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Abstract. We apply results from ambiguity of non-deterministic fi-
nite automata to the problem of determining the asymptotic worst-case
matching time, as a function of the length of the input strings, when at-
tempting to match input strings with a given regular expression, where
the matcher being used is a backtracking regular expression matcher.
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1 Introduction

Catastrophic backtracking is a phenomenon that causes extended matching time,
when attempting to match certain input strings with so-called vulnerable regu-
lar expressions, when using backtracking regular expression matchers found in
programming languages such as Java, Perl and Python. It can be used to launch
regular expression denial of service (ReDoS) attacks, and there are numerous on-
line accounts (some listed at [2]) of the occurrence of catastrophic backtracking.
Catastrophic backtracking often occurs (although not necessarily or exclusively)
when matching with a regular expression R, containing a subexpression S∗ (or
S+), where S could match some non-empty input string w in multiple ways.
Thus an input string containing wk (i.e. k copies of w) as substring, may poten-
tially be matched (or attempted to be matched) in exponentially (in k) many
ways by R, in cases where the matcher tries most of the possible ways (one
after the other, i.e. not using the subset construction) in which the substring
wk can be matched, in an attempt to obtain an overall match. Even though
some regular expression matcher implementations do not match input strings
in a backtracking fashion [8], these alternative implementations typically do not
support all extended regular expression functionality that programmers have
become accustomed to, such as back references.

Although catastrophic backtracking is typically regarded as being synony-
mous with exponential worst-case matching time, non-linear polynomial worst-
case matching time might still be unsatisfactory from a performance or security



point of view. We regard non-linear matching time, vulnerable regular expres-
sions and catastrophic backtracking to be all equivalent. We even point out cases
with constant backtracking or matching time, where the constant is so large that
the regular expression should be regarded as being vulnerable (from a practical
point of view). Non-linear worst-case matching time often occurs when match-
ing with a regular expression R, where R contains one or more occurrences of
subexpressions of the form S∗U∗ (or more generally S∗TU∗), where S and U
(S, T and U) matches some common non-empty input string, say w. Similar to
the exponential case, an input string containing wk as substring, may now be
matched (or attempted to be matched) in at least linearly (in k) many ways.
The degree of the polynomial describing the worst-case number of ways in which
an input string (of a given length) can be matched, depends on the number of
occurrences of subexpressions of the form S∗U∗ or S∗TU∗, where it is possible to
move from one of these subexpressions (in the corresponding non-deterministic
finite automaton) to the next while reading some input string. For example, a
regular expression containing a subexpression S∗1U

∗
1S
∗
2U
∗
2 , where Si and Ui, for

i = 1, 2, matches some non-empty input string wi, could potentially attempt to
match an input string containing wk1w

k
2 , as substring, in quadratic (in k) differ-

ent ways, leading to cubic matching time. To better understand the relationship
between polynomial backtracking and matching time, consider a regular expres-
sion of the form S∗U∗, where S and U match some common non-empty input
string w, but not any string of the form wkx, for some suffix x. The matcher will
first try to obtain an overall match by matching all of wk with S∗, then back-
track and match only wk−1 with S∗, and continue this process of attempting
to obtain an overall match by matching fewer and fewer of the repetitions of w
with S∗, until S∗ matches only the empty string. Thus since U∗ first matches
the empty string, then the last repetition of w, then the last two repetitions of
w, etc., until it matches all of wk, the matching time is quadratic in k, and thus
in the length of wkx.

A necessary condition to have exponential worst-case matching time is that
the non-deterministic finite automaton (NFA), corresponding to the regular ex-
pression under consideration, contains a state with at least two loops that can
be followed while processing the same substring (in a given input string). This
condition is necessary and sufficient (under the additional assumptions that the
NFA is trim and does not contain ε-loops) for an NFA to be exponentially am-
biguous, i.e. to have input strings that can be matched in exponentially many
ways in terms of their length ([5]). A necessary condition to have non-linear
polynomial worst-case matching time, is that the corresponding NFA contains
one or more pairs of states, such that for each pair of states p, q, there exists a
string wp,q and loops on p and q and a path from p to q, all that can be followed
while reading wp,q. Let d be the length of the longest sequence of pairs of states,
with the above properties, obtained by ordering the pairs of states such that
there exists a path from the second state in a pair of states, to the first state in
the next pair of states. Then (d + 1) is the maximum degree of the polynomial
describing the worst-case matching time. Again, if the NFA under consideration



is not exponentially ambiguous, these conditions are necessary and sufficient for
the NFA to have polynomial ambiguity of degree d [5].

