
Finite State Machine Parsing for Internet Protocols:
Faster Than You Think

Robert David Graham
Errata Security

robert david graham@yahoo.com

Peter C. Johnson
Department of Computer Science

Dartmouth College
Hanover, NH USA

pete@cs.dartmouth.edu

Abstract—A parser’s job is to take unstructured, opaque
data and convert it to a structured, semantically meaningful
format. As such, parsers often operate at the border between
untrusted data sources (e.g., the Internet) and the soft, chewy
center of computer systems, where performance and security are
paramount. A firewall, for instance, is precisely a trust-creating
parser for Internet protocols, permitting valid packets to pass
through and dropping or actively rejecting malformed packets.
Despite the prevalence of finite state machines (FSMs) in both
protocol specifications and protocol implementations, they have
gained little traction in parser code for such protocols. Typical
reasons for avoiding the FSM computation model claim poor
performance, poor scalability, poor expressibility, and difficult
or time-consuming programming.

In this research report, we present our motivations for and
designs of finite state machines to parse a variety of existing
Internet protocols, both binary and ASCII. Our hand-written
parsers explicitly optimize around L1 cache hit latency, branch
misprediction penalty, and program-wide memory overhead to
achieve aggressive performance and scalability targets. Our
work demonstrates that such parsers are, contrary to popular
belief, sufficiently expressive for meaningful protocols, sufficiently
performant for high-throughput applications, and sufficiently
simple to construct and maintain. We hope that, in light of
other research demonstrating the security benefits of such parsers
over more complex, Turing-complete codes, our work serves as
evidence that certain “practical” reasons for avoiding FSM-based
parsers are invalid.

I. INTRODUCTION

Parsers are responsible for translating unstructured, un-
trusted, opaque data to a structured, implicitly trusted, seman-
tically meaningful format suitable for computing on. Parsers,
therefore, are the components that facilitate the separation
of data from computation and, hence, exist in nearly every
conceivable useful computer system.

Any program that presents the contents of data files contains
a parser: word processors show documents, media players play
video or audio, databases store and retrieve arbitrary data.
More generally, any program that accepts input (interactively
or not) contains a parser to translate from the unstructured
input data to whatever internal structures the program uses to
process that input. The source of input varies, of course—it
could be bytes read off a disk, events from a keyboard or
mouse, or data over a network interface—but the basic task
remains the same: create structure from chaos.

As a result of this mandate, parsers are nearly always
tasked (explicitly or otherwise) with determining whether a
reasonable structure can even be derived from the chaotic
input; that is, parsers imbue input with trust. For example,
a firewall examines data attempting to enter or exit a network;
packets approved by the firewall policy are allowed through,
packets that are not approved are dropped or rejected. Having
passed through, internal machines assume these packets to be
more trustworthy than those that failed to pass muster at the
perimeter; the firewall has essentially blessed them with its seal
of approval. The same can be said of parsers for documents
or data files: if the parser finds a problem with the data file,
the program will (or at least should) emit an error rather than
attempt to load a broken file.

These examples highlight two vital requirements of parsers:
they must be correct, so that only valid input is blessed with
trust; and they must be efficient so that enormous documents
and torrential datastreams (for word processors and firewalls,
respectively) don’t bring systems to their knees. Correctness is
reasonably straightforward (though perhaps not “simple”, per
se), but efficiency has some interesting subtleties because it
encompasses all resources a parser might use. The obvious
resource to consider is CPU cycles but, at scale, memory
becomes an issue as well.

Both of these performance axes affect projects we have
worked on, best illustrated by masscan [4], an Internet port
scanner that can cover the entire IPv4 address space in under
6 minutes, at 10 million packets per second, from a single
machine. To achieve this rate, masscan is extremely efficient
in both the number of CPU cycles it spends parsing each
byte received over the wire as well as the memory it uses
to store state for the millions of simultaneous connections it
maintains. This scanning rate is an order of magnitude faster
than alternatives such as nmap [7] and Zmap [3].

