

[77] T. AbuHmed, A. Mohaisen, and D. Nyang, “Deep packet inspection
for intrusion detection systems: A survey,” Korea Commun. Soc. (Inf.
Commun.), vol. 24, no. 11, pp. 25–36, 2007.

[78] P. M. Rathod, N. Marathe, and A. V. Vidhate, “A survey on finite
automata based pattern matching techniques for network intrusion
detection system (NIDS),” in Proc. Int. Conf. Adv. Electron. Comput.
Commun. (ICAECC), Bengaluru, India, 2014, pp. 1–5.

[79] R. Antonello, S. Fernandes, D. Sadok, J. Kelner, and G. Szabo,
“Deterministic finite automaton for scalable traffic identification: The
power of compressing by range,” in Proc. IEEE Netw. Oper. Manag.
Symp. (NOMS), 2012, pp. 155–162.

[80] S. C. Kleene, “Representation of events in nerve nets and finite
automata,” RAND Corporat., Tech. Rep. RM 107, Santa Monica, CA,
USA, 1951.

[81] M. A. Harrison, Introduction to Formal Language Theory. Reading,
MA, USA: Addison-Wesley, 1978.

[82] M. Becchi, “Data structures, algorithms and architectures for efficient
regular expression evaluation,” Ph.D. dissertation, Dept. Comput. Sci.
Eng., Washington Univ., St. Louis, MO, USA, 2009.

[83] F. Yu, “High speed deep packet inspection with hardware support,”
Ph.D. dissertation, Dept. Comput. Sci., Univ. California at Berkeley,
Berkeley, CA, USA, 2006.

[84] R. McNaughton and H. Yamada, “Regular expressions and state graphs
for automata,” IEEE Trans. Electron. Comput., vol. EC-9, no. 1,
pp. 39–47, Mar. 1960.

[85] K. Thompson, “Programming techniques: Regular expression search
algorithm,” Commun. ACM, vol. 11, no. 6, pp. 419–422, 1968.

[86] J. E. Hopcroft, Introduction to Automata Theory, Languages, and
Computation. Harlow, U.K.: Pearson Edu., 1979.

[87] M. Becchi and P. Crowley, “Efficient regular expression evaluation:
Theory to practice,” in Proc. 4th ACM/IEEE Symp. Archit. Netw.
Commun. Syst., San Jose, CA, USA, 2008, pp. 50–59.

[88] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers, Principles,
Techniques and Tools. Reading, MA, USA: Addison-Wesley, 1986.

[89] J. Berstel, L. Boasson, O. Carton, and I. Fagnot, “Minimization of
automata,” arXiv preprint arXiv:1010.5318, 2010. [Online]. Available:
http://arxiv.org/pdf/1010.5318.pdf

[90] J. van Lunteren, “High-performance pattern-matching for intrusion
detection,” in Proc. INFOCOM, vol. 6. Barcelona, Spain, Apr. 2006,
pp. 1–13.

[91] K. Atasu, R. Polig, J. Rohrer, and C. Hagleitner, “Exploring the design
space of programmable regular expression matching accelerators,”
J. Syst. Archit., vol. 59, no. 10, pp. 1184–1196, 2013.

[92] X. Wang et al., “Kangaroo: Accelerating string matching by run-
ning multiple collaborative finite state machines,” IEEE J. Sel. Areas
Commun., vol. 32, no. 10, pp. 1784–1796, Oct. 2014.

[93] Regular Expression Processor. Accessed on Apr. 5, 2012.
[Online]. Available: http://regex.wustl.edu/index.php/Regular_
Expression_Processor

[94] F. Yu, Z. Chen, Y. Diao, T. V. Lakshman, and R. H. Katz, “Fast
and memory-efficient regular expression matching for deep packet
inspection,” in Proc. ACM/IEEE Symp. Archit. Netw. Commun. Syst.,
San Jose, CA, USA, 2006, pp. 93–102.

[95] M. Becchi and P. Crowley, “A hybrid finite automaton for practical
deep packet inspection,” in Proc. ACM CoNEXT Conf., New York,
NY, USA, 2007, Art. no. 1.

