
Greedy Regular Expression Matching

Alain Frisch1,2,? and Luca Cardelli3

1 École Normale Supérieure (Paris)
2 École Nationale Supérieure des Télécommunications (Paris)

3 Microsoft Research

Abstract. This paper studies the problem of matching sequences against
regular expressions in order to produce structured values.

1 Introduction

Regular expressions play a key role in XML [W3C00]. They are used in XML
schema languages (DTD, XML-Schema [W3C01], Relax-NG, . . .) to constrain
the possible sequences of children of an element. They naturally lead to the
introduction of regular expression types and regular expression patterns in XML-
oriented functional languages (XDuce [HVP00,HP03,Hos01], XQuery [BCF+03b],
CDuce [BCF03a]). These works introduce new kinds of questions and give results
in the theory of regular expression and regular (tree) languages, such as efficient
implementation of inclusion checking and boolean operations, type inference for
pattern matching, checking of ambiguity in patterns [Hos03], compilation and
optimization of pattern matching [Lev03,Fri04], etc. . .

Our work is a preliminary step in introducing similar ideas to imperative or
object-oriented languages. While Xtatic [GP03] uses a uniform representation
of sequences, we want to represent them with structured data constructions
that provide more efficient representation and access. As in XDuce, our types
are regular expressions: we use ×, +, ∗, ε to denote concatenation, alternation,
Kleene star and the singleton set containing the empty sequence. But our types
describe not only a set of possible sequences, but also a concrete structured
representation of values. As in the Xen language [MS03], we map structural
types to native .NET CLR [ECM02] types, however we define subtyping on the
basis of flattened structures, in order to support natural semantic properties of
regular language inclusion. For instance, (int × int) is a set-theoretic subtype
of int∗, but we need a coercion to use a value of the former where a value of
the latter is expected, because the runtime representations of the two types are
different. Such a coercion can always be decomposed (at least conceptually) in
two phases: flatten the value of the subtype to a uniform representation, and
then match that flat sequence against the super type. The matching process is
a generalization of pattern matching in the sense of XDuce [HP01].

This paper does not propose a language design. Instead, we study the theo-
retical problem of matching a flat sequence against a type (regular expression);

? This work was supported by an internship at Microsoft Research.

the result of the process is a structured value of the given type. In doing so,
one must pay attention to ambiguity in matching. Our contributions, thus, are
in noticing that: (1) A disambiguated result of parsing can be presented as a
data structure that does not contain ambiguities. (2) There are problematic
cases in parsing values of star types that need to be disambiguated (Prop. 1).
(3) The disambiguation strategy used in XDuce and CDuce pattern matching
can be characterized mathematically by what we call greedy regular expression
matching. (4) There is a linear time algorithm for the greedy matching.

There is a rich literature on efficient implementation of regular expression
pattern matching [Lau01,Kea91,DF00]. There is a folklore problem with expression-
based implementations of regular expression matching: they don’t handle cor-
rectly the case of a regular expression t∗ when t accepts the empty word. Indeed,
an algorithm that would naively follow the expansion t∗ (t × t∗) + ε could
enter an infinite loop. Harper [Har99] and Kearns [Kea91] propose to keep the
naive algorithm, but to use a first pass to rewrite the regular expressions so
as the remove the problematic cases. For instance, let us consider the regular
expression t = (a∗ × b∗)∗. We could rewrite it as t′ = ((a× a∗)× b∗ + (b× b∗))∗.
In general, the size of the rewritten expression may be exponential in the size of
the original expression. Moreover, changing the regular expression changes the
type of the resulting values, and the interaction with the disambiguation pol-
icy (see below) is not trivial. Therefore, we do not want to rewrite the regular
expressions. Another approach is to patch the naive recognition algorithm to
detect precisely the problematic case and cut the infinite loop [Xi01]. This is an
ad hoc way to define the greedy semantics in presence of problematic regular
expressions.

Our approach is different since we want to axiomatize abstractly the disam-
biguation policy, without providing an explicit matching algorithm. We identify
three notions of problematic words, regular expressions, and values (which repre-
sent the ways to match words), relate these three notions, and propose matching
algorithms to deal with the problematic case.