Another project where performance reigns supreme is
robdns [5], a DNS server designed to service 10 million
requests per second. One interesting aspect of this project
is that responding to individual DNS requests is not the
only performance-sensitive operation: at its intended scale,
just parsing the DNS data (“zone files”) from disk is a
potential bottleneck! Some DNS servers, such as Knot [6] and
Yadifa [9], have optimized their parsing of DNS zone files but,
just like masscan outperforms its competitors, robdns is

faster than all of them.
Finally, an intrusion detection system (IDS) needs to not

only parse data, it must also search otherwise-opaque fields
for questionable patterns. For instance, where a typical HTTP
header parser would find the Host field and blindly return
all following characters through the end of line as the value,
an IDS needs to be able to search that value for potentially-
malicious contents. To analyze data at line speed, the parser
inside an IDS must be both fast, to keep up with data rates
in excess of 1 Gbps, and compact, to maintain state for a
potentially huge set of concurrent connections.

What’s the secret sauce? you ask. Finite state machines.
No way! you say. Way.
Not just finite state machines, but FSMs that parse in-

put byte-by-byte, sequentially, without backtracking, and are
constructed to maximize throughput by taking into account
architectural characteristics such as L1 cache hit rate and
branch misprediction penalties. In the remainder of this re-
search report, we will demonstrate that hand-written FSM
parsers can handle real-world protocols such as DNS zone
files, X.509 certificates, and HTTP headers; that these parsers
are extremely efficient with system resources; and that they
scale better than existing implementations in software such
as the nginx and Apache web servers and the openssl
cryptography library.

We next review finite state machines and how they apply
to parsing (Section II), then we describe the architectural
considerations we kept in mind while writing our parsers (Sec-
tion III), next we provide an overview of three of the parsers
we implemented along with performance metrics (Section IV),
discuss future directions (Section V), and, finally, conclude
(Section VI).

II. FINITE STATE MACHINES FOR PARSING

A finite state machine—also known as a deterministic finite
automaton (DFA)—is defined by a set of states, exactly one
of which is the start state, some subset of which are the
accepting states, a set of input tokens called the alphabet,
and a transition function that, given the next input token and
the current state, determines the next state. A DFA is said to
accept a particular input if and only if, starting in the start
state and repeatedly applying the transition function to each
input token in sequence, one winds up in a accepting state
when one reaches the end of the input. Any input that is not
accepted is rejected. The language of a DFA is the set of all
inputs it accepts; equivalently, the DFA is said to recognize
that language. Furthermore, the class of languages that can be
recognized by a DFA are called regular languages.

To parse a particular protocol, we require a DFA that
recognizes the language of all valid messages in that protocol.
Consider the task of parsing HTTP headers, an example that
we will refer to throughout this section. Without loss of
generality, and to save space, let’s assume we only have to
deal with a single header field: Host.

One way to represent a DFA is graphically; our toy HTTP
header parser is shown in Figure 1. The circles are states, with

s0 s1 s2 s3

s4s5s6s7

‘H’ ‘o’ ‘s’

‘t’
‘:’‘ ’

not ‘\n’

‘\n’

Fig. 1. A simple DFA that recognizes the HTTP “Host” header. Note that if
a transition does not exist for a given input character from a given state, the
entire input is rejected. State s0 is the start state and state s7 is the accepting
state.

s0 s1 s2 s3 s4 s5 s6 s7
‘H’ s1
‘o’ s2
‘s’ s3
‘t’ s4
‘:’ s5
‘ ’ s6
‘not \n’ s1 s6
‘\n’ s1 s7

TABLE I
TABULAR REPRESENTATION OF TRANSITION FUNCTION FOR DFA SHOWN

IN FIGURE 1. AN EMPTY CELL INDICATES IMMEDIATE FAILURE FOR A
GIVEN CURRENT STATE AND NEXT INPUT TOKEN.

the start state signified by a tailless arrow pointing to it and
the accepting states shown as double circles. The transition
function is shown as arrows from current state to next state,
labeled by the alphabet token that induces the transition. If
there is no appropriately labeled arrow given the current input
token, the entire input is rejected.