[96] Y.-H. E. Yang and V. K. Prasanna, “Space-time tradeoff in regular
expression matching with semi-deterministic finite automata,” in Proc.
IEEE INFOCOM, Shanghai, China, 2011, pp. 1853–1861.

[97] T. Liu, A. X. Liu, J. Shi, Y. Sun, and L. Guo, “Towards fast and optimal
grouping of regular expressions via DFA size estimation,” IEEE J. Sel.
Areas Commun., vol. 32, no. 10, pp. 1797–1809, Oct. 2014.

[98] M. Becchi and S. Cadambi, “Memory-efficient regular expression
search using state merging,” in Proc. 26th IEEE Int. Conf. Comput.
Commun. (INFOCOM), Anchorage, AK, USA, 2007, pp. 1064–1072.

[99] B. C. Brodie, D. E. Taylor, and R. K. Cytron, “A scalable archi-
tecture for high-throughput regular-expression pattern matching,” in
Proc. ACM SIGARCH Comput. Archit. News, vol. 34, no. 2, 2006,
pp. 191–202.

[100] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and J. Turner,
“Algorithms to accelerate multiple regular expressions matching for
deep packet inspection,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 36, no. 4, pp. 339–350, 2006.

[101] S. Kumar, J. Turner, and J. Williams, “Advanced algorithms for fast and
scalable deep packet inspection,” in Proc. ACM/IEEE Symp. Architect.
Netw. Commun. Syst., San Jose, CA, USA, 2006, pp. 81–92.

[102] M. Becchi and P. Crowley, “An improved algorithm to accelerate reg-
ular expression evaluation,” in Proc. 3rd ACM/IEEE Symp. Architect.
Netw. Commun. Syst., Orlando, FL, USA, 2007, pp. 145–154.

[103] D. Ficara et al., “An improved DFA for fast regular expression
matching,” ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 5,
pp. 29–40, 2008.

[104] D. Ficara et al., “Differential encoding of DFAs for fast regular expres-
sion matching,” IEEE/ACM Trans. Netw., vol. 19, no. 3, pp. 683–694,
Jun. 2011.

[105] S. Kong, R. Smith, and C. Estan, “Efficient signature matching with
multiple alphabet compression tables,” in Proc. 4th Int. Conf. Security
Privacy Commun. Netow., Istanbul, Turkey, 2008, Art. no. 1.

[106] M. Becchi and P. Crowley, “A-DFA: A time-and space-efficient DFA
compression algorithm for fast regular expression evaluation,” ACM
Trans. Architect. Code Optim. (TACO), vol. 10, no. 1, 2013, Art. no. 4.

[107] J. Patel, A. X. Liu, and E. Torng, “Bypassing space explosion in high-
speed regular expression matching,” IEEE/ACM Trans. Netw., vol. 22,
no. 6, pp. 1701–1714, Dec. 2014.

[108] A. X. Liu and E. Torng, “An overlay automata approach to regular
expression matching,” in Proc. IEEE INFOCOM, Toronto, ON, Canada,
2014, pp. 952–960.

[109] R. Antonello, S. Fernandes, D. Sadok, J. Kelner, and G. Szabó, “Design
and optimizations for efficient regular expression matching in DPI
systems,” Comput. Commun., vol. 61, pp. 103–120, May 2015.

[110] Y. Qi et al., “Feacan: Front-end acceleration for content-aware net-
work processing,” in Proc. IEEE INFOCOM, Shanghai, China, 2011,
pp. 2114–2122.

[111] J. Rohrer, K. Atasu, J. van Lunteren, and C. Hagleitner, “Memory-
efficient distribution of regular expressions for fast deep packet inspec-
tion,” in Proc. 7th IEEE/ACM Int. Conf. Hardw. Softw. Codesign Syst.
Synth., Grenoble, France, 2009, pp. 147–154.