2 Notations

Sequences. For any set X , we write X∗ for the set of finite sequences over X .
Such a sequence is written [x1; . . . ; xn]. The empty sequence is []. We write x :: s

for the sequence obtained by prepending x in front of s and s :: x for the sequence
obtained by appending x after s. If s1 and s2 are sequences over X , we define
s1@s2 as their concatenation. We extend these notations to subsets of X∗ with
x :: X1 = {x :: s | s ∈ X1} and X1@X2 = {s1@s2 | si ∈ Xi}.

Symbols, words. We assume to be given a fixed alphabet Σ, whose elements are
called symbols (they will be denoted with c,c1,. . .). Elements of Σ∗ are called
words. They will be denoted with w, w1,w

′,. . .

Types. The set of types is defined by the following inductive grammar:

t ∈ T ::= c | (t1 × t2) | (t1 + t2) | t∗ | ε

Values. The set of values V(t) of type t is defined by:

V(c) := {c}
V(t1 × t2) := {(v1, v2) | vi ∈ V(ti)}
V(t1 + t2) := {e : v | e ∈ {1, 2}, v ∈ V(te)}
V(t∗) := {[v1; . . . ; vn] | vi ∈ V(t)}
V(ε) := {ε}

The symbol ε as a value denotes the sole value of ε as a type. We will use
the letter σ to denote elements of V(t∗). Note that the values are structured
elements, and no flattening happen automatically.

The flattening flat(v) of a value v is a word defined by:

flat(c) := [c]
flat((v1, v2)) := flat(v1)@flat(v2)
flat(e : v) := flat(v)
flat([v1; . . . ; vn]) := flat(v1)@ . . . @flat(vn)
flat(ε) := []

We write flat(t) = {flat(v) | v ∈ V(t)} for the language accepted by the type
t.

3 All-match semantics

In this section, we introduce an auxiliary definition of an all-match semantics
that will be used to define our disambiguation policy and to study the problem-
atic regular expressions. For a type t and a word w, we define

Mt(w) := {v ∈ V(t) | ∃w′. w = flat(v)@w′}

This set represents all the possible ways to match a prefix of w by a value of
type t. For a word w and a value v ∈ Mt(w), we write v−1w for the (unique)
word w′ such that w = flat(v)@w′.

Definition 1. A type is problematic if it contains a sub-expression of the form
t∗ where [] ∈ flat(t).

Definition 2. A value is problematic if it contains a sub-value of the form
[. . . ; v; . . .] with flat(v) = []. The set of non-problematic values of type t is
written Vnp(t).

Definition 3. A word w is problematic for a type t if Mt(w) is infinite.

The following proposition establishes the relation between these three no-
tions.

Proposition 1. Let t be a type. The following assertions are equivalent:

1. t is problematic;
2. there exists a problematic value in V(t);
3. there exists a word w which is problematic for t.

We will need to do induction both on a type t and a word w. To make it
formal, we introduce a well-founded ordering on pairs (t, w): (t1, w1) < (t2, w2)
if either t1 is a strict syntactic sub-expression of t2 or t1 = t2 and w1 is a strict
suffix of w2.

We write M
np

t (w) = Mt(w) ∩ Vnp(t) for the set of non-problematic prefix
matches.

Proposition 2. The following equalities hold:

M
np

c (w) =

{

{c} if ∃w′. c :: w′ = w

∅ otherwise
M
np

t1×t2
(w) = {(v1, v2) | v1 ∈ M

np

t1
(w), v2 ∈ M

np

t2
(v−1w)}

M
np

t1+t2
(w) = {e : v | e ∈ {1, 2}, v ∈ M

np

te
(w)}

M
np

t∗(w) = {v :: σ |v ∈ M
np

t (w), flat(v) 6= [] , σ ∈ M
np

t∗ (v−1w)} ∪ {[]}

M
np

ε (w) = {ε}

This proposition gives a naive algorithm to compute M
np

t (w). Indeed, because
of the condition flat(v) 6= [] in the case for M

np

t∗ (w), the word v−1w is a strict
suffix of w, and we can interpret the equalities as an inductive definition for the
function M

np

t (w) (induction on the pair (t, w)).
Note that if we remove this condition flat(v) 6= [] and replace Mnp() with

M (), we get valid equalities.

Corollary 1. For any word w and type t, Mnpt (w) is finite.

