
Symbolic Regex Matcher

Olli Saarikivi1, Margus Veanes1(B), Tiki Wan2,
and Eric Xu2

1 Microsoft Research, Redmond, USA
margus@microsoft.com

2 Microsoft Azure, Redmond, USA

Abstract. Symbolic regex matcher is a new open source .NET reg-
ular expression matching tool and match generator in the Microsoft
Automata framework. It is based on the .NET regex parser in combi-
nation with a set based representation of character classes. The main
feature of the tool is that the core matching algorithms are based on
symbolic derivatives that support extended regular expression opera-
tions such as intersection and complement and also support a large set
of commonly used features such as bounded loop quantifiers. The partic-
ularly useful features of the tool are that it supports full UTF16 encoded
strings, the match generation is backtracking free, thread safe, and par-
allelizes with low overhead in multithreaded applications. We discuss
the main design decisions behind the tool, explain the core algorithmic
ideas and how the tool works, discuss some practical usage scenarios,
and compare it to existing state of the art.

1 Motivation

We present a new tool called Symbolic Regex Matcher or SRM for fast match
generation from extended regular expressions. The development of SRM has
been motivated by some concrete industrial use cases and should meet the fol-
lowing expectations. Regarding performance, the overall algorithm complexity of
match generation should be linear in the length of the input string. Regarding
expressivity, it should handle common types of .NET regexes, including sup-
port for bounded quantifiers and Unicode categories; while nonregular features
of regexes, such as back-references, are not required. Regarding semantics, the
tool should be .NET compliant regarding strings and regexes, and the main
type of match generation is: earliest eager nonoverlapping matches in the input
string. Moreover, the tool should be safe to use in distributed and multi threaded
development environments. Compilation time should be reasonable but it is not
a critical factor because the intent is that the regexes are used frequently but
updated infrequently. A concrete application of SRM is in an internal tool at
Microsoft that scans for credentials and other sensitive content in cloud service
software, where the search patterns are stated in form of individual regexes or
in certain scenarios as intersections of regexes.

c© The Author(s) 2019
T. Vojnar and L. Zhang (Eds.): TACAS 2019, Part I, LNCS 11427, pp. 372–378, 2019.
https://doi.org/10.1007/978-3-030-17462-0_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17462-0_24&domain=pdf
https://doi.org/10.1007/978-3-030-17462-0_24

Symbolic Regex Matcher 373

The built-in .NET regex engine uses a backtracking based match search algo-
rithm and does not meet the above expectations; in particular, some patterns
may cause exponential search time. While SRM uses the same parser as the
.NET regex engine, its back-end is a new engine that is built on the notion of
derivatives [1], is developed as a tool in the open source Microsoft Automata
framework [5], the framework was originally introduced in [8]. SRM meets all
of the above expectations. Derivatives of regular expressions have been stud-
ied before in the context of matching of regular expressions, but only in the
functional programming world [2,6] and in related domains [7]. Compared to
earlier derivative based matching engines, the new contribution of SRM is that
it supports match generation not only match detection, it supports extended
features, such as bounded quantifiers, Unicode categories, and case insensitivity,
it is .NET compliant, and is implemented in an imperative language. As far as we
are aware of, SRM is the first tool that supports derivative based match gener-
ation for extended regular expressions. In our evaluation SRM shows significant
performance improvements over .NET, with more predictable performance than
RE2 [3], a state of the art automata based regex matcher.

In order to use SRM in a .NET application instead of the built-in match
generator, Microsoft.Automata.dll can be built from [5] on a .NET platform
version 4.0 or higher. The library extends the built-in Regex class with methods
that expose SRM, in particular through the Compile method.

2 Matching with Derivatives

Here we work with derivatives of symbolic extended regular expressions or regexes
for short. Symbolic means that the basic building blocks of single character
regexes are predicates as opposed to singleton characters. In the case of stan-
dard .NET regexes, these are called character classes, such as the class of digits
or \d. In general, such predicates are drawn from a given effective Boolean alge-
bra and are here denoted generally by α and β; ⊥ denotes the false predicate
and . the true predicate. For example, in .NET ⊥ can be represented by the
empty character class [0-[0]].1 Extended here means that we allow intersec-
tion, complement, and bounded quantifiers.