Equivalently, a DFA can be represented in tabular format;
Table I shows the same DFA from Figure 1 as such.

This DFA only recognizes a single line of an HTTP header.
We can compose several such DFAs to recognize the entire set
of headers, as shown in Figure 2. To save space, we have taken
a bit of a shortcut in notation by not including distinct states
for each character read, but those are easy to extrapolate.

A. Implementation Methods

In practice, there are many ways to implement deterministic
finite automata. One popular method is as a two-dimensional
array precisely like the one shown in Table I along with a loop
similar to this:

cur_state = start_state;
while(i < input_length) {

c = input[i];
cur_state = table[cur_state][c];

}

Alternatively, one could use a massive switch statement,
conditioned on the current state, where each case individually
sets the next state. Another option is to use a jump table, which
is similar to the tabular method described above, with the
exception that each entry is a function pointer to the handler

EOL

URImethod version

key value
‘:’

Fig. 2. DFA that recognizes HTTP headers, with the request on the first line,
followed by arbitrary key-value pairs on subsequent lines, ending with two
consecutive newlines. Solid edges represent any printable character, dotted
lines represent a space, dashed lines represent a newline. The unlabeled states
just eat spaces.

for that case. Finally, a true sadist (or masochist, depending on
your perspective) could desecrate Dijkstra’s memory by using
a complex pile of goto spaghetti.

These relatively naı̈ve approaches are quite widely used,
though they leave room for improvement, especially when
one keeps in mind the underlying hardware architecture upon
which these programs run.

III. DESIGN CONSIDERATIONS

We have identified a number of hardware design parameters
that affect parsing using DFAs. Some of these, such as cache
hit latency, help us calculate maximum theoretical throughput
for DFA-based parsers, whereas others guide our efforts to
reach this maximum.

A. Branch (Mis)prediction

As processor pipelines have grown deeper and deeper, the
importance of the branch prediction unit has increased: every
incorrect prediction induces a flush of the entire pipeline,
wasting precious cycles. Despite the fact that modern branch
prediction units have gotten extremely accurate (well above
90% for some workloads), the inherently unpredictable nature
of parsing random input runs the risk of running a pipeline
full of bubbles. Or does it?

As described above, massive switch statements are often
used to implement DFAs, with one loop iteration for each
input token. We have found, however, that the things we want
to parse frequently take the shape of surprisingly linear DFAs;
refer back to Figure 1 for such an example.

microarchitecture target platform pipeline depth
AMD Bobcat mobile 15 stages
AMD Bulldozer desktop/server 16 to 19 stages
ARM Cortex-A8 (in-order) mobile 13 stages
ARM Cortex-A9 (out-of-order) mobile 8 stages
IBM Power8 server 16 stages
Intel Core desktop/server 14 to 19 stages
Intel Silvermont mobile 16 stages

TABLE II
PIPELINE DEPTHS OF MODERN MICROARCHITECTURES.

Implementing each state as a distinct case in a switch
statement is certainly a viable approach but we can use our
knowledge of what we’re parsing to take a shortcut. We know
that there is only a single valid transition from, e.g., state s2 to
state s3, so we can avoid looping back around to the beginning
of the switch and instead fall through to the next state by
omitting the break statement in the code for s2. This saves
us cycles on a number of fronts: we take the branch prediction
unit out of the equation entirely, thus avoiding the danger of
an incorrect prediction; the processor then (correctly) performs
its speculative execution of state s3; and we maintain spatial
locality of the instruction cache.

Table II surveys the pipeline depths of a number of modern
microprocessor architectures. The deeper the depth, the greater
the impact of a missed branch prediction, and the more savings
we realize by eliminating as many branches as we can in
otherwise branch-heavy code like parsing.

