
Verified Lexing and Parsing

Syed Fahad Ausaf Jafri

Department of Informatics

King’s College London

A thesis submitted for the degree of

Doctor of Philosophy in Computer Science

September 2018

This thesis is dedicated to

my wonderful mother Rubina and my lovely fiancee Saher

for their unconditional love and support.

Acknowledgements

I would like to thank my supervisor, Christian Urban, for his un-

conditional support, for his time and useful conversations, for his

guidance and advice, for going an extra mile and dealing with the

concerned departments in troubled times and for backing me up dur-

ing the course of my PhD.

I would also like to thank Antoine Delignat-Lavaud, Samin Ishtiaq

and Nuno Lopes from Microsoft Research Cambridge for teaching

me TLS protocol and LLVM, and for their constant mentoring and

career counselling.

I am very grateful to my friends, Ehsan Ghoreishi and Umair Saleem,

for their continuous support, for hearing me out all the time, for men-

toring and for rescuing me over and over again.

My fiance, Saher Mirza, and my brother, Naveed Ausaf, deserve

special mention for being my savior and support system throughout.

I would also like to thank my family, especially my mother, Rubina

Javed, for her unconditional love and support. Last but not the least,

I gratefully acknowledge my friends, Owais Ahmed and Xin Jin,

and my lab colleagues, Sumayyah, Jonathan Cardoso, Liana Mari-

nescu, Tomas Vitek, Tsvetan Jivkov, Pablo De Castro, Xin Lu, and

especially Umesh Kumar, for their cooperation and assistance.

4

Declarations

I hereby declare that except where specific reference is made to the

work of others, the contents of this dissertation are original and have

not been submitted in whole or in part for consideration for any other

degree or qualification in this, or any other university. This disser-

tation is my own work and contains nothing which is the outcome

of work done in collaboration with others, except as specified below

and in the text.

Some of the results in Chapters 2 and 3 have been published in ear-

lier in a joint conference paper together with Dr Roy Dyckhoff from

St Andrews University and Dr Christian Urban from King’s Col-

lege London. The results presented in Chapter 4 and 5 about TLS

Message Parsers are a product of collaborations with Dr Antoine

Delignat-Lavaud from the Programming Principles and Tools Group

at Microsoft Research Cambridge, and Tej Chadej from The Electri-

cal Engineering and Computer Science Department at MIT.

This dissertation contains fewer than 150,000 words including ap-

pendices, bibliography, footnotes, tables and equations and has fewer

than 150 figures.

Fahad Ausaf

September 2018

Abstract

The main part of this thesis is about regular expression matching.

We shall focus on a POSIX lexer introduced by Sulzmann and Lu,

which uses Brzozowski’s Derivatives of Regular Expressions. These

derivatives can be used for a simple regular expression matching al-

gorithm. Sulzmann and Lu cleverly extended this algorithm in order

to deal with POSIX matching, which is the underlying disambigua-

tion strategy for regular expressions needed in lexers. Their algo-

rithm generates POSIX values which encode information for how a

regular expression matches a string–that is, which part of the string

is matched by which part of the regular expression. We shall give

our own inductive definition of what a POSIX value is and show

that such a value is unique (for given regular expression and string

being matched) and that Sulzmann and Lus algorithm always gen-

erates such a value (provided that the regular expression matches

the string). We also show that our inductive definition of a POSIX

value is equivalent to an alternative definition by Okui and Suzuki

which identifies POSIX values as least elements according to an or-

dering of values. We also prove the correctness of Sulzmann and

Lu’s bitcoded version of the POSIX matching algorithm and extend

the results to additional constructors for regular expressions.

In the second part, we focus on the specification of parsers for the

Transport Layer Security (TLS) protocol. We have proved in F?

language the correctness and security of the parsers’ pure specifi-

cations and derive efficient (zero-copy) and composable implemen-

tations from these specifications. The F? code is then extracted to

C-code using the recent tactics engine of F?. For this, we also cre-

ated a new library providing a unified model for bytes, replacing the

previous unsound library. We then updated the TLS parsers to use

this new byte model and enhance the functionality and verification

automation.

7

Contents

I POSIX Regular Expression Matching 12

1 POSIX Regular Expression Matching 13

1.1 Introduction . 14

1.2 POSIX Lexing . 25

1.3 Preliminaries . 30

1.4 POSIX Lexing Algorithm by Sulzmann and Lu 36

2 Specification of POSIX Values 46

2.1 Our POSIX Definition . 46

2.2 Ordering of Values According to Okui and Suzuki 51

2.3 GREEDY Ordering by Frisch and Cardelli 60

2.4 POSIX Ordering by Sulzmann and Lu 62

3 Optimisations, Extensions and Future Work 67

3.1 Simplification of Regular Expressions 68

3.2 Bitcoded Values and Annotated Regular Expressions 75

3.3 Extensions . 86

3.4 Summary and Future Work . 92

8

Contents

II TLS Message Parsers 96

4 Project Everest 97

4.1 Introduction . 98

4.2 The HTTPS Ecosystem . 98

4.3 Project Everest . 101

4.3.1 The Everest Toolchain 101

4.3.2 The Everest Runtime 104

5 A Pure Model of Bytes 107

5.1 TLS Message Parsers . 107

5.2 Correctness Specifications for Parsers 109

5.3 The New F? Bytes Library . 110

5.3.1 Parser . 111

5.4 Summary . 115

III Appendixes 117

A Bytes Library for TLS Message Parsers 118

Bibliography 131

9

List of Figures

1.1 The lexing algorithm by Sulzmann & Lu 42

2.1 Our inductive definition of POSIX values. 47

2.2 The reflexive version of the ordering by Frisch and Cardelli for

GREEDY matching. 60

2.3 The reflexive version of the ordering by Sulzmann and Lu for

POSIX matching. 63

3.1 Auxiliary functions for simplifying regular expressions and rec-

tifying values. 70

4.1 A rough overview over the HTTPS ecosystem given by the Ever-

est Project. 100

4.2 An overview over the Everest toolchain. 102

4.3 Overview over the reference implementation of TLS, called MiTLS.103

4.4 Everest runtime: left is the functional runtime and right is low-

level runtime. 104

5.1 A simple TLS datatype structure. 107

5.2 TLS parser variable length data structure. 108

5.3 The TLS low-level parsing framework. 109

10

Listings

5.1 Bytes append function and lemmas. 112

5.2 Bytes subtract, index, and length functions and lemmas. 112

5.3 Transform and concatenate a natural number to bytes. 113

5.4 Parsing variable length fields. 114

5.5 Finite Field Diffie-Hellman group definitions. 115

11

Part I

POSIX Regular Expression

Matching

12

Chapter 1

POSIX Regular Expression

Matching

This part is about regular expression matching using derivatives of regular ex-

pressions. These derivatives have been introduced by Brzozowski in 1964 in a

paper where he showed that they can be used for a very simple regular expres-

sion matching algorithm [15]. The material presented in this part is mainly based

on a paper by Sulzmann and Lu [53] published in 2014. Their paper introduces

a clever extension of Brzozowski’s algorithm which, in cases where a regular

expression matches a string, calculates also a value for indicating how the reg-

ular expression matched the string. Such a value is important when one wants

to know which substring is matched by which part of the regular expression, or

when one wants to extract substrings from a larger string. It is also important

for lexers that need to tokenise input strings. Our main contribution in this part

are Isabelle proofs for establishing the correctness of Sulzmann and Lu’s regular

expression matching algorithm. The paper by Sulzmann and Lu already presents

some “pencil-and-paper” proofs for the correctness, but these informal proofs

contain some, which we believe, unfillable gaps and even errors—some of the

13

1.1. Introduction

errors are already acknowledged by the authors in the online version of their

paper.1 To formally prove in Isabelle/HOL the correctness of the algorithm by

Sulzmann and Lu, we introduce our own inductive definition of what a POSIX

value is. We also provide formalised proofs for some of the unproven claims by

Sulzmann and Lu about bitcoded regular expression matching [53]. Our work

draws upon earlier work by Vansummeren [58], and Okui and Suzuki [41]. In

fact we show that our own definition for POSIX values is equivalent to the one

introduced by Okui and Suzuki. The Isabelle/HOL code of our formalisation is

available from

https://github.com/fahadausaf/POSIX-Parsing

The results from Chapter 1, as well as from Sections 2.1 and 3.1 are also in the

Archive of Formal Proofs of Isabelle.2

1.1 Introduction

Regular expressions are extremely useful for many text-processing tasks, such

as finding substrings in large texts, lexing programs, syntax highlighting and so

on. They also play a central role in security related programs, such as Snort and

Bro [46, 49]. These programs employ sometimes thousands of regular expres-

sions in order to find suspicious patterns in hostile network traffic. Since even

small servers can nowadays handle large volumes of network traffic, fast regular

expression matchers have become part of the critical computing infrastructure.

Given that regular expressions were introduced by Kleene in 1950 [30], one

might think regular expressions have since been studied and implemented to

1http://www.home.hs-karlsruhe.de/˜suma0002/publications/
regex-parsing-derivatives.pdf, see for example the comment in Lemma 3 on
Page 18.

2https://www.isa-afp.org/entries/Posix-Lexing.html

14

https://github.com/fahadausaf/POSIX-Parsing
http://www.home.hs-karlsruhe.de/~suma0002/publications/regex-parsing-derivatives.pdf
http://www.home.hs-karlsruhe.de/~suma0002/publications/regex-parsing-derivatives.pdf
https://www.isa-afp.org/entries/Posix-Lexing.html

1.1. Introduction

death. There are well-known and extensive textbooks about regular expressions,

for example [26, 31, 50, 51] to name just a few. Also the “academic field” ap-

pears to be extremely well-researched given the huge number of papers about

regular expressions. Therefore it might be instructive to first have a look at why

it makes sense to write a thesis about regular expressions in 2018?

One problem with regular expressions can be seen in the graph below: it plots

the running times of the regular expression libraries built into Java 8 and current

versions of Python when solving the problem whether the regular expression

(a∗)∗ b matches strings of the form a . . . a︸ ︷︷ ︸
n

.

5 10 15 20 25 30
0

10

20

30

40

n

tim
e

in
se

cs

Python
Java 8

The matching clearly always fails, but it is surprising that it takes such a long

time to decide for even relatively small strings. After all there is classic work es-

tablishing that for a given regular expression such matching problems should be

linear in the length of strings. This assumes the matching is done by using a DFA.

But patently the graph above shows that in Java and Python the problem appears

to be exponential. For example for the string consisting of just 28 a’s, Python

and Java need approximately 30 seconds to decide whether this string is matched

or not, and for slightly longer strings one usually receives out-of-memory excep-

tions. While this particular regular expression and matching problem are slightly

contrived, it is not the only instance where this happens. In fact, there are many

more similarly simple regular expressions that show the same behaviour. There

are also several other widely-used libraries, not just in Java and Python, behaving

15

1.1. Introduction

in similar “exponential” manner.

That this is not just an “academic” problem is shown by reports where large

software systems suddenly stopped working because of problems with regular

expressions. For example, on 20 July 2016 a regular expression brought the

popular webpage Stack Exchange to its knees.3 The purpose of the regular ex-

pression was to trim unicode space from the start and end of lines, and a user

post containing approximately 20,000 whitespaces in a comment line caused the

server to go on high CPU loads such that the webpage became inaccessible. A

similar problem was described in 2016 for a regular expression in the Atom edi-

tor.4 There the purpose of the regular expression was to calculate the indentation

of the next line. For one particular line a user had written, Atom needed to cal-

culate for half an hour before writing a new line.5 Another report from 2018

described a problem with a regular expression whose purpose is to match http-

addresses. Again for a particular http-address the matching resulted in high CPU

loads and exception traces, rather than the expected yes/no answer.

While the textbooks mentioned above do not feature anything about this phe-

nomenon, it is somewhat well-known among engineers. Digging a bit deeper, it

turns out the phenomenon has already been given a name—catastrophic back-

tracking [24]. There are also tools, called regex debuggers, which try to test

when a regular expression is prone to catastrophic backtracking [1]. Usually

such tests are sound, but not complete—meaning engineers cannot completely

rely on them in order to recognise instances where catastrophic backtracking

might occur. Digging even a bit further reveals that there is about a handful of

research papers that take head on this issue. For example, Kirrage et al [29]

use static analysis methods in order to detect potential instances of catastrophic

3The report by an engineer of Stack Exchange can be found at http://stackstatus.
net/post/147710624694/outage-postmortem-july-20-2016.

4https://atom.io
5http://davidvgalbraith.com/how-i-fixed-atom/

16

http://stackexchange.com
http://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016
http://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016
https://atom.io
http://davidvgalbraith.com/how-i-fixed-atom/

1.1. Introduction

backtracking. Other examples are Weideman et al [59] and Berglund et al [9].

The first two works also implement diagnostic tools for detecting potential in-

stance of catastrophic backtracking, but do not offer direct help with rewriting

the problematic regular expressions such that they are not susceptible any more

to catastrophic backtracking, or with avoiding the problem altogether.

Catastrophic backtracking does not just happen with “negative” queries, that

is when a regular expression does not match a string. It can also happen with

“positive” queries. For example (a?){n}a{n} is another candidate for catastrophic

backtracking. In this regular expression the question mark stands for an optional

match, that is match either a or the empty string, and {n} stands for matching

exactly n copies with n being a natural number. If one matches this regular

expression against strings containing n a’s, then many libraries behave in an ex-

ponential fashion. This is because they first attempt to match the a’s using the op-

tional part of the regular expression, and then need to backtrack in order to match

with the exactly-n-times part of the regular expression. Since they have to back-

track over all choices, exponential runtime behaviour ensues. Unfortunately, it

is not so easy to predict precisely which regular expression library behaves in

which way and in which instance catastrophic backtracking occurs. For exam-

ple Java (up to Version 8) and current versions of Python exhibit catastrophic

backtracking with the example (a∗)∗b and strings of the form a . . . a. Also Ruby

up to Version 2.2.0 struggled with this example, but in later versions the authors

introduced an adhoc “optimisation” by rewriting (a∗)∗ to just a∗. While this op-

timisation seems harmless, it can actually open a can of worms: the trouble is

that such an optimisation can easily affect the correctness involving submatches

as pointed out by Kuklewicz [34]. Also regular expression matching in Java 9

got much faster in instances such as (a∗)∗b, but the running time is still much

slower than the expected “linear behaviour”.

17

1.1. Introduction

The root problem underlying catastrophic backtracking is that very many

regular expression libraries, like in Java and Python, do not implement regular

expression matchers based on DFAs, as one would expect, but based on NFAs.

With NFAs the algorithm for reaching an accepting state needs to search and

explore potentially alternative transitions. This search can be done in a breadth-

first fashion. The problem with this method, however, is that it can result in

rather high memory demands, as reported for example by Becchi and Crowley

[7]. The idea is that when alternative transitions need to be explored one marks

all candidate states as active and then recursively explores all transitions from

those active states. The problem is that in typical matching problems almost

all states become active resulting in a high memory bandwidth when the NFA

contains thousands or even million states. This way of finding an accepting state

is therefore not desirable in many applications. The alternative is to explore

the candidate transitions in a depth-first fashion. Since this does not require

much memory, it is often the implementation technique of choice for regular

expression matching libraries. It is also often fast. . . just sometimes there are

“outliers” which cause unexpected exponential behaviour and which can bring

systems to a grinding halt, as mentioned above.

It is well-known that regular expressions can be translated into equivalent

NFAs via the Thompson construction—this sometimes also called the McNaughton-

Yamada-Thompson algorithm [38, 56]. NFAs can then be “determised” by the

subset construction, and the resulting DFAs can be minimised via a myriad of

minimisation algorithms. One interesting minimisation algorithm is by Brzo-

zowski and has been formalised in Isabelle by Paulson [45]. This is a “well-

rehearsed” approach to regular expression matching and well-explained in in-

numerable textbooks. The question therefore is why many existing regular ex-

pression libraries do not use DFAs where matching can be fast? There are two

18

1.1. Introduction

answers: bounded repetitions and back-references.

Bounded Repetitions

One answer to the question is the slight, but significant, disconnect between what

kind of regular expressions libraries need to support in practice, and what regular

expressions are used in textbooks. One problematic kind of regular expression

from practice are bounded repetitions, written r{n} with n being a natural num-

ber. The usual unbounded repetition in regular expressions is written with the

Kleene-star as r∗. The point is that the bounded version requires that r needs

to match exactly n times. Becchi and Crowley give an example that beautifully

illustrates the problem with such bounded repetitions [7]: Consider the regular

expression .∗a .{n}bc where the dots (each) match any character. Therefore the

first part .∗ effectively means that the pattern prescribed by a .{n}bc can occur at

any position of the input string. The pattern then searches for substrings starting

with an a followed by n characters and ending with the characters bc. Becchi

and Crowley give the following NFA for .∗a .{n}bc

0start 1 2 n + 1 n + 2 n + 3

∗
a ∗ ∗ ∗ ∗ b c

n

where the starred transitions can be performed for any input character. This is

clearly a NFA, because in state 0 we do not know whether we should follow the

transition to state 1 or remain in state 0 when receiving an a as input. Let us as-

sume the input string is of the form aaaaaaaaaaaa . . . aaaabc. If we traverse the

NFA in a breadth-first fashion, then state 0 will always be active, but also every

a will make the transition 0 → 1 “fire” and this will activate state 1. So upon

receiving a large enough stream of characters a’s, all states from 0 to n + 1 will

19

1.1. Introduction

be active and need to be considered for potential transitions. Becchi and Crowley

argue that this may result in unacceptable memory bandwidth requirements and

too long processing times in practice.

Generating a DFA from the NFA above is also not really an option. The rea-

son is that the subset construction, as is well-known, might blow up the size to

2n states in the worst case. Unfortunately, NFAs involving bounded repetition

will always hit this kind of blow-up because of the different values the “counter”

n may take. It is still an active research area how to extend the traditional no-

tion of automata (deterministic and non-deterministic) in order to deal more ef-

ficiently with such “boundedness constraints”. The corresponding algorithms

are deployed and relied upon in situations where processing times and memory

demands are critical, but it appears to be unclear what the state of correctness

claims and specifications are. Moreover, it is not clear what the relation of such

automata is to POSIX matching/lexing (see later on).

Back-References

Another answer to why many existing regular expression libraries do not use

DFAs has to do with back-references. They are part of Perl Compatible Regu-

lar Expressions, or PCRE for short.6 Back-references are often indicated with

numbers, such as \1, \2, . . . Their idea is to match again a substring one has seen

earlier in the input. To understand them better, assume you have the regular ex-

pression a + b, which can either recognise the character a or b. Then (a + b)\1

means we can recognise either a or b as first character, but then as second we

want to have exactly the same character as again. So aa and bb would be OK,

but ab or ba would not. Therefore the above regular expression is not equivalent

to (a+ b)(a+ b) where we just copy the relevant subexpression. The number in

6http://www.pcre.org

20

http://www.pcre.org

1.1. Introduction

the back-reference refers to the corresponding “group” enclosed in parentheses.

For example (a+ b)(c+ d)\1\2 accepts the strings

acac

bcbc

adad

bdbd

A possible application for back-references is recognising well-formed HTML-

tags. These tags can be of the form \ < tag > where tag could be anything like

head, body and so on. But then the requirement is that the closing tag should be

the same tag again (just prefixed with â). Back-references allow us to construct

for this a regular expression of the form

\ < (tag) > . . . \ <̂\1 >
where the regular expression tag would prescribe which tags are to be matched

and the back-reference \1 ensures that only strings with “matching” tags match

successfully.

While adding bounded regular expressions to “normal” regular expressions is

quite innocuous from a formal language point of view—it does not bring us out-

side the set of regular languages, adding back-references is a bit more serious—it

allows us to recognise non-regular languages. Clearly back-references allow us

to recognise “squares”, such as papa or weewee, using the PCRE (.+)\1. The

point is that the language of squares is not regular and interestingly also not

context-free.7 Another such example is given by Câmpeanu et al [16] who prove

that the language {anbanban | n ≥ 1} is not context-free, but can be expressed

as (a+)b\1b\1 by a PCRE. Furthermore, the language {anbn | n ≥ 0} is context-

free, but there is no regular expression, not even one involving back-references,
7See https://en.wikipedia.org/wiki/Regular_expression.

21

https://en.wikipedia.org/wiki/Regular_expression

1.1. Introduction

that could match it. They show that PCRE languages are properly contained in

context-sensitive languages though.

