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Abstract. Brzozowski introduced the notion of derivatives for regular
expressions. They can be used for a very simple regular expression match-
ing algorithm. Sulzmann and Lu cleverly extended this algorithm in order
to deal with POSIX matching, which is the underlying disambiguation
strategy for regular expressions needed in lexers. Their algorithm gen-
erates POSIX values which encode the information of how a regular
expression matches a string—that is, which part of the string is matched
by which part of the regular expression. In this paper we give our induc-
tive definition of what a POSIX value is and show (i) that such a value is
unique (for given regular expression and string being matched) and (ii)
that Sulzmann and Lu’s algorithm always generates such a value (pro-
vided that the regular expression matches the string). We show that (iii)
our inductive definition of a POSIX value is equivalent to an alternative
definition by Okui and Suzuki which identifies POSIX values as least el-
ements according to an ordering of values. We also prove the correctness
of Sulzmann’s bitcoded version of the POSIX matching algorithm and
extend the results to additional constructors for regular expressions.
Keywords: POSIX matching, Derivatives of Regular Expressions, Is-
abelle/HOL

1 Core of the proof

This paper builds on previous work by Ausaf and Urban using regular expres-
sion’d bit-coded derivatives to do lexing that is both fast and satisfies the POSIX
? This paper is a revised and expanded version of [2]. Compared with that paper we

give a second definition for POSIX values introduced by Okui Suzuki [10,11] and
prove that it is equivalent to our original one. This second definition is based on an
ordering of values and very similar to, but not equivalent with, the definition given
by Sulzmann and Lu [13]. The advantage of the definition based on the ordering is
that it implements more directly the informal rules from the POSIX standard. We
also prove Sulzmann & Lu’s conjecture that their bitcoded version of the POSIX
algorithm is correct. Furthermore we extend our results to additional constructors
of regular expressions.
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specification. In their work, a bit-coded algorithm introduced by Sulzmann and
Lu was formally verified in Isabelle, by a very clever use of flex function and
retrieve to carefully mimic the way a value is built up by the injection funciton.

In the previous work, Ausaf and Urban established the below equality:

Lemma 1. If v : r\s then Some (flex r id s v) = decode (retrieve (r↑s) v) r .

This lemma establishes a link with the lexer without bit-codes.
With it we get the correctness of bit-coded algorithm.

Lemma 2. lexerb r s = lexer r s

However what is not certain is whether we can add simplification to the
bit-coded algorithm, without breaking the correct lexing output.

The reason that we do need to add a simplification phase after each derivative
step of blexer is because it produces intermediate regular expressions that can
grow exponentially. For example, the regular expression (a + aa)∗ after taking
derivative against just 10 as will have size 8192.

Therefore, we insert a simplification phase after each derivation step, as de-
fined below:

Lemma 3. blexer__simp r s def
= if nullableb (bders__simp (r↑) s) then decode

(mkepsb (bders__simp (r↑) s)) r else None

The simplification function is given as follows:

bsimp (ASEQ bs r1 r2)
def
= bsimp__ASEQ bs (bsimp r1) (bsimp r2)

bsimp (AALTs bs1.0 rs) def
= bsimp__AALTs bs1.0 (distinctBy (flts (map bsimp rs)) erase ∅)

bsimp AZERO def
= AZERO

And the two helper functions are:

bsimp__AALTs bs1 [r ] def
= bsimp__ASEQ bs1 (bsimp r) (bsimp r2.0)

bsimp__AALTs bs1.0 [r ] def
= bsimp__AALTs bs1.0 (distinctBy (flts (map bsimp rs)) erase ∅)

bsimp__AALTs bs1.0 (v :: vb :: vc) def
= AZERO

This might sound trivial in the case of producing a YES/NO answer, but
once we require a lexing output to be produced (which is required in appli-
cations like compiler front-end, malicious attack domain extraction, etc.), it is
not straightforward if we still extract what is needed according to the POSIX
standard.