B. Memory Overhead

The masscan Internet scanning tool achieves its staggering
scanning rate with a number of tricks, many of which are
intended to minimize the memory overhead of managing
millions of concurrent connections. While these techniques
don’t necessarily affect parsing, per se, we believe they are
instructive examples for those looking to implement high-
performance parsers (which is essentially what masscan is).

First and foremost, masscan bypasses the kernel network
stack and uses a NIC driver that deposits raw packets directly
to user memory. This avoids a great deal of switching between
user mode and supervisor mode in both hardware and software.
Recall that on every mode switch, the processor must flush
the pipeline! Avoiding these switches is extremely beneficial
to performance.

Secondly, masscan discards all fragmented packets with
the understanding that the sending machine will just re-send
the packets whole. Ignoring fragments allows masscan to
parse every frame sequentially, without the need to buffer
anything: the only memory it must devote to any given
connection is a few integers indicating its current state in the
parser. For example, due to using nested state machines, our
X.509 parser requires 58 bytes per TCP connection to store
its current state. At 10 million concurrent connections, that
amounts to 580 megabytes. In contrast, the Linux kernel uses
in excess of 2 kilobytes per TCP connection [8]—not counting

buffers for storing packet fragments. masscan is two orders
of magnitude more efficient in its use of memory!

C. Pattern Matching using Aho-Corasick

Parsers are used to assign semantic meaning to otherwise-
opaque data, and in many cases the parser isn’t immediately
concerned with the precise contents of the data. For instance,
when a web server parses incoming HTTP headers, one of the
fields it identifies is Host. All the parser will do is identify the
associated value (i.e., all characters following “Host: ” through
to the line terminator) and send that data up to a higher level
in the program for further intepretation.

There are, however, applications that benefit from putting
more logic in the parser; network intrusion detection systems
(IDS) and antivirus software are a few. Traditionally, IDSes
and antivirus software maintain a library of signatures (i.e.,
byte strings) they believe identify invalid and/or malicious
data; to perform their duties, they scan network or disk data
for the presence of these character strings. In DFA parlance,
these applications recognize the language of all strings that
contain any of the signatures as a substring.

We could, of course, construct DFAs for this purpose by
hand, but it turns out that Al Aho and Margaret Corasick fig-
ured out how to programmatically generate them many years
ago. Given a set of strings to search for, the Aho-Corasick [1]
algorithm produces a DFA that finds all occurrences of those
strings (verbatim) within a particular input string. Essentially,
it recognizes the language of all input strings that contain one
or more of the search strings within it (with some sugar on
top to take action whenever a search string is found). This
is precisely what intrusion detection systems and antivirus
software do!
masscan makes extensive use of Aho-Corasick parsers: to

find specific fields within HTTP headers, or X.509 certificates,
or values within fields, and so on. These automatically gen-
erated parsers are especially useful when matches require no
further processing. We found hand-written parsers were more
effective when the matched bytes required some processing,
e.g., converting ASCII integers to binary for later use, as in
the case of run-length encoded values.

D. Input Token Translation

Another technique to improve parser performance is to
compress the input token space with a translation function.
Because we’re parsing one byte at a time, our input alphabet
is technically the entire range of 256 possible values, but
(especially for ASCII protocols) many are not used in valid
parses. When we encode the transition function as a table,
this sparse use of the input token space results in a sparsely-
populated table. Even a relatively modest number of states will
therefore cause the table to, if not exceed the size of the L1
cache on its own, at least cause otherwise premature eviction
of useful entries.

To mitigate this, before we perform the transition table
lookup, we translate the raw input token to a tightly-packed
space of tokens that are meaningful in this particular parse.

If we need only concern ourselves with printable ASCII, this
technique reduces the memory footprint of the transition table
by at least 50%.

E. Cache Latency

Recall the loop shown in Section II-A for evaluating a
DFA against an input; it is a particularly tight loop, especially
because the body,

state = table[state][c];

can be executed as a single instruction in x86 assembly:

mov ebx[eax+ecx],%eax

Prior to execution, register ebx holds the base address of
table, eax holds the value of state, and ecx holds the
value of c. After execution, eax holds the new value of
state.