While the non-regularity of back-references might be considered as an inter-

esting “quirk”, the real problem is that the resulting matching problem becomes

NP-hard! This has been shown by a reduction to the k-vertex cover problem for

graphs, which is known to be NP-hard. This reduction has been given by Aho

[3] and is also nicely described by Rosulek.8 (We shall therefore omit the details

here). In light of this NP-hardness result, the choice of a depth-first search al-

gorithm for regular expression matching, like implemented in Java and Python,

does not look like such an absurd choice. If there were a more efficient algorithm

to decide in general the matching problem involving back-references, we would

also be able to quickly compute solutions for the graph 3-colourability problem

etc, which is generally believed to be impossible.

There are a number of efficient regular expression libraries, for example

Google’s RE2, which are based on DFAs, but they do not support back-references.

Why not ditching back-references then? Well, they seem to be useful to engi-

neers: for example Snort contains around 8,000 regular expressions for monitor-

ing network traffic and around 5 to 10% of them use back-references [7]. (These

regular expressions are community curated and change from version to version

depending on known attack patterns.)

Brzozowski Derivatives of Regular Expressions

This brings us to the main topic of this thesis: Brzozowski [15] introduced the

notion of the derivative, written r\c, of a regular expression r w.r.t. a character

c, and showed that it gave a simple solution to the problem of matching a string

s with a regular expression r: if the derivative of r w.r.t. (in succession) all the
8See http://www.mikero.com/misc/code/vertex-cover2.html.

22

http://www.mikero.com/misc/code/vertex-cover2.html

1.1. Introduction

characters of the string matches the empty string, then r matches s (and vice

versa). The derivative has the property (which may almost be regarded as its

specification) that, for every string s and regular expression r and character c, one

has cs ∈ L(r) if and only if s ∈ L(r\c). Because of this attractive property, the

central point in this thesis is to not use automata for regular expression matching,

rather use Brzozowski’s derivatives instead.

Brzozowski introduced derivatives of regular expressions in 1964. Since then

they have acquired a somewhat interesting “history”: Over the years derivatives

of regular expressions were certainly known in the Formal Languages commu-

nity and utilised for various purposes. An important research mile-stone, for ex-

ample, is the notion of partial derivatives for regular expressions introduced by

Antimirov in 1995 [5]. However, in the communities broadly described as Pro-

gramming Languages and as Formal Proofs, they were largely forgotten. Owens

et al wrote in 2009 that derivatives of regular expressions had been lost “in the

sands of time” [43]. However, they recently have experienced a renaissance and

become again a “hot” research topic with numerous research papers appearing

in the last ten years—[4, 18, 19, 20, 55, 57, 60] to cite a few. Krishnaswami and

Yallop even claim in a paper from 2018 that if somebody implements a regular

expression matcher using derivatives, then “you have almost surely identified a

functional programmer” [33].9

The beauty of Brzozowski’s derivatives is that they are neatly expressible in

any functional programming language—the code just consists of an algebraic

datatype for regular expressions and two simple recursive functions. This sim-

plicity and “algebraic nature” of derivatives is also the main attraction for theo-

rem provers. The simple definitions can be easily rendered into theorem prover

code and also very easily be reasoned about by performing inductions over in-

9https://www.cl.cam.ac.uk/˜jdy22/papers/a-typed-algebraic-
approach-to-parsing.pdf

23

https://www.cl.cam.ac.uk/~jdy22/papers/a-typed-algebraic-approach-to-parsing.pdf
https://www.cl.cam.ac.uk/~jdy22/papers/a-typed-algebraic-approach-to-parsing.pdf

1.1. Introduction

ductive datatypes and recursive definitions. A consequence is that proving the

correctness of the Brzozowski’s matcher is a nice “afternoon exercise” in mod-

ern theorem provers. For example mechanised proofs can be found in HOL4,

where a proof has been mentioned by Owens and Slind [44]. Another one can

be found in Isabelle/HOL as part of the work by Krauss and Nipkow [32]. And

another one in Coq is given by Coquand and Siles [20].

By using Brzozowski’s derivatives for matching we also benefiting from the

fact that regular expressions are more convenient for “composition”—be it se-

quential or alternative composition. The reason is that there are explicit con-

structors in regular expressions for composition. This allows us to reason com-

positionally about regular expressions—we can take them apart and put them

together again. In contrast, a “formal” notion of composition in automata is not

as straightforward and also is heavily sensitive to how automata are represented

(possible representations are graphs, matrices, functions and so on). However,

Paulson [45], and also Doczkal et al [22] take a somewhat opposing view and

report that their formalisations of automata were rather “smooth”. One advan-

tage of automata, in comparison with regular expressions, however, is that there

is a standard notion of what a minimal automata is, while there is no equivalent

notion for regular expressions.

Another attraction of Brzozowski’s derivatives is that they elegantly extend

to additional constructors of regular expressions. Owens et al describe how the

not-regular expression can be easily included in the definition of derivatives [43].

They also show that this regular expression is very convenient for prescribing

patterns for recognising typical comments in programming languages, such as

C-like comments of the form /* ... */. These patterns should start with a /*,

but then the three dots should match anything except the final */. Such con-

straints can be concisely expressed via the not-regular expression. Brzozowski’s

24

1.2. POSIX Lexing

derivatives also elegantly extend to bounded repetitions. While the details about

the complexity are not yet fully worked out, it should be possible to treat bounded

repetitions using Brzozowski derivatives without having to pay a heavy penalty in

terms of processing time, in contrast to the penalty having to be paid by standard

DFAs. Unfortunately, nothing is known yet about the relation of Brzozowski

derivatives and back-references.

One limitation of Brzozowski’s original derivative-based matcher is that it

only generates a yes/no answer for whether a regular expression matches a string

or not. Our motivation to look at this area arose from the paper by Sulzmann

and Lu [53] which cleverly extends Brzozowski’s matching algorithm to POSIX

lexing. This extended version generates additional information on how a regular

expression matches a string. We shall describe this in the next section.

1.2 POSIX Lexing

One application of regular expressions is in lexers. Lexers need to split up an

input string into a sequence of tokens, each of which is frequently defined by a

regular expression. Suppose rkey is a regular expressions for recognising key-

words such as if, then, while, for and so on; and rid a regular expression for

identifiers—a single character followed by characters or numbers. The problem

is that these regular expressions often “overlap”, in the sense that a keyword

usually also satisfies the constraints for an identifier. This problem can also oc-

cur within a single regular expression, because if a regular expression matches

a string, then in general there is more than one way of how the string can be

matched. There are two commonly used disambiguation strategies in order to

generate a unique answer: one is called GREEDY matching [23] and the other is

25

1.2. POSIX Lexing

POSIX matching [2, 34, 41, 53, 58].10

To see the difference between both strategies consider the string xy and the

regular expression (x + y + xy)∗. Either the string can be matched in two

‘iterations’ by the single letter-regular expressions x and y, or directly in one

iteration by xy. The first case corresponds to GREEDY matching, which first

matches with the left-most symbol and only matches the next symbol in case of a

mismatch (this is greedy in the sense of preferring instant gratification to delayed

repletion). The second case is POSIX matching, which prefers the longest match.

There are four informal rules behind tokenising a string in a POSIX fashion [2]:

• The Longest Match Rule (or “maximal munch rule”):

The longest initial substring matched by any regular expression is taken as

next token.

• Rule Priority:

For a particular longest initial substring, the first regular expression that

can match determines the token.

• Star Rule:

A subexpression repeated by ∗ shall not match an empty string unless this

is the only match for the repetition.

• Empty String Rule:

An empty string shall be considered to be longer than no match at all.

In the context of lexing, where an input string needs to be split up into a sequence

of tokens, POSIX is the more natural disambiguation strategy for what program-

mers consider basic syntactic building blocks in their programs. Consider again

10POSIX matching acquired its name from the fact that the corresponding rules were described
as part of the POSIX specification for Unix-like operating systems [2].

26

1.2. POSIX Lexing

rkey for recognising keywords and rid for recognising identifiers. Then we can

form the regular expression (rkey + rid)
∗ and use POSIX matching to tokenise

strings, say iffoo and if. For iffoo we obtain by the Longest Match Rule a single

identifier token, not a keyword followed by an identifier. For if we obtain by

the Priority Rule a keyword token, not an identifier token—even if rid matches

also. By the Star Rule we know (rkey + rid)
∗ matches iffoo, respectively if, in

exactly one ‘iteration’ of the star. The Empty String Rule is for cases where, for

example, the regular expression (a∗)∗ matches against the string bc. Then the

longest initial matched substring is the empty string, which is matched by both

the whole regular expression and the parenthesised subexpression.

While POSIX matching seems natural in a context of lexing, it turns out to

be much more subtle than GREEDY matching in terms of implementations and

in terms of proving properties about it. This was also noted by Kuklewicz [34]

who found that nearly all POSIX matching implementations are “buggy” [53,

Page 203] and by Grathwohl et al [25, Page 36] who wrote:

“The POSIX strategy is more complicated than the greedy because

of the dependence on information about the length of matched strings

in the various subexpressions.”

One should also not underestimate the difficulties when implementing POSIX

matching using automata: Using a naive method, one has to follow transitions

(according to the input string) until one finds an accepting state, record this state

and look for further transitions which might lead to another accepting state that

represents a longer initial substring. This might mean that one has to consider

the entire string to make sure no other accepting state can be found. Only if none

can be found, the last accepting state is returned. Yes, it can be done, but it takes

quite some “head-standing” in order to get this process to run in linear time (see

27

1.2. POSIX Lexing

for example [47]).

Given that POSIX matching is not so straightforward to implement and only

informally defined by the rules in English shown above, Sulzmann and Lu cor-

rectly argued in [53] that this needs a formal specification. In order to establish

the correctness of their algorithm, they define an “ordering relation” between

values (possible outcomes for how a string can be matched by a regular expres-

sion) and argue that for every string and every regular expression, there is always

a maximum value, as given by the their derivative-based algorithm.

The purpose of values is to encode the information of how a string is matched

by the regular expression—that is, which part of the string is matched by which

part of the regular expression. For this consider again the string xy and the

regular expression (x + (y + xy))∗ (this time fully parenthesised). We can

view this regular expression as a tree and if the string xy is matched by two Star

‘iterations’, then the x is matched by the left-most alternative in this tree and the

y by the right-left alternative. This suggests to record this matching as

Stars [Left(Char x),Right(Left(Char y))]

where Stars , Left , Right and Char are constructors for values. Stars records

how many iterations were used; Left , respectively Right , which alternative is

used. The value for the single ‘iteration’, i.e. the POSIX value, would look as

follows

Stars [Seq (Char x) (Char y)]

where Stars has only a single-element list for the single iteration, and Seq indi-

cates that xy is matched by a sequence regular expression. This ‘tree view’ leads

naturally to the idea that regular expressions act as types and values as inhabiting

those types (see, for example, [27] where this view is taken).

28

1.2. POSIX Lexing

The approach of establishing that the matching algorithm generates a maxi-

mum value is inspired by work by Frisch and Cardelli [23] on GREEDY match-

ing. In our formalisation effort, we made some partial attempts to formalise their

specification of GREEDY matching and did not encounter any problems. This is

in contrast with the work by Sulzmann and Lu where we hit almost immediately

upon serious difficulties. While Sulzmann and Lu give a considerable amount

of details for their correctness proof (some inside the paper and some more de-

tails in an appendix), this correctness proof is unformalised, meaning it is just

a “pencil-and-paper” proof. In fact, we believe the purported proof they give

does not work in central places. For example we were not able to establish the

transitivity and totality properties for their “order relation” (the proofs of which

were elided in [53]). We had some communication with Sulzmann about our

problems via email. For example upon pointing out one problem uncovered by

our formalisation, he commented:

“How could I miss this? Well, I was rather careless when stating this

Lemma. . . Great example [of] how formal machine checked proofs

(and proof assistants) can help to spot flawed reasoning steps.”

This led Sulzmann to augment some of the reasoning in their paper—he pub-

lished an extended version of the paper on his website.11 However, ultimately we

abandoned the attempt to formalise Sulzmann and Lu’s pencil-and-paper proof

in Isabelle, because of the obstacles we encountered. In spite of this failure, we

were eventually able to show the correctness of Sulzmann and Lu’s matching al-

gorithm by introducing our own notion for what a correct POSIX value is. This

is an inductive definition inspired by work by Vansummeren [58]. Using this def-

inition, the correctness of the algorithm can be established without too excessive

formalisation work. We shall describe our formalisation next.
11http://www.home.hs-karlsruhe.de/˜suma0002/

29

http://www.home.hs-karlsruhe.de/~suma0002/

1.3. Preliminaries

1.3 Preliminaries

In our Isabelle/HOL formalisation strings are lists of characters with the empty

string being represented by the empty list, written [], and list-cons being written

as :: ; string concatenation is @ . Often we use the usual bracket notation

for lists also for strings; for example a string consisting of just a single character

c is written [c]. We also use the usual definitions for prefixes and suffixes of

strings, as well as their strict versions. By using the type char for characters, we

have a supply of finitely many characters roughly corresponding to the ASCII

character set.

Regular Expressions are defined as an Isabelle/HOL inductive datatype. We

start here with the standard textbook regular expressions with the following six

constructors.

Definition 1. Regular expressions are given by the grammar:

r ::= 0

| 1

| c single character

| r1 + r2 alternative / choice

| r1 · r2 sequence

| r∗ star (zero or more)

where 0 stands for the regular expression that does not match any string, 1 for

the regular expression that matches only the empty string and c for matching a

character literal (of type char). In what follows we shall sometimes omit the · in

sequence regular expressions and just write r1 r2 for brevity.

While the 0 does not play an essential role in works that use automata for reg-

ular expression matching, it is crucial for Brzozowski’s derivatives. The regular

30

1.3. Preliminaries

expressions defined above are often called basic regular expressions in order to

distinguish them from extended regular expressions which may also include con-

structors for bounded repetitions, negation, optional regular expressions, and so

on.

We next need some operations on languages, which are just sets of strings.

We shall use the operation @ for the concatenation of two languages (it is also

list-append for strings). The Star of a language, written ?, is defined inductively

by two clauses: (i) the empty string being in the star of a language and (ii) if s1

is in a language and s2 in the star of this language, then also s1@s2 is in the star

of this language. We could also easily define the star of a language via the power

operation as follows

A?
def
=

⋃
0≤n

An

Both definitions can be straightforwardly shown to be equivalent. Which def-

inition to settle on is mainly a matter of taste: some later proofs can be found

automatically in Isabelle using the former definition; other proofs are automatic

with the latter one.

Later on it will also be convenient to use the following notion of a semantic

derivative (or left quotient) of a language A with respect to a character c, defined

as

Der cA
def
= {s | c :: s ∈ A}

This means in a semantic derivative we are looking for all strings in a set A

starting with a character, say c, then strip off this character, and filtering out

everything else. For semantic derivatives we have the following equations (for

example mechanically proved in [32]):

31

1.3. Preliminaries

Der c ∅ = ∅

Der c {[]} = ∅

Der c {[d]} = if c = d then {[]} else ∅

Der c (A ∪B) = Der c A ∪ Der c B

Der c (A@B) = (Der c A @ B) ∪ (if [] ∈ A then Der c B else ∅)

Der c (A?) = Der c A @ A?

(1.1)

The main definition for regular expressions is the associated language, written

L(), and defined recursively as follows.

Definition 2. The associated language of r, written L(r), is defined as follows:

L(0) def
= ∅

L(1) def
= {[]}

L(c)
def
= {[c]}

L(r1 + r2)
def
= L(r1) ∪ L(r2)

L(r1 · r2)
def
= L(r1)@L(r2)

L(r∗)
def
= (L(r))?

The main point of the L-function is that we can use it to precisely specify when

a string s is matched by a regular expression r, namely if and only if s ∈ L(r).

This is clearly a specification because in the star-clause, the language can be

infinite and a membership test for an infinite set cannot be directly implemented.

Below we shall use the terminology that a regular expression r “matches the

language L(r)”, that is matches every string in L(r). We can also use L to define

the equivalence of two regular expressions, which will be needed when we need

to simplify regular expressions.

32

1.3. Preliminaries

Definition 3. Two regular expressions are equivalent iff they match the same

language, namely

r1 ≡ r2
def
= L(r1) = L(r2)

Central to Brzozowski’s regular expression matcher are two functions called

nullable and derivative. The latter is written r\c for the derivative of the regular

expression r w.r.t. the character c. Both functions are defined by recursion over

regular expressions.

Definition 4.

nullable(0) def
= false

nullable(1) def
= true

nullable(c)
def
= false

nullable(r1 + r2)
def
= nullable(r1) ∨ nullable(r2)

nullable(r1 · r2)
def
= nullable(r1) ∧ nullable(r2)

nullable(r∗)
def
= true

The derivative function takes a regular expression, say r and a character, say c,

as input and returns the derivative regular expression.

Definition 5.

0\c def
= 0

1\c def
= 0

d\c def
= if c = d then 1 else 0

(r1 + r2)\c
def
= r1\c + r2\c

(r1 · r2)\c
def
= if nullable(r1)

then (r1\c) · r2 + r2\c

else (r1\c) · r2

(r∗)\c def
= (r\c) · r∗

33

1.3. Preliminaries

The idea behind nullable is relatively clear: it tests whether a regular expression

can match the empty string. By contrast, the idea behind the derivative might be

less clear. To see what is going on, suppose a regular expression r can match

strings of the form c :: s, then the derivative function answers the question what

does the regular expression look like that can match the string s (where the lead-

ing character c has been “chopped off”)? Let us see how this characterisation is

reflected in the clauses of the derivative function.

The first two clauses of the derivative are straightforward: for this recall

that r\c should calculate a regular expression so that given the “input” regular

expression can match a string of the form c :: s, we want a regular expression

for s. Since neither 0 nor 1 can match a string of the form c :: s, we return 0.

In the character clause we have to make a case-distinction: In case the regular

expression is c, then clearly it can recognise a string of the form c :: s, just that

s is the empty string. Therefore we return the 1-regular expression. In the other

case we again return 0 since no string of the form c ::s can be matched.

Elucidating the recursive clauses is a bit more involved. Fortunately, the +-

case is still relatively simple: all strings of the form c :: s are either matched by

the regular expression r1 or r2. So we just have to recursively call the derivative

with these two regular expressions and compose the results again with +. The

·-clause is more complicated: if r1 · r2 matches a string of the form c :: s, then

the first part must be matched by r1. Consequently, it makes sense to construct

the regular expression for s by calling the derivative with r1 and “appending”

r2. There is however one exception to this simple rule: if r1 can match the

empty string, then all of c :: s can be matched by r2. Consequently in case r1 is

nullable (that is can match the empty string) we have to allow the choice r2\c

for calculating the regular expression that can match s. This means we have to

add the regular expression r2\c in the result. The ∗-clause is again simple: if r∗

34

1.3. Preliminaries

matches a string of the form c :: s, then the first part must be “matched” by a

single copy of r. Therefore we call recursively r\c and “append” r∗ in order to

match the rest of s.

We can extend the derivative of regular expressions from single characters to

strings as follows:

r\[] def
= r

r\(c ::s) def
= (r\c)\s

Before we go on, let us look at an example. Suppose the regular expression r0

is (a+ ab) · (b+ 1) and the input string is ab. Clearly r0 can match the input

string. In fact there are two ways for how it can match this string. Below we give

the intermediate steps for calculating the derivative r0\[a, b]:

r1 = r0\a: (1 + 1 b) · (b+ 1)

One can see that this derivative can match the string [b], again in two ways. Next

we have

r2 = r1\b : (0 + 0 b+ 1) · (b+ 1) + (1 + 0) (1.2)

The point of the last derivative is that we can decide whether it matches the

empty string: in this case it does and again in two ways. Given the idea behind

the derivative operation, it is relatively easy to convince oneself of the fact that if

the last derivative matches the empty string, then the original regular expression

matches the string that was used for building the derivative. This holds also in

the other direction.

Using nullable and the derivative operation, we can define the following sim-

ple regular expression matcher:

match s r
def
= nullable(r\s)

35

1.4. POSIX Lexing Algorithm by Sulzmann and Lu

This is essentially Brzozowski’s algorithm from 1964. Its main virtue is that

the algorithm can be easily implemented as a functional program (either in a

functional programming language or in a theorem prover). The correctness proof

for match amounts to establishing the property

match s r if and only if s ∈ L(r) (1.3)

On the left-hand side of this property is the algorithm; on the right-hand side its

specification. For this proof to go through, we need the following two auxiliary

properties.

Lemma 1.

(1) nullable(r) if and only if [] ∈ L(r)

(2) L(r\c) = Der c L(r)

Proof. The first is by a simple induction on r. Given the equations in (1.1) the

second is also by a simple induction on r.

We can then prove (1.3) by an induction on s generalising over r and using

the above two properties. The ease of the these proofs is the main attraction for

theorem provers—it is a nice formalisation exercise, for example done by Owens

and Slind [44] using the HOL theorem prover, but is also part of the Archive of

Formal Proofs for Isabelle. The novel idea of Sulzmann and Lu is to append

another phase to Brzozowski’s algorithm in order to calculate a (POSIX) value.