4 Disambiguation

A classical semantics of matching is defined by expanding the Kleene star t∗

to (t × t∗) + ε and then relying on a disambiguation policy for the alternation
(say, first-match policy). This gives a “greedy” semantics, which is sometimes
meant as a local approximation of the longest match semantics. However, as
described by Vansummeren [Van03], the greedy semantics does not implement
the longest match policy. As a matter of fact, the greedy semantics really depends
on the internals of Kleene-stars. For instance, consider the regular expressions
t1 = ((a×b)+a)∗× (b+ε) and t2 = (a+(a×b))∗× (b+ε), and the word w = ab.
With the greedy semantics, when matching w against t1, the star captures ab,
but when matching against t2, the star captures only a.

Let t be a type. The matching problem is to compute from a word w ∈ flat(t)
a value v ∈ V(t) whose flattening is w. In general, there are several different
solutions. If we want to extract a single value, we need to define a disambiguation

policy, that is, a way to choose a best value v ∈ V(t) such that w = flat(v).
Moreover, we don’t want to do it by providing an algorithm, or a set of ad hoc
rules. Instead, we want to give a declarative specification for the disambiguation
policy. To do this, we introduce a total ordering on the set V(t), and we specify
that the best value with a given flattening is the largest value for this ordering.

We define the total (lexicographic) ordering < on each set V(t) by:

c < c := false

(v1, v2) < (v′1, v
′

2) := (v1 < v′1) ∨ (v1 = v′1 ∧ v2 < v′2)
(e : v) < (e′ : v′) := (e > e′) ∨ (e = e′ ∧ v < v′)
[] < σ′ := σ′ 6= []
v :: σ < v′ :: σ′ := (v < v′) ∨ (v = v′ ∧ σ < σ′)
v :: σ < [] := false

ε < ε := false

This definition is well-founded by induction on the size of the values. It captures
the idea of a specific disambiguation rule, namely a left-to-right policy for the
sequencing, a first match policy for the alternation (we prefer the first of two
alternatives, so 1 : v should be larger than 2 : w) and a greedy policy for the
Kleene star.

Lemma 1. Let t be a type and v a value in V(t). If v is problematic, then there
exists some value v′ ∈ V(t) such that flat(v) = flat(v′) and v′ > v.

The idea is to consider a sub-value σ = [. . . ; v0; . . .] of v with flat(v0) = [], and
to replace σ with σ :: v0 to get v′, which is stricly larger than v for the ordering.
Considering this lemma and Corollary 1, it is natural to restrict our attention to
non problematic values. This is meaningful, because if w ∈ flat(t), then there
always exist non-problematic values whose flattening is w.

Definition 4. Let t be a type and w ∈ flat(t). We define:

mt(w) := max<{v ∈ Vnp(t) | flat(v) = w}

The previous section gives a naive algorithm to compute mt(w). We can first
compute the set M

np

t (w), then filter it to keep only the values v such that v−1w =
[], and finally extract the largest value from this set (if any). This algorithm is
very inefficient because it has to materialize the set M

np

t (w), which can be very
large.

The recognition algorithm in [TSY02] or [Har99] can be interpreted in terms
of our ordering. It generates the set M

np

t (w) lazily, in decreasing order, and it
stops as soon as it reaches the end of the input. To do this, it uses backtrack-
ing implemented with continuations. Adapting this algorithm to the matching
problem is possible, but the resulting one would be quite inefficient because of
backtracking (moreover, the continuations have to hold partial values, which
generates a lot of useless memory allocations).

5 A linear time matching algorithm

In this section, we present an algorithm to compute mt(w) in linear time with
respect to the size of w, in particular without backtracking nor useless memory
allocation.

This algorithm works in two passes. The main (second) pass is driven by
the syntax of the type. It builds a value from a word by induction on the type,
consuming the word from the left to the right. This pass must make some choices:
which branch of the alternative type t1 + t2 to consider, or how many times to
iterate a Kleene star t∗. To allow making these choices without backtracking, a
first preprocessing pass annotates the word with enough information.

The first pass consists in running an automaton right to left on the word,
and keeping the intermediate states as annotations between each symbol of the
word. The automaton is build directly on the syntax tree of the regular expression
itself (its states correspond to the nodes of the regular expression syntax tree).
A reviewer pointed us to a previous work [Kea91] which uses the same idea.
Our presentation is more functional (hence more amenable to reasoning) and is
extended to handle problematic regular expressions.