[112] S. Kumar, B. Chandrasekaran, J. Turner, and G. Varghese, “Curing
regular expressions matching algorithms from insomnia, amnesia, and
acalculia,” in Proc. 3rd ACM/IEEE Symp. Architect. Netw. Commun.
Syst., Orlando, FL, USA, 2007, pp. 155–164.

[113] R. Smith, C. Estan, S. Jha, and S. Kong, “Deflating the big bang: fast
and scalable deep packet inspection with extended finite automata,”
ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 4, pp. 207–218,
2008.

[114] R. Smith, C. Estan, and S. Jha, “XFA: Faster signature matching with
extended automata,” in Proc. IEEE Symp. Security Privacy, Oakland,
CA, USA, 2008, pp. 187–201.

[115] K. Wang and J. Li, “Towards fast regular expression matching in prac-
tice,” in Proc. ACM SIGCOMM Conf., Hong Kong, 2013, pp. 531–532.

3028 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 18, NO. 4, FOURTH QUARTER 2016

[116] Y. Xu, J. Jiang, R. Wei, Y. Song, and H. J. Chao, “TFA: A tunable
finite automaton for pattern matching in network intrusion detection
systems,” IEEE J. Sel. Areas Commun., vol. 32, no. 10, pp. 1810–1821,
Oct. 2014.

[117] X. Yu, B. Lin, and M. Becchi, “Revisiting state blow-up: Automatically
building augmented-fa while preserving functional equivalence,” IEEE
J. Sel. Areas Commun., vol. 32, no. 10, pp. 1822–1833, Oct. 2014.

[118] M. Becchi and P. Crowley, “Extending finite automata to efficiently
match Perl-compatible regular expressions,” in Proc. ACM CoNEXT
Conf., Madrid, Spain, 2008, Art. no. 25.

[119] K. Wang, Z. Fu, X. Hu, and J. Li, “Practical regular expression match-
ing free of scalability and performance barriers,” Comput. Commun.,
vol. 54, pp. 97–119, Dec. 2014.

[120] R. W. Floyd and J. D. Ullman, “The compilation of regular expressions
into integrated circuits,” J. ACM (JACM), vol. 29, no. 3, pp. 603–622,
1982.

[121] R. Sidhu and V. K. Prasanna, “Fast regular expression matching using
FPGAs,” in Proc. 9th Annu. IEEE Symp. Field Program. Custom
Comput. Mach. (FCCM), Rohnert Park, CA, USA, 2001, pp. 227–238.

[122] C.-H. Lin, C.-T. Huang, C.-P. Jiang, and S.-C. Chang, “Optimization of
pattern matching circuits for regular expression on FPGA,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 15, no. 12, pp. 1303–1310,
Dec. 2007.

[123] Y.-H. E. Yang, W. Jiang, and V. K. Prasanna, “Compact architecture
for high-throughput regular expression matching on FPGA,” in Proc.
4th ACM/IEEE Symp. Architect. Netw. Commun. Syst., San Jose, CA,
USA, 2008, pp. 30–39.

[124] Y. H. Cho, S. Navab, and W. H. Mangione-Smith, “Specialized hard-
ware for deep network packet filtering,” in Field-Programmable Logic
and Applications: Reconfigurable Computing Is Going Mainstream.
Heidelberg, Germany: Springer, 2002, pp. 452–461.

[125] N. Yamagaki, R. Sidhu, and S. Kamiya, “High-speed regular expression
matching engine using multi-character NFA,” in Proc. Int. Conf. Field
Program. Logic Appl. (FPL), Heidelberg, Germany, 2008, pp. 131–136.

[126] H. Nakahara, T. Sasao, and M. Matsuura, “A regular expression match-
ing circuit based on a modular non-deterministic finite automaton with
multi-character transition,” in Proc. 16th Workshop Synth. Syst. Integr.
Mixed Inf. technol., Taipei, Taiwan, 2010, pp. 359–364.

[127] V. Košar and J. Korenek, “Efficient mapping of nondeterministic
automata to FPGA for fast regular expression matching,” in Proc.
DDECS, Vienna, Austria, 2010, pp. 54–59.