The abstract syntax of regexes assumed here is the following, assuming the
usual semantics where () denotes the empty sequence ε and 〈α〉 denotes any
singleton sequence of character that belongs to the set [[α]] ⊆ Σ, where Σ is the
alphabet, and n and m are nonnegative integers such that n ≤ m:

() 〈α〉 R1R2 R{n,m} R{n, ∗} R1|R2 R1&R2 ¬R

where [[R{n,m}]] def= {v ∈ [[R]]i | n≤i≤m}, [[R{n, ∗}]] def= {v ∈ [[R]]i | n≤i}. The
expression R∗ is a shorthand for R{0, ∗}. We write ⊥ also for 〈⊥〉. We assume
that [[R1|R2]] = [[R1]] ∪ [[R2]], [[R1&R2]] = [[R1]] ∩ [[R2]], and [[¬R]] = Σ∗ \ [[R]].

1 The more intuitive syntax [] is unfortunately not allowed.

374 O. Saarikivi et al.

A less known feature of the .NET regex grammar is that it also supports if-then-
else expressions over regexes, so, when combined appropriately with ⊥ and., it
also supports intersection and complement. R is nullable if ε ∈ [[R]]. Nullability
is defined recursively, e.g., R{n,m} is nullable iff R is nullable or n = 0.

∂x() def= ⊥
∂x〈α〉 def=

{
(), if x ∈ [[α]];
⊥, otherwise.

∂x(R1R2)
def=

{
((∂xR1)R2)|∂xR2, if R1 is nullable;
(∂xR1)R2, otherwise.

∂xR{n,m} def=

⎧⎨
⎩

(∂xR)R{n−1,m−1}, if n>0;
(∂xR)R{0,m−1}, if n=0 and m>0;
⊥, otherwise (since R{0, 0} def= ()).

∂xR{n, ∗} def=
{

(∂xR)R{n − 1, ∗}, if n > 0;
(∂xR)R{0, ∗}, otherwise.

∂x(R1|R2)
def= (∂xR1)|(∂xR2)

∂x(R1&R2)
def= (∂xR1)&(∂xR2)

∂x¬R
def= ¬∂xR

Given a concrete char-
acter x in the under-
lying alphabet Σ, and
a regex R, the x-
derivative of R, denoted
by ∂xR, is defined on
the right. Given a lan-
guage L ⊆ Σ∗, the x-
derivative of L, ∂xL

def=
{v | xv ∈ L}. It is well-
known that [[∂xR]] =
∂x[[R]]. The abstract
derivation rules provide
a way to decide if an
input u matches a regex
R as follows. If u = ε
then u matches R iff R
is nullable; else, if u =
xv for some x ∈ Σ, v ∈ Σ∗ then u matches R iff v matches ∂xR. In other
words, the derivation rules can be unfolded lazily to create the transitions of the
underlying DFA. In this setting we are considering Brzozowski derivatives [1].

Match Generation. The main purpose of the tool is to generate matches. While
match generation is a topic that has been studied extensively for classical regular
expressions, we are not aware of efforts that have considered the use of derivatives
and extended regular expressions in this context, while staying backtracking free
in order to guarantee linear complexity in terms of the length of the input. Our
matcher implements by default nonoverlapping earliest eager match semantics.
An important property in the matcher is that the above set of regular expressions
is closed under reversal. The reversal of regex R is denoted Rr. Observe that:

(R1R2)r
def= (Rr

2R
r
1) R{n,m}r def= Rr{n,m} R{n, ∗}r def= Rr{n, ∗}

It follows that [[Rr]] = [[R]]r where Lr denotes the reversal of L ⊆ Σ∗. The match
generation algorithm can now be described at a high level as follows. Given a
regex R, find all the (nonoverlapping earliest eager) matches in a given input
string u. This procedure uses the three regexes: R, Rr and.∗R:

1. Initially i = 0 is the start position of the first symbol u0 of u.
2. Let iorig = i. Find the earliest match starting from i and q =.∗R: Compute

q := ∂ui
q and i := i + 1 until q is nullable. Terminate if no such q exists.