By simplification, we mean specifically the following rules:
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ASEQ bs AZERO r2  AZERO

ASEQ bs r1 AZERO  AZERO

ASEQ bs (AONE bs1) r1  fuse (bs @ bs1) r1
r1  r2

ASEQ bs r1 r3  ASEQ bs r2 r3
r3  r4

ASEQ bs r1 r3  ASEQ bs r1 r4
r  r ′

AALTs bs (rs1 @ [r ] @ rs2)  AALTs bs (rs1 @ [r ′] @ rs2)

AALTs bs (rsa @ [AZERO] @ rsb)  AALTs bs (rsa @ rsb)

AALTs bs (rsa @ [AALTs bs1 rs1] @ rsb)  AALTs bs (rsa @ map (fuse bs1) rs1 @ rsb)

AALTs (bs @ bs1) rs  AALTs bs (map (fuse bs1) rs)

AALTs bs []  AZERO

AALTs bs [r1]  fuse bs r1
a1

↓ = a2
↓

AALTs bs (rsa @ [a1] @ rsb @ [a2] @ rsc)  AALTs bs (rsa @ [a1] @ rsb @ rsc)

And these can be made compact by the following simplification function:
where the function bsimpAALTs
The core idea of the proof is that two regular expressions, if ”isomorphic”

up to a finite number of rewrite steps, will remain ”isomorphic” when we take
the same sequence of derivatives on both of them. This can be expressed by the
following rewrite relation lemma:
Lemma 4. (rs)  ∗ bders__simp r s

This isomorphic relation implies a property that leads to the correctness
result: if two (nullable) regular expressions are ”rewritable” in many steps from
one another, then a call to function bmkeps gives the same bit-sequence :
Lemma 5. If r1.0  ∗ r2.0 and nullableb r1.0 then mkepsb r1.0 = mkepsb
r2.0.

Given the same bit-sequence, the decode function will give out the same
value, which is the output of both lexers:

Lemma 6. lexerb r s def
= if nullableb (r↑s) then decode (mkepsb (r↑s)) r else

None
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Lemma 7. blexer__simp r s def
= if nullableb (bders__simp (r↑) s) then decode

(mkepsb (bders__simp (r↑) s)) r else None

And that yields the correctness result:

Lemma 8. lexer r s = blexer__simp r s

The nice thing about the above

2 Additional Simp Rules?

One question someone would ask is: can we add more ”atomic” simplifica-
tion/rewriting rules, so the simplification is even more aggressive, making the
intermediate results smaller, and therefore more space-efficient? For example,
one might want to do open up alternatives who is a child of a sequence:

ASEQ bs (AALTs bs1 rs) r  ? AALTs (bs @ bs1) (map (λr ′. ASEQ [] r ′ r) rs)

This rule allows us to simplify a + b · c + a · c

3 Introduction

Brzozowski [3] introduced the notion of the derivative r\c of a regular expression
r w.r.t. a character c, and showed that it gave a simple solution to the problem
of matching a string s with a regular expression r : if the derivative of r w.r.t.
(in succession) all the characters of the string matches the empty string, then r
matches s (and vice versa). The derivative has the property (which may almost
be regarded as its specification) that, for every string s and regular expression
r and character c, one has cs ∈ L(r) if and only if s ∈ L(r\c). The beauty
of Brzozowski’s derivatives is that they are neatly expressible in any functional
language, and easily definable and reasoned about in theorem provers—the def-
initions just consist of inductive datatypes and simple recursive functions. A
mechanised correctness proof of Brzozowski’s matcher in for example HOL4 has
been mentioned by Owens and Slind [12]. Another one in Isabelle/HOL is part
of the work by Krauss and Nipkow [8]. And another one in Coq is given by
Coquand and Siles [4].

If a regular expression matches a string, then in general there is more than one
way of how the string is matched. There are two commonly used disambiguation
strategies to generate a unique answer: one is called GREEDY matching [5] and
the other is POSIX matching [1,9,10,13,14]. For example consider the string xy
and the regular expression (x + y + xy)?. Either the string can be matched in
two ‘iterations’ by the single letter-regular expressions x and y, or directly in
one iteration by xy. The first case corresponds to GREEDY matching, which
first matches with the left-most symbol and only matches the next symbol in
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case of a mismatch (this is greedy in the sense of preferring instant gratification
to delayed repletion). The second case is POSIX matching, which prefers the
longest match.