We will explain this next.

1.4 POSIX Lexing Algorithm by Sulzmann and Lu

Sulzmann and Lu presented their POSIX lexing algorithm in 2014 [53]. This

algorithm consists of two phases: first a matching phase (which is Brzozowski’s

36

1.4. POSIX Lexing Algorithm by Sulzmann and Lu

algorithm) and then a value construction phase. The values encode how a regu-

lar expression matches a string. The grammars below show regular expressions

together with their corresponding values:

Regular Expressions

r ::= 0

| 1

| c

| r1 · r2

| r1 + r2

| r∗

Values

v ::=

Empty

| Char(c)

| Seq v1 v2

| Left(v)

| Right(v)

| Stars [v1, . . . vn]

As can be seen for each regular expression there is a specific value that records

how the regular expression matched the string. For example Char(c) is the value

for the character regular expression c. Similarly Seq for the sequence regular ex-

pression. The exception is the 0-regular expression, because it cannot match

anything and therefore does not need a corresponding value; and also the two

values, Left and Right , for the alternative regular expression, which correspond

to the two choices in the alternative. So if we are given a value, it will always be

clear what the corresponding (kind) of regular expression is—whether it is a se-

quence regular expression and so on. This holds also in the other direction: if we

are given a regular expression, it will be clear what the form of the corresponding

value must be.

We sometimes need to extract the string “underlying” a value. This can be

done with the flatten function written | |:

37

1.4. POSIX Lexing Algorithm by Sulzmann and Lu

|Empty | def
= []

|Char c| def
= [c]

|Left v| def
= |v|

|Right v| def
= |v|

|Seq v1 v2|
def
= |v1|@ |v2|

|Stars []| def
= []

|Stars (v ::vs)| def
= |v1|@ |Stars vs|

We will often refer to the underlying string of a value as the flattened value. We

will also overload our notation and use |vs| for flattening a list of values and

concatenating the resulting strings.

Sulzmann and Lu [53] define inductively a kind of type inhabitation relation

that associates values to regular expressions. We define this relation as follows:12

Definition 6 (Inhabitation Relation).

` Empty : 1 ` Char c : c

` v1 : r1

` Left v1 : r1 + r2

` v2 : r2

` Right v2 : r1 + r2

` v1 : r1 ` v2 : r2

` Seq v1 v2 : r1 · r2

∀v ∈ vs. ` v : r ∧ |v| 6= []

` Stars vs : r∗

In the clause for Stars we use the notation v ∈ vs for indicating that v is a

member in the list vs. We require in this rule that every value in vs flattens to

a non-empty string. The idea is that Stars-values satisfy the informal Star Rule
12Note that the rule for Stars differs from our conference paper [6]. There we used the original

definition by Sulzmann and Lu [53] which does not require that the values v ∈ vs flatten to
a non-empty string. The reason for introducing the more restricted version of lexical values is
convenience later on when reasoning about an ordering relation for values.

38

1.4. POSIX Lexing Algorithm by Sulzmann and Lu

from POSIX (see Section 1.2) where the ∗ does not match the empty string unless

this is the only match for the repetition. Note also that no values are associated

with the regular expression 0, and that the only value associated with the regular

expression 1 is Empty . It is routine to establish how values “inhabiting” a regular

expression correspond to the language of a regular expression, namely

Proposition 1. L(r) = {|v| | ` v : r}

Given a regular expression r and a string s, we define next the set of all

Lexical Values, written LV r s, inhabited by r with the underlying string being

s.13

Definition 7 (Lexical Values).

LV r s
def
= {v | ` v : r ∧ |v| = s}

The main property of the set LV r s is that it is always finite.

Lemma 2. For all r and s, finite (LV r s).

Proof. By induction on r generalising over s. The only interesting cases are

r1 · r2 and r∗. In the first case we reason as follows: LV (r1 · r2) s is a subset of

{Seq v1 v2 | v1 ∈ Pre ∧ v2 ∈ Suf } where Pre and Suf are defined as follows:

Pre
def
=

⋃
s′∈Prefixes s .LV r1 s

′

Suf
def
=

⋃
s′∈Suffixes s .LV r2 s

′

Since for a given string s, there are only finitely many prefixes and suffixes, we

know by induction hypothesis that Pre and Suf are finite sets of values. So also

LV (r1 · r2) s must be finite. In case of LV (r∗) s we reason similarly, except

13Okui and Suzuki refer to our lexical values as canonical values in [41]. The notion of non-
problematic values by Cardelli and Frisch [23] is related, but not identical to our lexical values.

39

1.4. POSIX Lexing Algorithm by Sulzmann and Lu

that this set is a subset of {Stars []} ∪ {Stars (v :: vs) | v ∈ Pre ∧ vs ∈ SSuf }

where SSuf is the set of lexical values built from the strict suffixes (suffixes that

are shorter than s). It is sufficient to only consider strict suffixes, because of the

side-condition about values not flattening to the empty string.

This finiteness property does not hold in general if we remove the side-condition

about |v| 6= [] in the Stars-rule above. For example using Sulzmann and Lu’s

less restrictive definition, LV (1∗) [] would contain infinitely many values, but ac-

cording to our more restricted definition only a single value, namely LV (1∗) [] =

{Stars []}. This more restricted version of lexical values will be useful later on

when we show that our POSIX specification is equivalent to the one by Okui and

Suzuki.

If a regular expression r matches a string s, then generally the set LV r s is

not just a singleton set. In case of POSIX matching the problem is to calculate the

unique lexical value that satisfies the (informal) POSIX rules from Section 1.2.

Sulzmann and Lu give such an algorithm. Graphically their POSIX value cal-

culation algorithm can be illustrated by the picture in Figure 1.1 where the path

from the left to the right involving derivatives/nullable is the first phase of the

algorithm (calculating successive Brozowski’s derivatives) and mkeps/inj , the

path from right to left, the second phase. This picture shows the steps required

when a regular expression, say r1, matches the string [a, b, c]. We first build

the three derivatives (according to a, b and c). We then use nullable to find

out whether the resulting derivative regular expression r4 can match the empty

string. If yes, we call the function mkeps that produces a value v4 for how r4

can match the empty string (taking into account the POSIX constraints in case

there are several ways—we shall explain this below). Then we call the injection

function to inject “back” the letters c, b and a in order to obtain the value v1 that

encodes how r1 matches the string abc.

40

1.4. POSIX Lexing Algorithm by Sulzmann and Lu

The function mkeps is defined as follows:

Definition 8.

mkeps(1) def
= Empty

mkeps(r1 + r2)
def
= if nullable(r1)

then Left(mkeps(r1))

else Right(mkeps(r2))

mkeps(r1 · r2)
def
= Seq (mkeps r1) (mkeps r2)

mkeps(r∗)
def
= Stars []

Notice how this function makes some subtle choices leading to a POSIX value:

for example if the alternative, say r1 + r2, can match the empty string and fur-

thermore r1 can match the empty string, then we return always a Left-value. The

Right-value will only be returned if r1 is not nullable. The four regular expres-

sions in mkeps are the only cases we need to consider, since the other regular

expressions cannot match the empty string. Recall the derivative r2 from (1.2):

(0 + (0 b+ 1)) · (b+ 1) + (1 + 0)

Below is the calculation of mkeps including the intermediate steps.

mkeps((0 + (0 b+ 1)) · (b+ 1) + (1 + 0))

= Left(mkeps((0 + (0 b+ 1)) · (b+ 1)))

= Left(Seq(mkeps(0 + (0 b+ 1)),mkeps(b+ 1)))

= Left(Seq(Right(mkeps(0 b+ 1)),Right(mkeps(1))))

= Left(Seq(Right(Right(mkeps(1))),Right(Empty)))

= Left(Seq(Right(Right(Empty)),Right(Empty)))

This means the value calculated by mkeps corresponds to the two underlined

1s which in r2 are responsible, according to the POSIX rules, for matching the

empty string.

41

1.4. POSIX Lexing Algorithm by Sulzmann and Lu

r1 r2
\a

r3
\b

r4
\c

nullable

v4v3
inj r3 c

v2
inj r2 b

v1
inj r1 a

mkeps

Figure 1.1: The two phases of the algorithm by Sulzmann & Lu [53], matching
the string [a, b, c]. The first phase (the arrows from left to right) is Brzozowski’s
matcher building successive derivatives. If the last regular expression is nullable,
then the functions of the second phase are called (the top-down and right-to-left
arrows): first mkeps calculates a value v4 witnessing how the empty string has
been recognised by v4. After that the function inj “injects back” the characters
of the string into the values.

(0 + (0 b+ 1)) · (b+ 1) + (1 + 0)

The function mkeps does not choose the right-most 1, which would match the

empty string as well, because this would violate the Priority Rule.

The really interesting function Sulzmann and Lu introduced in the second

phase is called injection and written inj . Remember that the derivative essen-

tially “chops off” a single character from a regular expression. The injection

function undoes this “chopping off” by injecting back a character. . . just on the

level of values, rather than regular expressions.

Definition 9. The inj function takes a regular expression, a character and a value

as arguments; it produces another value. It is defined recursively as follows:

(1) inj d c (Empty)
def
= Char c

(2) inj (r1 + r2) c (Left v1)
def
= Left (inj r1 c v1)

(3) inj (r1 + r2) c (Right v2)
def
= Right (inj r2 c v2)

(4) inj (r1 · r2) c (Seq v1 v2)
def
= Seq (inj r1 c v1) v2

(5) inj (r1 · r2) c (Left (Seq v1 v2))
def
= Seq (inj r1 c v1) v2

42

1.4. POSIX Lexing Algorithm by Sulzmann and Lu

(6) inj (r1 · r2) c (Right v2)
def
= Seq (mkeps r1) (inj r2 c v2)

(7) inj (r∗) c (Seq v (Stars vs))
def
= Stars (inj r c v :: vs)

To better understand what is going on in this definition it might be instructive to

look first at the three sequence cases (clauses (4) – (6)). In each case we need to

construct an “injected value” for r1 ·r2. This must be a value of the form Seq .

Recall the clause of the derivative-function for sequence regular expressions:

(r1 · r2) \ c
def
= if nullable r1 then (r1 \ c) · r2 + (r2 \ c) else (r1 \ c) · r2

Consider first the else-branch where the derivative is (r1 \ c) · r2. The corre-

sponding value must therefore be of the form Seq v1 v2, which matches the

left-hand side in clause (4) of inj . In the if -branch the derivative is an alterna-

tive, namely (r1 \ c) · r2+(r2 \ c). This means we either have to consider a Left-

or Right-value. In case of the Left-value we know further it must be a value for

a sequence regular expression. Therefore the pattern we match in the clause (5)

is Left (Seq v1 v2), while in (6) it is just Right v2. One more interesting point

is in the right-hand side of clause (6): since in this case the regular expression

r1 does not “contribute” to matching the string, that means it only matches the

empty string, we need to call mkeps in order to construct a value for how r1 can

match this empty string. A similar argument applies for why we can expect in the

left-hand side of clause (7) that the value is of the form Seq v (Stars vs)—the

derivative of a star is (r \ c) · r∗. Finally, the reason for why we can ignore the

second argument in clause (1) of inj is that it will only ever be called in cases

where c = d, but the usual linearity restrictions in patterns do not allow us to

build this constraint explicitly into our function definition.14

14Sulzmann and Lu state this clause as inj c c (Empty)
def
= Char c, but our deviation is

harmless.

43

1.4. POSIX Lexing Algorithm by Sulzmann and Lu

The idea of the inj -function to “inject” a character, say c, into a value can be

made precise by the first part of the following lemma: It shows that the underly-

ing string of an injected value has a prepended character c; the second part shows

that the underlying string of an mkeps-value is always the empty string (given

the regular expression is nullable since otherwise mkeps might not be defined).

Lemma 3.

(1) If ` v : r then |inj r c v| = c :: |v|.

(2) If nullable(r) then |mkeps r| = [].

Proof. Both properties are by routine inductions: the first one can, for exam-

ple, be proved by induction over the definition of derivatives; the second by an

induction on r. There are no interesting cases.

Recall the value from the above calculation, which was the result of mkeps

v = Left(Seq(Right(Right(Empty)),Right(Empty)))

and the derivative r1 which is the derivative just before the last one in our deriva-

tive calculation

r1 = (1 + 1 b) · (b+ 1)

Below are the intermediate steps for calling the inj function with r1, b and v:

inj ((1 + 1b) · (b+ 1)) b

(Left(Seq(Right(Right(Empty)),Right(Empty))))

= Seq(inj (1 + 1b) b Right(Right(Empty)),Right(Empty))

= Seq(Right(inj (1b) b Right(Empty)),Right(Empty))

= Seq(Right(Seq(mkeps(1), inj b bEmpty)),Right(Empty))

= Seq(Right(Seq(Empty ,Char(b))),Right(Empty))

44

1.4. POSIX Lexing Algorithm by Sulzmann and Lu

While the flattened value of v is the empty string, flattening the result of injecting

b into this value (using r1) gives use the string [b], as expected. If we further inject

back a into this value using r0, which is

r0 = (a+ ab) · (b+ 1)

we obtain

Seq(Right(Seq(Char(a),Char(b))),Right(Empty))

This value corresponds to underlined parts in r0 (see above) and its flattened

value is [a, b].

Having defined the mkeps and inj function, we can extend Brzozowski’s

matcher so that a value is constructed (assuming the regular expression matches

the string). The two clauses of the Sulzmann and Lu lexer are

lexer r []
def
= if nullable(r) then Some (mkeps r) else None

lexer r (c :: s)
def
= case lexer (r \ c) s of

None⇒ None

| Some v ⇒ Some (inj r c v)

We call this a lexer, because it produces a value that encodes how a regular

expression matched a string, as opposed to a matcher which just produces a

yes/no answer. In the lexer above, if the regular expression does not match the

string, None is returned. If the regular expression does match the string, then

Some value is returned. Like Sulzmann and Lu, we like to prove that this value is

a POSIX value. We shall do this in the next chapter by using our own definition

of what a POSIX value should be.

45

Chapter 2

Specification of POSIX Values

In this chapter, we will give our own inductive definition for POSIX values and

show that the lexer discussed in the previous chapter always generates POSIX

values. Our definition is inspired by work by Vansummeren [58]. We were un-

able to use the original definition by Sulzmann and Lu, because we could not

establish some central properties for this definition. To give more confidence

that our own definition captures the “spirit” of POSIX, we also show that it is

in fact equivalent to a definition given by Okui and Suzuki [41] (their defini-

tion uses a different technique). Next, we shall discuss the GREEDY ordering

rules by Firsch and Cardelli [23] which Sulzmann and Lu cite as the place where

they have taken their main idea from for their correctness proof. We shall subse-

quently argue why the correctness proof by Sulzmann and Lu contains unfillable

gaps.

2.1 Our POSIX Definition

Recall the informal POSIX rules described in Section 1.2. We shall formalise

them in an inductive definition for a ternary relation. Our definition is inspired

46

2.1. Our POSIX Definition

([], 1)→ Empty
P1

([c], c)→ Char c
PC

(s, r1)→ v

(s, r1 + r2)→ Left v
P + L

(s, r1)→ v s /∈ L(r1)
(s, r1 + r2)→ Right v

P + R

(s1, r1)→ v1 (s2, r2)→ v2
@s3 s4. s3 6= [] ∧ s3@s4 = s2 ∧ s1@s3 ∈ L(r1) ∧ s4 ∈ L(r2)

(s1@s2, r1 · r2)→ Seq v1 v2
PS

([], r∗)→ Stars []
P[]

(s1, r)→ v (s2, r
∗)→ Stars vs |v| 6= []

@s3 s4. s3 6= [] ∧ s3@s4 = s2 ∧ s1@s3 ∈ L(r) ∧ s4 ∈ L(r∗)
(s1@s2, r

∗)→ Stars (v :: vs)
P∗

Figure 2.1: Our inductive definition of POSIX values.

by the matching relation given by Vansummeren [58], where the corresponding

rules incorporate the POSIX-specific choices about which value to prefer into

the side-conditions (some of the side-conditions might need further explanation,

which we shall give later). Our POSIX relation is written (s, r) → v relating

strings, regular expressions and (POSIX) values. The corresponding inductive

rules are given in Figure 2.1.

We can prove that given a string s and a regular expression r, the value v is

uniquely determined by (s, r) → v. Therefore we use the suggestive notation

using an arrow (for “yields”) in our POSIX specification.

Theorem 1.

(1) If (s, r)→ v then s ∈ L(r) and |v| = s.

(2) If (s, r)→ v and (s, r)→ v′ then v = v′.

Proof. Both are by induction on the definition of (s, r) → v. The second parts

follows by a case analysis of (s, r)→ v′ and the first part.

We claim that (s, r)→ v captures the idea behind the four informal POSIX rules

47

2.1. Our POSIX Definition

described in Section 1.2. Consider for example the rules P + L and P + R

where the POSIX value for a string and an alternative regular expression, that

is (s, r1 + r2), is specified—it is always a Left-value, except when the string

to be matched is not in the language of r1; only then it is a Right-value (see

the side-condition in P + R). Interesting is also the rule for sequence regular

expressions (PS). The first two premises state that v1 and v2 are the POSIX

values for (s1, r1) and (s2, r2) respectively. Consider now the third premise and

note that the POSIX value of this rule should match the string s1@ s2. According

to the Longest Match Rule, we want that the s1 is the longest initial split of

s1@ s2 such that s2 is still recognised by r2. Let us assume, contrary to the third

premise, that there exist an s3 and s4 such that s2 can be split up into a non-empty

string s3 and a possibly empty string s4. Moreover the longer string s1@ s3 can

be matched by r1 and the shorter s4 can still be matched by r2. In this case s1

would not be the longest initial split of s1@ s2 and therefore Seq v1 v2 cannot be

a POSIX value for (s1@ s2, r1 · r2). The main point is that our side-condition

ensures the Longest Match Rule is satisfied.

A similar condition is imposed on the POSIX value in the P∗-rule. Also

there we want that s1 is the longest initial split of s1@ s2 and furthermore the

corresponding value v cannot be flattened to the empty string. In effect, we

require that in each “iteration” of the star, some non-empty substring needs to

be “chipped” away; only in case of the empty string we accept Stars [] as the

POSIX value. Indeed we can show that our POSIX values are lexical values

which exclude those Stars that contain “impropper” subvalues that flatten to the

empty string.

Lemma 4. If (s, r)→ v then v ∈ LV r s.

Proof. By a straightforward induction on the POSIX definition.

48

2.1. Our POSIX Definition

Next is the lemma that shows the function mkeps by Sulzmann and Lu calculates

the POSIX value for the empty string and a nullable regular expression.

Lemma 5. If nullable r then ([], r)→ mkeps(r).

Proof. By routine induction on r.

The central lemma for our POSIX relation is that the inj -function preserves

POSIX values.

Lemma 6. If (s, r\c)→ v then (c :: s, r)→ inj r c v.

Proof. By induction on r. We explain two cases:

• Case r = r1 + r2. There are two subcases, namely (a) v = Left v′ and

(s, r1\c) → v′; and (b) v = Right v′, s /∈ L(r1\c) and (s, r2\c) → v′.

In (a) we know (s, r1\c) → v′, from which we can infer (c :: s, r1) →

inj r1 c v
′ by induction hypothesis and hence (c :: s, r1+ r2)→ inj (r1+

r2) c (Left v′) as needed. Similarly in subcase (b) where, however, in

addition we have to use Proposition 1(2) in order to infer c :: s /∈ L(r1)

from s /∈ L(r1\c).

• Case r = r1 · r2 and s = s1@ s2. There are three subcases:

(a) v = Left (Seq v1 v2) and nullable r1

(b) v = Right v1 and nullable r1

(c) v = Seq v1 v2 and ¬ nullable r1

For (a) we know (s1, r1\c)→ v1 and (s2, r2)→ v2 as well as

@ s3 s4 · s3 6= [] ∧ s3@s4 = s2 ∧ s1@s3 ∈ L(r1) ∧ s4 ∈ L(r2)

49

2.1. Our POSIX Definition

From the latter we can infer by Proposition 1(2):

@ s3 s4 · s3 6= [] ∧ s3@s4 = s2 ∧ c :: s1@s3 ∈ L(r1) ∧ s4 ∈ L(r2)

We can use the induction hypothesis for r1 to obtain (c :: s1, r1) →

inj r1 c v1. Putting this all together allows us to infer (c :: s1@ s2, r1 ·

r2)→ Seq (inj r1 c v1) v2. The case (c) is similar.

For (b) we know (s, r2\c) → v1 and s1@s2 /∈ L((r1\c) · r2). From the

former we have (c :: s, r2) → inj r2 c v1 by induction hypothesis for r2.