5.1 Non-problematic case

We first present an algorithm for the case when w is not problematic. Recall the
following classical definition.

Definition 5. A non-deterministic finite state automaton (FSA) with ε-transitions
is a triple (Q, qf , δ) where Q is a finite set (of states), qf is a distinguished (final)
state in Q, and δ ⊂ (Q × Σ × Q) ∪ (Q × Q).

The transition relation q1
w

−→ q2 (for q1, q2 ∈ Q, w ∈ Σ∗) is defined inductively
by the following rules:

– q1
[]

−→ q2 if q1 = q2 or (q1, q2) ∈ δ

– q1
[c]
−→ q2 if (q1, c, q2) ∈ δ

– q1
w1@w2−→ q3 if q1

w1−→ q2 and q2
w2−→ q3.

We write L(q) = {w | q
w

−→ qf}.

From types to automata. Constructing a non-deterministic automaton from a
regular expression is a standard operation. However, we need to keep a tight
connection between the automata and the types. To do so, we endow the abstract
syntax trees of types with a transition relation so as to turn them into automata.
Formally, we introduce the set of locations (or nodes) λ(t) of a type t (a location
is a sequence over {fst, snd, lft, rgt, star}), and for a location l ∈ λ(t), we

define t.l as the subtree rooted at location l:























λ(c) := {[]}
λ(t1 × t2) := {[]} ∪ fst :: λ(t1) ∪ snd :: λ(t2)
λ(t1 + t2) := {[]} ∪ lft :: λ(t1) ∪ rgt :: λ(t2)
λ(t∗) := {[]} ∪ star :: λ(t)
λ(ε) := {[]}































t.[] := t

(t1 × t2).(fst :: l) := t1.l

(t1 × t2).(snd :: l) := t2.l

(t1 + t2).(lft :: l) := t1.l

(t1 + t2).(rgt :: l) := t2.l

(t∗).(star :: l) := t.l

Now, let us consider a fixed type t0. We take: Q := λ(t0) ∪ {qf} where qf is
a fresh element.

If l is a location in t0, the corresponding state will match all the words of the
form w1@w2 where w1 is matched by t0.l and w2 is matched by the “rest” of
the regular expression (Lemma 2 below gives a formal statement corresponding
to this intuition).

We define the δ relation for our automaton by using the successor function
succ() : λ(t0) → Q which formalizes this notion of “rest”:

δ := {(l, c, succ(l)) | t0.l = c}
∪ {(l, succ(l)) | t0.l = ε}
∪ {(l, l :: fst) | t0.l = t1 × t2}
∪ {(l, l :: lft), (l, l :: rgt) | t0.l = t1 + t2}
∪ {(l, l :: star), (l, succ(l)) | t0.l = t∗}































succ([]) := qf

succ(l :: fst) := l :: snd
succ(l :: snd) := succ(l)
succ(l :: lft) := succ(l)
succ(l :: rgt) := succ(l)
succ(l :: star) := l

An example for this construction will be given in the next session for the
problematic case.

The following lemma relates the behavior of the automaton, the succ()
function, and the flat semantics of types.

Lemma 2. For any location l ∈ λ(t0): L(l) = flat(t0.l)@L(succ(l))

First pass. We can now describe the first pass of our matching algorithm. Assume
that the input is w = [c1; . . . ; cn]. The algorithm computes n + 1 sets of states

Q0, . . . , Qn defined as Qi = {q | q
[ci+1;...;cn]

−→ qf}. That is, it annotates each suffix
w′ of the input w by the set of states from which the final state can be reached
by reading w′.

Computing the sets Qi is easy. Indeed, consider the automaton obtained by
reversing all the transitions in our automaton (Q, qf , δ), and use it to scan w

right-to-left, starting from qf , with the classical subset construction (with for-
ward ε-closure). Each step of the simulation corresponds to a suffix [ci+1; . . . ; cn]
of w, and the subset built at this step is precisely Qi.

This pass can be done in linear time with respect to the length of w, and
more precisely in time O(|w| × |t0|) where |w| is the length of w and t0 is the
size of t0.

