
POSIX Lexing with Bitcoded Derivatives
Chengsong Tan !

King’s College London

Christian Urban !

King’s College London

Abstract
Sulzmann and Lu describe a lexing algorithm that calculates Brzozowski derivatives using bitcodes annotated to
regular expressions. Their algorithm generates POSIX values which encode the information of how a regular
expression matches a string—that is, which part of the string is matched by which part of the regular expression.
This information is needed in the context of lexing in order to extract and to classify tokens. The purpose of
the bitcodes is to generate POSIX values incrementally while derivatives are calculated. They also help with
designing an “aggressive” simplification function that keeps the size of derivatives finite. Without simplification
the size of some derivatives can grow arbitrarily big resulting in an extremely slow lexing algorithm. In this paper
we describe a variant of Sulzmann and Lu’s algorithm: Our variant is a recursive functional program, whereas
Sulzmann and Lu’s version involves a fixpoint construction. We (i) prove in Isabelle/HOL that our algorithm is
correct and generates unique POSIX values; we also (ii) establish a finite bound for the size of the derivatives.

2012 ACM Subject Classification Design and analysis of algorithms; Formal languages and automata
theory

Keywords and phrases POSIX matching and lexing, derivatives of regular expressions, Isabelle/HOL

Digital Object Identifier 10.4230/LIPIcs...

1 Introduction

In the last fifteen or so years, Brzozowski’s derivatives of regular expressions have sparked quite
a bit of interest in the functional programming and theorem prover communities. The beauty of
Brzozowski’s derivatives [3] is that they are neatly expressible in any functional language, and easily
definable and reasoned about in theorem provers—the definitions just consist of inductive datatypes
and simple recursive functions. Derivatives of a regular expression, written r\c, give a simple solution
to the problem of matching a string s with a regular expression r: if the derivative of r w.r.t. (in
succession) all the characters of the string matches the empty string, then r matches s (and vice versa).
We are aware of a mechanised correctness proof of Brzozowski’s derivative-based matcher in HOL4
by Owens and Slind [8]. Another one in Isabelle/HOL is part of the work by Krauss and Nipkow [5].
And another one in Coq is given by Coquand and Siles [4]. Also Ribeiro and Du Bois give one in
Agda [9].

However, there are two difficulties with derivative-based matchers: First, Brzozowski’s original
matcher only generates a yes/no answer for whether a regular expression matches a string or not. This
is too little information in the context of lexing where separate tokens must be identified and also
classified (for example as keywords or identifiers). Sulzmann and Lu [10] overcome this difficulty by
cleverly extending Brzozowski’s matching algorithm. Their extended version generates additional
information on how a regular expression matches a string following the POSIX rules for regular
expression matching. They achieve this by adding a second “phase” to Brzozowski’s algorithm
involving an injection function. In our own earlier work we provided the formal specification of what
POSIX matching means and proved in Isabelle/HOL the correctness of Sulzmann and Lu’s extended
algorithm accordingly [2].

The second difficulty is that Brzozowski’s derivatives can grow to arbitrarily big sizes. For
example if we start with the regular expression (a + aa)∗ and take successive derivatives according
to the character a, we end up with a sequence of ever-growing derivatives like

© ;
licensed under Creative Commons License CC-BY 4.0

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:chengsong.tan@kcl.ac.uk
mailto:christian.urban@kcl.ac.uk
https://doi.org/10.4230/LIPIcs...
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

XX:2 POSIX Lexing with Bitcoded Derivatives

(a+ aa)∗ _\a−→ (1 + 1a) · (a+ aa)∗
_\a−→ (0 + 0a+ 1) · (a+ aa)∗ + (1 + 1a) · (a+ aa)∗
_\a−→ (0 + 0a+ 0) · (a+ aa)∗ + (1 + 1a) · (a+ aa)∗ +

(0 + 0a+ 1) · (a+ aa)∗ + (1 + 1a) · (a+ aa)∗
_\a−→ . . . (regular expressions of sizes 98, 169, 283, 468, 767, . . .)

where after around 35 steps we run out of memory on a typical computer (we shall define shortly the
precise details of our regular expressions and the derivative operation). Clearly, the notation involving
0s and 1s already suggests simplification rules that can be applied to regular regular expressions, for
example 0 r ⇒ 0, 1 r ⇒ r, 0 + r ⇒ r and r + r ⇒ r. While such simple-minded simplifications
have been proved in our earlier work to preserve the correctness of Sulzmann and Lu’s algorithm [2],
they unfortunately do not help with limiting the growth of the derivatives shown above: the growth is
slowed, but the derivatives can still grow rather quickly beyond any finite bound.