[128] V. Košař, M. Žádnik, and J. Kořenek, “NFA reduction for regular
expressions matching using FPGA,” in Proc. Int. Conf. Field Program.
Technol. (FPT), Kyoto, Japan, 2013, pp. 338–341.

[129] J. Bispo, I. Sourdis, J. M. P. Cardoso, and S. Vassiliadis, “Regular
expression matching for reconfigurable packet inspection,” in Proc.
IEEE Int. Conf. Field Program. Technol. (FPT), Bangkok, Thailand,
2006, pp. 119–126.

[130] M. Faezipour and M. Nourani, “Constraint repetition inspection for
regular expression on FPGA,” in Proc. 16th IEEE Symp. High Perform.
Interconnects (HOTI), Stanford, CA, USA, 2008, pp. 111–118.

[131] H. Wang, S. Pu, G. Knezek, and J.-C. Liu, “Min-max: A counter-
based algorithm for regular expression matching,” IEEE Trans. Parallel
Distrib. Syst., vol. 24, no. 1, pp. 92–103, Jan. 2013.

[132] T. T. Hieu, T. N. Thinh, and S. Tomiyama, “ENREM: An efficient NFA-
based regular expression matching engine on reconfigurable hardware
for NIDS,” J. Syst. Architect., vol. 59, nos. 4–5, pp. 202–212, 2013.

[133] G. Vasiliadis, S. Antonatos, M. Polychronakis, E. P. Markatos, and
S. Ioannidis, “Gnort: High performance network intrusion detection
using graphics processors,” in Recent Advances in Intrusion Detection.
Heidelberg, Germany: Springer, 2008, pp. 116–134.

[134] G. Vasiliadis, M. Polychronakis, S. Antonatos, E. P. Markatos, and
S. Ioannidis, “Regular expression matching on graphics hardware
for intrusion detection,” in Recent Advances in Intrusion Detection.
Heidelberg, Germany: Springer, 2009, pp. 265–283.

[135] N. Cascarano, P. Rolando, F. Risso, and R. Sisto, “iNFAnt: NfA pattern
matching on GPGPU devices,” ACM SIGCOMM Comput. Commun.
Rev., vol. 40, no. 5, pp. 20–26, 2010.

[136] G. Vasiliadis, M. Polychronakis, and S. Ioannidis, “Parallelization and
characterization of pattern matching using GPUs,” in Proc. IEEE Int.
Symp. Workload Characterization (IISWC), Austin, TX, USA, 2011,
pp. 216–225.

[137] R. Smith, N. Goyal, J. Ormont, K. Sankaralingam, and C. Estan,
“Evaluating GPUs for network packet signature matching,” in Proc.
IEEE Int. Symp. Perform. Anal. Syst. Softw. (ISPASS), Boston, MA,
USA, 2009, pp. 175–184.

[138] X. Yu and M. Becchi, “GPU acceleration of regular expression match-
ing for large datasets: Exploring the implementation space,” in Proc.
ACM Int. Conf. Comput. Front., Ischia, Italy, 2013, Art. no. 18.

[139] Y. Zu et al., “GPU-based NFA implementation for memory efficient
high speed regular expression matching,” ACM SIGPLAN Not., vol. 47,
no. 8, pp. 129–140, 2012.

[140] C.-H. Lin, C.-H. Liu, L.-S. Chien, and S.-C. Chang, “Accelerating pat-
tern matching using a novel parallel algorithm on GPUs,” IEEE Trans.
Comput., vol. 62, no. 10, pp. 1906–1916, Oct. 2013.

[141] X. Yu and M. Becchi, “Exploring different automata representations
for efficient regular expression matching on GPUs,” ACM SIGPLAN
Not., vol. 48, no. 8, pp. 287–288, 2013.

[142] D. P. Scarpazza, O. Villa, and F. Petrini, “Peak-performance DFA-
based string matching on the cell processor,” in Proc. IEEE Int.
Parallel Distrib. Process. Symp. (IPDPS), Long Beach, CA, USA,
2007, pp. 1–8.