In the exponential matching time case, we refer to the part of the input string
that can be matched in multiple ways while following these loops, as a pump, a
string prefixed to the pump to ensure that the NFA reaches one of these states
with two or more loops, as the prefix, and the string that is appended after the
pump to ensure that the matcher attempts to match the pump in all possible
ways, as the suffix. Thus exploit strings will be of the form pwks, with p the
prefix, w the pump and s the suffix. In the non-linear polynomial matching time
case, we have a pump for each subexpression of the form S∗U∗ (or S∗TU∗). The
strings required to move from the second state of a pair of states to the first
state of the next pair of states, are referred to as the pump separators. Exploit
strings will thus be of the form s0w

k
1s1w

k
2 . . . sn−1w

k
nsn, k ≥ 0, where the wi’s are

the pumps, s0 the prefix, s1, . . . , sn−1 the separators, and sn the suffix. Again,
the exploit strings correspond to strings exhibiting ambiguity, of a given form,
in the underlying NFA (although strictly speaking, an additional sink accept
state, having ε incoming transitions from all states, should be added to the
underlying NFA, to make the correspondence between worst-case matching time
and ambiguity precise).

As an example of a vulnerable regular expression, consider the following
expression used to validate email addresses [4]:

R:=^([a-zA-Z0-9_\.\-])+\@(([a-zA-Z0-9\-])+\.)+([a-zA-Z0-9]{2,4})+$

In the case of R, the subexpression S := ([a-zA-Z0-9]{2,4})+ can match
the input string aaaa in two ways, either by matching aaaa by using the +

in S once, or by using + twice by matching each time only aa. Note that this
vulnerable regular expression is of a slightly different form than those described
earlier, since in this case it is S and not ([a-zA-Z0-9]{2,4}) , that matches
some input string in more than one way. We construct an input string capable
of exploiting this vulnerability as follows. First, we construct a prefix capable
of taking the matcher to the vulnerable subexpression, for example a@a. should
suffice. Next, we add multiple repetitions of the pump aaaa. Finally, we force the
matcher to reject our specifically crafted string. For this we append, for example,
a ‘$’ to the end of the input string. Strings of the form a@a.(aaaa)k$ can thus
be used as exploit strings.

For backtracking regular expression matchers, the different paths which can
be traversed to possibly obtain an overall match, are prioritized, and also ex-
plored in this prioritized order, one after the other. Also, the matcher will not
continue exploring alternative ways of matching the input string, after a match
has been found. Consequently, regular expressions that seem very similar, even
that match precisely the same language, may have completely different matching
time behavior. Consider for example regular expressions of the form R1 := S | .∗
and R2 := .∗ | S, where S has exponential worst-case matching time and ‘.’ is the
wild card symbol that matches any single input symbol. These regular expres-
sions are equivalent in terms of languages matched, but not in terms of matching
time, due to the fact that in R1, matching will first be attempted with S, while in



R2, the subexpression .∗ will be used first and S will be ignored. A slightly more
complicated example is obtained by changing .∗ to . {m, }, i.e. an expression that
matches strings of length m or more, with m a positive integer constant, in the
regular expressions R1 and R2. In R′2 := . {m, } | S, the subexpression S with ex-
ponential worst-case matching time will now be reachable (in the corresponding
non-deterministic finite automaton), but only for input strings of length shorter
than m, leading to a regular expression with linear matching time. A non-trivial
example of a similar type is (\&d[0-9]{2}=.*?)+ , discussed in Section 4.