Sulzmann and Lu overcome this “growth problem” in a second algorithm [10] where they
introduce bitcoded regular expressions. In this version, POSIX values are represented as bitsequences
and such sequences are incrementally generated when derivatives are calculated. The compact
representation of bitsequences and regular expressions allows them to define a more “aggressive”
simplification method that keeps the size of the derivatives finite no matter what the length of the
string is. They make some informal claims about the correctness and linear behaviour of this version,
but do not provide any supporting proof arguments, not even “pencil-and-paper” arguments. They
write about their bitcoded incremental parsing method (that is the algorithm to be formalised in this
paper):

“Correctness Claim: We further claim that the incremental parsing method [..] in combination
with the simplification steps [..] yields POSIX parse trees. We have tested this claim extensively
[..] but yet have to work out all proof details.”

Contributions: We have implemented in Isabelle/HOL the derivative-based lexing algorithm of
Sulzmann and Lu [10] where regular expressions are annotated with bitsequences. We define the
crucial simplification function as a recursive function, instead of a fix-point operation. One objective
of the simplification function is to remove duplicates of regular expressions. For this Sulzmann and
Lu use in their paper the standard nub function from Haskell’s list library, but this function does not
achieve the intended objective with bitcoded regular expressions. The reason is that in the bitcoded
setting, each copy generally has a different bitcode annotation—so nub would never “fire”. Inspired
by Scala’s library for lists, we shall instead use a distinctBy function that finds duplicates under an
erasing function that deletes bitcodes. We shall also introduce our own argument and definitions for
establishing the correctness of the bitcoded algorithm when simplifications are included.

In this paper, we shall first briefly introduce the basic notions of regular expressions and describe the
basic definitions of POSIX lexing from our earlier work [2]. This serves as a reference point for what
correctness means in our Isabelle/HOL proofs. We shall then prove the correctness for the bitcoded
algorithm without simplification, and after that extend the proof to include simplification.

2 Background

In our Isabelle/HOL formalisation strings are lists of characters with the empty string being represented
by the empty list, written [], and list-cons being written as _ ::_ ; string concatenation is _ @ _ . We
often use the usual bracket notation for lists also for strings; for example a string consisting of just a
single character c is written [c]. Our regular expressions are defined as usual as the elements of the
following inductive datatype:

C. Tan and C. Urban XX:3

r ::= 0 | 1 | c | r1 + r2 | r1 · r2 | r∗

where 0 stands for the regular expression that does not match any string, 1 for the regular expression
that matches only the empty string and c for matching a character literal. The constructors + and ·
represent alternatives and sequences, respectively. The language of a regular expression, written L, is
defined as usual and we omit giving the definition here (see for example [2]).

Central to Brzozowski’s regular expression matcher are two functions called nullable and
derivative. The latter is written r\c for the derivative of the regular expression r w.r.t. the character c.
Both functions are defined by recursion over regular expressions.

0\c def= 0

1\c def= 0

d\c def= if c = d then 1 else 0

(r1 + r2)\c def= (r1\c) + (r2\c)
(r1 · r2)\c def= if nullable r1

then (r1\c) · r2 + (r2\c)
else (r1\c) · r2

(r∗)\c def= (r\c) · r∗

nullable (0) def= False

nullable (1) def= True

nullable (c) def= False

nullable (r1 + r2) def= nullable r1 ∨ nullable r2

nullable (r1 · r2) def= nullable r1 ∧ nullable r2

nullable (r∗) def= True

We can extend this definition to give derivatives w.r.t. strings:

r\[] def= r r\(c :: s) def= (r\c)\s

Using nullable and the derivative operation, we can define the following simple regular expression
matcher:

match s r def= nullable(r\s)

This is essentially Brzozowski’s algorithm from 1964. Its main virtue is that the algorithm can be
easily implemented as a functional program (either in a functional programming language or in a
theorem prover). The correctness proof for match amounts to establishing the property

I Proposition 1. match s r if and only if s ∈ L(r)

It is a fun exercise to formaly prove this property in a theorem prover.
The novel idea of Sulzmann and Lu is to extend this algorithm for lexing, where it is important to

find out which part of the string is matched by which part of the regular expression. For this Sulzmann
and Lu presented two lexing algorithms in their paper [10]. The first algorithm consists of two phases:
first a matching phase (which is Brzozowski’s algorithm) and then a value construction phase. The
values encode how a regular expression matches a string. Values are defined as the inductive datatype

v := Empty | Char c | Left v | Right v | Seq v1 v2 | Stars vs

where we use vs to stand for a list of values. The string underlying a value can be calculated by a flat
function, written |_|. It traverses a value and collects the characters contained in it. Sulzmann and Lu
also define inductively an inhabitation relation that associates values to regular expressions:

` Empty : 1 ` Char c : c

` v1 : r1

` Left v1 : r1 + r2

` v2 : r1

` Right v2 : r2 + r1

` v1 : r1 ` v2 : r2

` Seq v1 v2 : r1 · r2

∀ v∈ vs. ` v : r ∧ |v| 6= []
` Stars vs : r∗

XX:4 POSIX Lexing with Bitcoded Derivatives

([], 1)→ Empty
P1

([c], c)→ Char c
Pc

(s, r1)→ v

(s, r1 + r2)→ Left v
P+L

(s, r2)→ v s /∈ L r1

(s, r1 + r2)→ Right v
P+R

(s1, r1)→ v1 (s2, r2)→ v2

@ s3 s4. s3 6= [] ∧ s3 @ s4 = s2 ∧ s1 @ s3 ∈ L r1 ∧ s4 ∈ L r2

(s1 @ s2, r1 · r2)→ Seq v1 v2
PS

([], r∗)→ Stars []
P[]

(s1, r)→ v (s2, r∗)→ Stars vs |v| 6= []
@ s3 s4. s3 6= [] ∧ s3 @ s4 = s2 ∧ s1 @ s3 ∈ L r ∧ s4 ∈ L (r∗)

(s1 @ s2, r∗)→ Stars (v :: vs)
P?

Figure 1 The inductive definition of POSIX values taken from our earlier paper [2]. The ternary relation,
written (s, r)→ v, formalises the notion of given a string s and a regular expression r what is the unique value
v that satisfies the informal POSIX constraints for regular expression matching.

Note that no values are associated with the regular expression 0, since it cannot match any string. It
is routine to establish how values “inhabiting” a regular expression correspond to the language of a
regular expression, namely

I Proposition 2. L r = {|v| | ` v : r}

In general there is more than one value inhabited by a regular expression (meaning regular
expressions can typically match more than one string). But even when fixing a string from the
language of the regular expression, there are generally more than one way of how the regular
expression can match this string. POSIX lexing is about identifying the unique value for a given
regular expression and a string that satisfies the informal POSIX rules (see [1, 6, 7, 10, 11]).1

Sometimes these informal rules are called maximal much rule and rule priority. One contribution of
our earlier paper is to give a convenient specification for what a POSIX value is (the inductive rules
are shown in Figure 1).

The clever idea by Sulzmann and Lu [10] in their first algorithm is to define an injection function
on values that mirrors (but inverts) the construction of the derivative on regular expressions. Essentially
it injects back a character into a value. For this they define two functions called mkeps and inj:

mkeps 1 def= Empty

mkeps (r1 · r2) def= Seq (mkeps r1) (mkeps r2)
mkeps (r1 + r2) def= if nullable r1 then Left (mkeps r1) else Right (mkeps r2)
mkeps (r∗) def= Stars []

inj d c (Empty) def= Char d

inj (r1 + r2) c (Left v1) def= Left (inj r1 c v1)
inj (r1 + r2) c (Right v2) def= Right (inj r2 c v2)
inj (r1 · r2) c (Seq v1 v2) def= Seq (inj r1 c v1) v2

inj (r1 · r2) c (Left (Seq v1 v2)) def= Seq (inj r1 c v1) v2

inj (r1 · r2) c (Right v2) def= Seq (mkeps r1) (inj r2 c v2)
inj (r∗) c (Seq v (Stars vs)) def= Stars (inj r c v :: vs)

1 POSIX lexing acquired its name from the fact that the corresponding rules were described as part of the POSIX
specification for Unix-like operating systems [1].

C. Tan and C. Urban XX:5

r1 r2
_\a

r3
_\b

r4
_\c

nullable

v4v3
inj r3 c

v2
inj r2 b

v1
inj r1 a

mkeps

Figure 2 The two phases of the first algorithm by Sulzmann & Lu [10], matching the string [a, b, c]. The
first phase (the arrows from left to right) is Brzozowski’s matcher building successive derivatives. If the last
regular expression is nullable, then the functions of the second phase are called (the top-down and right-to-left
arrows): first mkeps calculates a value v4 witnessing how the empty string has been recognised by r4. After
that the function inj “injects back” the characters of the string into the values. The value v1 is the result of the
algorithm representing the POSIX value for this string and regular expression.