[143] J. Jiang, X. Wang, K. He, and B. Liu, “Parallel architecture for high
throughput DFA-based deep packet inspection,” in Proc. IEEE Int.
Conf. Commun. (ICC), Cape Town, South Africa, 2010, pp. 1–5.

[144] J. Holub and S. Štekr, “On parallel implementations of determinis-
tic finite automata,” in Implementation and Application of Automata.
Heidelberg, Germany: Springer, 2009, pp. 54–64.

[145] D. Luchaup, R. Smith, C. Estan, and S. Jha, “Multi-byte regular
expression matching with speculation,” in Recent Advances in Intrusion
Detection. Heidelberg, Germany: Springer, 2009, pp. 284–303.

[146] D. Luchaup, R. Smith, C. Estan, and S. Jha, “Speculative parallel
pattern matching,” IEEE Trans. Inf. Forensics Security, vol. 6, no. 2,
pp. 438–451, Jun. 2011.

[147] Y. Ko, M. Jung, Y.-S. Han, and B. Burgstaller, “A speculative paral-
lel DFA membership test for multicore, SIMD and cloud computing
environments,” Int. J. Parallel Program., vol. 42, no. 3, pp. 456–489,
2014.

[148] Y.-H. E. Yang and V. K. Prasanna, “Optimizing regular expression
matching with SR-NFA on multi-core systems,” in Proc. Int. Conf.
Parallel Architect. Compilation Techn. (PACT), Galveston, TX, USA,
2011, pp. 424–433.

[149] F. Yu, R. H. Katz, and T. V. Lakshman, “Gigabit rate packet pattern-
matching using TCAM,” in Proc. 12th IEEE Int. Conf. Netw. Protocols
(ICNP), Berlin, Germany, 2004, pp. 174–183.

[150] J.-S. Sung, S.-M. Kang, Y. Lee, T.-G. Kwon, and B.-T. Kim, “A multi-
gigabit rate deep packet inspection algorithm using TCAM,” in Proc.
Glob. Telecommun. Conf. (GLOBECOM), vol. 1. St Louis, MO, USA,
2005, p. 5.

[151] M. Alicherry, M. Muthuprasanna, and V. Kumar, “High speed
pattern matching for network IDS/IPS,” in Proc. 14th IEEE Int.
Conf. Netw. Protocols (ICNP), Santa Barbara, CA, USA, 2006,
pp. 187–196.

[152] K. Peng, S. Tang, M. Chen, and Q. Dong, “Chain-based DFA defla-
tion for fast and scalable regular expression matching using TCAM,”
in Proc. IEEE 7th ACM/IEEE Symp. Architect. Netw. Commun. Syst.
(ANCS), Brooklyn, NY, USA, 2011, pp. 24–35.

[153] C. R. Meiners, J. Patel, E. Norige, E. Torng, and A. X. Liu, “Fast
regular expression matching using small TCAMs for network intru-
sion detection and prevention systems,” in Proc. 19th USENIX Conf.
Security, Berkeley, CA, USA, 2010, pp. 1–16.

[154] C. R. Meiners, J. Patel, E. Norige, A. X. Liu, and E. Torng, “Fast
regular expression matching using small TCAM,” IEEE/ACM Trans.
Netw. (TON), vol. 22, no. 1, pp. 94–109, Feb. 2014.

[155] J. V. Lunteren and A. Guanella, “Hardware-accelerated regular expres-
sion matching at multiple tens of GB/s,” in Proc. IEEE INFOCOM,
Orlando, FL, USA, 2012, pp. 1737–1745.

[156] H. Nakahara, T. Sasao, and M. Matsuura, “A regular expres-
sion matching circuit based on a decomposed automaton,” in
Reconfigurable Computing: Architectures, Tools and Applications.
Heidelberg, Germany: Springer, 2011, pp. 16–28.

[157] J. V. Lunteren et al., “Designing a programmable wire-speed regular-
expression matching accelerator,” in Proc. 45th Annu. IEEE/ACM
Int. Symp. Microarchitect. (MICRO), Vancouver, BC, Canada, 2012,
pp. 461–472.