This paper extends results from [6]. We also consider how to determine the
degree of the polynomial describing the worst-case matching time of a regular
expression (if worst-case matching time is polynomial), which is listed as future
work in [10]. The outline of the paper is as follows. In the next section we give
the required definitions. After that, we provide our main results on deciding
worst-case matching time behavior of a given regular expression, when using a
backtracking regular expression matcher. Finally, we discuss our experimental
results and conclude with a discussion on future work.

2 Definitions

In this section we introduce the notation and definitions required for the re-
mainder of the paper. We denote by Σ a non-empty finite alphabet, which is
used as input alphabet for automata and also an alphabet over which regular
expressions are defined. As usual, ε denotes the empty word, and Σε is used for
Σ ∪{ε}. Also, Σ∗ is the Kleene closure applied to Σ, thus the set of finite words
over Σ. For Σ1 ⊆ Σ and w = a1 . . . an ∈ Σ∗, with ai ∈ Σ, we let πΣ1

(w) be the
word b1 . . . bn ∈ Σ∗1 , with bi = ai if ai ∈ Σ1, and bi = ε otherwise. For a function
f : A → B, and a ∈ A and b ∈ B, we have that fa7→b : A → B is the function
such that fa7→b(a) = b and fa 7→b(x) = f(x) for all x ∈ A\{a}. Also, bA : A→ B,
with b ∈ B, denotes the constant function with f(x) = b for all x ∈ A. We use
N for the set natural numbers, excluding 0. We denote by |Q| the cardinality of
the set Q and P(Q) the power set of Q.

A regular expression over an alphabet Σ (where ε, ∅ /∈ Σ) is either an element
of Σ∪{ε, ∅} or an expression of one of the forms (E |E′), (E ·E′), or (E∗), where
E and E′ are regular expressions. Some parentheses can be dropped with the
rule that ∗ (Kleene closure) takes precedence over · (concatenation), which takes
precedence over | (union). Further, outermost parentheses can be dropped, and
E · E′ can be written as EE′. The language of a regular expression E, denoted
L(E), is obtained by evaluating E as usual. When we say that E matches a
string w, we mean that w ∈ L(E), as opposed to vwv′ ∈ L(E), for v, v′ ∈
Σ∗. Some of our examples of expressions will use operators other than just
union, concatenation and Kleene star, but we will refer to all regular expressions,
including the extended expressions, simply as regexes in the remainder of the
paper.

A tree with labels in a set Σ is a function t : V → Σ, where V ⊆ N∗ is a non-
empty, finite set of vertices (or nodes) which are such that (i) V is prefix-closed,



i.e., for all v ∈ N∗ and i ∈ N, vi ∈ V implies v ∈ V , and (ii) V is closed to the
left, i.e., for all v ∈ N∗ and i ∈ N, v(i + 1) ∈ V implies vi ∈ V . The vertex ε is
the root of the tree and vertex vi is the ith child of v. We let |t| = |V | be the
size of t. We denote by t/v the tree t′ with vertex set V ′ = {w ∈ N∗ | vw ∈ V },
where t′(w) = t(vw) for all w ∈ V ′. Given trees t1, . . . , tn and a symbol α, we let
α[t1, . . . , tn] denote the tree t with t(ε) = α and t/i = ti for all i ∈ {1, . . . , n}.

Next we define non-deterministic finite automata (and runs for them), fol-
lowed by the prioritized finite automata from [6] and [7], which are used to model
regex matching behaviors exhibited by typical software implementations. In the
definition of an NFA below, the transition function δ is defined to allow for paral-
lel transitions on the same symbol between a pair of states. By δ(p, α, q) = i > 0,
we indicate that there are i transitions on α between p and q. It is assumed that
the transitions (if any) between p and q on α are numbered from 1 to δ(p, α, q).
We indicate by p →α(j) q ( or pα(j)q ) that the jth-transition on α between p
and q is taken. In our investigation, all parallel edges will be on ε, and we simply
use ε1, ε2, . . . εn, instead of ε(1), ε(2), . . . ε(n). Although parallel transitions do
not influence the language accepted by an NFA, they do influence the number
of accepting paths of a given input string, and thus play a role in our setting.