The function mkeps is run when the last derivative is nullable, that is the string to be matched is in
the language of the regular expression. It generates a value for how the last derivative can match the
empty string. The injection function then calculates the corresponding value for each intermediate
derivative until a value for the original regular expression is generated. Graphically the algorithm by
Sulzmann and Lu can be illustrated by the picture in Figure 2 where the path from the left to the right
involving derivatives/nullable is the first phase of the algorithm (calculating successive Brzozowski’s
derivatives) and mkeps/inj, the path from right to left, the second phase. The picture above shows the
steps required when a regular expression, say r1, matches the string [a, b, c]. The lexing algorithm by
Sulzmann and Lu can be defined as:

lexer r [] def= if nullable r then Some (mkeps r) else None

lexer r (c :: s) def= case lexer (r\c) s of
None⇒ None
| Some v⇒ Some (inj r c v)

We have shown in our earlier paper [2] that this algorithm is correct, that is it generates POSIX
values. The cenral property we established relates the derivative operation to the injection function.

I Proposition 3. If (s, r\c)→ v then (c :: s, r)→ inj r c v.

With this in place we were able to prove:

I Proposition 4.
(1) s /∈ L r if and only if lexer r s = None
(2) s ∈ L r if and only if ∃ v. lexer r s = Some v ∧ (s, r)→ v

In fact we have shown that in the success case the generated POSIX value v is unique and in
the failure case that there is no POSIX value v that satisfies (s, r) → v. While the algorithm is
correct, it is excrutiatingly slow in cases where the derivatives grow arbitrarily (see example from the
Introduction). However it can be used as a convenient reference point for the correctness proof of the
second algorithm by Sulzmann and Lu, which we shall describe next.

3 Bitcoded Regular Expressions and Derivatives

In the second part of their paper [10], Sulzmann and Lu describe another algorithm that also generates
POSIX values but dispences with the second phase where characters are injected “back” into values.
For this they annotate bitcodes to regular expressions, which we define in Isabelle/HOL as the datatype

XX:6 POSIX Lexing with Bitcoded Derivatives

breg ::= ZERO | ONE bs
| CHAR bs c
| ALTs bs rs
| SEQ bs r1 r2

| STAR bs r

where bs stands for bitsequences; r, r1 and r2 for bitcoded regular expressions; and rs for lists
of bitcoded regular expressions. The binary alternative ALT bs r1 r2 is just an abbreviation for
ALTs bs [r1, r2]. For bitsequences we just use lists made up of the constants Z and S. The idea with
bitcoded regular expressions is to incrementally generate the value information (for example Left and
Right) as bitsequences. For this Sulzmann and Lu define a coding function for how values can be
coded into bitsequences.

code (Empty) def= []
code (Char c) def= []
code (Left v) def= Z :: code v

code (Right v) def= S :: code v

code (Seq v1 v2) def= code v1 @ code v2

code (Stars []) def= [S]
code (Stars (v :: vs)) def= Z :: code v @ code (Stars vs)

As can be seen, this coding is “lossy” in the sense that we do not record explicitly character values
and also not sequence values (for them we just append two bitsequences). However, the different
alternatives for Left, respectively Right, are recorded as Z and S followed by some bitsequence.
Similarly, we use Z to indicate if there is still a value coming in the list of Stars, whereas S indicates
the end of the list. The lossiness makes the process of decoding a bit more involved, but the point is
that if we have a regular expression and a bitsequence of a corresponding value, then we can always
decode the value accurately. The decoding can be defined by using two functions called decode′ and
decode:

decode′ bs (1) def= (Empty, bs)
decode′ bs (c) def= (Char c, bs)
decode′ (Z ::bs) (r1 + r2) def= let (v, bs1) = decode′ bs r1 in (Left v, bs1)
decode′ (S ::bs) (r1 + r2) def= let (v, bs1) = decode′ bs r2 in (Right v, bs1)
decode′ bs (r1 · r2) def= let (v1, bs1) = decode′ bs r1 in

let (v2, bs2) = decode′ bs1 r2 in (Seq v1 v2, bs2)
decode′ (Z ::bs) (r∗) def= (Stars [], bs)
decode′ (S ::bs) (r∗) def= let (v, bs1) = decode′ bs r in

let (Stars vs, bs2) = decode′ bs1 r
∗ in (Stars v ::vs, bs2)

decode bs r
def= let (v, bs′) = decode′ bs r in

if bs′ = [] then Some v else None

The function decode checks whether all of the bitsequence is consumed and returns the corresponding
value as Some v; otherwise it fails with None. We can establish that for a value v inhabited by a
regular expression r, the decoding of its bitsequence never fails.

I Lemma 5. If ` v : r then decode (code v) r = Some v.

Proof. This follows from the property that decode′ ((code v) @ bs) r = (v, bs) holds for any bit-
sequence bs and ` v : r. This property can be easily proved by induction on ` v : r. J

Sulzmann and Lu define the function internalise in order to transform standard regular expressions
into annotated regular expressions. We write this operation as r↑. This internalisation uses the
following fuse function.