From the latter we can infer

@ s3 s4 · s3 6= [] ∧ s3@s4 = c :: s ∧ s3 ∈ L(r1) ∧ s4 ∈ L(r2)

By Lemma 5 we know ([], r1)→ mkeps r1 holds. Putting this all together,

we can conclude with

(c :: s, r1 · r2)→ Seq (mkeps r1) (inj r2 c v1)

as required.

• Case r = r∗1. This case is very similar to the sequence case, except that we

need to also ensure that |inj r1 c v1| 6= []. This follows from Lemma 3 and

(c :: s1, r1) → inj r1 c v1 (which in turn follows from (s1, r1\c) → v1

and the induction hypothesis).

50

2.2. Ordering of Values According to Okui and Suzuki

With Lemma 6 in place, it is completely routine to establish that the Sulzmann

and Lu lexer satisfies our specification (returning the null value None iff the string

is not in the language of the regular expression, and returning a POSIX value iff

the string is in the language):

Theorem 2.

(1) s /∈ L(r) if and only if lexer r s = None

(2) s ∈ L(r) if and only if ∃ v. lexer r s = Some v ∧ (s, r)→ v

Proof. By induction on s using Lemma 5 and 6.

In (2) we further know by Theorem 1 that the value returned by the lexer must

be unique. A simple corollary of our two theorems therefore is:

Corollary 1.

(1) lexer r s = None if and only if @ v. (s, r)→ v

(2) lexer r s = Some v if and only if (s, r)→ v

This concludes our correctness proof. Note that we have not changed the al-

gorithm of Sulzmann and Lu,1 but introduced our own specification for what a

correct result—a POSIX value—should be. Unfortunately, even with this result

in place, we were unable to make any progress with formalising the original

proof approach by Sulzmann and Lu. In the next section we shall show that our

POSIX specification coincides with another one given by Okui and Suzuki using

a different technique. This gives us more confidence that our definition really

captures the idea behind the POSIX rules.

2.2 Ordering of Values According to Okui and Suzuki

While in the previous section we have defined POSIX values directly in terms

of a ternary relation (see inference rules in Figure 2.1), Sulzmann and Lu took a
1All deviations we introduced are harmless.

51

2.2. Ordering of Values According to Okui and Suzuki

different approach in [53]: they introduced an ordering for values and identified

POSIX values as the maximal elements. A somewhat similar ordering was intro-

duced by Okui and Suzuki [41, 42], which they use to establish the correctness of

their automata-based algorithm for POSIX matching. Their ordering resembles

some aspects of the one given by Sulzmann and Lu, but overall is quite differ-

ent. To begin with, Okui and Suzuki identify POSIX values as minimal, rather

than maximal, elements in their ordering. A more substantial difference is that

the ordering by Okui and Suzuki uses positions in order to identify and compare

subvalues.

Positions are lists of natural numbers. They allow one to easily identify sub-

trees by following individual branches in each level of trees. This is a well-

known technique, for example in term rewriting [11], in order to identify sub-

terms in larger terms. The position technique allows Okui and Suzuki to quite

naturally formalise the Longest Match and Priority rules of the informal POSIX

standard. Consider for example a value v of the form

Stars [Seq (Char x) (Char y),Char z]

At position [0] of this value is the subvalue Seq (Char x) (Char y); at position

[0, 1] is Char y and at position [1] the subvalue Char z. At the ‘root’ position,

or empty list [], is the whole value v. Positions such as [0, 1, 0] or [2] are outside

of v. If it exists, the subvalue of v at a position p, written v�p, can be recursively

defined by

v�[]
def
= v

Left v�0::ps
def
= v�ps

Right v�1::ps
def
= v�ps

Seq v1 v2�0::ps
def
= v1�ps

52

2.2. Ordering of Values According to Okui and Suzuki

Seq v1 v2�1::ps
def
= v2�ps

Stars vs�n::ps
def
= vs[n]�ps

In the last clause we use Isabelle’s notation vs[n] for the nth element in a list. The

set of positions inside a value v, written Pos v, is given by

Pos (Empty) def
= {[]}

Pos (Char c) def
= {[]}

Pos (Left v) def
= {[]} ∪ {0 :: ps | ps ∈ Pos v}

Pos (Right v) def
= {[]} ∪ {1 :: ps | ps ∈ Pos v}

Pos (Seq v1 v2)
def
= {[]} ∪ {0 :: ps | ps ∈ Pos v1}

∪ {1 :: ps | ps ∈ Pos v2}

Pos (Stars vs) def
= {[]} ∪ (

⋃
n<len vs{n :: ps | ps ∈ Pos vs[n]})

whereby len in the last clause stands for the length of a list. Clearly for every

position inside a value there exists a subvalue at that position.

To help understanding the ordering of Okui and Suzuki, consider again the

earlier value v and compare it with the following w:

v
def
= Stars [Seq (Char x)(Char y), Char z]

w
def
= Stars [Char x, Char y, Char z]

Both values match the string xyz, that means if we flatten these values at their

respective root position, we obtain xyz. However, at position [0], v matches

xy whereas w matches only the shorter x. So according to the Longest Match

Rule, we should prefer v, rather than w as POSIX value for the string xyz (and

corresponding regular expression). In order to formalise this idea, Okui and

Suzuki introduce a measure for subvalues at position p, called the norm of v at

position p. We can define this measure in Isabelle/HOL as an integer as follows:

53

2.2. Ordering of Values According to Okui and Suzuki

Definition 10 (The Norm of a Value). Given v and p, the norm is defined as

‖v‖p
def
= if p ∈ Pos v then len |v�p| else −1

where we take the length of the flattened value at position p, provided the position

is inside v; if it is not inside, then the norm is −1.

The default −1 for outside positions is crucial for the POSIX requirement of

preferring a Left-value over a Right-value (if they can match the same string—

see the Priority Rule from Section 1.2). To see this, consider

v
def
= Left (Char x) and w

def
= Right (Char x)

Both values match x. At position [0] the norm of v is 1 (the subvalue matches x),

but the norm ofw is -1 (the position is outsidew according to how we defined the

‘inside’ positions of Left- and Right-values). Of course at position [1], the norms

‖v‖[1] and ‖w‖[1] are reversed, but the point is that subvalues will be analysed

according to lexicographically ordered positions. According to this ordering, the

position [0] takes precedence over [1] and thus also v will be preferred over w.

The lexicographic ordering of positions, written ≺lex , can be conveniently

formalised by three inference rules

[] ≺lex p :: ps

p1 < p2

p1 :: ps1 ≺lex p2 :: ps2

ps1 ≺lex ps2

p1 :: ps1 ≺lex p :: ps2

With the norm and lexicographic order in place, we can state the key defini-

tion of Okui and Suzuki [41]:

Definition 11. A value v1 is smaller at position p than v2, written v1 ≺p v2, if

and only if (i) the norm at position p is greater in v1 (that is the string |v1�p| is

longer than |v2�p|) and (ii) all subvalues at positions that are inside v1 or v2 and

that are lexicographically smaller than p, we have the same norm, namely

54

2.2. Ordering of Values According to Okui and Suzuki

v1 ≺p v2
def
=

(i) ‖v2‖p < ‖v1‖p and

(ii) ∀q ∈ Pos v1 ∪ Pos v2. q ≺lex p→ ‖v1‖q = ‖v2‖q

The position p in this definition acts as the first distinct position of v1 and v2,

where both values match strings of different length. Since at p the values v1 and

v2 match different strings, the ordering is irreflexive. Derived from the definition

above are the following two auxiliary orderings:

v1 ≺ v2
def
= ∃ p. v1 ≺p v2

v1 4 v2
def
= v1 ≺ v2 ∨ v1 < v2

While clearly the definition of POSIX values being the minimal values ac-

cording to this ordering is a “bit more complicated”, the point for us is that it is

another, independent, specification for POSIX values, and we can actually show

that Okui and Suzuki’s definition is equivalent to our slightly “less complicated”

definition. This is what we shall show next.

Whereas we encountered a number of obstacles for establishing properties

like transitivity for the ordering of Sulzmann and Lu (and which we ultimately

failed to overcome), it is relatively straightforward to establish this property for

the orderings ≺ and 4 by Okui and Suzuki.

Lemma 7 (Transitivity). If v1 ≺ v2 and v2 ≺ v3 then v1 ≺ v3

Proof. From the assumption we obtain two positions p and q, where the values

v1 and v2 (respectively v2 and v3) are ‘distinct’. Since ≺lex is trichotomous, we

need to consider three cases, namely p = q, p ≺lex q and q ≺lex p. Let us

look at the first case. Clearly ‖v2‖p < ‖v1‖p and ‖v3‖p < ‖v2‖p imply that

‖v3‖p < ‖v1‖p. It remains to show that for a p′ ∈ Pos v1∪Pos v3 with p′ ≺lex p

that ‖v1‖p′ = ‖v3‖p′ holds. Suppose p′ ∈ Pos v1, then we can infer from the

55

2.2. Ordering of Values According to Okui and Suzuki

first assumption that ‖v1‖p′ = ‖v2‖p′ . But this means that p′ must be in Pos v2

too (the norm cannot be -1 given p′ ∈ Pos v1). Hence we can use the second

assumption and infer ‖v2‖p′ = ‖v3‖p′ , which concludes this case with v1 ≺ v3.

The reasoning in the other cases is similar.

The proof for transitivity of 4 is similar and omitted. It is also straightforward

to show that ≺ and 4 are partial orders. Okui and Suzuki [41] furthermore show

that they are linear orderings for lexical values of a given regular expression and

a given string, but we have not formalised this in Isabelle as it is a bit “hairy” ar-

gument. This property is not essential for our result. What we are going to show

below is that for a given r and s, the orderings have a unique minimal element

in the set LV r s, which is the POSIX value we defined in the previous section

by an inductive definition (and which we have already shown to be generated by

Sulzmann an Lu’s algorithm). We start with two properties that show how the

length of a flattened value relates to the ≺-ordering.

Proposition 2.

(1) If v1 ≺ v2 then len |v2| ≤ len |v1|.

(2) If len |v2| < len |v1| then v1 ≺ v2.

Both properties follow from the definition of Okui and Suzuki’s ordering. Note

that (2) entails that a value, say v2, whose underlying string is a strict prefix of

another flattened value, say v1, then v1 must be smaller than v2. Put in another

way, for a given string and a regular expression, a shorter flattened value can-

not be a POSIX value. For our proofs it will be useful to have the following

properties—in each case the underlying strings of the compared values are the

same:

56

2.2. Ordering of Values According to Okui and Suzuki

Proposition 3.

(1) If |v1| = |v2| then Left v1 ≺ Right v2

(2) If |v1| = |v2| then Left v1 ≺ Left v2 iff v1 ≺ v2

(3) If |v1| = |v2| then Right v1 ≺ Right v2 iff v1 ≺ v2

(4) If |v2| = |w2| then Seq v v2 ≺ Seq v w2 iff v2 ≺ w2

(5) If |v1| @ |v2| = |w1| @ |w2| and v1 ≺ w1 then

Seq v1 v2 ≺ Seq w1 w2

(6) If |vs1| = |vs2| then

Stars (vs @ vs1) ≺ Stars (vs @ vs2) iff Stars vs1 ≺ Stars vs2

(7) If |v1 :: vs1| = |v2 :: vs2| and v1 ≺ v2 then

Stars (v1 :: vs1) ≺ Stars (v2 :: vs2)

One might prefer that statements (4) and (5) (respectively (6) and (7)) are com-

bined into a single iff -statement (like the ones for Left and Right). Unfortunately

this cannot be done easily: such a single statement would require an additional

assumption about the two values Seq v1v2 and Seq w1w2 being inhabited by the

same regular expression. The complexity of the proofs involved seems to not

justify such a ‘cleaner’ single statement. The statements given above are just

the properties that allow us to establish our theorems without any difficulty. The

proofs for our version of Proposition 3 are routine.

Next we establish how Okui and Suzuki’s orderings relate to our definition

of POSIX values. Given a POSIX value v1 for r and s, then any other lexical

value v2 in LV r s is greater or equal than v1, namely:

Theorem 3. If (s, r)→ v1 and v2 ∈ LV r s then v1 4 v2.

Proof. By induction on our POSIX rules. By Theorem 1 and the definition of LV,

it is clear that v1 and v2 have the same underlying string s. The three base cases

are straightforward: for example for v1 = Empty, we have that v2 ∈ LV 1 []

57

2.2. Ordering of Values According to Okui and Suzuki

must also be of the form v2 = Empty. Therefore we have v1 4 v2. The inductive

cases for r being of the form r1 + r2 and r1 · r2 are as follows:

• Case P +L with (s, r1 + r2)→ Left w1: In this case the value v2 is either

of the form Left w2 or Right w2. In the latter case we can immediately

conclude with v1 4 v2 since a Left-value with the same underlying string

s is always smaller than a Right-value by Proposition 3(1). In the former

case we have w2 ∈ LV r1 s and can use the induction hypothesis to infer

w1 4 w2. Because w1 and w2 have the same underlying string s, we can

conclude with Left w1 4 Left w2 using Proposition 3(2).

• Case P + R with (s, r1 + r2) → Right w1: This case is similar to the

previous case, except that we additionally know s /∈ L(r1). This is needed

when v2 is of the form Left w2. Since |v2| = |w2| = s and ` w2 : r1, we

can derive a contradiction for s /∈ L(r1) using Proposition 1. So also in

this case v1 4 v2.

• Case PS with (s1 @ s2, r1 · r2) → Seq w1 w2: We can assume v2 = Seq

u1 u2 with u1 : r1 and u2 : r2. We have s1 @ s2 = |u1| @ |u2|. By the side-

condition of the PS-rule we know that either s1 = |u1| or that |u1| is a strict

prefix of s1. In the latter case we can inferw1 ≺ u1 by Proposition 2(2) and

from this v1 4 v2 by Proposition 3(5) (as noted above v1 and v2 must have

the same underlying string). In the former case we know u1 ∈ LV r1 s1

and u2 ∈ LV r2 s2. With this we can use the induction hypotheses to infer

w1 4 u1 and w2 4 u2. By Proposition 3(4,5) we can again infer v1 4 v2.

The case for P ∗ is similar to the PS-case and omitted.

This theorem shows that our POSIX value for a regular expression r and a string

s is in fact a minimal element of the values in LV r s. By Proposition 2(2)

58

2.2. Ordering of Values According to Okui and Suzuki

we also know that any value in LV r s′, with s′ being a strict prefix, cannot be

smaller than v1.

The next theorem shows the opposite—namely any minimal element inLV r s

must be a POSIX value. This can be established by induction on r, but the proof

can be drastically simplified by using the fact from the previous section about

the existence of a POSIX value whenever a string s ∈ L(r).

Theorem 4. If v1 ∈ LV r s and (∀ v2 ∈ LV r s. v2 ⊀ v1) then (s, r)→ v1.

Proof. If v1 ∈ LV r s then s ∈ L(r) by Proposition 1. Hence by Theorem 2(2)

there exists a POSIX value vp with (s, r) → vp and by Lemma 4 we also have

vp ∈ LV r s. By Theorem 3 we therefore have vp 4 v1. If vp = v1 then we

are done. Otherwise we have vp ≺ v1, which however contradicts the second

assumption about v1 being the smallest element in LV r s. So we are done in

this case too.

From this we can also show that if LV r s is non-empty (or equivalently s ∈

L(r)) then it has a unique minimal element and it is in fact the one returned by

the lexer.

Corollary 2. If LV r s 6= ∅ then

∃!vmin ∈ LV r s. lexer = Some (vmin) ∧ (∀v ∈ LV r s. vmin 4 v)

To sum up, we have shown that the (unique) minimal elements of the ordering

by Okui and Suzuki are exactly the POSIX values we defined inductively in

Section 2.1. This provides an independent confirmation that our ternary relation

formalises indeed the informal POSIX rules.

Since the idea behind the ordering by Okui and Suzuki is somewhat similar

to the idea behind the ordering of Sulzmann and Lu, our hope was we would

finally be in a position to make some progress with formalising their correctness

59

2.3. GREEDY Ordering by Frisch and Cardelli

v1 <gr v
′
1

Seq(v1, v2) <gr Seq(v
′
1, v
′
2)
GS1

v2 <gr v
′
2

Seq(v1, v2) <gr Seq(v1, v
′
2)
GS2

v1 <gr v2

Left v1 <gr Left v2
GLL

v1 <gr v2

Right v1 <gr Right v2
GRR

Left v2 <gr Right v1
GLR

v1 <gr v2

Stars (v1 ::vs1) <gr Stars (v2 ::vs2)
G∗1

vs1 <gr vs2

Stars (v ::vs1) <gr Stars (v ::vs2)
G∗2

Stars (v ::vs) <gr Stars []
G∗3

Char c <gr Char c
GC

Empty <gr Empty
GE

Figure 2.2: The reflexive version of the ordering by Frisch and Cardelli for
GREEDY matching.

proof. Alas this turned out not to be true. Therefore let us next go back to the

GREEDY ordering introduced by Frisch and Cardelli from where the Sulzmann

and Lu took the proof idea. And then analyse in detail where we think Sulzmann

and Lu’s proof breaks down.

2.3 GREEDY Ordering by Frisch and Cardelli

Frisch and Cardelli [23] introduced an ordering, written <gr, for values and they

show that their GREEDY matching algorithm always produces a maximal ele-

ment according to this ordering (from all possible solutions). Their ordering<gr

is defined by the rules shown in Figure 2.2. The only difference between our ver-

sion of their rules and their original rules is that we made the relation reflexive

by including rules GC and GE. But this is a harmless addition.

That these rules realise a GREEDY ordering can be seen in the GLR rule

60

2.3. GREEDY Ordering by Frisch and Cardelli

where a Left-value is always bigger than (or preferred over) a Right-value. What

is interesting for our purposes here is that the properties reflexivity, totality and

transitivity for this GREEDY ordering can be proved relatively easily by induc-

tions. This is illustrated next:

Lemma 8 (Reflexivity). If ` v : r then v <gr v.

Proof. This is by a straightforward induction on the definition of ` v : r.

Lemma 9 (Totality). If ` v1 : r and ` v2 : r then v1 <gr v2 or v2 <gr v1.

Proof. This is again by a straightforward induction on the definition of ` v1 : r

and a case-analysis of ` v2 : r.

We can also show transitivity by induction on r.

Lemma 10 (Transitivity). Suppose ` v1 : r, ` v2 : r and ` v3 : r. If v1 <gr v2

and v2 <gr v3 then v1 <gr v3.

Proof. By induction on r analysing all cases of ` v1 : r and so on. The only

interesting case is for sequences, where we can assume v1 = Seq(v1l, v1r), v2 =

Seq(v2l, v2r), and v3 = Seq(v3l, v3r). We need to show that

Seq(v1l, v1r) <gr Seq(v3l, v3r)

holds under the assumptions that Seq(v1l, v1r) <gr Seq(v2l, v2r) holds and that

Seq(v2l, v2r) <gr Seq(v3l, v3r) holds. There are two rules which could have

derived each assumption. For example v1l <gr v2l and v2l <gr v3l. In this case

we can apply the induction hypothesis and derive v1l <gr v3l from this we obtain

Seq(v1l, v1r) <gr Seq(v3l, v3r). The other three cases are similar (where in one

case we need to appeal to the reflexivity property).

61

2.4. POSIX Ordering by Sulzmann and Lu

It should not come as a surprise that if we make changes to the ordering rules

(unless they are really harmless, like our addition of rules GC and GE), the

proof ideas behind these proofs might not necessarily transfer to the modified

rules. That is what we shall show in the next section about the POSIX ordering

rules introduced by Sulzmann and Lu.

2.4 POSIX Ordering by Sulzmann and Lu

As mentioned before, the rules by Sulzmann and Lu [53] are a variant of the

GREEDY rules by Frisch and Cardelli. One difference is that Sulzmann and Lu’s

ordering, written <r
PX , also includes a regular expression. The rules are shown

in Figure 2.3. The only difference between the original rules by Sulzmann and

Lu, and the ones shown is the inclusion of the rules C and E which make the

ordering reflexive (that is reflexivity is directly built into the inductive definition

of the ordering, rather than an auxiliary definition as in Sulzmann and Lu). We

also slightly adapted their notation to fit our conventions.

The interesting rules are A1 and A2. For this remember that the GREEDY

ordering always prefers a Left-value over a Right-value. This is different in the

POSIX rules: there a Right-value is preferred provided it can match a longer

string (the A1 rule); a Left-value is only preferred when it can match a longer or

equal string than the Right-value (theA2 rule). Perhaps surprisingly, but perhaps

not, this “small” change in the Sulzmann and Lu’s rules has drastic consequences

for the proofs.