Definition 1. A non-deterministic finite automaton (NFA) is a tuple A =
(Q,Σ, q0, δ, F ) where: (i) Q is a finite set of states; (ii) Σ is the input alphabet;
(iii) q0 ∈ Q is the initial state; (iv) the partial function δ : Q×Σε ×Q→ N is
the transition function; and (v) F ⊆ Q is the set of final states.

Also, |A|Q := |Q| and |A|δ :=
∑
q1,q2∈Q,α∈Σε δ(q1, α, q2) is the state and

transition size respectively.

Definition 2. For an NFA A = (Q,Σ, q0, δ, F ) and w ∈ Σ∗, a run for w is
a string r = s0α1(j1)s1 · · · sn−1αn(jn)sn, with s0 = q0, si ∈ Q and αi ∈ Σε

such that δ(si, αi+1, si+1) ≥ ji+1 for 0 ≤ i < n, and πΣ(r) = w. A run is
accepting if sn ∈ F . The language accepted by A, denoted by L(A), is the subset
{πΣ(r) | r is an accepting run in A} of Σ∗.

Definition 3 ([7]). A prioritized non-deterministic finite automaton (pNFA) is
a tuple A = (Q1, Q2, Σ, q0, δ1, δ2, F ), where if Q := Q1∪Q2, we have: (i) Q1 and
Q2 are disjoint finite sets of states; (ii) Σ is the input alphabet; (iii) q0 ∈ Q is
the initial state; (iv) δ1 : Q1 × Σ → Q is the deterministic, but not necessarily
total, transition function; (v) δ2 : Q2 → Q∗ is the non-deterministic prioritized
transition function; and (vi) F ⊆ Q1 are the final states.

Given a pNFA A, nfa(A) denotes the NFA associated with A, which is ob-
tained by ignoring the priorities of the δ2 transitions of A. Thus for nfa(A),
δ(p, a, q) = 1 if δ1(p, a) = q for p ∈ Q1 and a ∈ Σ, and δ(p, ε, q) = j for p ∈ Q2,
if δ2(p) = q1 . . . qn, and q appears j > 0 times in the sequence q1 . . . qn.

Definition 4 ([7]). For a pNFA A = (Q1, Q2, Σ, q0, δ1, δ2, F ), a path of w ∈
Σ∗ in A, is a run s0α1(j1)s1 · · · sn−1αn(jn)sn of w in nfa(A), such that if
αi = αi+1 = . . . = αm−1 = αm = ε, with i ≤ m, then (sk−1, jk, sk) =



(sl−1, jl, sl), with i ≤ k, l ≤ m, implies k = l – i.e. a path is not allowed to
repeat the same transition in a sequence of ε-transitions. For two paths p =
s0α1(j1)s1 · · · sn−1αn(jn)sn and p′ = s′0α

′
1(j′1)s′1 · · · s′m−1α′m(j′m)s′m we say that

p is of higher priority than p′, p > p′, if p 6= p′, πΣ(p) = πΣ(p′) and either p′

is a proper prefix of p, or if k is the first index such that (jk)sk 6= (j′k)s′k, then
δ2(sk−1) = · · · sk · · · s′k · · · if sk 6= s′k, or sk = s′k and jk < j′k. An accepting
run for A on w is the highest-priority path p = s0α1(j1)s1 · · ·αn(jn)sn such
that πΣ(p) = w and sn ∈ F . The language accepted by A, denoted by L(A),
is the subset of Σ∗ defined by {πΣ(r) | r is an accepting run in A}. Note that
L(A) = L(nfa(A)).

Infinite loops are avoided in backtracking matchers by disallowing the rep-
etition of the same transition in a sequence of ε-transitions, as specified in the
definition above. In [6], the input directed depth-first search algorithm, typically
used by backtracking regex matchers to find accepting runs in pNFA, was given,
and it was observed that the running time of this algorithm can be described by
the size of the backtracking run, defined next. It should be noted that although
L(A) = L(nfa(A)) for a pNFA A, the purpose of a pNFA is to associate a run
deterministic NFA (i.e. an input string can have at most one accepting run) to a
regex, and thus to make it possible to define regex extensions such as capturing
groups [7].