C. Tan and C. Urban XX:7

fuse bs (ZERO) def= ZERO

fuse bs (ONE bs′) def= ONE (bs@ bs′)
fuse bs (CHAR bs′ c) def= CHAR (bs@ bs′) c
fuse bs (ALTs bs′ rs) def= ALTs (bs@ bs′) rs
fuse bs (SEQ bs′ r1 r2) def= SEQ (bs@ bs′) r1 r2

fuse bs (STAR bs′ r) def= STAR (bs@ bs′) r

A regular expression can then be internalised into a bitcoded regular expression as follows.

(0)↑ def= ZERO

(1)↑ def= ONE []
(c)↑ def= CHAR [] c
(r1 + r2)↑ def= ALT [] (fuse [Z] r↑1) (fuse [S] r↑2)
(r1 · r2)↑ def= SEQ [] r↑1 r

↑
2

(r∗)↑ def= STAR [] r↑

There is also an erase-function, written r↓, which transforms a bitcoded regular expression into a
(standard) regular expression by just erasing the annotated bitsequences. We omit the straightforward
definition. For defining the algorithm, we also need the functions bnullable and bmkeps, which are
the “lifted” versions of nullable and mkeps acting on bitcoded regular expressions, instead of regular
expressions.

bnullable (ZERO) def= false

bnullable (ONE bs) def= true

bnullable (CHAR bs c) def= false

bnullable (ALTs bs rs) def= ∃ r ∈ rs. bnullable r

bnullable (SEQ bs r1 r2) def= bnullable r1 ∧ bnullable r2

bnullable (STAR bs r) def= true

bmkeps (ONE bs) def= bs

bmkeps (ALTs bs r ::rs) def= if bnullable r
then bs@ bmkeps r
else bs@ bmkeps rs

bmkeps (SEQ bs r1 r2) def=
bs@ bmkeps r1 @ bmkeps r2

bmkeps (STAR bs r) def= bs@ [S]

The key function in the bitcoded algorithm is the derivative of a bitcoded regular expression. This
derivative calculates the derivative but at the same time also the incremental part of bitsequences that
contribute to constructing a POSIX value.

(ZERO)\c def= ZERO

(ONE bs)\c def= ZERO

(CHAR bs d)\c def= if c = d then ONE bs else ZERO

(ALTs bs rs)\c def= ALTs bs (map (_\c) rs)
(SEQ bs r1 r2)\c def= if bnullable r1

then ALT bs (SEQ [] (r1\c) r2)
(fuse (bmkeps r1) (r2\c))

else SEQ bs (r1\c) r2

(STAR bs r)\c def= SEQ bs (fuse [Z](r\c)) (STAR [] r)

This function can also be extended to strings, written r\s, just like the standard derivative. We omit
the details. Finally we can define Sulzmann and Lu’s bitcoded lexer, which we call blexer:

blexer r s
def= let rder = (r↑)\s in

if bnullable(rder) then decode (bmkeps rder) r else None

XX:8 POSIX Lexing with Bitcoded Derivatives

This bitcoded lexer first internalises the regular expression r and then builds the bitcoded derivative
according to s. If the derivative is (b)nullable the string is in the language of r and it extracts
the bitsequence using the bmkeps function. Finally it decodes the bitsequence into a value. If the
derivative is not nullable, then None is returned. We can show that this way of calculating a value
generates the same result as lexer.

Before we can proceed we need to define a helper function, called retrieve, which Sulzmann and
Lu introduced for the correctness proof.

retrieve (ONE bs) (Empty) def= bs

retrieve (CHAR bs c) (Char d) def= bs

retrieve (ALTs bs [r]) v
def= bs @ retrieve r v

retrieve (ALTs bs (r :: rs)) (Left v) def= bs @ retrieve r v

retrieve (ALTs bs (r :: rs)) (Right v) def= bs @ retrieve (ALTs [] rs) v

retrieve (SEQ bs r1 r2) (Seq v1 v2) def= bs @ retrieve r1 v1 @ retrieve r2 v2

retrieve (STAR bs r) (Stars []) def= bs @ [S]
retrieve (STAR bs r) (Stars (v :: vs)) def= bs @ [Z] @ retrieve r v @ retrieve (STAR [] r) (Stars vs)

The idea behind this function is to retrieve a possibly partial bitsequence from a bitcoded regular
expression, where the retrieval is guided by a value. For example if the value is Left then we descend
into the left-hand side of an alternative in order to assemble the bitcode. Similarly for Right. The
property we can show is that for a given v and r with ` v : r, the retrieved bitsequence from the
internalised regular expression is equal to the bitcoded version of v.

I Lemma 6. If ` v : r then code v = retrieve (r↑) v.