In the absolute best case, this memory-register operation
will result in an L1 cache hit. Modern processors are often
able to hide the latency of retrieving a value from cache by
executing instructions out of order. If we unroll the loop a few
times, however, we can see that each instruction depends on
the result of the previous:

mov ebx[eax+ecx],%eax
mov ebx[eax+ecx],%eax
mov ebx[eax+ecx],%eax
mov ebx[eax+ecx],%eax

The second instruction can’t complete until the result of the
first instruction has been loaded from cache.1 Therefore, we
conclude that the absolute lower bound on parser execution is
c cycles per byte, where c is the L1 cache hit rate in cycles.
This exposition isn’t merely academic. By understanding the
architectural limitations on the execution of parsers, we can
evaluate their performance against the ideal rather than against
the rest of the horses in the stable.

Additionally, we are better-informed when writing our
parsers. If we know the L1 cache hit rate is c cycles, then
we know we have c instructions we can execute between each
of those mov instructions in the parser’s inner loop. We can
use those cycles to do things like the input token translation
described in Section III-D and to check if we’ve found a
match. In the following section, we will show precisely how
this works.

IV. IMPLEMENTATIONS

As mentioned previously, we are more concerned with
comparing our parsers’ performance against the theoretical
maximum rather than other implementations. (We do plan
to compare against others, though; we will elaborate in Sec-
tion V.) In the following subsections, we describe the perfor-
mance of both synthetic microbenchmarks we have developed
as well as full-fledged applications that parse X.509 certificates
and DNS zone files.

1The presence of pipeline stages and superscalar execution present further
potential slowdows, but modern processors seem to be quite efficient at
mitigating these, as we will show in Section IV.

synthetic Aho-Corasick
Processor clock rate L1 speed max theo. asm-idx asm-ptr cycles/byte parse speed
AMD Bobcat 1.6 GHz 3 cycles 4.3 Gbps 4.2 cycles 3 cycles 6.770 1.89 Gbps
AMD Bulldozer (Piledriver) 4 GHz 4 cycles 8 Gbps 5 cycles 3.8 cycles 4.974 6.46 Gbps
Intel Atom (Cedarview) 1.6 GHz 3 cycles 4.3 Gbps 4.2 cycles 3 cycles 14.257 895 Mbps
Intel Core (Ivy Bridge) 2.5 GHz 4 cycles 5 Gbps 5 cycles 4 cycles 5.015 3.99 Gbps
Intel Core (Sandy Bridge) 3.2 GHz 4 cycles 6.4 Gbps 5 cycles 4 cycles 5.033 5.07 Gbps
Intel Core (Westmere) 2.13 GHz 4 cycles 4.3 Gbps 4 cycles 4 cycles 4.068 4.21 Gbps

TABLE III
PERFORMANCE METRICS FOR VARIOUS MODERN PROCESSORS, RESULTS OF RUNNING BOTH SYNTHETIC BENCHMARKS TESTING L1 CACHE LATENCY

AND A PARSER GENERATED BY THE AHO-CORASICK ALGORITHM.

A. Synthetic Microbenchmark

We wrote two programs to establish a lower bound for our
parser’s inner loop:

• asm-idx is a series of raw x86 assembly instructions
that look up values in a two-dimensional array such that
the result of one instruction is used as an array index in
the subsequent instruction.

• asm-ptr is the same as asm-idx with the exception
that it adds a pointer dereference, the purpose being to
exercise an alternate addressing mode in Intel’s imple-
mentation of the x86 ISA.

We measured execution time of our programs using the
rdtsc instruction. The results of running these synthetic
benchmarks on six different processors are shown in the
asm-idx and asm-ptr columns of Table III. Notice how
the performance of asm-ptr closely tracks the L1 cache hit
latency for each processor. Intel’s desktop- and server-centric
microarchitectures (Ivy Bridge, Sandy Bridge, and Westmere)
are especially good, where the Atom and AMD’s Bobcat and
Bulldozer cores lag by one clock cycle.