Definition 5 ([6]). Let A = (Q1, Q2, Σ, q0, δ1, δ2, F ) be a pNFA, q ∈ Q1 ∪Q2,
w = α1 · · ·αn ∈ Σ∗, and C : Q2 → N ∪ {0}. Then the (q, w,C)-backtracking
run of A is a tree over Q1 ∪ Q2 ∪ {Acc,Rej} (Acc,Rej 6∈ Q1 ∪ Q2). It succeeds
if and only if Acc occurs in it. We denote the (q, w,C)-backtracking run by
btrA(q, w,C) and inductively define it as follows. If q ∈ F and w = ε then
btrA(q, w,C) = q[Acc]. Otherwise, we distinguish between two cases:

- If q ∈ Q1, then btrA(q, w,C) equals{
q[btrA(δ1(q, α1), α2 · · ·αn, 0Q2)] if n > 0 and δ1(q, α1) is defined,
q[Rej] otherwise.

- If q ∈ Q2 with δ2(q) = q1 · · · qk, let i0 = C(q) + 1 and ri = btrA(qi, w, Cq 7→i)
for i0 ≤ i ≤ k. Then btrA(q, w,C) equals q[Rej] if i0 > k,

q[ri0 , . . . , rk] if i0 ≤ k but no ri (i0 ≤ i ≤ k) succeeds,
q[ri0 , . . . , ri] if i ∈ {i0, . . . , k} is the least index such that ri succeeds.

The backtracking run of A on w is btrA(w) = btrA(q0, w, 0
Q2). If btrA(w) suc-

ceeds, then the accepting run of A on w contains the sequence of states on the
right-most path in btrA(w).

It should be noted that the argument C, in the definition of btrA(q, w,C),
enforces the condition that a path is not allowed to repeat the same transition
in a sequence of ε-transitions in Definition 4. For pNFA without ε-loops, the
argument C and corresponding conditions can be removed from the definition
of btrA(q, w,C).



Definition 6. For a pNFA A = (Q1, Q2, Σ, q0, δ1, δ2, F ), the matching time of
an input string w with A, is defined to be |btrA(w)|. Let f(n) = max{|btrA(w)| |
w ∈ Σ∗, |w| ≤ n} for all n ∈ N. We say that A has exponential worst-case
matching time if f ∈ 2Ω(n) (or equivalently, if f(n) ∈ 2Θ(n)) and polynomial
matching time of degree k, for k ∈ N ∪ {0}, if f ∈ Θ(nk).

(a)

ε1 E1 E2

(b)

ε1

ε2

E1

E2

(c)

ε1

E1

ε2

(d)

ε2

E1

ε1

Fig. 1. pNFA corresponding to (a) E1 · E2, (b) E1 |E2, (c) E∗1 and (d) E∗?1

We use a regex to pNFA construction, similar to the one implicitly used in
the Java regex matching engine. We denote this pNFA constructed from the
regex E, by using inductively the constructions in Figure 1 (described in [6]), by
Jp(E). In Figure 1(d), E∗?1 denotes the reluctant Kleene star operator applied to
E1, which match as few input symbols as possible with E1, in contrast to greedy
Kleene star in Figure 1(c), which matches as many as possible with E1. Recall
that the subscripts of ε indicates the priority of the transition, with ε1 having
the highest priority.

(a)

q0

q1q2

q3

ε1

ε2

ε2

ε1

a

(b)

q0

q1

q3

q2

q0

q1

q3

q2

q0

q1

q3

q2

R

R

R

R

R

Fig. 2. (a) Jp((a∗)∗), i.e. the Java pNFA for the regex (a∗)∗. (b) The backtracking run
of Jp((a∗)∗) on input ax. The tree is rotated anticlockwise by 90◦ and highest priority
paths are at the bottom. Leaves are marked with R instead of Rej.