Second pass. The second pass is written in pseudo-ML code, as a function build,
that takes a pair (w, l) of a word and a location l ∈ λ(t0) such that w ∈ L(l)
and returns a value v ∈ V(t0.l).

let build(w, l) = (* Invariant: w ∈ L(l) *)

match t0.l with

| c -> c

| t1 × t2 ->

let v1 = build(w, l :: fst) in let v2 = build(v−1
1 w, l :: snd) in (v1, v2)

| t1 + t2 ->

if w ∈ L(l :: lft)
then let v1 = build(w, l :: lft) in 1 : v1

else let v2 = build(w, l :: rgt) in 2 : v2

| t∗ ->

if w ∈ L(l :: star)
then let v = build(w, l :: star) in let σ = build(v−1w, l) in v :: σ

else []
| ε -> ε

The following proposition explains the behavior of the algorithm, and allows
us to establish its soundness.

Proposition 3. If w ∈ L(l) and if t0 is non-problematic, then the algorithm
build(w, l) returns max<{v ∈ V(t0.l) | ∃w′ ∈ L(succ(l)). w = flat(v)@w′}.

Corollary 2. If w ∈ flat(t0) and if t0 is non-problematic, then the algorithm
build(w, []) returns mt0(w).

Implementation. The tests w ∈ L(l) can be implemented in constant time thanks
to the first pass 4 . Indeed, for a suffix w′ of the input, w′ ∈ L(l) means that the
state l is in the set attached to w′ in the first pass. Similarly, the precondition
w ∈ flat(t0) can also be tested in constant time.

The second pass also runs in linear time with respect to the length of the input
word (and more precisely in time O(|w| |t0|)), because build is called at most
once for each suffix w′ of w and each location l (the number of locations is finite).
This property holds because of the non-problematic assumption (otherwise the
algorithm may not terminate).

Note that w is used linearly in the algorithm: it can be implemented as a
mutable pointer on the input sequence (which is updated when the c case reads
a symbol), and it doesn’t need to be passed around.

5.2 Solution to the problematic case

Idea of a solution. Let us study the problem with problematic types in the algo-
rithm from the previous section. The problem is in the case t∗ of the algorithm,

4 If the regular expressions are 1-unambiguous (which is the case for regular expres-
sions in DTD and XML Schema [W3C01]), the tests can be implemented directly
with a look-ahead of one symbol, without the first pass.

when [] ∈ flat(t). Indeed, the first recursive call to build may return a value v

such that flat(v) = [], which implies v−1w = w, and the second recursive call
has then the same arguments as the main call. In this case, the algorithm does
not terminate.

This can also be seen on the automaton. If the type at location l accepts the
empty sequence, there are in the automaton non-trivial paths of ε-transitions
from l to l. The idea is to break these paths, by “disabling” their last transition
(the one that returns to l) when no symbol has been matched in the input word
since the last visit of the state l.

Here is how to do so. A location l is said to be a star node if t0.l = t∗. Any
sublocation l′ is said to be scoped by l. Note that when the automaton starts
an iteration in a star node (by using the ε transition (l, l :: star)), the only
way to exit the iteration (and to reach the final state) is to go back to the star
node l. The idea is to prevent the automaton to enter back a star node unless
some symbol has been read during the last iteration. The state of the automaton
includes a flag b that is set whenever a character is read. The flag is reset when
an iteration starts, that is, when a transition of the form (l, l :: star) is used.
When the flag is not set, all ε transitions of the form (l, succ(l)), where succ(l)
is a star node scoping l, are disabled.

When the flag is set, this can be interpreted as the requirement: Something
needs to be read in order to exit the current iteration. Consequently, it is natural
to start running the automaton with the flag set, and to require the flag to be
set at the final node.

From problematic types to automata. Let us make this idea formal. We write P

for the set of locations l such that succ(l) is an ancestor of l in the abstract syntax
tree of t0 (this implies that succ(l) is a star node). Note that the “problematic”
transitions are the ε-transition of the form (l, succ(l)) with l ∈ P .

We now take: Q := (λ(t0)∪ {qf})×{0, 1}. Instead of (q, b), we write qb. The
final state is q1

f . Here is the transition relation:

δ0 := {(lb, c, succ(l)1) | t0.l = c}
∪ {(lb, l :: fstb) | t0.l = t1 × t2}
∪ {(lb, l :: lftb), (lb, l :: rgtb) | t0.l = t1 + t2}
∪ {(lb, l :: star0) | t0.l = t∗}
∪ {(lb, succ(l)b) | (∗)}

where the condition (∗) is the conjunction of:

(I) t0.l is either ε or a star t∗

(II) if l ∈ P , then b = 1

Note that the transition relation is monotonic with respect to the flag b: if
q0
1

w
−→ qb

2, then q1
1

w
−→ qb′

2 for some b′ ≥ b.