We also need some auxiliary facts about how the bitcoded operations relate to the “standard” operations
on regular expressions. For example if we build a bitcoded derivative and erase the result, this is the
same as if we first erase the bitcoded regular expression and then perform the “standard” derivative
operation.

I Lemma 7.
(1) (a\s)↓ = (a↓)\s
(2) bnullable(a) iff nullable(a↓)
(3) bmkeps(a) = retrieve a (mkeps (a↓)) provided nullable(a↓).

Proof. All properties are by induction on annotated regular expressions. There are no interesting
cases. J

The only difficulty left for the correctness proof is that the bitcoded algorithm has only a “forward
phase” where POSIX values are generated incrementally. We can achieve the same effect with lexer
by stacking up injection functions during the forward phase. An auxiliary function, called flex, allows
us to recast the rules of lexer (with its two phases) in terms of a single phase and stacked up injection
functions.

flex r f [] def= f

flex r f (c ::s) def= flex (r\c) (λv. f (inj r c v)) s

The point of this function is that when reaching the end of the string, we just need to apply the stacked
injection functions to the value generated by mkeps. Using this function we can recast the success
case in lexer as follows:

C. Tan and C. Urban XX:9

I Proposition 8. If lexer r s = Some v then v = flex r id s (mkeps(r\s)).

Note we did not redefine lexer, we just established that the value generated by lexer can also be
obtained by a different method. While this different method is not efficient (we essentially need
to traverse the string s twice, once for building the derivative r\s and another time for stacking up
injection functions using flex), it helps us with proving that incrementally building up values generates
the same result.

This brings us to our main lemma in this section: if we calculate a derivative, say r\s and have a
value, say v, inhabited by this derivative, then we can produce the result lexer generates by applying
this value to the stacked-up injection functions that flex assembles. The lemma establishes that this
is the same value as if we build the annotated derivative r↑\s and then retrieve the corresponding
bitcoded version, followed by a decoding step.

I Lemma 9 (Main Lemma). If ` v : r\s then

Some (flex r id s v) = decode(retrieve (r↑\s) v) r

Proof. This can be proved by induction on s and generalising over v. The interesting point is that
we need to prove this in the reverse direction for s. This means instead of cases [] and c ::s, we have
cases [] and s @ [c] where we unravel the string from the back.2

The case for [] is routine using Lemmas 5 and 6. In the case s @ [c], we can infer from the
assumption that ` v : (r\s)\c holds. Hence by Prop. 3 we know that (*) ` inj (r\s) c v : r\s holds
too. By definition of flex we can unfold the left-hand side to be

Some (flex r id (s @ [c]) v) = Some (flex r id s (inj (r\s) c v))

By induction hypothesis and (*) we can rewrite the right-hand side to

decode (retrieve (r↑\s) (inj (r\s) c v)) r

which is equal to decode (retrieve (r↑\(s @ [c])) v) r as required. The last rewrite step is possible
because we generalised over v in our induction. J

With this lemma in place, we can prove the correctness of blexer—it indeed produces the same result
as lexer.

I Theorem 10. lexer r s = blexer r s

Proof. We can first expand both sides using Prop. 8 and the definition of blexer. This gives us two
if -statements, which we need to show to be equal. By Lemma 7(2) we know the if -tests coincide:

bnullable(r↑\s) iff nullable(r\s)

For the if -branch suppose rd
def= r↑\s and d

def= r\s. We have (*) nullable d. We can then show by
Lemma 7(3) that

decode(bmkeps rd) r = decode(retrieve a (mkeps d)) r

where the right-hand side is equal to Some (flex r id s (mkeps d)) by Lemma 9 (we know ` mkeps d : d

by (*)). This shows the if -branches return the same value. In the else-branches both lexer and blexer
return None. Therefore we can conclude the proof. J

This establishes that the bitcoded algorithm by Sulzmann and Lu without simplification produces
correct results. This was only conjectured by Sulzmann and Lu in their paper [10]. The next step is to
add simplifications.

2 Isabelle/HOL provides an induction principle for this way of performing the induction.

XX:10 POSIX Lexing with Bitcoded Derivatives

4 Simplification

Derivatives as calculated by Brzozowski’s method are usually more complex regular expressions than
the initial one; the result is that derivative-based matching and lexing algorithms are often abysmally
slow if the “growth problem” is not addressed. As Sulzmann and Lu wrote, various optimisations
are possible, such as the simplifications 0 r ⇒ 0, 1 r ⇒ r, 0 + r ⇒ r and r + r ⇒ r. While
these simplifications can considerably speed up the two algorithms in many cases, they do not solve
fundamentally the growth problem with derivatives. To see this let us return to the example from
the Introduction that shows the derivatives for (a + aa)∗. If we delete in the 3rd step all 0s and 1s
according to the simplification rules shown above we obtain