[158] K. Atasu, F. Doerfler, J. V. Lunteren, and C. Hagleitner, “Hardware-
accelerated regular expression matching with overlap handling on IBM
PowerEn processor,” in Proc. IEEE 27th Int. Symp. Parallel Distrib.
Process. (IPDPS), Boston, MA, USA, 2013, pp. 1254–1265.

[159] A. X. Liu, E. Norige, and S. Kumar, “A few bits are enough-ASIC
friendly regular expression matching for high speed network secu-
rity systems,” in Proc. 21st IEEE Int. Conf. Netw. Protocols (ICNP),
Göttingen, Germany, 2013, pp. 1–10.

XU et al.: SURVEY ON REGULAR EXPRESSION MATCHING FOR DPI 3029

[160] P. Dlugosch, D. Brown, P. Glendenning, M. Leventhal, and H. Noyes,
“An efficient and scalable semiconductor architecture for parallel
automata processing,” IEEE Trans. Parallel Distrib. Syst., vol. 25,
no. 12, pp. 3088–3098, Dec. 2014.

[161] New Hogwash Web Site. Accessed on Feb. 20, 2016. [Online].
Available: http://hogwash.sourceforge.net/oldindex.html

[162] Stratix ii Device Handbook: Volume 1. Accessed on Feb. 20, 2016.
[Online]. Available: http://www.altera.com/literature/hb/stx2/
stx2_sii5v1.pdf

[163] Cuda C Programming Guide-v7.5. (2015). [Online].
Available: http://docs.nvidia.com/cuda/cuda-c-programming-guide/
#axzz3lG7i9ZOS

[164] Cisco Intusion Prevention System (Cisco Ips). Accessed on
Feb. 20, 2016. [Online]. Available: http://www.cisco.com/en/US/
products/ps6634/products_ios_protocol_group_home.html

[165] M. Becchi, C. Wiseman, and P. Crowley, “Evaluating regular expression
matching engines on network and general purpose processors,” in Proc.
5th ACM/IEEE Symp. Architect. Netw. Commun. Syst., Princeton, NJ,
USA, 2009, pp. 30–39.

[166] Defcon. (2013). [Online]. Available: http://cctf.shmoo.com.
[167] M. Becchi, M. Franklin, and P. Crowley, “A workload for evaluat-

ing deep packet inspection architectures,” in Proc. IEEE Int. Symp.
Proc. Workload Characterization (IISWC), Seattle, WA, USA, 2008,
pp. 79–89.

[168] M. Najam, U. Younis, and R. ur Rasool, “Speculative parallel pat-
tern matching using stride-k DFA for deep packet inspection,” J. Netw.
Comput. Appl., vol. 54, pp. 78–87, 2015.

[169] R. Sommer, V. Paxson, and N. Weaver, “An architecture for exploit-
ing multi-core processors to parallelize network intrusion prevention,”
Concurrency Comput. Pract. Exp., vol. 21, no. 10, pp. 1255–1279,
2009.

[170] J. Jung, V. Paxson, A. W. Berger, and H. Balakrishnan, “Fast
portscan detection using sequential hypothesis testing,” in
Proc. IEEE Symp. Security Privacy, Berkeley, CA, USA, 2004,
pp. 211–225.

[171] D. R. Ellis, J. G. Aiken, K. S. Attwood, and S. D. Tenaglia, “A behav-
ioral approach to worm detection,” in Proc. ACM Workshop Rapid
malcode, Washington, DC, USA, 2004, pp. 43–53.

[172] Y. Zhang and V. Paxson, “Detecting stepping stones,” in Proc. USENIX
Security Symp., vol. 9, 2000, p. 13.

[173] V. Paxson et al., “Rethinking hardware support for network analysis
and intrusion prevention,” in Proc. HotSec, 2006, Art. no. 11.