In the context of lexing, where an input string needs to be split up into a
sequence of tokens, POSIX is the more natural disambiguation strategy for what
programmers consider basic syntactic building blocks in their programs. These
building blocks are often specified by some regular expressions, say rkey and r id
for recognising keywords and identifiers, respectively. There are a few underlying
(informal) rules behind tokenising a string in a POSIX [1] fashion:

• The Longest Match Rule (or “Maximal Munch Rule”): The longest initial
substring matched by any regular expression is taken as next token.

• Priority Rule: For a particular longest initial substring, the first (leftmost)
regular expression that can match determines the token.

• Star Rule: A subexpression repeated by ? shall not match an empty string
unless this is the only match for the repetition.

• Empty String Rule: An empty string shall be considered to be longer than
no match at all.

Consider for example a regular expression rkey for recognising keywords such as
if, then and so on; and r id recognising identifiers (say, a single character followed
by characters or numbers). Then we can form the regular expression (rkey +

r id)
? and use POSIX matching to tokenise strings, say iffoo and if. For iffoo

we obtain by the Longest Match Rule a single identifier token, not a keyword
followed by an identifier. For if we obtain by the Priority Rule a keyword token,
not an identifier token—even if r id matches also. By the Star Rule we know
(rkey + r id)

? matches iffoo, respectively if, in exactly one ‘iteration’ of the star.
The Empty String Rule is for cases where, for example, the regular expression
(a?)? matches against the string bc. Then the longest initial matched substring
is the empty string, which is matched by both the whole regular expression and
the parenthesised subexpression.

One limitation of Brzozowski’s matcher is that it only generates a YES/NO
answer for whether a string is being matched by a regular expression. Sulzmann
and Lu [13] extended this matcher to allow generation not just of a YES/NO
answer but of an actual matching, called a [lexical] value. Assuming a regular
expression matches a string, values encode the information of how the string is
matched by the regular expression—that is, which part of the string is matched
by which part of the regular expression. For this consider again the string xy
and the regular expression (x + (y + xy))? (this time fully parenthesised). We
can view this regular expression as tree and if the string xy is matched by two
Star ‘iterations’, then the x is matched by the left-most alternative in this tree
and the y by the right-left alternative. This suggests to record this matching as

Stars [Left (Char x), Right (Left (Char y))]

where Stars, Left, Right and Char are constructors for values. Stars records
how many iterations were used; Left, respectively Right, which alternative is
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used. This ‘tree view’ leads naturally to the idea that regular expressions act as
types and values as inhabiting those types (see, for example, [7]). The value for
matching xy in a single ‘iteration’, i.e. the POSIX value, would look as follows

Stars [Seq (Char x) (Char y)]

where Stars has only a single-element list for the single iteration and Seq indicates
that xy is matched by a sequence regular expression.

Sulzmann and Lu give a simple algorithm to calculate a value that appears to
be the value associated with POSIX matching. The challenge then is to specify
that value, in an algorithm-independent fashion, and to show that Sulzmann
and Lu’s derivative-based algorithm does indeed calculate a value that is correct
according to the specification. The answer given by Sulzmann and Lu [13] is to
define a relation (called an “order relation”) on the set of values of r, and to
show that (once a string to be matched is chosen) there is a maximum element
and that it is computed by their derivative-based algorithm. This proof idea is
inspired by work of Frisch and Cardelli [5] on a GREEDY regular expression
matching algorithm. However, we were not able to establish transitivity and
totality for the “order relation” by Sulzmann and Lu. There are some inherent
problems with their approach (of which some of the proofs are not published in
[13]); perhaps more importantly, we give in this paper a simple inductive (and
algorithm-independent) definition of what we call being a POSIX value for a
regular expression r and a string s; we show that the algorithm by Sulzmann
and Lu computes such a value and that such a value is unique. Our proofs
are both done by hand and checked in Isabelle/HOL. The experience of doing
our proofs has been that this mechanical checking was absolutely essential: this
subject area has hidden snares. This was also noted by Kuklewicz [9] who found
that nearly all POSIX matching implementations are “buggy” [13, Page 203]
and by Grathwohl et al [6, Page 36] who wrote:

“The POSIX strategy is more complicated than the greedy because of the
dependence on information about the length of matched strings in the
various subexpressions.”