We write L(qb) := {w | qb w
−→ q1

f}. As for any FSA, we can simulate the new
automaton either forwards or backwards. In particular, it is possible to annotate
a word w with a right-to-left traversal (in linear time w.r.t the length of w), so

as to be able to answer in constant time any question of the form w′ ∈ L(qb)
where w′ is a suffix of w. This can be done with the usual subset construction.
The monotonicity remark above implies that whenever q0 is in a subset, then q1

is also in a subset, which allows to optimize the representation of the subsets.
The lemma above is the invariant used to prove Proposition 4.

Lemma 3. Let l ∈ λ(t0) and L = flat(t0.l). Then:

L(l1) = L@L(succ(l)1)

L(l0) =

{

(L\{[]})@L(succ(l)1) if l ∈ P ∨ [] 6∈ L

(L\{[]})@L(succ(l)1) ∪ L(succ(l)0) if l 6∈ P ∧ [] ∈ L

Algorithm. We now give a version of the linear-time matching algorithm which
supports the problematic case. The only difference is that it keeps track (in the
flag b) of the fact that something has been consumed on the input since the last
beginning of an iteration in a star. The first pass is not modified, except that
the new automaton is used. The second pass is adapted to keep track of b.

let build’(w, lb) = (* Invariant: w ∈ L(lb) *)

match t0.l with

| c -> c

| t1 × t2 ->

let v1 = build’(w, l :: fstb) in

let b′ = if (v−1
1 w = w) then b else 1 in

let v2 = build’(v−1
1 w, l :: sndb′) in

(v1, v2)
| t1 + t2 ->

if w ∈ L(l :: lftb)
then let v1 = build’(w, l :: lftb) in 1 : v1

else let v2 = build’(w, l :: rgtb) in 2 : v2

| t∗ ->

if w ∈ L(l :: star0)
then let v = build’(w, l :: star0) in let σ = build’(v−1w, l1) in v :: σ

(* Invariant: v−1w 6= w *)

else []
| ε -> ε

Proposition 4. Let w ∈ L(lb). Let V be the set of non-problematic values v ∈
V(t0.l) such that ∃w′ ∈ L(succ(l)b′). w = flat(v)@w′ with b′ = 1 if flat(v) 6= []
and ((b = 1 ∨ l 6∈ P) ∧ b′ = b) if flat(v) = []. Then the algorithm build′(w, lb)
returns max< V .

Corollary 3. If w ∈ flat(t0), then the algorithm build′(w, []1) returns mt0(w).

Implementation. The same remarks as for the first algorithm apply for this
version. In particular, we can implement w and b with mutable variables which
are updated in the case c (when a symbol is read); thus, we don’t need to compute
b′ explicitly in the case t1 × t2.

Example. To illustrate the algorithm, let us consider the problematic type t0 =
(c∗1×c∗2)

∗. The picture below represents both the syntax tree of this type (dashed
lines), and the transitions of the automaton (arrows). The dotted arrow is the
only problematic transition, which is disabled when b = 0. Transitions with no
symbols are ε-transitions. To simplify the notation, we assign numbers to states.

0 : ∗

1 : ×

2 : ∗ 3 : ∗

4 : c1 5 : c2

6 : qf

b← 0

b← 0
c1

b← 1
b← 0

c2

b← 1

b
?
= 1

Let us consider the input word w = [c2; c1]. The first pass of the algorithm
runs the automaton backwards on this word, starting in state 61, and applying
subset construction. In a remark above, we noticed that if i0 is in the subset, then
i1 is also in the subset. Consequently, we write simply i to denote both states
i0, i1. The (backward) ε-closure of 61 is S2 = {61, 01, 31, 21, 11}. Reading the
symbol c1 from S2 leads to the state 4, whose ε-closure is S1 = {4, 2, 1, 0, 31}.
Reading the symbol c2 from S1 leads to the state 5, whose ε-closure is S0 =
{5, 3, 2, 1, 0}.