(a + aa)∗ _\[a,a,a]−−−−−→ (1 + 1a) · (a + aa)∗︸ ︷︷ ︸
r

+ ((a + aa)∗ + (1 + 1a) · (a + aa)∗︸ ︷︷ ︸
r

) (1)

This is a simpler derivative, but unfortunately we cannot make further simplifications. This is a
problem because the outermost alternatives contains two copies of the same regular expression
(underlined with r). The copies will spawn new copies in later steps and they in turn further copies.
This destroys an hope of taming the size of the derivatives. But the second copy of r in (1) will never
contribute to a value, because POSIX lexing will always prefer matching a string with the first copy.
So in principle it could be removed. The dilemma with the simple-minded simplification rules above
is that the rule r + r ⇒ r will never be applicable because as can be seen in this example the regular
expressions are separated by another sub-regular expression.

But here is where Sulzmann and Lu’s representation of generalised alternatives in the bitcoded
algorithm shines: in ALTs bs rs we can define a more aggressive simplification by recursively
simplifying all regular expressions in rs and then analyse the resulting list and remove any duplicates.
Another advantage is that the bitsequences in bitcoded regular expressions can be easily modified
such that simplification does not interfere with the value constructions. For example we can “flatten”,
or de-nest, ALTs as follows

ALTs bs1 (ALTs bs2 rs2 :: rs1) bsimp−−−−→ ALTs bs1 (map (fuse bs2) rs2 :: rs1)

where we just need to fuse the bitsequence that has accumulated in bs2 to the alternatives in rs2. As
we shall show below this will ensure that the correct value corresponding to the original (unsimplified)
regular expression can still be extracted.

However there is one problem with the definition for the more aggressive simlification rules
by Sulzmann and Lu. Recasting their definition with our syntax they define the step of removing
duplicates as

bsimp (ALTs bs rs) def= ALTs bs (nup (map bsimp rs))

where they first recursively simplify the regular expressions in rs (using map) and then use Haskell’s
nub-function to remove potential duplicates. While this makes sense when considering the example
shown in (1), nub is the inappropriate function in the case of bitcoded regular expressions. The reason
is that in general the n elements in rs will have a different bitsequence annotated to it and in this way
nub will never find a duplicate to be removed. The correct way to handle this situation is to first erase
the regular expressions when comparing potential duplicates. This is inspired by Scala’s list functions
of the form distinctBy rs f acc where a function is applied first before two elements are compared.
We define this function in Isabelle/HOL as

distinctBy [] f acc
def= []

distinctBy (x :: xs) f acc
def= if f x ∈ acc then distinctBy xs f acc else x :: distinctBy xs f ({f x} ∪ acc)

C. Tan and C. Urban XX:11

where we scan the list from left to right (because we have to remove later copies). In this function, f
is a function and acc is an accumulator for regular expressions—essentially a set of elements we have
already seen while scanning the list. Therefore we delete an element, say x, from the list provided
f x is already in the accumulator; otherwise we keep x and scan the rest of the list but now add f x
as another element to acc. We will use distinctBy where f is our erase functions, _↓, that deletes
bitsequences from bitcoded regular expressions. This is clearly a computationally more expensive
operation, than nub, but is needed in order to make the removal of unnecessary copies to work.

Our simplification function depends on three helper functions, one is called flts and defined as
follows:

flts [] def= []
flts (ZERO :: rs) def= flts rs

flts (ALTs bs ′ rs ′ :: rs) def= map (fuse bs ′) rs ′@ flts rs

The second clause removes all instances of ZERO in alternatives and the second “spills” out nested
alternatives (but retaining the bitsequence bs ′ accumulated in the inner alternative). There are some
corner cases to be considered when the resulting list inside an alternative is empty or a singleton list.
We take care of those cases in the bsimpALTs function; similarly we define a helper function that
simplifies sequences according to the usual rules about ZEROs and ONEs:

bsimpALTs bs [] def= ZERO

bsimpALTs bs [r] def= fuse bs r

bsimpALTs bs rs
def= ALTs bs rs

bsimpSEQ bs __ ZERO
def= ZERO

bsimpSEQ bs ZERO __
def= ZERO

bsimpSEQ bs1 (ONE bs2) r2
def= fuse (bs1 @ bs2) r2

bsimpSEQ bs r1 r2
def= SEQ bs r1 r2

With this in place we can define our simlification function as

bsimp (SEQ bs r1 r2) def= bsimpSEQ bs (bsimp r1) (bsimp r2)
bsimp (ALTs bs rs) def= bsimpALT bs (distinctBy (flts (map bsimp rs)) erase ∅)
bsimp r

def= r

As far as we can see, our recursive function bsimp simplifies regular expressions as intended by
Sulzmann and Lu. There is no point to apply the bsimp function repeatedly (like the simplification in
their paper which is applied until a fixpoint is reached), because we can show that it is idempotent,
that is

I Proposition 11. ???