Contributions: We have implemented in Isabelle/HOL the derivative-based
regular expression matching algorithm of Sulzmann and Lu [13]. We have proved
the correctness of this algorithm according to our specification of what a POSIX
value is (inspired by work of Vansummeren [14]). Sulzmann and Lu sketch in
[13] an informal correctness proof: but to us it contains unfillable gaps.4 Our
specification of a POSIX value consists of a simple inductive definition that
given a string and a regular expression uniquely determines this value. We also
show that our definition is equivalent to an ordering of values based on positions
by Okui and Suzuki [10].

We extend our results to ??? Bitcoded version??

4 An extended version of [13] is available at the website of its first author; this extended
version already includes remarks in the appendix that their informal proof contains
gaps, and possible fixes are not fully worked out.
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4 Preliminaries

Strings in Isabelle/HOL are lists of characters with the empty string being rep-
resented by the empty list, written [], and list-cons being written as :: . Often
we use the usual bracket notation for lists also for strings; for example a string
consisting of just a single character c is written [c]. We use the usual definitions
for prefixes and strict prefixes of strings. By using the type char for characters we
have a supply of finitely many characters roughly corresponding to the ASCII
character set. Regular expressions are defined as usual as the elements of the
following inductive datatype:

r := 0 | 1 | c | r1 + r2 | r1 · r2 | r?

where 0 stands for the regular expression that does not match any string, 1 for
the regular expression that matches only the empty string and c for matching
a character literal. The language of a regular expression is also defined as usual
by the recursive function L with the six clauses:

(1) L(0) def
= ∅

(2) L(1) def
= {[]}

(3) L(c) def
= {[c]}

(4) L(r1 · r2)
def
= L(r1) @ L(r2)

(5) L(r1 + r2)
def
= L(r1) ∪ L(r2)

(6) L(r?) def
= (L(r))?

In clause (4) we use the operation @ for the concatenation of two languages
(it is also list-append for strings). We use the star-notation for regular expressions
and for languages (in the last clause above). The star for languages is defined
inductively by two clauses: (i) the empty string being in the star of a language
and (ii) if s1 is in a language and s2 in the star of this language, then also s1 @
s2 is in the star of this language. It will also be convenient to use the following
notion of a semantic derivative (or left quotient) of a language defined as

Der c A def
= {s | c :: s ∈ A} .

For semantic derivatives we have the following equations (for example mechani-
cally proved in [8]):

Der c ∅ def
= ∅

Der c {[]} def
= ∅

Der c {[d]} def
= if c = d then {[]} else ∅

Der c (A ∪ B)
def
= Der c A ∪ Der c B

Der c (A @ B)
def
= (Der c A @ B) ∪ (if [] ∈ A then Der c B else ∅)

Der c (A?)
def
= Der c A @ A?

(1)
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Brzozowski’s derivatives of regular expressions [3] can be easily defined by two
recursive functions: the first is from regular expressions to booleans (implement-
ing a test when a regular expression can match the empty string), and the second
takes a regular expression and a character to a (derivative) regular expression:

nullable (0) def
= False

nullable (1) def
= True

nullable (c) def
= False

nullable (r1 + r2)
def
= nullable r1 ∨ nullable r2

nullable (r1 · r2)
def
= nullable r1 ∧ nullable r2

nullable (r?) def
= True

0\c def
= 0

1\c def
= 0

d\c def
= if c = d then 1 else 0

(r1 + r2)\c def
= (r1\c) + (r2\c)

(r1 · r2)\c def
= if nullable r1 then (r1\c) · r2 + (r2\c) else (r1\c) · r2

(r?)\c def
= (r\c) · r?

We may extend this definition to give derivatives w.r.t. strings:

r\[] def
= r

r\(c :: s) def
= (r\c)\s

Given the equations in (1), it is a relatively easy exercise in mechanical reasoning
to establish that

Proposition 1.
(1) nullable r if and only if [] ∈ L(r), and
(2) L(r\c) = Der c (L(r)).