To start with, transitivity does not hold anymore in the “normal” formulation,

that is:

Property 1. Suppose ` v1 : r, ` v2 : r and ` v3 : r. If v1 <r
PX v2 and v2 <r

PX v3

then v1 <r
PX v3.

62

2.4. POSIX Ordering by Sulzmann and Lu

v1 <
r1
PX v′1

Seq(v1, v2) <
r1·r2
PX Seq(v′1, v

′
2)
C2

v2 <
r2
PX v′2

Seq(v1, v2) <
r1·r2
PX Seq(v1, v

′
2)
C1

len |v2| > len |v1|
Right v2 <

r1+r2
PX Left v1

A1
len |v1| ≥ len |v2|

Left v1 <
r1+r2
PX Right v2

A2

v2 <
r2
PX v′2

Right v2 <
r1+r2
PX Right v′2

A3
v1 <

r1
PX v′1

Left v1 <
r1+r2
PX Left v′1

A4

|v ::vs| = []

Stars [] <r∗

PX Stars (v ::vs)
K1

|v ::vs| 6= []

Stars (v ::vs) <r∗

PX Stars []
K2

v1 <
r
PX v2

Stars (v1 ::vs1) <
r∗

PX Stars (v2 ::vs2)
K3

Stars vs1 <
r∗

PX Stars vs2

Stars (v ::vs1) <
r∗

PX Stars (v ::vs2)
K4

Char c <c
PX Char c

C
Empty <1

PX Empty
E

Figure 2.3: The reflexive version of the ordering by Sulzmann and Lu for POSIX
matching.

If formulated like this, then there are various counter examples: Suppose r is

a+ ((a+ a) · (a+ 1)) then the v1, v2 and v3 below are values of r:

v1 = Left(Char a)

v2 = Right(Seq(Left(Char a),Right(Empty)))

v3 = Right(Seq(Right(Char a),Left(Char a)))

Moreover v1 <r
PX v2 and v2 <r

PX v3, but not v1 <r
PX v3! The reason is that

although v3 is a Right-value, it can match a longer string, namely |v3| = aa,

while |v1| (and |v2|) matches only a. So transitivity in this formulation does not

hold—in this example actually v3 <r
PX v1!

Sulzmann and Lu “fix” this problem by weakening the transitivity property.

They require in addition that the underlying strings are of the same length. This

63

2.4. POSIX Ordering by Sulzmann and Lu

excludes the counter example above and any counter-example we could find with

an implementation. Thus the transitivity lemma in [53] is:

Property 2. Suppose ` v1 : r, ` v2 : r and ` v3 : r, and also |v1| = |v2| = |v3|.

If v1 <r
PX v2 and v2 <r

PX v3 then v1 <r
PX v3.

While we agree with Sulzmann and Lu that this property probably holds, proving

it seems not so straightforward. Sulzmann and Lu do not give an explicit proof

of the transitivity property, but give a closely related property about the existence

of maximal elements. They state that this can be verified by an induction on r.

We disagree with this as we shall show next in case of transitivity.

The case where the reasoning breaks down is the sequence case, say r1 · r2.

The induction hypotheses in this case are

IH r1:

∀v1, v2, v3. ` v1 : r1 ∧

` v2 : r1 ∧

` v3 : r1 ∧

|v1| = |v2| = |v3| ∧

v1 <
r1
PX v2 ∧ v2 <

r1
PX v3

⇒ v1 <
r1
PX v3

IH r2:

∀v1, v2, v3. ` v1 : r2 ∧

` v2 : r2 ∧

` v3 : r2 ∧

|v1| = |v2| = |v3| ∧

v1 <
r2
PX v2 ∧ v2 <

r2
PX v3

⇒ v1 <
r2
PX v3

We can assume that

Seq(v1l, v1r) <
r1·r2
PX Seq(v2l, v2r) and Seq(v2l, v2r) <

r1·r2
PX Seq(v3l, v3r)

(2.1)

hold, and furthermore that the values have equal length, namely:

|Seq(v1l, v1r)| = |Seq(v2l, v2r)| and |Seq(v2l, v2r)| = |Seq(v3l, v3r)| (2.2)

We need to show that

64

2.4. POSIX Ordering by Sulzmann and Lu

Seq(v1l, v1r) <
r1·r2
PX Seq(v3l, v3r)

holds. We can proceed by analysing how the assumptions in (2.1) have arisen.

There are four cases. Let us assume we are in the case where we know

v1l <
r1
PX v2l and v2l <

r1
PX v3l

and also know the corresponding typing judgements. This is exactly a case where

we would like to apply the induction hypothesis IH r1. But we cannot! We still

need to show that |v1l| = |v2l| and |v2l| = |v3l|. We know from (2.2) that the

lengths of the sequence values are equal, but from this we cannot infer anything

about the lengths of the component values. Indeed in general they will be un-

equal, that is

|v1l| 6= |v2l| and |v1r| 6= |v2r|

but still (2.2) will hold. Now we are stuck, since the IH does not apply. This

problem where the induction hypothesis does not apply arises in several places

in the proof of Sulzmann and Lu, not just for proving transitivity.

The immediate effect is that the existence of a unique maximal value cannot

be inferred. We know totality of<r
PX and know that for every regular expression

there are only a finite number of (proper) values. But without transitivity it seems

hard to establish that given a regular expression and given a string, there exists

always a unique maximal value. . . which the algorithm is supposed to calculate.

Without this basic property, the whole correctness proofs already collapses. To

sum up, the weakening of the properties by requiring that values need to have

equal length seems to make the properties to hold, but destroys all inductive

properties in the sequence case. The result is we were not able to formalise any

65

2.4. POSIX Ordering by Sulzmann and Lu

substantial part of Sulzmann and Lu’s “pencil-and-paper” proof.

66

Chapter 3

Optimisations, Extensions and

Future Work

Having been able to prove the correctness of Sulzmann & Lu’s algorithm accord-

ing to Okui & Suzuki’s specification and also our own (equivalent) specification

of POSIX values, we should now have look at how the algorithm performs in

terms of speed. Transliterating (manually) the Isabelle code of the algorithm

into Scala, for example, is pleasantly straightforward—this is a major attraction

of the algorithm by Brzozowski, and Sulzmann and Lu. Alas, trying out the code

on our standard example from the Introduction involving (a∗)∗ · b and strings of

the form a . . . a leads to sobering news:

5 10 15 20 25 30
0

10

20

30

40

n

tim
e

in
se

cs

Python
Java 8
Sulzmann & Lu in Scala

In this rough comparison, the algorithm actually performs worse than the regu-

lar expression matchers in Python and Java, which we heavily criticised in the

67

3.1. Simplification of Regular Expressions

Introduction for their abysmal runtime behaviour. In fact we can only take mea-

surements for strings up to the length of 21 a’s, because with longer strings one

consistently obtains “out of memory” exceptions. The problem is that deriva-

tives as calculated by Definition 5 can grow very big and as a result slow down

the matching process: every time we call nullable or the derivative function we

essentially need to traverse the corresponding regular expression trees and value

trees. Therefore, large trees (regular expressions) lead to slow matching. We

shall look next at how this problem can be addressed.

3.1 Simplification of Regular Expressions

Derivatives as calculated by Brzozowski’s method are usually more complex

regular expressions than the initial one; the result is that the derivative-based

matching and lexing algorithms are often abysmally slow (see graph above).

However, as Sulzmann and Lu wrote, various optimisations are possible, such

as the simplifications of 0 + r, r + 0, 1 · r and r · 1 to r. These simplifications

can speed up the algorithms considerably [53]. One of the advantages of having

a simple specification and correctness proof is that the latter can be extended to

also establish the correctness of such simplification steps.

While the simplification of regular expressions according to rules such as

0 + r ⇒ r

r + 0 ⇒ r

1 · r ⇒ r

r · 1 ⇒ r

0 · r ⇒ 0

r · 0 ⇒ 0

(3.1)

68

3.1. Simplification of Regular Expressions

is well-understood, there is an obstacle with the POSIX value calculation algo-

rithm by Sulzmann and Lu: if we build a derivative regular expression and then

simplify it, we will calculate a POSIX value for the simplified derivative regular

expression, not for the original (unsimplified) derivative regular expression. This

produces incorrect results. Sulzmann and Lu overcome this obstacle in an early

version of [53]1 by not just calculating a simplified regular expression, but also

calculating a rectification function that “repairs” the incorrect value.

The idea behind the rectification functions is as follows: if we have a regular

expression of the form, say, 0 + r, then we simplify it to just r and calculate

the POSIX value for how r matched the corresponding string. Suppose this

gives the value v. Then in order to obtain a POSIX value for 0 + r we have

to rectify v to be Right(v). This would be the same, for example, for regular

expressions of the form r + 0. In this case we would have to rectify the value

from v to Left(v). Similarly for r ·1 where we have to rectify a v to Seq v Empty .

The only difficulty is that such simplifications can occur deep inside the regular

expressions and we need to compose, or “stage”, the rectification functions in

the right way. Otherwise we break the correctness of the algorithm.

The rectification functions can be (slightly clumsily) implemented in Isabelle

using the auxiliary functions shown in Figure 3.1. The functions simpAlt and

simpSeq encode the simplification rules shown in (3.1) on page 68 and compose

the rectification functions (recall simplifications can occur deep inside a regular

expression). The main simplification function simp is then defined as

simp (r1 + r2)
def
= simpAlt (simp r1) (simp r2)

simp (r1 · r2)
def
= simpSeq (simp r1) (simp r2)

simp r def
= (r, id)

where id stands for the identity function. As can be seen, the function simp re-
1https://sites.google.com/site/luzhuomi/file/icfp13.pdf

69

https://sites.google.com/site/luzhuomi/file/icfp13.pdf

3.1. Simplification of Regular Expressions

FRight f v
def
= Right (f v)

FLeft f v
def
= Left (f v)

FAlt f1 f2 (Right v) def
= Right (f2 v)

FAlt f1 f2 (Left v) def
= Left (f1 v)

FSeq1 f1 f2 v
def
= Seq (f1 Empty)(f2 v)

FSeq2 f1 f2 v
def
= Seq (f1 v)(f2 Empty)

FSeq f1 f2 (Seq v1 v2)
def
= Seq (f1 v1)(f2 v2)

simpAlt(0,)(r2, f2)
def
= (r2, FRight f2)

simpAlt(r1, f1)(0,)
def
= (r1, FLeft f1)

simpAlt(r1, f1)(r2, f2)
def
= (r1 + r2, FAlt f1 f2)

simpSeq(1, f1)(r2, f2)
def
= (r2, FSeq1 f1 f2)

simpSeq(r1, f1)(1, f2)
def
= (r1, FSeq2 f1 f2)

simpSeq(0, f1)(r2, f2)
def
= (0, undefined)

simpSeq(r1, f1)(0, f2)
def
= (0, undefined)

simpSeq(r1, f1)(r2, f2)
def
= (r1 · r2, FSeq f1 f2)

Figure 3.1: Auxiliary functions for simplifying regular expressions and rectify-
ing values. In the cases where the simplification yields 0, we can specify the
rectification function as undefined as it will never been called during matching.

turns a simplified regular expression and also a corresponding rectification func-

tion. Note that we do not simplify under stars: this seems to slow down the

algorithm, rather than speed it up. The optimised lexer can then be given by the

clauses:

slexer r [] def
= if nullable r then Some (mkeps r) else None

slexer r (c :: s) def
= let (rsimp, frect) = simp (r\c) in

case slexer rsimp s of

None⇒ None

| Some v ⇒ Some (inj r c (frect v))

The first clause is unchanged from lexer. In the second clause we first calcu-

late the derivative r\c and then simplify the result. This gives us a simplified

derivative rsimp and a rectification function frect. The lexer is then recursively

70

3.1. Simplification of Regular Expressions

called with the simplified derivative and the shorter string where the character c

is chopped off. The point is that when we receive back a value, say v, for the sim-

plified derivative, we need to rectify v (that is construct frect v) before injecting

the character c back into the rectified value.

In order to establish the correctness of slexer , we need to show that simpli-

fication preserves the language and simplification preserves our POSIX relation,

provided the value is rectified. To see what is going on in the next lemma, re-

call that simp generates a (regular expression, rectification function) pair. In the

first property we show that every regular expression is equivalent to its simplified

version (that is matches the same language). In the second we show that if we

obtain a value for a simplified regular expression and it is a POSIX value, then

if we rectify the value, it will be a POSIX value for the original (unsimplified)

regular expression.

Lemma 11.

(1) L (fst (simp r)) = L(r)

(2) If (s, fst (simp r))→ v then (s, r)→ snd (simp r) v.

Proof. Both are by induction on r. There is no interesting case for the first

statement. For the second statement, of interest are the r = r1+r2 and r = r1 ·r2

cases. In each case we have to analyse four subcases whether fst (simp r1) and

fst (simp r1) equals 0 (respectively 1). For example for r = r1 + r2, consider the

subcase fst (simp r1) = 0 and fst (simp r2) 6= 0. By assumption we know (s, fst

(simp (r1 + r2)))→ v. From this we can infer (s, fst (simp r2))→ v and by IH

also (∗)(s, r2)→ snd (simp r2) v. Given fst (simp r1) = 0, we know L (fst (simp

r1)) = ∅. By the first statement L(r1) is the empty set, meaning (**) s /∈ L(r1).

Taking (*) and (**) together gives by the P+R-rule (s, r1 + r2) → Right (snd

(simp r2) v). In turn this gives (s, r1 + r2)→ snd (simp (r1 + r2)) v as we need

to show. The other cases are similar.

71

3.1. Simplification of Regular Expressions

We can now prove relatively straightforwardly that the optimised lexer produces

the expected result:

Theorem 5. slexer r s = lexer r s

Proof. By induction on s generalising over r. The [] case is trivial. For the cons-

case suppose the string is of the form c :: s. By induction hypothesis we know

slexer r s = lexer r s holds for all r (in particular for r being the derivative r\c).

Let rs be the simplified derivative regular expression, that is fst (simp (r\c)), and

fr be the rectification function, that is snd (simp (r\c)). We distinguish the cases

whether (*) s ∈ L(r\c) or not. In the first case we have by Theorem 2(2) a value

v so that lexer (r\c) s = Some v and (s, r\c) → v hold. By Lemma 11(1) we

can also infer from (*) that s ∈ L(rs) holds. Hence we know by Theorem 2(2)

that there exists a v′ with lexer rs s = Some v′ and (s, rs)→ v′. From the latter

we know by Lemma 11(2) that (s, r\c) → fr v
′ holds. By the uniqueness of

the POSIX relation (Theorem 1) we can infer that v is equal to fr v′—that is the

rectification function applied to v′ produces the original v. Now the case follows

by the definitions of lexer and slexer.

In the second case where s /∈ L (r\c) we have that lexer (r\c) s = None

by Theorem 2(1). We also know by Lemma 11(1) that s /∈ L (rs). Hence lexer

rs s = None by Theorem 2(1) and by IH then also slexer rs s = None. With this

we can conclude in this case too.

Having this correctness result under our belt, we can perform again some

rough calculations with slexer in Scala. This time we obtain more promising

results. In the example with (a∗)∗ · b we can now process strings up to 5.5 Mil-

lion(!) a’s in just under 20 seconds (in Java and Python we were only able to

process strings up to 30 a’s).

72

3.1. Simplification of Regular Expressions

0 1 2 3 4 5
·106

0
5
10
15
20
25
30

n

tim
e

in
se

cs

Graph: (a∗)∗ · b and strings a . . . a︸ ︷︷ ︸
n

S & L slexer

The reason for this good performance is that in this example the simplification

process keeps the derivative regular expression to a nearly constant size (there

is usually an initial small growth until a “fix point” is reached after which the

size of the derivatives is either constant or decreases). Trying out slexer on more

examples and even lexing some small toy programming languages shows that

it gives decent processing times in many instances. Unfortunately there are ex-

amples where the picture is not as rosy as one might wish. For instance in the

small example (a + aa)∗ the derivative after 31 a’s contains already more than

20 Million nodes (despite the simplification in slexer) and this clearly affects the

running time as shown in the graph below:

5 10 15 20 25 30 35
0

5

10

15

n

tim
e

in
se

cs

Graph: (a+ aa)∗ and strings a . . . a︸ ︷︷ ︸
n

S & L slexer

The reason for this disappointing result is that our simplification is “local” in the

sense that it descends regular expressions towards the inside, but only simpli-

73

3.1. Simplification of Regular Expressions

fies locally on the way up. It does not perform “global” rewrites, because then

defining appropriate rectification functions and staging them correctly becomes

significantly harder. Unfortunately the derivative function and the local simplifi-

cation method produce in the example (a+aa)∗ intermediate regular expressions

of the form

(r + r′) + r

To deal with such instances the simplification function would have to find out

whether there is a r and then later on (to the right) there is another regular ex-

pression of exactly the same shape. Since it comes later, or more precisely further

to the right-hand side, we know that the second occurrence of r cannot contribute

to the POSIX value, because of the Priority Rule in POSIX. So it could be safely

deleted. But even if we include a simplification rule like r+ r ⇒ r in slexer this

problem cannot be solved, because there can be “anything” in between the first

and second occurrence of r, as indicated above.

While we have managed to make some initial progress towards a more en-

hanced simplification of regular expressions in Scala(!) code, we have not man-

aged to obtain anything simple enough in order to start proving the correctness

for such a more enhanced simplification function. Also we are not sure (that

is we have no proof) whether this Scala code satisfies the property that for ev-

ery regular expression and for every string there is a kind of “fixpoint” after

which derivatives do not grow bigger. This is a property one ultimately wants

to achieve in order to have an efficient derivative-based lexing algorithm. After

some intellectual “zig-zagging”, we found that going back to Sulzmann and Lu’s

paper [53] helped us with addressing this “speed” problem by using bitcoded

values and annotated regular expressions.

74

3.2. Bitcoded Values and Annotated Regular Expressions

3.2 Bitcoded Values and Annotated Regular Expres-

sions

In the second part of their paper [53],2 Sulzmann and Lu introduce a bitcoded

version of their lexing algorithm. They make some claims about the correctness

and speed of this version, but do not provide any supporting proof arguments,

not even “pencil-and-paper” arguments. They wrote about their bitcoded “incre-

mental parsing method” (that is the algorithm to be studied in this section):

“Correctness Claim: We further claim that the incremental parsing

method in Figure 5 in combination with the simplification steps in

Figure 6 yields POSIX parse trees. We have tested this claim exten-

sively by using the method in Figure 3 as a reference but yet have to

work out all proof details.”

We shall make partial progress in this section by supplying one important part

of the missing proofs. We shall show that the incremental construction of values

without simplification is correct. There is already recent work by Ribeiro and

Du Bois [48] in Agda on this topic. They present some formalised proofs about

bitcoded regular expression matching and derivatives, but we found they do not

address the more important problem of whether Sulzmann and Lu’s bitcoded

algorithm produces correct results.

The values generated by Sulzmann and Lu’s original algorithm can be seen as

trees that need to be represented appropriately in memory. If they are represented

as trees (or inductive datatypes) then clearly this results in significant memory

requirements. So it seems self-evident that a more compact representation, for

2This refers to the “final” version of the paper that appeared in the FLOPS’14 conference
proceedings. There is also a more recent and extended version available from the first author’s
webpage where some of our concerns about the proof are addressed.

75

3.2. Bitcoded Values and Annotated Regular Expressions

example, as bitcoded sequences, is preferable. While the bitcoding of values

introduced by Sulzmann and Lu looks at first glance as just an improvement in

terms of memory, rather than speed, this first appearance is deceiving. In fact,

the idea of representing values as bit-sequences and annotating them in regular

expressions is a very clever design that makes proving the correctness of a more

powerful simplification method feasible. That is probably also the reason why

Sulzmann and Lu switched from the simplification/rectification technique, which

we have discussed and proved correct in the previous section, to the technique

of using bitcoded values/annotated regular expressions in their published version

of [53].

We shall provide here a proof for the claim by Sulzmann and Lu that the

unsimplified version of their bitcoded algorithm produces correct results. This

is a key stepping stone for establishing the correctness of an algorithm involv-

ing more “aggressive” simplification rules. While this is only a partial result,

it is still significant progress, because the bitcoded algorithm builds values in-

crementally and from the “wrong” end, in comparison with the “standard” way

how lexer constructs values. To see the difference, recall that Sulzmann and Lu’s

lexer consists of two phases, see Figure 1.1 on Page 42—a derivative building

phase and a subsequent value building phase. The bitcoded algorithm, in con-

trast, only consist of a single phase. Each derivative step will already generate,

incrementally, some parts of the final value (represented as bit-sequence).

For giving our proof, let us start with an auxiliary function flex that allows us

to recast the rules of lexer (with its two phases) in terms of a single phase.