[174] S. Singh, C. Estan, G. Varghese, and S. Savage, “Automated worm
fingerprinting,” in Proc. OSDI, vol. 6. San Francisco, CA, USA, 2004,
Art. no. 4.

[175] M. Gokhale et al., “Granidt: Towards gigabit rate network intru-
sion detection technology,” in Field-Programmable Logic and
Applications: Reconfigurable Computing Is Going Mainstream.
Heidelberg, Germany: Springer, 2002, pp. 404–413.

[176] Clamav. (2015). [Online]. Available: http://www.clamav.net/index.html
[177] S. Yun, “An efficient TCAM-based implementation of multipattern

matching using covered state encoding,” IEEE Trans. Comput., vol. 61,
no. 2, pp. 213–221, Feb. 2012.

[178] K. Zheng, Z. Cai, X. Zhang, Z. Wang, and B. Yang, “Algorithms to
speedup pattern matching for network intrusion detection systems,”
Comput. Commun., vol. 62, pp. 47–58, May 2015.

[179] K. Huang et al., “Scalable TCAM-based regular expression match-
ing with compressed finite automata,” in Proc. 9th ACM/IEEE
Symp. Architect. Netw. Commun. Syst., San Jose, CA, USA, 2013,
pp. 83–93.

[180] Dansguardian True Web Content Filtering for All. (2015). [Online].
Available: http://dansguardian.org/

[181] Graphviz - Graph Visualization Software. (2011). [Online]. Available:
http://www.graphviz.org/content/new-gvedit-released

[182] S. Chen and R. Lu, “A regular expression matching engine with hybrid
memories,” Comput. Stand. Interfaces, vol. 36, no. 5, pp. 880–888,
2014.

[183] J. G. Kemeny and J. L. Snell, Finite Markov Chains, vol. 356.
Princeton, NJ, USA: Van Nostrand, 1960.

[184] B. Khailany et al., “Imagine: Media processing with streams,” IEEE
Micro, vol. 21, no. 2, pp. 35–46, Mar./Apr. 2001.

[185] M. Becchi, A. Bremler-Barr, D. Hay, O. Kochba, and Y. Koral,
“Accelerating regular expression matching over compressed http,” in
Proc. (INFOCOM), Apr./May 2015, pp. 540–548.

Chengcheng Xu received the B.S. degree from the
Nanjing University of Aeronautics and Astronautics,
China, in 2011, and the M.S. degree from the
National University of Defense Technology, China,
in 2013, where he is currently pursuing the Ph.D.
degree. His interests are in network security and
deep packet inspection.

Shuhui Chen received the Ph.D. degree from the
National University of Defense Technology, China,
in 2007, where he is currently a Professor. His
research interests include network protocol and net-
work security.

Jinshu Su received the B.S. degree in mathe-
matics from Nankai University, Tianjin, China, in
1985, and the M.S. and Ph.D. degrees in computer
science from the National University of Defense
Technology, Changsha, China, in 1988 and 2000,
respectively.

He is a Professor with the School of Computer
Science, National University of Defense Technology.
He currently leads the Distributed Computing
and High Performance Router Laboratory and
the Computer Networks and Information Security

Laboratory, which are both key laboratories of National 211 and 985 projects,
China. He also leads the High Performance Computer Networks Laboratory,
which is a key laboratory of Hunan Province, China. His research interests
include Internet architecture, Internet routing, security, and wireless networks.

S. M. Yiu received the Ph.D. degree in computer
science from the Department of Computer Science,
University of Hong Kong, in 1996, where he is
currently an Associate Professor. His research inter-
ests include information security, cryptography, and
bioinformatics.

Lucas C. K. Hui received the B.Sc. and M.Phil.
degrees in computer science from the University of
Hong Kong, and the M.Sc. and Ph.D. degrees in
computer science from the University of California,
Davis. He is the Founder and the Honorary
Director of the Center for Information Security
and Cryptography, and concurrently an Associate
Professor with the Department of Computer Science,
University of Hong Kong. His research interests
include information security, computer crime, cryp-
tographic systems, and electronic commerce secu-

rity. He is a member of the HKIE.