3. Find the start position for the above match closest to iorig: Let p = Rr. While
i > iorig let p := ∂ui

p and i := i − 1, if p is nullable let istart := i.

Symbolic Regex Matcher 375

4. Find the end position for the match: Let q = R and i = istart. Compute
q := ∂ui

q and i := i + 1 and let iend := i if q is nullable; repeat until q = ⊥.
5. Return the match from istart to iend.
6. Repeat step 2 from i := iend + 1 for the next nonoverlapping start position.

Observe that step 4 guarantees longest match in R from the position istart found
in step 3 for the earliest match found in step 2. In order for the above procedure
to be practical there are several optimizations that are required. We discuss some
of the implementation aspects next.

3 Implementation

SRM is implemented in C#. The input to the tool is a .NET regex (or an array
of regexes) that is compiled into a serializable object R that implements the
main matching interface IMatcher. Initially, this process uses a Binary Decision
Diagram (BDD) based representation of predicates in order to efficiently canon-
icalize various conditions such as case insensitivity and Unicode categories. The
use of BDDs as character predicates is explained in [4]. Then all the BDDs that
occur in R are collected and their minterms (satisfiable Boolean combinations)
are calculated, called the atoms (α1, . . . , αk) of R, where {[[αi]]BDD}ki=1 forms a
partition of Σ. Each BDD-predicate α in R is now translated into a k-bit bit-
vector (or BV) value β whose i’th bit is 1 iff α ∧BDD αi is nonempty. Typically k
is small (often k ≤ 64) and allows BV to be implemented very efficiently (often
by ulong), where ∧BV is bit-wise-and. All subsequent Boolean operations are
performed on this more efficient and thread safe data type. The additional step
required during input processing is that each concrete input character c (char
value) is now first mapped into an atom id i that determines the bit position in
the BV predicate. In other words, c ∈ [[β]]BV is implemented by finding the index i
such that c ∈ [[αi]]BDD and testing if the i’th bit of β is 1, where the former search
is hardcoded into a precomputed lookup table or decision tree.

For example let R be constructed for the regex \w\d*. Then R has three
atoms: [[α1]] = Σ \ [[\w]], [[α2]] = [[\d]], and [[α3]] = [[\w]] \ [[\d]], since [[\d]] ⊂ [[\w]].
For example BV 1102 represents \w and 0102 represents \d.

The symbolic regex AST type is treated as a value type and is handled
similarly to the case of derivative based matching in the context of functional
languages [2,6]. A key difference though, is that weak equivalence [6] check-
ing is not enough to avoid state-space explosion when bounded quantifiers are
allowed. A common situation during derivation is appearance of subexpressions
of the form (A{0, k}B)|(A{0, k − 1}B) that, when kept unchecked, keep rein-
troducing disjuncts of the same subexpression but with smaller value of the
upper bound, potentially causing a substantial blowup. However, we know that
A{0, n}B is subsumed by A{0,m}B when n ≤ m, thus (A{0,m}B)|(A{0, n}B)
can be simplified to A{0,m}B. To this end, a disjunct A{0, k}B, where k > 0,
is represented internally as a multiset element 〈A,B〉 → k and the expression
(〈A,B〉 → m)|(〈A,B〉 → n) reduces to (〈A,B〉 → max(m,n)). This is a form
of weak subsumption checking that provides a crucial optimization step during

376 O. Saarikivi et al.

derivation. Similarly, when A and B are both singletons, say 〈α〉 and 〈β〉, then
〈α〉|〈β〉 reduces to 〈α∨BVβ〉 and 〈α〉&〈β〉 reduces to 〈α∧BVβ〉. Here thread safety
of the Boolean operations is important in a multi threaded application.

Finally, two more key optimizations are worth mentioning. First, during the
main match generation loop, symbolic regex nodes are internalized into integer
state ids and a DFA is maintained in form of an integer array δ indexed by [i, q]
where 1 ≤ i ≤ k is an atom index, and q is a state integer id, such that old
state ids are immediately looked up as δ[i, q] and not rederived. Second, during
step 2, initial search for the relevant initial prefix, when applicable, is performed
using string.IndexOf to completely avoid the trivial initial state transition
corresponding to the loop ∂c.∗R =.∗R in the case when ∂cR = ⊥.