With this in place it is also very routine to prove that the regular expression
matcher defined as

match r s def
= nullable (r\s)

gives a positive answer if and only if s ∈ L(r). Consequently, this regular expres-
sion matching algorithm satisfies the usual specification for regular expression
matching. While the matcher above calculates a provably correct YES/NO an-
swer for whether a regular expression matches a string or not, the novel idea of
Sulzmann and Lu [13] is to append another phase to this algorithm in order to
calculate a [lexical] value. We will explain the details next.
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5 POSIX Regular Expression Matching

There have been many previous works that use values for encoding how a regular
expression matches a string. The clever idea by Sulzmann and Lu [13] is to define
a function on values that mirrors (but inverts) the construction of the derivative
on regular expressions. Values are defined as the inductive datatype

v := Empty | Char c | Left v | Right v | Seq v1 v2 | Stars vs

where we use vs to stand for a list of values. (This is similar to the approach
taken by Frisch and Cardelli for GREEDY matching [5], and Sulzmann and Lu
for POSIX matching [13]). The string underlying a value can be calculated by
the flat function, written | | and defined as:

|Empty| def
= []

|Char c| def
= [c]

|Left v| def
= |v|

|Right v| def
= |v|

|Seq v1 v2|
def
= |v1| @ |v2|

|Stars []| def
= []

|Stars (v :: vs)| def
= |v| @ |Stars vs|

We will sometimes refer to the underlying string of a value as flattened value.
We will also overload our notation and use |vs| for flattening a list of values and
concatenating the resulting strings.

Sulzmann and Lu define inductively an inhabitation relation that associates
values to regular expressions. We define this relation as follows:5

Empty : 1 Char c : c
v1 : r1

Left v1 : r1 + r2

v2 : r1

Right v2 : r2 + r1

v1 : r1 v2 : r2

Seq v1 v2 : r1 · r2

∀ v∈ vs. v : r ∧ |v| 6= []

Stars vs : r?

where in the clause for Stars we use the notation v ∈ vs for indicating that v
is a member in the list vs. We require in this rule that every value in vs flattens
to a non-empty string. The idea is that Stars-values satisfy the informal Star
Rule (see Introduction) where the ? does not match the empty string unless
this is the only match for the repetition. Note also that no values are associated
with the regular expression 0, and that the only value associated with the regular
expression 1 is Empty. It is routine to establish how values “inhabiting” a regular
expression correspond to the language of a regular expression, namely
5 Note that the rule for Stars differs from our earlier paper [2]. There we used the

original definition by Sulzmann and Lu which does not require that the values v
∈ vs flatten to a non-empty string. The reason for introducing the more restricted
version of lexical values is convenience later on when reasoning about an ordering
relation for values.
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Proposition 2. L(r) = {|v| | v : r}

Given a regular expression r and a string s, we define the set of all Lexical Values
inhabited by r with the underlying string being s:6

LV r s def
= {v | v : r ∧ |v| = s}

The main property of LV r s is that it is alway finite.

Proposition 3. finite (LV r s)

This finiteness property does not hold in general if we remove the side-condition
about |v| 6= [] in the Stars-rule above. For example using Sulzmann and Lu’s
less restrictive definition, LV (1?) [] would contain infinitely many values, but
according to our more restricted definition only a single value, namely LV (1?)
[] = {Stars []}.

If a regular expression r matches a string s, then generally the set LV r s
is not just a singleton set. In case of POSIX matching the problem is to calcu-
late the unique lexical value that satisfies the (informal) POSIX rules from the
Introduction. Graphically the POSIX value calculation algorithm by Sulzmann
and Lu can be illustrated by the picture in Figure 1 where the path from the
left to the right involving derivatives/nullable is the first phase of the algorithm
(calculating successive Brzozowski’s derivatives) and mkeps/inj, the path from
right to left, the second phase. This picture shows the steps required when a
regular expression, say r1, matches the string [a, b, c]. We first build the three
derivatives (according to a, b and c). We then use nullable to find out whether
the resulting derivative regular expression r4 can match the empty string. If
yes, we call the function mkeps that produces a value v4 for how r4 can match
the empty string (taking into account the POSIX constraints in case there are
several ways). This function is defined by the clauses:

mkeps 1 def
= Empty

mkeps (r1 · r2)
def
= Seq (mkeps r1) (mkeps r2)

mkeps (r1 + r2)
def
= if nullable r1 then Left (mkeps r1) else Right (mkeps r2)

mkeps (r?) def
= Stars []