I Lemma 12. If r1 r2 then bnullable r1 = bnullable r2.

I Lemma 13. If r1 r2 and bnullable r1 then bmkeps r1 = bmkeps r2.

I Lemma 14. r ∗ bsimp r

I Lemma 15. If r1 r2 then r1\c ∗ r2\c.

I Lemma 16. r\s ∗ r\simp s

I Theorem 17. blexer r s = blexer+ r s

Sulzmann & Lu apply simplification via a fixpoint operation
; also does not use erase to filter out duplicates.
not direct correspondence with PDERs, because of example problem with retrieve
correctness

XX:12 POSIX Lexing with Bitcoded Derivatives

(SEQ bs ZERO r2) (ZERO) (SEQ bs r1 ZERO) (ZERO) (SEQ bs1 (ONE bs2) r) fuse (bs1 @ bs2) r
r1 r2

(SEQ bs r1 r3) (SEQ bs r2 r3)
r3 r4

(SEQ bs r1 r3) (SEQ bs r1 r4)

(ALTs bs []) (ZERO) (ALTs bs [r]) fuse bs r
rs1

s
 rs2

(ALTs bs rs1) (ALTs bs rs2)
rs1

s
 rs2

r :: rs1
s
 r :: rs2

r1 r2

r1 :: rs
s
 r2 :: rs

ZERO :: rs
s
 rs ALTs bs rs1 :: rs2

s
 (map (fuse bs) rs1 @ rs2)

L (r2
↓) ⊆ L (r1

↓)
(rs1 @ [r1] @ rs2 @ [r2] @ rs3) s

 (rs1 @ [r1] @ rs2 @ rs3)

Figure 3 ???

5 Bound - NO

6 Conclusion

References

1 The Open Group Base Specification Issue 6 IEEE Std 1003.1 2004 Edition, 2004. http://pubs.opengroup.
org/onlinepubs/009695399/basedefs/xbd_chap09.html.

2 F. Ausaf, R. Dyckhoff, and C. Urban. POSIX Lexing with Derivatives of Regular Expressions (Proof
Pearl). In Proc. of the 7th International Conference on Interactive Theorem Proving (ITP), volume 9807
of LNCS, pages 69–86, 2016.

3 J. A. Brzozowski. Derivatives of Regular Expressions. Journal of the ACM, 11(4):481–494, 1964.
4 T. Coquand and V. Siles. A Decision Procedure for Regular Expression Equivalence in Type Theory. In

Proc. of the 1st International Conference on Certified Programs and Proofs (CPP), volume 7086 of LNCS,
pages 119–134, 2011.

5 A. Krauss and T. Nipkow. Proof Pearl: Regular Expression Equivalence and Relation Algebra. Journal of
Automated Reasoning, 49:95–106, 2012.

6 C. Kuklewicz. Regex Posix. https://wiki.haskell.org/Regex_Posix.
7 S. Okui and T. Suzuki. Disambiguation in Regular Expression Matching via Position Automata with

Augmented Transitions. In Proc. of the 15th International Conference on Implementation and Application
of Automata (CIAA), volume 6482 of LNCS, pages 231–240, 2010.

8 S. Owens and K. Slind. Adapting Functional Programs to Higher Order Logic. Higher-Order and
Symbolic Computation, 21(4):377–409, 2008.

9 R. Ribeiro and A. Du Bois. Certified Bit-Coded Regular Expression Parsing. In Proc. of the 21st
Brazilian Symposium on Programming Languages, New York, NY, USA, 2017. Association for Computing
Machinery.

10 M. Sulzmann and K. Lu. POSIX Regular Expression Parsing with Derivatives. In Proc. of the 12th
International Conference on Functional and Logic Programming (FLOPS), volume 8475 of LNCS, pages
203–220, 2014.

11 S. Vansummeren. Type Inference for Unique Pattern Matching. ACM Transactions on Programming
Languages and Systems, 28(3):389–428, 2006.

http://pubs.opengroup.org/onlinepubs/009695399/basedefs/xbd_chap09.html
http://pubs.opengroup.org/onlinepubs/009695399/basedefs/xbd_chap09.html
https://wiki.haskell.org/Regex_Posix

	1 Introduction
	2 Background
	3 Bitcoded Regular Expressions and Derivatives
	4 Simplification
	5 Bound - NO
	6 Conclusion