4 Evaluation

We have evaluated the performance of SRM on two benchmarks:

Twain: 15 regexes matched against a 16 MB file containing the collected works
of Mark Twain.

Assorted: 735 regexes matched against a synthetic input that includes some
matches for each regex concatenated with random strings to produce an input
file of 32 MB. The regexes are from the Automata library’s samples and were
originally collected from an online database of regular expressions.

We compare the performance of our matcher against the built-in .NET regex
engine and Google’s RE2 [3], a state of the art backtracking free regex match
generation engine. RE2 is written in C++ and internally based on automata. It
eliminates bounded quantifiers in a preprocessing step by unwinding them, which
may cause the regex to be rejected if the unwinding exceeds a certain limit.
RE2 does not support extended operations over regexes such as intersection or
complement. We use RE2 through a C# wrapper library.

The input to the built-in .NET regex engine and SRM is in UTF16, which is
the encoding for NET’s built-in strings, while RE2 is called with UTF8 encoded
input. This implies for example that a regex such as [\uD800-\uDFFF] that
tries to locate a single UTF16 surrogate is not meaningful in the context UTF8.
All experiments were run on a machine with dual Intel Xeon E5-2620v3 CPUs
running Windows 10 with .NET Framework 4.7.1. The reported running times
for Twain are averages of 10 samples, while the statistics for Assorted are
based on a single sample for each regex.

Figure 1 presents running times for each regex in Twain, while Fig. 2 presents
a selection of metrics for the Assorted benchmark.

Both SRM and RE2 are faster than .NET on most regexes. This highlights
the advantages of automata based regular expression matching when the richer
features of a backtracking matcher are not required.

Compilation of regular expressions into matcher objects takes more time in
SRM than RE2 or .NET. The largest contributor to this is finding the minterms
of all predicates in the regex. For use cases where initialization time is critical

Symbolic Regex Matcher 377

Fig. 1. Time to generate all matches for each regex in Twain.

Fig. 2. Metrics for the Assorted benchmark.

and inputs are known in advance, SRM provides support for pre-compilation
and fast deserialization of matchers.

Comparing SRM to RE2 we can see that both matchers have regexes they
do better on. While SRM achieves a lower average matching time on Assorted,
this is due to the more severe outliers in RE2’s performance profile, as shown by
the lower 80th percentile matching time. Overall SRM offers performance that
is comparable to RE2 while being implemented in C# without any unsafe code.

Application to Security Leak Scanning. SRM has been adopted in an internal
tool at Microsoft that scans for credentials and other sensitive content in cloud
service software. With the built-in .NET regex engine the tool was susceptible to
catastrophic backtracking on files with long lines, such as minified JavaScript and
SQL server seeding files. SRM’s linear matching complexity has helped address
these issues, while maintaining compatibility for the large set of .NET regexes
used in the application.

References

1. Brzozowski, J.A.: Derivatives of regular expressions. JACM 11, 481–494 (1964)
2. Fischer, S., Huch, F., Wilke, T.: A play on regular expressions: functional pearl.

SIGPLAN Not. 45(9), 357–368 (2010)
3. Google: RE2. https://github.com/google/re2

https://github.com/google/re2

378 O. Saarikivi et al.

4. Hooimeijer, P., Veanes, M.: An evaluation of automata algorithms for string analy-
sis. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 248–262.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18275-4 18

5. Microsoft: Automata. https://github.com/AutomataDotNet/
6. Owens, S., Reppy, J., Turon, A.: Regular-expression derivatives re-examined. J.

Funct. Program. 19(2), 173–190 (2009)
7. Traytel, D., Nipkow, T.: Verified decision procedures for MSO on words based on

derivatives of regular expressions. SIGPLAN Not. 48(9), 3–12 (2013)
8. Veanes, M., Bjørner, N.: Symbolic automata: the toolkit. In: Flanagan, C., König,

B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 472–477. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-28756-5 33

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-18275-4_18
https://github.com/AutomataDotNet/
https://doi.org/10.1007/978-3-642-28756-5_33
http://creativecommons.org/licenses/by/4.0/

	Symbolic Regex Matcher
	1 Motivation
	2 Matching with Derivatives
	3 Implementation
	4 Evaluation
	References