Definition 12.

flex r f [] def
= f

flex r f (c ::s) def
= flex (r\c) (λv. f (inj r c v)) s

The point of this function is to do lexing in a “forward” manner where we stack

76

3.2. Bitcoded Values and Annotated Regular Expressions

up injection functions while building derivatives. When reaching the end of the

string, we just need to apply the stacked injection functions to the value generated

by mkeps . Using this function we can recast the definition of lexer as follows:

Lemma 12.

lexer r s = if nullable(r\s)

then Some(flex r id s (mkeps(r\s)))

else None

Proof. By routine induction on s and generalisation over r. We need to use

auxiliary properties about flex such as

g (flex r f s v) = flex r (g ◦ f) s v

which can be easily established by induction on s.

Note we did not redefine lexer, we just established that the value generated by

lexer can also be obtained by a different method. While this different method is

not efficient (we essentially need to traverse the string s twice, once for building

the derivative r\s and another time for stacking up injection functions using flex),

it will help us later with proving that incrementally building up values as done in

Sulzmann and Lu’s bitcoded version of the lexing algorithm is correct.

For convenience we use the following simple Isabelle/HOL datatype for rep-

resenting bit-sequences (list of bits).

bit ::= Z | S

The coding function for translating values into bit-sequences is relatively straight-

forward.

77

3.2. Bitcoded Values and Annotated Regular Expressions

Definition 13 (Bitcoding of Values).

code(Empty)
def
= []

code(Char c) def
= []

code(Left v) def
= Z :: code(v)

code(Right v) def
= S :: code(v)

code(Seq v1 v2)
def
= code(v1)@ code(v2)

code(Stars []) def
= [S]

code(Stars (v ::vs)) def
= Z :: code(v) @ code(Stars vs)

As can be seen, this coding is “lossy” in the sense that we do not record explic-

itly character values and also not sequence values (for them we just append two

bit-sequences). We do, however, record the different alternatives for Left , re-

spectively Right , as Z and S followed by some bit-sequence. Similarly, we use

Z to indicate if there is still a value coming in the list of Stars , whereas S indi-

cates the end of the list. The lossiness makes the process of decoding a bit more

involved, but the point is that if we have a regular expression and a bit-sequence

of a corresponding value, then we can always decode the value accurately. The

decoding can be defined by using two functions called decode′ and decode:

Definition 14 (Bitdecoding of Values).

decode′ bs (1) def
= (Empty , bs)

decode′ bs (c) def
= (Char c, bs)

decode′ (Z ::bs) (r1 + r2)
def
= let (v, bs1) = decode′ bs r1 in (Left v, bs1)

decode′ (S ::bs) (r1 + r2)
def
= let (v, bs1) = decode′ bs r2 in (Right v, bs1)

decode′ bs (r1 · r2)
def
= let (v1, bs1) = decode′ bs r1 in

78

3.2. Bitcoded Values and Annotated Regular Expressions

let (v2, bs2) = decode′ bs1 r2

in (Seq v1 v2, bs2)

decode′ (Z ::bs) (r∗)
def
= (Stars [], bs)

decode′ (S ::bs) (r∗)
def
= let (v, bs1) = decode′ bs r in

let (Stars vs, bs2) = decode′ bs1 r∗

in (Stars v ::vs, bs2)

decode bs r def
= let (v, bs′) = decode′ bs r in

if bs′ = [] then Some v else None

Note, we can only detect from the 1 regular expressions, respectively char reg-

ular expression, that an Empty or, respectively, a character value needs to be

generated. This is because the empty string and characters are not encoded into

the bit-sequence. Since there is no “in-between marker” for when two values

have to be calculated for a sequence, decoding needs to thread the bit-sequence

through different calls (see clauses for sequence and star regular expressions).

This means that decode′ attempts to “nibble” off parts of the bit-sequence ac-

cording to the shape of the regular expression and leaves something as left-over

bit-sequence that has not yet been decoded.

The function decode′ is well-defined because either the size of the regular

expression decreases in each call, or if not, then the bit-sequence gets shorter. In

the main decoding function decode we explicitly record that decoding can fail,

producing None. For example in instances where the “left-over” bit-sequence

is not completely consumed. This can be the case when the bit-sequence does

not correspond to the regular expression with which decode is called. We can

establish that for a value v inhabited by a regular expression r, the decoding of

its bit-sequence never fails.

79

3.2. Bitcoded Values and Annotated Regular Expressions

Lemma 13. If ` v : r then decode (code v) r = Some v.

Proof. This follows from the property that decode′ ((code v)@ bs) r = (v, bs)

holds for any bit-sequence bs and ` v : r. This property can by easily proved by

induction on ` v : r.

Sulzmann and Lu also introduce annotated regular expressions, which are

the usual regular expressions plus an extra bit-sequence annotated to each con-

structor (except 0). Annotated regular expressions are the main data structure

over which the bitcoded algorithm works and which can be defined as an Is-

abelle/HOL datatype as follows:

areg ::= ZERO

| ONE bs

| CHAR bs c

| ALT bs a1 a2

| SEQ bs a1 a2

| STAR bs a

where bs are bit-sequences and the as are annotated regular expressions. In what

follows, we shall use the convention that r will stand for “standard” regular ex-

pressions, and a for annotated regular expressions.

Sulzmann and Lu define the function internalise in order to transform stan-

dard regular expressions into annotated regular expressions. We write this oper-

ation as r↑. This internalisation uses the following fuse function.

Definition 15 (Fuse Function).

fuse bs (ZERO)
def
= ZERO

fuse bs (ONE bs′) def
= ONE (bs@ bs′)

fuse bs (CHAR bs′ c) def
= CHAR (bs@ bs′) c

80

3.2. Bitcoded Values and Annotated Regular Expressions

fuse bs (ALT bs′ a1 a2)
def
= ALT (bs@ bs′) a1 a2

fuse bs (SEQ bs′ a1 a2)
def
= SEQ (bs@ bs′) a1 a2

fuse bs (STAR bs′ a) def
= STAR (bs@ bs′) a

Definition 16 (Internalisation).

(0)↑ def
= ZERO

(1)↑ def
= ONE []

(c)↑
def
= CHAR [] c

(r1 + r2)
↑ def

= ALT [] (fuse [Z] r↑1) (fuse [S] r↑2)

(r1 · r2)↑
def
= SEQ [] r↑1 r

↑
2

(r∗)↑
def
= STAR [] r↑

There is also an erase-function, written a↓, which transforms an annotated regu-

lar expression into a (standard) regular expression by just erasing the annotated

bit-sequences. We omit the straightforward definition. For defining the algo-

rithm, we also need the functions bnullable and bmkeps, which are the “lifted”

versions of nullable and mkeps acting on annotated regular expressions, instead

of regular expressions.

Definition 17 (bnullable).

bnullable (ZERO)
def
= false

bnullable (ONE bs) def
= true

bnullable (CHAR bs c) def
= false

bnullable (ALT bs a1 a2)
def
= bnullable a1 ∨ bnullable a2

bnullable (SEQ bs a1 a2)
def
= bnullable a1 ∧ bnullable a2

bnullable (STAR bs a) def
= true

81

3.2. Bitcoded Values and Annotated Regular Expressions

Definition 18 (bmkeps).

bmkeps (ONE bs) def
= bs

bmkeps (ALT bs a1 a2)
def
= if bnullable a1

then bs@ bmkeps a1

else bs@ bmkeps a2

bmkeps (SEQ bs a1 a2)
def
= bs@ bmkeps a1@ bmkeps a2

bmkeps (STAR bs a) def
= bs@ [S]

The key function in the bitcoded algorithm is the derivative of an annotated regu-

lar expression. This derivative calculates the derivative but at the same time also

the incremental part that contributes to constructing a value.

Definition 19 (Derivative of Annotated Regular Expressions).

(ZERO)\c def
= ZERO

(ONE bs)\c def
= ZERO

(CHAR bs d)\c def
= if c = d then ONE bs else ZERO

(ALT bs a1 a2)\c
def
= ALT bs (a1\c) (a2\c)

(SEQ bs a1 a2)\c
def
= if bnullable a1

then ALT bs (SEQ [] (a1\c) a2)

(fuse (bmkeps a1) (a2\c))

else SEQ bs (a1\c) a2

(STAR bs a)\c def
= SEQ bs (fuse [Z](r\c)) (STAR [] r)

This function can also be extended to strings, written a\s, just like the standard

derivative. We omit the details. Finally we can define Sulzmann and Lu’s bit-

coded lexer, which we call blexer:

82

3.2. Bitcoded Values and Annotated Regular Expressions

Definition 20.

blexer r s def
= let a = (r↑)\s in

if bnullable(a)

then decode (bmkeps a) r

else None

This bitcoded lexer first internalises the regular expression r and then builds the

annotated derivative according to s. If the derivative is nullable, then it extracts

the bitcoded value using the bmkeps function. Finally it decodes the bitcoded

value. If the derivative is not nullable, then None is returned. The task is to show

that this way of calculating a value generates the same result as with lexer.

Before we can proceed we need to define a function, called retrieve, which

Sulzmann and Lu introduced for helping with the proof argument.

Definition 21 (Retrieve).

retrieve (ONE bs)Empty
def
= bs

retrieve (CHAR bs c) (Char d) def
= bs

retrieve (ALT bs a1 a2) (Left v)
def
= bs@ retrieve a1 v

retrieve (ALT bs a1 a2) (Right v)
def
= bs@ retrieve a2 v

retrieve (SEQ bs a1 a2) (Seq v1 v2)
def
= bs@ retrieve a1 v1@ retrieve a2 v2

retrieve (STAR bs a) (Stars []) def
= bs@ [S]

retrieve (STAR bs a) (Stars (v ::vs)) def
=

bs@ [Z] @ retrieve a v@ retrieve (STAR [] a) (Stars vs)

The idea behind this function is to retrieve a possibly partial bitcode from an

annotated regular expression, where the retrieval is guided by a value. For exam-

ple if the value is Left then we descend into the left-hand side of an alternative

(annotated) regular expression in order to assemble the bitcode. Similarly for

Right . The property we can show is that for a given v and r with ` v : r,

83

3.2. Bitcoded Values and Annotated Regular Expressions

the retrieved bitsequence from the internalised regular expression is equal to the

bitcoded version of v.

Lemma 14. If ` v : r then code v = retrieve (r↑) v.

Proof. By induction on ` v : r. There are no interesting cases.

We also need some auxiliary facts about how the bitcoded operations relate to the

“standard” operations on regular expressions. For example if we build a bitcoded

derivative and erase the result, this is the same as if we first erase the annotated

regular expression and then perform the “standard” derivative operation.

Lemma 15.

(1) (a\s)↓ = (a↓)\s

(2) bnullable(a) iff nullable(a↓)

(3) bmkeps(a) = retrieve a (mkeps (a↓)) provided nullable(a↓).

Proof. All properties are by induction on annotated regular expressions. There

are no interesting cases.

This brings us to our main lemma in this section: if we build a derivative, say

r\s and have a value, say v, inhabited by this derivative, then we can produce

the result lexer generates by applying this value to the stacked-up injection func-

tions flex assembles. The lemma establishes that this is the same value as if we

build the annotated derivative r↑\s and then retrieve the corresponding bitcoded

version, followed by a decoding step.

Lemma 16 (Main Lemma). If ` v : r\s then

Some (flex r id s v) = decode(retrieve (r↑\s) v) r

Proof. This can be proved by induction on s and generalising over v. The in-

teresting point is that we need to prove this in the reverse direction for s. This

84

3.2. Bitcoded Values and Annotated Regular Expressions

means instead of cases [] and c ::s, we have cases [] and s@ [c] where we unravel

the string from the back.3

The case for [] is routine using Lemmas 13 and 14. In the case s@ [c], we

can infer from the assumption that ` v : (r\s)\c holds. Hence by Lemma 6 we

know that (*) ` inj (r\s) c v : r\s holds too. By definition of flex we can unfold

the left-hand side to be

Some (flex r id (s@ [c]) v) = Some (flex r id s (inj (r\s) c v))

By induction hypothesis and (*) we can rewrite the right-hand side to

decode (retrieve (r↑\s) (inj (r\s) c v)) r

which is equal to decode (retrieve (r↑\(s@ [c])) v) r as required. The last rewrite

step is possible because we generalised over v in our induction.

With this lemma in place, we can prove the correctness of blexer such that it

produces the same result as lexer.

Theorem 6. lexer r s = blexer r s

Proof. We can first expand both sides using Lemma 12 and the definition of

blexer. This gives us two if -statements, which we need to show to be equal. By

Lemma 15(2) we know the if -tests coincide:

bnullable(r↑\s) iff nullable(r\s)

For the if -branch suppose a def
= r↑\s and d def

= r\s. We have (*) nullable d. We

3Isabelle/HOL provides an induction principle for this way of performing the induction.

85

3.3. Extensions

can then show by Lemma 15(3) that

decode(bmkeps a) r = decode(retrieve a (mkeps d)) r

where the right-hand side is equal to Some (flex r id s (mkeps d)) by Lemma 16

(we know ` mkeps d : d by (*)). This shows the if -branches return the same

value. In the else-branches both lexer and blexer return None. Therefore we can

conclude the proof.

To sum up, we have established that the bitcoded algorithm by Sulzmann and

Lu without simplification produces correct results. This was only conjectured

in their paper [53]. The next step would be to implement a more aggressive

simplification procedure on annotated regular expressions and then prove the

corresponding algorithm generates the same values as blexer. Alas due to time

constraints we are unable to do so here.

3.3 Extensions

A strong point in favour of Sulzmann and Lu’s algorithm is that it can be ex-

tended in various ways. If we are interested in tokenising a string, then we need

to not just split up the string into tokens, but also “classify” the tokens (for exam-

ple whether it is a keyword or an identifier). This can be done with only minor

modifications to the algorithms by introducing record regular expressions and

record values (see for example [54]). For this recall our definitions of regular

expressions and values on Pages 30 and 37 and extend them as follows:

r := ... | (l : r) v := ... | (l : v)

where l is a label, say s a string, r a regular expression and v a value. All func-

tions can be smoothly extended to this additional regular expression and value.

86

3.3. Extensions

For example (l : r) is nullable iff r is; the derivative, that is (l : r)\c, is de-

fined as (l : r\c) and so on. The purpose of the record regular expression is to

mark certain parts of a regular expression and then record in the calculated value

which parts of the strings were matched by this part. The label can then serve as

classification for the tokens. For this recall the regular expression (rkey + rid)
∗

for keywords and identifiers from the Introduction. With the record regular ex-

pression we can form ((key : rkey) + (id : rid))
∗ and then traverse the calculated

value and only collect the underlying strings in record values. With this we ob-

tain finite sequences of pairs of labels and strings, for example

(l1 : s1), ..., (ln : sn)

from which tokens with classifications (keyword-token, identifier-token and so

on) can be extracted. One way to do this is to traverse a value and collect all

flattened strings of marked subvalues and associate them with the labels. This

can be defined as follows:

env(Empty)
def
= []

env(Char c) def
= []

env(Left v) def
= env(v)

env(Right v) def
= env(v)

env(Seq v1 v2)
def
= env(v1)@ env(v2)

env(Stars vs) def
= concat(map env vs)

env(l : v) def
= (l, |v|) :: env(v)

where concat “flattens” a list of lists to just a single list and where |v| produces

the underlying string of a value. This is how we envisage a lexer can be imple-

mented based on Sulzmann and Lu’s algorithm.

In the context of POSIX matching, it is also interesting to study additional

constructors about bounded repetitions of regular expressions. For this let us

87

3.3. Extensions

extend the results from the previous sections to the following four additional

regular expression constructors:

r := ... | r{n} exactly-n-times

| r{..n} upto-n-times

| r{n..} from-n-times

| r{n..m} between-nm-times

In what follows we shall call them bounded regular expressions. With the help of

the power operator (definition omitted) on languages, the associated languages

recognised by these regular expressions can be defined in Isabelle as follows:

L(r{n})
def
= L(r)n

L(r{..n})
def
=

⋃
i∈{..n} . L(r)

i

L(r{n..})
def
=

⋃
i∈{n..} . L(r)

i

L(r{n..m})
def
=

⋃
i∈{n..m} . L(r)

i

This definition uses of the convenient interval definitions in Isabelle/HOL. For

example {n..m} stands for the interval n ≤ i ≤ m; similarly {..n} stands for

0 ≤ i ≤ n and so on. The definition in Isabelle/HOL implies that in the last

clause r{n..m} matches no string if m < n, because then the interval {n..m} is

empty.

Note that we are a bit over-generous in our use of primitives: for exam-

ple exactly-n-times r{n} could be substituted with r{n..n}; similarly upto-n-times

r{..n} could be substituted with r{0..n}. We could even drop the Kleene star by

substituting r∗ with r{0..}. But for the sake of argument, let us explain the details

for all bounded repetition constructors.

While the language recognised by these regular expressions is straightfor-

ward, some care is needed when defining the corresponding lexical values. First

with a slight abuse of language, we will (re)use values of the form Stars vs for

88

3.3. Extensions

values inhabited by bounded regular expressions.4 Second, we need to introduce

rules for extending our inhabitation relation given in Definition 6 on Page 38,

from which we then derived our notion of lexical values, LV . Given the rule

for r∗, the rule for r{..n} is relatively straightforward: it just requires additionally

that the length of the list of values must be smaller or equal to n, that is

∀v ∈ vs. ` v : r ∧ |v| 6= [] len vs ≤ n

` Stars vs : r{..n}

Like in the r∗-rule, we ensure with the left-premise that some non-empty part of

the string is “chipped” away by every value in vs, that means the corresponding

values do not flatten to the empty string.

Matters are bit more complicated in the rule for r{n} (that is exactly n-times

r). We clearly need to require that the length of the list of values equals to n.

But requiring that every of these n values “chips” away some non-empty part

of a string would be too strong. According to the informal POSIX rules we

have to allow that there is an “initial segment” that needs to chip away some

parts of the string, but if this segment is too short for satisfying the exactly-n-

times constraint, it can be followed by a segment where every value flattens to

the empty string. We found that the only way for expressing this constraint in

Isabelle is by rules of the form:

∀v ∈ vs1. ` v : r ∧ |v| 6= []

∀v ∈ vs2. ` v : r ∧ |v| = []

len (vs1 @ vs2) = n

` Stars (vs1 @ vs2) : r
{n}

The vs1 is the initial segment with non-empty flattened values, whereas vs2 is

the segment where all values flatten to the empty string. This idea gets even
4The alternative would be to introduce a separate constructor, for example List vs. But this

seems overkill given the relatively little benefit from such a naming scheme.

89

3.3. Extensions

more complicated for the r{n..} regular expression. The reason is that we need

to distinguish the case where we use fewer repetitions than n. In this case we

need to “fill” the end with values that match the empty string to obtain at least n

repetitions. But in case we need more than n repetitions, then all values should

match a non-empty string. This leads to two rules:

∀v ∈ vs1. ` v : r ∧ |v| 6= []

∀v ∈ vs2. ` v : r ∧ |v| = []

len (vs1 @ vs2) = n

` Stars (vs1 @ vs2) : r
{n..}

∀v ∈ vs. ` v : r ∧ |v| 6= []

len vs > n

` Stars vs : r{n..}

Note that these two rules “collapse” in case n = 0 to just the single rule given

for r∗ in Definition 6. We have similar rules for the between-nm-times operator.

These rules ensure that our definition for sets lexical values LV r s is still finite

and also fits with the ordering given by Okui and Suzuki (which require minimal

values over the sets LV r s).

Fortunately, the other definition extend “smoother” to bounded repetitions.

For example the rules for derivatives are:

r{n}\c def
= if n = 0 then 0 else (r\c) · r{n−1}

r{..n}\c def
= if n = 0 then 0 else (r\c) · r{..n−1}

r{n..}\c def
= if n = 0 then (r\c) · r∗ else (r\c) · r{n−1..}

r{n..m}\c def
= if m < n then 0

else if n = 0 then

if m = 0 then 0 else (r\c) · r{..m−1}

else (r\c) · r{n−1..m−1}

For mkeps we need to generate the shortest list of values we can get “away with”.

This means for example in the case r{..n} we can return the empty list, like for

stars. In the other cases we have to generate a list of exactly n copies of the

mkeps-value, because n is the smallest number of repetitions.