The degree of ambiguity for w ∈ Σ∗, with respect to the NFA A, is the
number of accepting runs for w in A. The degree of ambiguity of A is the
maximum degree of ambiguity over all w ∈ Σ∗, which might be infinite, in
which case we say A has infinite degree of ambiguity (IDA). When A has IDA,
we consider the rate at which the maximum number of accepting runs grow
in proportion to the length of the input strings, which might be exponential,
described by saying A has exponential degree of ambiguity (EDA), or polynomial,
described as A being polynomially ambiguous. Since we determine worst-case
matching time of a regex E by using the type of ambiguity of an NFA related
to E in a way described in Section 3, the next result is of importance to us.



Theorem 1 ([5]). Let A be a trim ε-loop free finite automaton. Then

- It is decidable in time O((|A|δ + |A|2Q)3) whether A is infinitely ambiguous,

and in time O(|A|2δ) whether A is exponentially ambiguous.
- If A is polynomially ambiguous, the degree of polynomial ambiguity of A can

be computed in O(|A|3δ).

3 Deciding Worst-Case Matching Time

We start this section by defining for a pNFA A, potentially with ε-loops, a pNFA
flat(A), with matching time behavior very similar to that of A, but without ε-
loops. To use ambiguity of NFA to analyze worst-case matching time, we first
have to remove ε-loops from an pNFA associated to a regex, and this is the main
purpose of defining flat(A). For a pNFA A, let rA(Q2) be the subset of Q2 defined
by Q2 ∩ ({q0} ∪ {δ1(q, α) | q ∈ Q1, α ∈ Σ}), i.e. all Q2 states reachable from a
Q1 state in one transition, and possibly also q0. A sequence p1j2p2 · · · pn−1jnpn,
with p1 ∈ rA(Q2), p2, . . . , pn−1 ∈ Q2, pn ∈ Q1, ji ∈ N, is a δ2-path if δ2(pi) =
· · · pi+1 · · · , δ2(pi) has at least ji+1 occurrences of pi+1, and (pi, ji+1, pi+1) =
(pk, jk+1, pk+1) only if i = k. Thus δ2-paths are maximum length subsequences
of ε-transitions only, obtained from paths in a pNFA. For a pNFA A, we define
a pNFA flat(A) next, such that the paths for flat(A) are obtained from those for
A, by replacing each δ2-path with a single ε-transition. This ensures that A and
flat(A) have the same matching time behavior up to a constant.

Definition 7. For δ2-paths P := p1j2 · · · jnpn and P ′ := p′1j
′
2 · · · j′mp′m, with

p1 = p′1, we define P > P ′ if the least i such that jipi 6= j′ip
′
i is such that

δ2(pi−1) = · · · pi · · · p′i · · · with pi 6= p′i, or pi = p′i but ji < j′i. We let flat(A)
be (Q1, rT (Q2), Σ, q0, δ1, δ

′
2, F ), where δ′2 is defined as follows. For q ∈ Q′2, let

P1, . . . , Pn be all δ2-paths, ordered according to priority, starting at q and ending
at a state in Q1. Then δ′2(q) := q1 · · · qn, where qi is the last state in Pi.

An example of going from a pNFA A to flat(A), is given in Figure 3.
We now describe two algorithms to analyze worst case matching time of

regexes. Due to space limitations, these algorithms are not described in-depth.
Simple analysis is a procedure for determining an upper bound for the worst-case
matching time of a regex. We start with a regex E and turn it into Jp(E), the
Java version of the pNFA for E. Next, we remove ε-loops by going from Jp(E) to
J ′ := flat(Jp(E)), and then consider the NFA N := nfa(J ′). Finally, the NFA N ′

is obtained from N by adding an additional sink accept state z to N . We place
incoming ε-transitions from all other states to z, and make z the only accept
state. Going from N to N ′, turns the problem of counting all possible transitions
that can be taken while attempting to match w ∈ Σ∗ with N , into counting the
number of accepting paths in N ′ for w. Thus for a given input string w, the size
of the backtracking run of w in J ′ is bounded by the number of accepting paths
of w in N ′, and we have equality if w 6∈ L(N). Thus if w′ ∈ Σ∗ exists such that
ww′ 6∈ L(N) for all w ∈ Σ∗, then the worst-case matching time of J ′ and thus



J , is precisely the ambiguity of N ′, otherwise the ambiguity for N ′ is only an
upper bound for the worst-case matching time of E.