Now we can run the algorithm on the word w with the trace [S0; S1; S2]. The
flag b is initially set. The star node 0 checks whether it must enter an iteration,
that is, whether 1 ∈ S0. This is the case, so an iteration starts, and b is reset.
The star node 2 returns immediately without a single iteration, because 4 6∈ S0.
But the star node 3 enters an iteration because 5 ∈ S0. This iteration consumes
the first symbol of w, and sets b. After this first iteration, the current subset is
S1. As 5 is not in S1, the iteration of the node 3 stops, and the control is given
back to the star node 0. Since 1 ∈ S1, another iteration of the star 0 starts, and
then similarly with an inner iteration of 2. The second symbol of w is consumed.
The star node 3 (resp. 0) refuses to enter an extra iteration because 5 6∈ S2 (resp.
1 6∈ S2); note that 11 ∈ S2, but this is not enough, as this only means that an
iteration could take place without consuming anything - which is precisely the
situation we want to avoid.

The resulting value is [([], [c2]); ([c1], [])]. The two elements of this sequence
reflect the two iterations of the star node 0.

Acknowledgments

We would like to express our gratitude to the reviewers of PLAN-X 2004 and
ICALP 2004 for their comments and in particular for their bibliographical indi-
cations.

References

[BCF03a] Véronique Benzaken, Giuseppe Castagna, and Alain Frisch. CDuce: An
XML-centric general-purpose language. In ICFP ’03, 2003.

[BCF+03b] S. Boag, D. Chamberlin, M. Fernandez, D. Florescu, J. Robie, J. Siméon,
and M. Stefanescu. XQuery 1.0: An XML Query Language. W3C Working
Draft, http://www.w3.org/TR/xquery/, May 2003.

[DF00] Danny Dub and Marc Feeley. Efficiently building a parse tree from a regular
expression. Acta Informatica, 37(2):121–144, 2000.

[ECM02] ECMA. CLI Partition I - Architecture. http://msdn.microsoft.com/net/
ecma/, 2002.

[Fri04] Alain Frisch. Regular tree language recognition with static information.
International Conference on Theoretical Computer Science, 2004.

[GP03] V. Gapayev and B.C. Pierce. Regular object types. In Proceedings of the
10th workshop FOOL, 2003.

[Har99] Robert Harper. Proof-directed debugging. Journal of Functional Program-
ming, 9(4):463–469, 1999.

[Hos01] Haruo Hosoya. Regular Expression Types for XML. PhD thesis, The Uni-
versity of Tokyo, 2001.

[Hos03] H. Hosoya. Regular expressions pattern matching: a simpler design. Un-
published manuscript, February 2003.

[HP01] Haruo Hosoya and Benjamin C. Pierce. Regular expression pattern match-
ing for XML. In The 25th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, 2001.

[HP03] Haruo Hosoya and Benjamin C. Pierce. XDuce: A typed XML processing
language. ACM Transactions on Internet Technology, 3(2):117–148, 2003.

[HVP00] Haruo Hosoya, Jérôme Vouillon, and Benjamin C. Pierce. Regular expres-
sion types for XML. In ICFP ’00, volume 35(9) of SIGPLAN Notices,
2000.

[Kea91] Steven. M. Kearns. Extending regular expressions with context operators
and parse extraction. Software - practice and experience, 21(8):787–804,
1991.

[Lau01] Ville Laurikari. Efficient submatch addressing for regular expressions. Mas-
ter’s thesis, Helsinki University of Technology, 2001.

[Lev03] Michael Levin. Compiling regular patterns. In ICFP ’03, 2003.
[MS03] Erik Meijer and Wolfram Schulte. Unifying tables, objects, and documents.

In DP-COOL 2003, 2003.
[TSY02] Naoshi Tabuchi, Eijiro Sumii, , and Akinori Yonezawa. Regular expression

types for strings in a text processing language. In Workshop on Types in
Programming (TIP), 2002.

[Van03] Stijn Vansummeren. Unique pattern matching in strings. Technical report,
University of Limburg, 2003. http://arXiv.org/abs/cs/0302004.

[W3C00] W3C Recommendation. Extensible Markup Language (XML) 1.0, 2000.
[W3C01] W3C Recommandation. XML Schema, 2001.
[Xi01] Hongwei Xi. Dependent types for program termination verification. In

Logic in Computer Science, 2001.