90

3.3. Extensions

mkeps (r{..n}) def
= Stars []

mkeps (r{n}) def
= Stars (replicate n (mkeps r))

mkeps (r{n..}) def
= Stars (replicate n (mkeps r))

mkeps (r{n..m}) def
= Stars (replicate n (mkeps r))

In this definition we use Isabelle’s replicate-function in order to generate a list

of n copies of a value. The injection function also extends straightforwardly to

the bounded regular expressions as follows:

inj (r{n}) c (Seq v (Stars vs)) def
= Stars (inj r c v :: vs)

inj (r{n..}) c (Seq v (Stars vs)) def
= Stars (inj r c v :: vs)

inj (r{..n}) c (Seq v (Stars vs)) def
= Stars (inj r c v :: vs)

inj (r{n..m}) c (Seq v (Stars vs)) def
= Stars (inj r c v :: vs)

Similarly our POSIX definition can be easily extended to the additional construc-

tors. For example for r{n} we have two rules:

∀v ∈ vs. ([], r)→ v len vs = n

([], r{n})→ Stars vs

(s1, r)→ v (s2, r
{n−1})→ Stars vs |v| 6= [] 0 < n

@s3 s4. s3 6= [] ∧ s3@s4 = s2 ∧ s1@s3 ∈ L(r) ∧ s4 ∈ L(r{n−1})

(s1@s2, r
{n})→ Stars (v :: vs)

The first rule deals with the case when an empty string needs to be recognised.

The second when the string is non-empty. In this case the “initial segment” must

match non-empty strings only. The idea behind this formulation is to avoid situa-

tions where an earlier value matches the empty string, while it is actually possible

to “nibble away” some parts of the string. The rules for the other bounded regu-

lar expressions are similar. We shall omit them. With these definitions in place,

our proofs given in the previous sections extend to the bounded repetitions. The

main point is that there are no surprises.

91

3.4. Summary and Future Work

Unfortunately, in our formal proofs we need to give the proofs all over again

in a separate theory, since there is no way of making Isabelle to accept proofs for

the basic regular expressions (defined as inductive datatype) and then augment-

ing the datatype with new constructors. This would be a really “cool” feature for

Isabelle, but we have no idea how this could be achieve without too much effort.

Unfortunately, what is also not known is what a “complete” set of simplification

rules should be for bounded repetitions. It seems with the derivatives we have

given earlier, the regular expressions are prone to a linear growth in size. It seems

what is needed is that bounded repetition need to be “compactified”. For example

if one has instances of r{n} and r{n−1} inside an alternative regular expression—

in such cases, it seems, we need to replace them with r{n−1..n} in order to keep

the size of derivatives “small” and thus make the algorithm efficient.

3.4 Summary and Future Work

We set out in this work to implement in Isabelle/HOL the lexing algorithm by

Sulzmann and Lu and formalise the extensive “pencil-and-paper” notes given by

them for establishing the correctness of their algorithm [53]. In our opinion, the

extension of Brzozowski’s matching algorithm by a second phase that generates

a POSIX value for how a regular expression matched a string is really clever

and beautiful. The hope was that the formalisation of the extension would be

similarly simple as the formalisation of the correctness for Brzozowski’s reg-

ular expression matching algorithm from 1964 [15]. We were therefore rather

surprised, even dumbstruck, that no matter what we attempted, the arguments

Sulzmann and Lu did not enable us to make any progress with a formalisation in

Isabelle/HOL. We have (on and off) explored mechanisations as soon as first ver-

sions of [53] appeared, but made little or no progress with turning the relatively

92

3.4. Summary and Future Work

detailed proof sketches in [53] into a formalised proof. Having seen the work

by Vansummeren [58] and adapting his POSIX definition for the algorithm by

Sulzmann and Lu made all the difference: the proofs then were nearly straight-

forward. We also appreciate very much the work by Okui and Suzuki [41] which

allowed us to gain more confidence that our definition really captures the “spirit”

of the informal POSIX rules. There are also alternative definitions which capture

the informal rules in a distinct way, for example [8]. Our Isabelle/HOL code is

available from

https://github.com/fahadausaf/POSIX-Parsing

The results from Chapter 1, as well as from Sections 2.1 and 3.1 are also in the

Archive of Formal Proofs of Isabelle.5

Having proved the correctness of the POSIX lexing algorithm in [53], which

lessons have we learned? Well, we feel this is a perfect example for the impor-

tance of the right definitions and formalised proofs. Our proofs were done both

done by hand and checked in Isabelle/HOL. The experience of doing our proofs

in this way has been that the mechanical checking was absolutely essential: de-

spite the apparent maturity, this subject area has hidden snares. If we had only

relied on “pencil-and-paper” proofs we would have also been overwhelmed with

faulty reasoning—in particular in one instance, only the formalisation saved us

from serious errors and wrong statements.

There are many avenues for future research. The most ambitious research

goal would be, in our opinion, to make progress with back-references and deriva-

tive based regular expression matching. Back-references seem indispensable in

application, such as Snort and Bro. While the overall (matching) problem is then

NP-complete, users who employ back-references are clearly not interested in the

5https://www.isa-afp.org/entries/Posix-Lexing.html

93

https://github.com/fahadausaf/POSIX-Parsing
https://www.isa-afp.org/entries/Posix-Lexing.html

3.4. Summary and Future Work

full generality of the problem. Rather they seem to be interested in subproblems

that can be solved efficiently. Alas nothing is known about how to restrict the

problem using the derivatives approach, or any other approach for that matter.

Moreover, given the example by Aho [3] for establishing the NP-completeness,

it seems challenging to make any progress soon.

More feasible seems to be to make progress with the bitcoded algorithm and

finding a set of simplification rules that keep the sizes of derivatives small (with

some appropriate definition what “small” means). Our conjecture is that one

needs to mimic with simplification rules the partial derivatives for regular ex-

pression introduced by Antimirov [5]. He established an upper bound for how

much partial derivatives can grow in terms of the size of the regular expression,

but is independent from the length of strings. The idea would be to adapt his

bound to the case of “standard” derivatives by having rather “aggressive” sim-

plification rules. The ones described in Section 3.1 are clearly not aggressive

enough in order to obtain such an upper bound.

However, there seem to be also a number of rather low-hanging fruits that

can be investigated in order to make the Sulzmann and Lu algorithm faster. For

example Murugesan and Shanmuga Sundaram describe an idea that the usual

derivative operation, which iterates the derivative character-by-character, can be

defined bigger “chunks” [40]. For example if we want to calculate (r1 + r2)\s

we can immediately replace this by (r1\s) + (r2\s) rather that having to iterate

the derivative character-by-character, as in Definition 5, in order to obtain the

same result. They also give some details about how to do this for sequence

and star regular expressions, but whether they improve efficiency remains to be

seen. However, it would be interesting to see if such an idea can also be made

to work with the injection function by Sulzmann and Lu, which also just iterates

the injection character-by-character (at least for alternative regular expressions).

94

3.4. Summary and Future Work

Alas due to time constraints we were not able to consider this. Similarly we were

not able to fully work out the details of the not-derivative from [43]. This should

be relatively straightforward (the only real change would be to have to define the

inhabitation relation as recursive function, rather than as inductive predicate).

Another area of interest is to short-circuit the lexing algorithm outlined in

Section 3.3 using record regular expressions and record values. Since in a lexer

one is only interested in the token sequence, it seems overkill to calculate the

complete value first and then extract the token sequence from the calculated

value. In our opinion there must be a way to calculate the token sequence more

directly without the detour of calculating the value first. We leave all these ques-

tions as further work.

95

Part II

TLS Message Parsers

96

Chapter 4

Project Everest

This part is about verified implementations of different parsers for parsing mes-

sages in TLS—the Transport Layer Security Protocol. This protocol is the se-

curity layer of HTTPS. These parsers are implemented as part of the Everest

Project,1 which is an umbrella project for producing verified implementations

for different components of HTTPS. It includes, for example, a verified refer-

ence implementation of TLS, called miTLS,2 and verified implementations of

different cryptographic algorithms, such as AES, SHA2 and so on [12, 13, 21].

The Everest Project is implemented in the F? language,3 which is an ML-like

functional programming language aimed at program verification. Code in F? can

be extracted to F] and OCaml.

The work reported here arose from an internship at Microsoft Research in

Cambridge in 2017. The task was to implement a new and sound bytes library

in F?, which forms part of the basic infrastructure for the Project Everest. Then

existing (verified) parsers needed to be ported to this library.

1https://project-everest.github.io
2https://mitls.org
3https://www.fstar-lang.org

97

https://project-everest.github.io
https://mitls.org
https://www.fstar-lang.org

4.1. Introduction

4.1 Introduction

A problem with F] and OCaml is that their runtime environments needs to per-

form garbage collection. This often slows down programs and running times may

become unpredictable [37], which is not acceptable for many security-related

applications such as TLS. Another problem is that these runtime environments

are not easy to integrate with (mainstream) applications such as Skype, Internet

Explorer and IIS, which are mostly written in C and use the low-level runtime

environment of C. Therefore, in order to have a more predictable, and fast and

easy to integrate runtime environment, the Everest team decided to migrate the

software in the Everest Project from the functional languages OCaml and F] to

the low-level language C.

As part of this migration, our focus is here on the specification of TLS

parsers. We have established correctness and security properties for parser spec-

ifications and then derived efficient and composable implementations from these

specifications. These implementations are extracted to C using the recent tactics

engine of F?. For this, we created a library providing a unified model for bytes,

replacing the previous unsound library. We then updated the TLS parsers to use

this new library and enhanced their functionality and improved the verification

automation. To see how this work fits together, let us first describe briefly the

HTTPS ecosystem and the Everest Project.

4.2 The HTTPS Ecosystem

HTTPS and TLS are key protocols on which almost all of the Internet is built

upon. TLS is the main security protocol inside HTTPS. It consists of a protocol

layer and a record layer. The protocol layer is used for establishing a secure

connection when communicating with a third party. It negotiates some crypto-

98

4.2. The HTTPS Ecosystem

graphic parameters, algorithms and cipher suites. The record layer is concerned

with the encryption of the transmitted data.

QUIC—the Quick UDP Internet Connection [17, 35] is another, more recent

Internet security protocol developed by Google. It uses TLS handshakes to nego-

tiate parameters, to agree upon cipher algorithms and to perform key exchanges.

On top of it, it supports multiplexed streams between endpoints over UDP—

the User Datagram Protocol. This reduces the number of connections between

endpoints and therefore reduces latency. If QUIC features can be proved to be

correct, then it is likely that it becomes part of later version of TLS.

In Figure 4.1 is a rough overview over the HTTPS ecosystem, with the unse-

cured network on the bottom and services and applications on the top. TLS is part

of HTTPS providing security protocols. Unfortunately, all these protocols are

very brittle in terms of security. Attacks, such as LogJam and FREAK [52, 14],

frequently grab headlines. It is known that the implementations of these proto-

cols contain bugs, especially in their core cryptographic algorithms. The bugs

not only affect the functional correctness, but also affect side-channel resistance.

Often the reason for these bugs lies with optimisations in the core cryptographic

algorithms, which are critical for speed and performance. For example, there are

a number of known bugs in Open-SSL [10, 36], where engineers implemented

very “hardcore” optimisations for their cryptographic algorithms and as a result

these implementations either produce the wrong result or generate very annoying

and dangerous buffer overflows.

Verification of this ecosystem is often difficult, especially when one com-

bines cryptographic algorithms in order to obtain high-level abstractions for au-

thentication and encryption. This is where you reason about the combination

of these algorithms in order to obtain an “upper-bound” on the strength of the

cryptographic algorithms and prove that the cryptographic abstractions preserves

99

4.2. The HTTPS Ecosystem

Figure 4.1: A rough overview over the HTTPS ecosystem given by the Everest
Project.

integrity, authenticity and confidentiality.

Handshakes are another very important aspect of the HTTPS ecosystem,

which are often based on state machines. Their purpose is to exchange messages

and depending on what servers answer, clients may or may not be allowed to

proceed with a key exchange or some other set of algorithms. These handshakes

are notorious places for habouring bugs [39]. The reason is that engineers have

made handshakes more and more complex because they want to start transmit-

ting data as soon as possible. This compromises however often on the guarantees

one expects from these handshakes, such as forward secrecy.

Parsing messages is another “minefield” in the HTTPS ecosystem. Messages

might come from the unsecured network and we need to write parsers for them

100

4.3. Project Everest

that do not trigger buffer overflows or other errors. And finally, if one wants

to implement a protocol, such as QUIC, one ends up in the realm of low-level

programming where one has to manipulate low-level data structures. There con-

currency can bite and also interaction with the operating system are necessary,

which are far from straightforward to implement and to reason about. Because

of all these difficulties and problems, the Everest Project has been founded in

order to address the challanges in a formal and verified fashion.

4.3 Project Everest

The Everest acronym stands for Expedition for a Verified Secure Transport. It is

an umbrella project for developing verified implementation of different compo-

nents of HTTPS protocol. This includes the TLS protocol as the main security

protocol of HTTPS. The Everest Project already includes verification of different

underlying cryptographic algorithms and cipher suites such as AES, and SHA2

etc. The aim of the Everest is to develop a verified secure protocol library of

all the important Internet protocols. For this it combines verification methods

in order to obtain strong security guarantees, along with usability and practical-

ity as we want the code to be usable in actual applications (for example Edge,

WebKit, Skype and IIS). The project is developed using two sets of tools: The

first is a verification tool called F?, an ML-like functional programming language

aimed at program verification. F? is used for the implementation of most of the

security protocols. The second is a set of mechanized tools such as Vale, Low?

(pronounced low star) and Kremlin which are used to compile F? code to C-code.

4.3.1 The Everest Toolchain

Project Everest is a combination of the following modules:

101

4.3. Project Everest

Figure 4.2: An overview over the Everest toolchain.

F? Language

F? is an ML-style functional programming language. Its type system includes

polymorphism, dependent types, monadic effects and refinement types. Together

these features allow users to write precise and compact specifications for pro-

grams, including the specification of functional correctness and security proper-

ties. The F? type-checker attempts to prove that programs meet their specifica-

tions using a combination of SMT solving and manual proofs. The design goal

of the language is to be user extensible.

MiTLS

MiTLS (pronounced me-TLS) is a verified reference implementation of the TLS

protocol developed in collaboration with Microsoft Research and Inria. It inter-

operates with all the mainstream web servers and browsers and fully supports all

the cipher-suites, wire formats, data fragmentations, sessions and connections,

alerts and errors, re-handshakes and resumptions, and all the other requirements

as prescribed in the RFCs. It is implemented entirely in F? and the specifications

102

4.3. Project Everest

Figure 4.3: Overview over the reference implementation of TLS, called MiTLS.

are written in F7, which are refinement types for F?.

KreMLin

Everest currently extracts F? code to functional runtime based on OCaml and F#.

KreMLin is developed to make it compatible with the low-level runtime of C and

allow its integration with mainstream tools such as Chrome, Edge and IIS etc. It

takes a subset of F? called Low-Star and produces C code.

HACL?

HACL stands for High-Assurance Cryptographic Library. It is a formally ver-

ified cryptographic library written entirely in F?. The goal of this library is to

develop a verified C reference implementation for popular cryptographic prim-

itives and to verify them for memory safety, functional correctness and secret

independence.

Vale

Vale is a domain-specific language designed for emmitting formally verified

high-performance assembly language code, with an emphasis on cryptographic

code. It uses F? for formal verification and supports multiple architectures in-

103

4.3. Project Everest

cluding ARM, x86, x64, and multiple platforms including Linux, Windows and

MacOSX.

4.3.2 The Everest Runtime

Project Everest is implemented using F? which compiles to two different run-

time environments, namely a functional runtime environment which compiles to

OCaml and F#, and a low-level runtime environment which compiles to C. The

diagram below shows different components used in the functional and low-level

runtime on the left and right side of the diagram respectively.

Figure 4.4: Everest runtime: left is the functional runtime and right is low-level
runtime.

The low-level runtime is used for the implementation of the low-level crypto-

graphic library (HACL) used in Project Everest. This runtime is implemented

using a subset of F? called Low?, which is a shallow embedding of the C pro-

gramming language. The Low? code is extracted to C using a tool called KreM-

Lin. This low-level runtime environmen also provides support for assembly code

which is compatible with the verified Low? code.

104

4.3. Project Everest

On the other hand, all of the Everest protocol code, particularly the TLS

implementation, is currently written in the full F? language which cannot be

extracted to C. The only way we could extract this code and use it with other

applications is by extracting it to OCaml or F#. As mentioned before, the prob-

lem with the OCaml or F# code is the functional runtime which enforces garbage

collection and adds an overhead which may affect the program performance. It

is also difficult to integrate OCaml and F# with other mainstream applications.

The only way we could integrate our verified TLS implementation with other ap-

plications is by using the foreign function interface4 files which are handwritten

in C and are unverified.

The Low-Level Runtime for Everest

One of the main reasons for migrating Everest from functional runtime envi-

ronment to the low-level runtime is that we want to have a more predictable

memory allocation and latency. The necessary garbage collection in functional

runtime often results in high latency and the runtime becomes unpredictable.

This leads to connections taking longer time and often information can also be

leaked. For security related applications, it is very important to have low-level la-

tency and more predictable runtime, specially in cryptographic algorithms where

side-channels can be used for attacks.

Another important reason to migrate Everest to the low-level runtime of C is

that it is much easier to integrate C with other applications. We will get rid of

hand-written foreign function interface files which are unverified and potentially

contain errors. We get better performance with C by using features which are

not available in functional runtime environments such as machine integers. We

also get rid of many other issue which are better addressed in C such as assembly

4Foreign function interface files are used to integrate Everest with other applications.

105

4.3. Project Everest

level support, performance on ARM architecture and other platforms. So natu-

rally, in order to promote Everest so that we could easily integrate it with user

applications, it is desirable that it compile to the industry-standard C code.

106

Chapter 5

A Pure Model of Bytes

Having described the F? language and the Everest Project, we shall describe in

this chapter our new byte library. This library is part of the basic infrastructire

for implementing TLS message parsers.

5.1 TLS Message Parsers

gt

0

groupid

1 2

enum{
ECGroup = 0;

GHGroup = 1;
//..255
} GroupType;
struct{

GroupType gt;
uint8 groupid;

} NamedGroup;

Figure 5.1: A simple TLS datatype structure.

Message parsing is the main entry point for all the data processing taking place

inside the TLS protocol. Most of the data structures used in our TLS protocol

implementation are given by the standard format of TLS messages [28]. There-

fore, porting TLS message parsers to C is the first step towards porting all the

107

5.1. TLS Message Parsers

TLS to C. Figure 5.1 shows a simple TLS datatype structure.

This figure is an example for named groups defined in the TLS specifications.

It is a struct containing two fields, a GroupType which is encoded with one byte,

and a GroupId. The network encoding for this datatype is the concatenation of

encoding of each element. An interesting point we have in this abstract message

structure as shown in figure below, is that we can have variable length lists which

are difficult to parse. We can create lists of any type, and the way these lists are

encoded is that, inside the TLS specifications, we know how many bytes it takes

to encode the total length of the lists. The network encoding of such a list is a

struct with the length encoded as big-endian concatenated with the encoding of

the elements of the lists.

length = 4

0

ng[0]

2

ng[1]

4 6

struct{
NamedGroup ng; //<1...65535>

} NamedGroups;

Figure 5.2: TLS parser variable length data structure.

To migrate TLS message parsers from OCaml to C, we have created a low-level

parsing framework whose goal is to generate C parsers. Our approach is to gen-

erate TLS parser implementations in Low? from high level specification in F?.

It is very important for this approach to keep separate the work we do under

specification of how to generate parser implementations as generating efficient

implementation is quite tricky and we have to rely on advanced features of F?

such as tactics. However, its much easier to reason about the specification. We

want to perform proofs that the parsers are correct according to the specifications

and we only care about the fact that the implementation is correct because it is

generated out of the pure specifications of the parser.

108

5.2. Correctness Specifications for Parsers

Figure 5.3: The TLS low-level parsing framework.

On top of this parsing framework, our work is actually about pure specifica-

tions of parsers and libraries to support them, in contrast to the above framework

which is actually generating the state-full implementation of parsers and extract-

ing them to C.

5.2 Correctness Specifications for Parsers

The correctness for parsers is defined as follows:

Property 3. Correctness is defined with respect to a pair of a serialiser and parser

for type T.

f:T → Tot bytes

g:bytes → Tot (option t)

where we define the correctness of parsing with respect to a serialiser of parser

for a given high-level type T. A serialiser is a function that transforms T into

bytes. It always expects an object of type T, therefore we cannot always create a

serialised presentation.

109

5.3. The New F? Bytes Library

For parsers, we want to interpret bytes as a concatenation of type T. This is

not always possible and therefore it returns an optional T for types other than T.

The reason for this is that not all bytes are ready for representation for elements

of type T and the parser can fail on some malformed input.

Property 4. Serialiser Injectivity.

∀ a:T b:T. f a = f b→ a = b

An important property for this function is injectivity. The two objects are the

same if the two serialisations of two different operators of T are equal. This

property is very important for security as we want to have unique representation

for given objects of type T. It is also important because we actually sign the

serialised representation of objects. As part of security proof, we can uniquely

represent the given object of type T.

Property 5. Correctness: partial inverse.