The unprioritized pNFA (upNFA), up(A), is an NFA obtained from the pNFA
A, by not simply ignoring priorities of ε-transitions of A, but doing a type of
subset construction that keeps in a given state also track of the states that are
reachable with higher priority paths (on the same input). In the construction of
up(A), we assume A has no ε-loops, otherwise replace A by flat(A). For an NFA
B and Q′ a subset of the states of B, let Q′ be the ε-closure of Q′. For a pNFA
A, up(A) is defined next.

Definition 8. Let A := (Q1, Q2, Σ, q0, δ1, δ2, F ), then up(A) is the NFA given
by (Q′, Σ, q′0, δ

′, F ′), where:

(i) Q′ = ((Q1 ∪ Q2) × P(Q1)) \ Q′′, where Q′′ is the set of states (p, P ) such
that for all w ∈ Σ∗, there is a p′ ∈ P , such that w has an accepting path in
nfa(A) starting at p′;

(ii) q′0 = {(q0, ∅)} and F ′ = (F × P(Q1)) ∩Q′;
(iii) for a ∈ Σ, δ′((p, P ), a, (p′, P ′)) = 1 if δ1(p, a) = p′ and δ1(P, a) ∩ Q1 = P ′,

where δ1 is extended to be defined on sets of states in the obvious way;
(iv) δ′((p, P ), ε, (pi, P ∪ {p1, . . . , pi−1} ∩ Q1)) = ij, for 1 ≤ i ≤ n, if p ∈ Q2

and δ2(p) = p1 . . . pn, where ij is the number of indices i′ with pi = pi′ and

P ∪ {p1, . . . , pi−1} ∩Q1 = P ∪ {p1, . . . , pi′−1} ∩Q1.

Note that the states of up(A) are of the form (p, P ), with p ∈ Q and P ⊆ Q1.
The states from P in (p, P ) are those reachable with higher priority paths on
the same input. By removing states (p, P ) such that for all w ∈ Σ∗, there is a
p′ ∈ P , such that w has an accepting path in nfa(A) starting at p′, we ensure
that only paths explored in A on any input w is kept in up(A). Just as in our
simple analysis, we add a sink accept state z to up(A) to obtain an NFA B′, and
then perform ambiguity analysis on B′. We refer to the process of constructing
B := up(flat(Jp(E))) from a regex E, adding the sink accept state z to B to get
B′, and then determining the ambiguity of B′, as doing a full analysis of E. At
the cost of going form polynomial to exponential time (in the size of the regular
expression), full analysis provides a precise answer.

Example 1. Next we consider the regex E given by .*|(a*)* , which has EDA,

but only linear worst-case matching time, although the subexpression (a*)*

has exponential worst-case matching time (with input a . . . ab). However, due to
priorities, only the subexpression .* is used during matching. The main steps

taken in our full analysis are shown in Figures 3 and 4. Since up(flat(Jp(E)))
has constant ambiguity, E has linear worst-case matching time.

4 Experimental Results

All experiments were performed on a machine with a 3.1GHz, 4 cores and a cache
size of 6144KB. We performed simple analysis on the Snort rule-set version 2.9.31
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Fig. 4. The unprioritized pNFA for Jp(.∗ | (a∗)∗). Dashed states indicate the states
Q′′ in Definition 8, that should be removed.