We also generated an Aho-Corasick parser that searches
for six words within the text of the King James Bible.
Our performance measurements for this are shown in the
final two columns of Table III. Especially important are two
comparisons:

• cycles per byte parsing rate we observed in our code
(column 7) and L1 cache hit rate (column 3);

• and observed parsing speed (column 8) and max theoret-
ical parsing speed (column 4).

Performance of the Aho-Corasick parser is especially good
on Intel’s Westmere architecture, getting within 2% of the
theoretical maximum. In contrast, performance is especially
poor on Intel’s Cedarview, achieving barely 20% of the
theoretical maximum. This is likely due in large part to the
fact that Cedarview is an in-order architecture; Intel’s newest
Atom processors (Silvermont) use an out-of-order execution
model that we expect would realize significant benefits for the
workloads we care about.

B. X.509 Certificates

The internationally-recognized X.509 standard [2] defines a
format for cryptographic certficates in public key infrastruc-
ture (PKI) systems. One of the tasks for which we created

masscan was performing a census of PKI certificates pre-
sented by Internet-accessible machines. To meet our perfor-
mance goals, we needed a much faster method of parsing these
certificates than that provided by the widely-used OpenSSL
library.

Certificates are so large that they typically cross TCP packet
boundaries. That means block parsers, which is what OpenSSL
uses, must first allocate a large chunk of memory to which it
then copies the contents of multiple packets as they arrive.
Moreover, SSL may fragment a certificate in addition to
fragmentation that may be induced at the TCP layer, meaning
that multiple buffers are used and many copies are performed.
This requires not just CPU cycles, but also many kilobytes
per TCP connection; kilobytes we don’t have to spare when
attempting to support 10 million simultaneous connections.

As you have probably guessed, masscan solves this prob-
lem in part by using a streaming parser for X.509 certificates
(in addition to the userspace TCP stack discussed in Sec-
tion III-B. Due to the complexity of the standard, we in fact
use several nested state machines and thus require 58 bytes
to remember the state of each connection, plus 100 bytes to
buffer specific fields that we extract. Even so, we use two
orders of magnitude less memory than OpenSSL running on
the kernel’s TCP stack.

C. DNS Zone Files

DNS has two formats: an on-the-wire format for transmit-
ting data between machines and a file format for storing the
database on disk. One popular format for this file is the “zone
file” popularized by BIND and later supported by many other
servers. (Listing 1 shows a typical example.) On startup, the
DNS server must parse this text file to build its in-memory
database before servicing any client requests.

Very large zone-files can take a long time to parse, incurring
a long delay before the DNS server can begin responding
to requests; a delay which exacerbates unexpected outages.
For reference, the zone-file for the “.com” top-level domain
presents a particularly difficult problem: it contains 200 mil-
lion domains and is over 8 gigabytes in size. BIND can take
2000 seconds to parse and load this file; other DNS servers,
such as yadifa and knot-dns, have focused on improving this
problem and can load it in about 450 seconds.

We have written a prototype DNS server that parses and
loads the “.com” zone-file in 233 seconds using a state-
machine parser and a single thread on similar hardware

$ORIGIN example.com.
$TTL 1h
example.com. IN SOA ns.example.com. (

2007120710 ; serial number
1d ; refresh period
2h ; retry time
4w ; expiration
1h ; max cache time
)

example.com. NS ns
example.com. NS ns.somewhere.example.
example.com. MX 10 mail.example.com.
@ MX 20 mail2.example.com.
@ MX 50 mail3
example.com. A 192.0.2.1

AAAA 2001:db8:10::1
ns A 192.0.2.2

AAAA 2001:db8:10::2
www CNAME example.com.
wwwtest CNAME www
mail A 192.0.2.3
mail2 A 192.0.2.4
mail3 A 192.0.2.5

Listing 1. Example DNS zone file

(Westmere 2.13 GHz). Parsing the zone-file takes 42 seconds,
with the remainder of the time taken inserting the parsed
data into an in-memory database. There is no way to directly
compare the parsing efficiency with the other DNS servers,
but this demonstrates that a state-machine parser is useful for
systems that focus on speed.