∀ a:T. g (f a) = Some a

Serialize |> Parse = id

The correctness property that we care about for parsers is that if we try to parse

the serialised elements, then we get exactly the same elements. Furthermore, if

we serialise something that we parse successfully, then we get the same repre-

sentation.

5.3 The New F? Bytes Library

In order to implement these parser specifications, we have created a new bytes

library for pure bytes F?. This library is meant to be used for the specifications

of low-level implementation of parsers. The goals of this new library is to keep

abstract the concrete representation of bytes. This is a significant improvement

110

5.3. The New F? Bytes Library

compared with the previous version in which there was an exposed representa-

tion of bytes which was not actually the one used in the OCaml runtime of the

program.

Due to the fact that the representation of bytes was exposed in the previous

library, we could not rely on the properties of that particular representation if it

was not proved for the actual implementation. It also contained runtime bugs

which we strived to avoid at all costs. Another important point is that we wanted

to unify the pure specifications that are used in TLS as compared to the one used

in HACL?. Another main difference in the two libraries is that bytes were repre-

sented as machine integers in the previous version and were not compatible with

the HACL? which use mathematical integers to represent them. In the newer

version the two specifications are compatible which means that now we can also

reason about serialising elements that come from HACL?. The second goal of

the new bytes library is that we want to increase the automation and proof relia-

bility. There is a lot of code inside the TLS code base that is dedicated to parser

correctness proofs and is bogus, and we want to improve this code.

5.3.1 Parser

The type of parsers is

abstract type bytes = Seq.seq UInt8.t

In the newer version of F? bytes are defined internally as a sequence of abstract

type of 8-bit machine integers. Earlier it was defined as strings which are practi-

cally very different than machine integers.

111

5.3. The New F? Bytes Library

val append: b1:bytes -> b2:bytes ->

Tot (b:bytes{length b = length b1 + length b2})

let append (b1:bytes) (b2:bytes) = Seq.append b1 b2

val lemma append empty: b:bytes ->

Lemma (ensures (append b empty bytes = b))

let rec lemma append empty (b:bytes) =

Seq.append empty r b

Listing 5.1: Bytes append function and lemmas.

We have also imported many existing lemmas from the previous library such

as lemmas for concatenation and size. The above code contains a function for

appending two sequences of bytes followed by a lemma and a function to append

a sequence of bytes with an empty sequence. The sub function given below is

used to crop a slice from the given sequence of bytes. It takes a sequence of

bytes, locations of start and end bytes and returns a cropped sequence of bytes.

It is followed by a lemma which proves that the length of the cropped sequence

is either less than or equal to the length of the input sequence of bytes.

val sub: b:bytes -> s:nat{s < length b} ->

e:nat{e < length b / s <= e} ->

Tot (sub:bytes)

let sub b s e = Seq.slice b s e

let lemma sub length (b: bytes) (s:nat{s < length b})

(e:nat{e < length b / s <= e})

: Lemma (length (sub b s e) = e - s)

= lemma len slice b s e

Listing 5.2: Bytes subtract, index, and length functions and lemmas.

112

5.3. The New F? Bytes Library

Two of the main new features of this library are that it has SMT patterns for the

common lemmas and the support for machine integers. Earlier there was no sup-

port for machine integers which are required by HACL?, due to which numbers

were encoded as strings instead of bytes, which is not the natural implementa-

tion of the encoding of numbers. Now, there is a difference between strings and

bytes. There is also a support for unicode strings so that we could encode strings

as bytes and the vice versa.

Next is an example of how to encode a variable length data structure. vlbytes

is for encoding variable length bytes. If you are sure of the concatenated elements

of the lists and want to add the length to it, then you can use the vlbytes function.

Here it gives the size in bytes of the representation of the length of the variable

length lists. and the concrete implementation is the functions for concatenation

of the length of b with b where it is represented in big-endians.

val vlbytes: lsize:nat

-> b:B.bytes{B.repr bytes (B.length b) <= lsize}

-> Tot (r:B.bytes{B.length r = lsize + B.length b})

let vlbytes lsize b = B.bytes of int lsize (B.length b) @| b

Listing 5.3: Transform and concatenate a natural number to bytes.

The vlsplit given next is a typical function that is used for parsing variable length

fields inside a struct. When you have a field that is variable length, you read

the length and split the remaining bytes in two. The first part is encoding of the

variable length according to the length and the rest is the other field that you want

to parse. You look at the lsize bytes and convert it to a number which corresponds

to the length of the variable length field we are looking at. Then you check if it

is less than the bytes you have to parse. If it is less then you split it according

113

5.3. The New F? Bytes Library

to the length that you have interpreted. This can also fail if the encoding of the

length is bigger than the bytes you have.

val vlsplit: lsize: nat{lsize <= 4}

-> vlb:B.bytes{lsize <= B.length vlb}

-> Tot (result (b:(B.bytes * B.bytes){

B.repr bytes (B.length (fst b)) <= lsize /\

Seq.equal vlb (vlbytes lsize (fst b) @| (snd b))}))

]set-options ”–max ifuel 2 –initial ifuel 2”

let vlsplit lsize vlb =

let (vl,b) = B.split vlb lsize in

let l = B.int of bytes vl in

if l <= B.length b

then begin

let u, v = B.split b l in

B.append assoc vl u v;

Correct (u,v)

end

else Error(AD decode error, perror SOURCE FILE LINE ””)

Listing 5.4: Parsing variable length fields.

Next is a concrete example of a simple datatype for simplified Diffie-Hellman

Groups. Here the named groups are of three types, i.e. elliptical curves, finite

fields, and an unknown type which is neither an elliptical curve nor a finite field.

Because of the extensibility mechanism of the TLS, we cannot just avoid the

fields which we do not understand. This is why when we define an unknown

named group, we need to record the exact representation of that named group

which is not in conflict with the representation, otherwise the injectivity proofs

114

5.4. Summary

would fail. Therefore, a declaration of type unknown in the named group should

cover all the cases of elliptical curves and finite fields.

type ffdhe =

| FFDHE2048

| FFDHE3072

| FFDHE4096

| FFDHE6144

| FFDHE8192

type unknownNG =

u:(B.byte*B.byte){(let (b1,b2) = u in

(b1 = 0x00z ==> b2 <> 0x17z /\ b2 <> 0x18z /\ b2 <> 0x19z

/\ b2 <> 0x1dz /\ b2 <> 0x1ez) /\

(b1 = 0x01z ==> b2 <> 0x00z /\ b2 <> 0x01z /\ b2 <> 0x02z

/\ b2 <> 0x03z /\ b2 <> 0x04z))}

(** TLS 1.3 named groups for (EC)DHE key exchanges *)

type namedGroup =

| SEC of CoreCrypto.ec curve

| FFDHE of ffdhe

| NG UNKNOWN of unknownNG

Listing 5.5: Finite Field Diffie-Hellman group definitions.

5.4 Summary

We have implemented a new bytes library for F?. We also have ported the most

significant message processing modules of miTLS such as Parse and TLSCon-

stants to the new bytes library. We have also modified the corresponding proofs

115

5.4. Summary

for these modules using the new bytes library. We are in a process of porting the

rest of the miTLS and removing the dependency on the old bytes model in the

Platform Library. As mentioned earlier, we want to use the parser specifications

as an input to the parsing framework shown in Figure 5.3 in order to generate

efficient code for the parsers.

116

Part III

Appendixes

117

Appendix A

Bytes Library for TLS Message

Parsers

This appendix contains the code for the new Bytes library for F? and Project

Everest which is disccused in chapters 4 and 5. It consists of 450 lines approxi-

mately and replaces the previous unsound Platform library.

118

119

120

121

122

123

124

125

126

127

128

129

130

Bibliography

[1] https://regex101.com.

[2] The open group base specification issue 6 ieee std 1003.1 2004 edi-

tion. http://pubs.opengroup.org/olinepubs/009695399/

basedefs/xbd_chap09.html, 2004.

[3] A. V. Aho. Algorithms for Finding Patterns in Strings. In J. van Leeuwen,

editor, Algorithms and Complexity, Handbook of Theoretical Computer

Science, pages 255–300. Elsevier, 1990.

[4] J. B. Almeida, N. Moriera, D. Pereira, and S. M. de Sousa. Partial Deriva-

tive Automata Formalized in Coq. In Proc. of the 15th International Con-

ference on Implementation and Application of Automata (CIAA), volume

6482 of LNCS, pages 59–68, 2010.

[5] V. Antimirov. Partial Derivatives of Regular Expressions and Finite Au-

tomata Constructions. Theoretical Computer Science, 155:291–319, 1995.

[6] F. Ausaf, R. Dyckhoff, and C. Urban. POSIX Lexing with Derivatives

of Regular Expressions (Proof Pearl). In Proc. of the 7th International

Conference on Interactive Theorem Proving (ITP), volume 9807 of LNCS,

pages 69–86, 2016.

131

https://regex101.com
http://pubs.opengroup.org/olinepubs/009695399/basedefs/xbd_chap09.html
http://pubs.opengroup.org/olinepubs/009695399/basedefs/xbd_chap09.html

Bibliography

[7] M. Becchi and P. Crowley. Extending Finite Automata to Efficiently Match

Perl-compatible Regular Expressions. In Proceedings of the 2008 ACM

CoNEXT Conference, pages 25:1–25:12. ACM, 2008.

[8] M. Berglund, W. Bester, and B. van der Merwe. Formalising Boost POSIX

Regular Expression Matching. Accepted for publication at ICTAC’18.

[9] M. Berglund, F. Drewes, and B. van der Merwe. Analyzing Catastrophic

Backtracking Behavior in Practical Regular Expression Matching. In

Proc. of the 14th International Conference on Automata and Formal Lan-

guages, pages 109–123. Springer Verlag, 2014.

[10] Benjamin Beurdouche, Karthikeyan Bhargavan, Antoine Delignat-Lavaud,

Cédric Fournet, Markulf Kohlweiss, Alfredo Pironti, Pierre-Yves Strub,

and Jean Karim Zinzindohoue. A messy state of the union: Taming the

composite state machines of tls. In Security and Privacy (SP), 2015 IEEE

Symposium on, pages 535–552. IEEE, 2015.

[11] M. Bezem, J.W. Klop, and R. de Vrijer. Term Rewriting Systems. Cam-

bridge Tracts in Theoretica. Cambridge University Press, 2003.

[12] K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, and P.-Y. Strub. Imple-

menting TLS with Verified Cryptographic Security. In Security and Privacy

(SP), 2013 IEEE Symposium on, pages 445–459. IEEE, 2013.

[13] K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, P. Y. Strub, and

S. Zanella-Béguelin. Proving the TLS Handshake Secure (as it is). In

International Cryptology Conference, pages 235–255. Springer, 2014.

[14] W. Bokslag. The Problem of Popular Primes: Logjam. arXiv preprint

arXiv:1602.02396, 2016.

132

Bibliography

[15] J. A. Brzozowski. Derivatives of Regular Expressions. Journal of the ACM,

11(4):481–494, 1964.

[16] C. Campeanu, K. Salomaa, and S. Yu. A Formal Study of Practical Regular

Expressions. International Journal of Foundations of Computer Science,

14:1007–1018, 2003.

[17] G. Carlucci, L. De Cicco, and S. Mascolo. HTTP over UDP: an Exper-

imental Investigation of QUIC. In Proceedings of the 30th Annual ACM

Symposium on Applied Computing, pages 609–614. ACM, 2015.

[18] P. Caron, J.-M. Champarnaud, and L. Mignot. A General Framework for

the Derivation of Regular Expressions. RAIRO - Theoretical Informatics

and Applications, 48(3):281–305, 2014.

[19] H. Chen and S. Yu. Derivatives of Regular Expressions and an Application.

In Proc. in the International Workshop on Theoretical Computer Science

(WTCS), volume 7160 of LNCS, pages 343–356, 2012.

[20] T. Coquand and V. Siles. A Decision Procedure for Regular Expression

Equivalence in Type Theory. In Proc. of the 1st Conference on Certified

Programs and Proofs (CPP), volume 7086 of LNCS, pages 119–134, 2011.

[21] A. Delignat-Lavaud, C. Fournet, M. Kohlweiss, J. Protzenko, N. Swamy,

and S. Zanella-Beguelin. Towards a Provably Secure Implementation of

TLS 1.3. July 2016.

[22] C. Doczkal, J.-O. Kaiser, and G. Smolka. A Constructive Theory of Regular

Languages in Coq. In Proc. of the International Conference on Certified

Programs and Proofs, volume 8307, pages 82–97. Springer, 2013.

133

Bibliography

[23] A. Frisch and L. Cardelli. Greedy Regular Expression Matching. In Proc. of

the 31st International Conference on Automata, Languages and Program-

ming (ICALP), volume 3142 of LNCS, pages 618–629, 2004.

[24] J. Goyvaerts. Regular Expressions Cookbook: Detailed Solutions in Eight

Programming Languages. O’Reilly Media, 2012.

[25] N. B. B. Grathwohl, F. Henglein, and U. T. Rasmussen. A Crash-Course in

Regular Expression Parsing and Regular Expressions as Types. Technical

report, University of Copenhagen, 2014.

[26] J. E. Hopcroft and J. D. Ullman. Formal Languages and Their Relation to

Automata. Addison-Wesley, 1969.

[27] H. Hosoya, J. Vouillon, and B. C. Pierce. Regular Expression Types

for XML. ACM Transactions on Programming Languages and Systems

(TOPLAS), 27(1):46–90, 2005.

[28] IETF.org. The transport layer security protocol version 1.2.

[29] J. Kirrage, A. Rathnayake, and H. Thielecke. Static Analysis for Regular

Expression Denial-of-Service Attacks. In In Proc. of the International Con-

ference on Network and System Security, pages 135–148. Springer Verlag,

2013.

[30] S. C. Kleene. Representation of Events in Nerve Nets and Finite Automata.

Annals of Mathematics Studies, 34:3–41, 1951.

[31] D. Kozen. Automata and Computability. Springer Verlag, 1997.

[32] A. Krauss and T. Nipkow. Proof Pearl: Regular Expression Equivalence

and Relation Algebra. Journal of Automated Reasoning, 49:95–106, 2012.

134

Bibliography

[33] N. R. Krishnaswami and J. Yallop. A Typed, Algebraic Approach to Pars-

ing. unpublished.

[34] C. Kuklewicz. Regex Posix. https://wiki.haskell.org/

Regex_Posix.

[35] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang, F. Yang,

F. Kouranov, I. Swett, J. Iyengar, et al. The QUIC Transport Protocol:

Design and Internet-Scale Deployment. In Proceedings of the Conference

of the ACM Special Interest Group on Data Communication, pages 183–

196. ACM, 2017.

[36] J. Lawall, B. Laurie, R. R. Hansen, N. Palix, and G. Muller. Finding Error

Handling Bugs in OpenSSL using Coccinelle. In Dependable Computing

Conference (EDCC), 2010 European, pages 191–196. IEEE, 2010.

[37] P. Libič, L. Bulej, V. Horký, and P. Tůma. Estimating the Impact of Code

Additions on Garbage Collection Overhead. In M. Beltrán, W. Knottenbelt,

and J. Bradley, editors, Computer Performance Engineering, pages 130–

145, Cham, 2015. Springer International Publishing.

[38] F. McNaughton and H. Yamada. Regular expressions and state graphs for

automata. EC-9:39–47, 1960.

[39] P. Morrissey, N. P. Smart, and B. Warinschi. A Modular Security Analysis

of the TLS Handshake Protocol. In International Conference on the The-

ory and Application of Cryptology and Information Security, pages 55–73.

Springer, 2008.

[40] N. Murugesan and O. V. Shanmuga Sundaram. Some Properties of Brzo-

zowski Derivatives of Regular Expressions. International Journal of Com-

puter Trends and Technology, 13(1):29–33, 2014.

135

https://wiki.haskell.org/Regex_Posix
https://wiki.haskell.org/Regex_Posix

Bibliography

[41] S. Okui and T. Suzuki. Disambiguation in Regular Expression Matching

via Position Automata with Augmented Transitions. In Proc. of the 15th

International Conference on Implementation and Application of Automata

(CIAA), volume 6482 of LNCS, pages 231–240, 2010.

[42] S. Okui and T. Suzuki. Disambiguation in Regular Expression Matching

via Position Automata with Augmented Transitions. Technical report, Uni-

versity of Aizu, 2013.

[43] S. Owens, J. H. Reppy, and A. Turon. Regular-Expression Derivatives Re-

Examined. Journal of Functional Programming, 19(2):173–190, 2009.

[44] S. Owens and K. Slind. Adapting Functional Programs to Higher Order

Logic. Higher-Order and Symbolic Computation, 21(4):377–409, 2008.

[45] L. C. Paulson. A Formalisation of Finite Automata Using Hereditarily Fi-

nite Sets. In Proc. of the 25th International Conference on Automated De-

duction (CADE), volume 9195 of LNAI, pages 231–245, 2015.

[46] V. Paxson. Bro. https://www.bro.org, 1994–2018.

[47] T. Reps. “Maximal-Munch” Tokenization in Linear Time. ACM Transac-

tion of Programming Language Systems, 20(2):259–273, 1998.

[48] R. Ribeiro and A. Du Bois. Certified Bit-Coded Regular Expression Pars-

ing. In Proceedings of the 21st Brazilian Symposium on Programming Lan-

guages, SBLP 2017, pages 4:1–4:8. ACM, 2017.

[49] M. Roesch. Snort. https://www.snort.org, 1998–2018.

[50] J. Sakarovitch. Elements of Automata Theory. Cambridge University Press,

2009.

136

https://www.bro.org
https://www.snort.org

Bibliography

[51] J. Shallit. A Second Course in Formal Languages and Automata Theory.

Cambridge University Press, 2008.

[52] P. Sirohi, A. Agarwal, and S. Tyagi. A Comprehensive Study on Security

Attacks on the SSL/TLS Protocol. In Next Generation Computing Tech-

nologies (NGCT), 2016 2nd International Conference on, pages 893–898.

IEEE, 2016.

[53] M. Sulzmann and K. Lu. POSIX Regular Expression Parsing with Deriva-

tives. In Proc. of the 12th International Conference on Functional and

Logic Programming (FLOPS), volume 8475 of LNCS, pages 203–220,

2014.

[54] M. Sulzmann and P.V. Steenhoven. A Flexible and Efficient ML Lexer Tool

Based on Extended Regular Expression Submatching. Compiler Construc-

tion, pages 174–191, 2014.

[55] M. Sulzmann and P. Thiemann. Derivatives for Regular Shuffle Expres-

sions. In Proc. of the 9th International Conference on Language and Au-

tomata Theory and Applications (LATA), volume 8977 of LNCS, pages

275–286, 2015.

[56] K. Thompson. Programming Techniques: Regular Expression Search Al-

gorithm. Communications of the ACM, 11(6):419–422, 1968.

[57] D. Traytel and T. Nipkow. A Verified Decision Procedure for MSO on

Words Based on Derivatives of Regular Expressions. In Proc. of the

18th ACM SIGPLAN International Conference on Functional Program-

ming (ICFP), pages 3–12, 2013.

137

Bibliography

[58] S. Vansummeren. Type Inference for Unique Pattern Matching. ACM

Transactions on Programming Languages and Systems, 28(3):389–428,

2006.

[59] N. Weideman, B. van der Merwe, M. Berglund, and B. Watson. Analyzing

Matching Time Behavior of Backtracking Regular Expression Matchers

by Using Ambiguity of NFA. In In Proc. of the International Conference

on Implementation and Application of Automata, pages 322–334. Springer

Verlag, 2016.

[60] C. Wu, X. Zhang, and C. Urban. A Formalisation of the Myhill-Nerode

Theorem based on Regular Expressions. Journal of Automatic Reasoning,

52(4):451–480, 2014.

138

	I POSIX Regular Expression Matching
	POSIX Regular Expression Matching
	Introduction
	POSIX Lexing
	Preliminaries
	POSIX Lexing Algorithm by Sulzmann and Lu

	Specification of POSIX Values
	Our POSIX Definition
	Ordering of Values According to Okui and Suzuki
	GREEDY Ordering by Frisch and Cardelli
	POSIX Ordering by Sulzmann and Lu

	Optimisations, Extensions and Future Work
	Simplification of Regular Expressions
	Bitcoded Values and Annotated Regular Expressions
	Extensions
	Summary and Future Work

	II TLS Message Parsers
	Project Everest
	Introduction
	The HTTPS Ecosystem
	Project Everest
	The Everest Toolchain
	The Everest Runtime

	A Pure Model of Bytes
	TLS Message Parsers
	Correctness Specifications for Parsers
	The New F Bytes Library
	Parser

	Summary

	III Appendixes
	Bytes Library for TLS Message Parsers
	Bibliography