([3]; 12499 expressions) and RegExLib ([1]; 2994 expressions) repositories. Sim-
ple analysis only checks for EDA and IDA, yielding one of six results: EDA; IDA
(but not EDA); No IDA; whether the regex contains illegal syntax or requires
unhandled functionality (indicated as “Skipped”); or if the analysis takes an in-
ordinate (10 seconds in our experiments) amount of time (indicated as “Timeout
in EDA”, or “Timeout in IDA”). Both analyses construct exploit strings with
properties, as explained in the Introduction. If EDA or IDA is present in sim-
ple analysis, full analysis is performed to determine whether a regex indeed has
exponential or non-linear polynomial matching time (although this is strictly
speaking only necessary in cases where the exploit strings obtained in simple
analysis do not point out the expected behavior). Simple analysis determined
that, in total, 156 regexes have EDA, 1041 have IDA, and 9998 have neither.
The remaining 4298 regexes were either skipped, or timed out. Full analysis was
performed on the 156 and 1041 regexes with EDA and IDA (in simple analysis),
respectively. The results of the full analysis is shown in Table 2, which shows
whether the matching time of a regex is exponential, polynomial or linear; or
whether the analysis timed out. All exponentially vulnerable regexes were tested
against the Java regex matcher with their respective exploit strings, as generated
by the full analysis. All but two of these regexes did indeed exhibit exponential
matching time. The reason for the full analysis producing faulty exploit strings
in these two cases warrants further investigation [2].

As mentioned before, if an NFA for a regex contains EDA, it does not nec-
essarily imply that the regex is vulnerable. The regex (\&d[0-9]{2}=.*?)+



Repository EDA IDA No IDA Skipped Timeout in EDA Timeout in IDA

Snort 11 824 8381 3108 103 72

RegExLib 145 217 1617 912 16 87
Table 1. A breakdown of the simple analysis results.

Simple Analysis Full Analysis

EDA Exponential Polynomial Linear Timeout in EDA Timeout in IDA

156 122 0 2 32 0

IDA Exponential Polynomial Linear Timeout in EDA Timeout in IDA

1041 0 692 24 0 325
Table 2. The matching time behavior, as determined by full analysis, of the 156 and
1041 regexes shown to have EDA and IDA, respectively, by simple analysis.

from the Snort repository match any input string with a prefix starting with &d,
followed by two digits and an equals sign. In order to build an exploit string, we
can use ε as prefix and &d00=&d00= as pump. Since .*? matches all strings,
two copies of the string &d00= can be matched in two ways – either once with the
\&d[0-9]{2}= and once with the .*? , or twice with the + operator. But every

time the matcher can not match part of the input string with (\&d[0-9]{2}=) ,

it will backtrack and match one character with .*? , and thus all strings will
be matched in linear time. In the simple analysis, the analyzer detected that
the (NFA of the) regex has EDA, but when the full analysis is performed, the
analyzer detected that it cannot construct a valid exploit string and therefore
classified the regex as not being vulnerable.

Regexes with large constant matching time, might also be regarded as being
vulnerable (at least from a practical point of view). Next, we describe an ap-
proach that worked well in practice to identify some these regexes. If a regex has
a large counted closure, such as R := (S | T ){0, n}, for large n, the regex can be
approximated (in terms of language accepted and matching time) with a Kleene
star, as in (S | T )∗. The Snort repository contains an expression of this form,

namely \x20\x00([^\x00].|.[^\x00]){255} . Although the counted closure

is of the form {n}, and not {0, n}, we can still approximate the regex with

\x20\x00([^\x00].|.[^\x00])+ for the purpose of approximating worst-case
matching time. By using this approximation approach, our analysis was able to
point out that this regex is indeed vulnerable with the exploit string \x20\x00

as prefix, aa as pump and \x00\x00 as suffix.
Our analyzer does not yet support all extensions found in Java regexes. Un-

supported extensions include possessive quantifiers and back references.

5 Conclusions and Future Work

We developed an analyzer to identify regexes vulnerable to ReDoS. The analysis
was run on two repositories of commonly used regexes, and numerous regexes
with non-linear worst-case matching time were discovered. We plan to extend
our analysis so that most features found in extended regexes are supported,
and also to develop techniques to identify regexes with non-constant worst-case



memory usage. One interesting extension to consider is that of possessive quan-
tifiers, allowing the matcher to throw away certain backtracking positions, and
creating the possibility to remove some matching time vulnerabilities. To ana-
lyze regexes with possessive quantifiers in terms of time and space, we plan to
describe the matching of an input string by a pNFA, in terms of a 2-way deter-
ministic pushdown automaton [9]. A further goal is to investigate the complexity
of our worst-case matching-time analysis techniques as discussed in Section 3.
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