A more direct comparison is comparing our DNS parsing
code to wc, the standard UNIX word-count program. Whereas
parsing a zone-file is quite complex, counting characters,
words, and lines is simple. On the same system (IvyBridge
3.2 GHz), our DNS program parses the “.com” zone-file in 35
seconds of user-time, whereas word-count takes 103 seconds
of user-time.

V. FUTURE WORK

As this is a research report and not a full-fledged research
project, we envision a great deal of work to strengthen the
promising results presented.

We plan to pick apart a suite of existing applications that
contain parsers for Internet protocols to see how they work.
Specifically, we are interested in the methods employed by
nginx, Apache, openssl, Yadifa, and Knot to parse HTTP
headers, X.509 certificates, and DNS zone files. We plan to
extract the parsing routines from these pacakges as much as
we can to compare their performance against our own parsers.
We also hope to precisely quantify the benefits of the various
optimization techniques we described in Section III.

Using the lessons we learned from this investigation, we
plan to produce a system to generate DFA-based parsers

tailored to the characteristics of the hardware they are to be run
upon. Ideally, we would feed in parsing rules and architectural
parameters such as L1 cache hit rate and produce a tuned
binary.

VI. CONCLUSION

In the preceding sections, we have described the demanding
applications that drove the designs and implementations of
our parsers, and the not-at-all-novel but still (in our opinion)
underappreciated finite state machine as a tool to help us
meet those demands. Being mindful of the underlying hard-
ware architecture, we have measured the maximum theoretical
throughput of FSM-based parsers and have demonstrated that
the parsers we have written for real-world applications such
as text searching can, in the best case, achieve performance
within 2% of that maximum. We have also presented other
optimization techniques we have employed that help us hit
our performance targets which, while perhaps not directly
applicable to parsing in specific, nonetheless can serve to guide
those looking to implement tremendously scalable systems.

It is our hope that this research report serves as evidence
that arguments such as “they don’t scale” and “they can’t
parse meaningful protocols” are invalid when considering
using finite state machines for parsing real-world protocols.
Additionally, we hope that the cycles-per-byte metric presented
in Section IV, along with the target of meeting the L1 cache
hit latency, receive higher visibility among those looking to
implement parsers where performance is paramount.

REFERENCES

[1] Alfred V. Aho and Margaret J. Corasick. “Efficient
String Matching: An Aid to Bibliographic Search”. In:
Communications of the ACM 18.6 (June 1975).

[2] David Cooper et al. Internet X.509 Public Key Infrastruc-
ture Certificate and Certificate Revocation List (CRL)
Profile. RFC 5280. May 2008. URL: http : / /www. rfc -
editor.org/rfc/rfc5280.txt.

[3] Zakir Durumeric, Eric Wustrow, and J. Alex Halderman.
“ZMap: Fast Internet-Wide Scanning and its Security
Applications”. In: Proceedings of the 22nd USENIX
Security Symposium. 2013.

[4] Robert David Graham. MASSCAN: Mass IP port scan-
ner. URL: https : / / github . com / robertdavidgraham /
masscan.

[5] Robert David Graham. robdns: a fast DNS server. URL:
https://github.com/robertdavidgraham/robdns.

[6] Knot DNS. URL: https://www.knot-dns.cz/.
[7] Nmap. URL: http://nmap.org.
[8] Kumiko Ono and Henning Schulzrinne. “One Server

Per City: Using TCP for Very Large SIP Servers”. In:
Principles, Systems and Applications of IP Telecommu-
nications. Services and Security for Next Generation
Networks. Ed. by Henning Schulzrinne, Radu State, and
Saverio Niccolini. Springer-Verlag, 2008.

[9] Yadifa. URL: http://www.yadifa.eu/.