Note that this function needs only to be partially defined, namely only for regular
expressions that are nullable. In case nullable fails, the string [a, b, c] cannot be
matched by r1 and the null value None is returned. Note also how this function
makes some subtle choices leading to a POSIX value: for example if an alternative
regular expression, say r1 + r2, can match the empty string and furthermore r1
can match the empty string, then we return a Left-value. The Right-value will
only be returned if r1 cannot match the empty string.
6 Okui and Suzuki refer to our lexical values as canonical values in [10]. The notion

of non-problematic values by Cardelli and Frisch [5] is related, but not identical to
our lexical values.
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r1 r2
\a

r3
\b

r4
\c

nullable

v4v3
inj r3 c

v2
inj r2 b

v1
inj r1 a

mkeps

Fig. 1. The two phases of the algorithm by Sulzmann & Lu [13], matching the
string [a, b, c]. The first phase (the arrows from left to right) is Brzozowski’s
matcher building successive derivatives. If the last regular expression is nullable,
then the functions of the second phase are called (the top-down and right-to-left
arrows): first mkeps calculates a value v4 witnessing how the empty string has
been recognised by r4. After that the function inj “injects back” the characters
of the string into the values.

The most interesting idea from Sulzmann and Lu [13] is the construction of
a value for how r1 can match the string [a, b, c] from the value how the last
derivative, r4 in Fig. 1, can match the empty string. Sulzmann and Lu achieve
this by stepwise “injecting back” the characters into the values thus inverting the
operation of building derivatives, but on the level of values. The corresponding
function, called inj, takes three arguments, a regular expression, a character and
a value. For example in the first (or right-most) inj-step in Fig. 1 the regular
expression r3, the character c from the last derivative step and v4, which is the
value corresponding to the derivative regular expression r4. The result is the new
value v3. The final result of the algorithm is the value v1. The inj function is
defined by recursion on regular expressions and by analysing the shape of values
(corresponding to the derivative regular expressions).

(1) inj d c (Empty) def
= Char d

(2) inj (r1 + r2) c (Left v1)
def
= Left (inj r1 c v1)

(3) inj (r1 + r2) c (Right v2)
def
= Right (inj r2 c v2)

(4) inj (r1 · r2) c (Seq v1 v2)
def
= Seq (inj r1 c v1) v2

(5) inj (r1 · r2) c (Left (Seq v1 v2))
def
= Seq (inj r1 c v1) v2

(6) inj (r1 · r2) c (Right v2)
def
= Seq (mkeps r1) (inj r2 c v2)

(7) inj (r?) c (Seq v (Stars vs)) def
= Stars (inj r c v :: vs)

To better understand what is going on in this definition it might be instructive
to look first at the three sequence cases (clauses (4) – (6)). In each case we need
to construct an “injected value” for r1 · r2. This must be a value of the form Seq

. Recall the clause of the derivative-function for sequence regular expressions:

(r1 · r2)\c def
= if nullable r1 then (r1\c) · r2 + (r2\c) else (r1\c) · r2
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Consider first the else-branch where the derivative is (r1\c) · r2. The corre-
sponding value must therefore be of the form Seq v1 v2, which matches the
left-hand side in clause (4) of inj. In the if -branch the derivative is an alterna-
tive, namely (r1\c) · r2 + (r2\c). This means we either have to consider a Left-
or Right-value. In case of the Left-value we know further it must be a value for
a sequence regular expression. Therefore the pattern we match in the clause (5)
is Left (Seq v1 v2), while in (6) it is just Right v2. One more interesting point
is in the right-hand side of clause (6): since in this case the regular expression
r1 does not “contribute” to matching the string, that means it only matches the
empty string, we need to call mkeps in order to construct a value for how r1 can
match this empty string. A similar argument applies for why we can expect in
the left-hand side of clause (7) that the value is of the form Seq v (Stars vs)—the
derivative of a star is (r\c) · r?. Finally, the reason for why we can ignore the
second argument in clause (1) of inj is that it will only ever be called in cases
where c = d, but the usual linearity restrictions in patterns do not allow us to
build this constraint explicitly into our function definition.7

The idea of the inj-function to “inject” a character, say c, into a value can
be made precise by the first part of the following lemma, which shows that the
underlying string of an injected value has a prepended character c; the second
part shows that the underlying string of an mkeps-value is always the empty
string (given the regular expression is nullable since otherwise mkeps might not
be defined).

Lemma 9.
(1) If v : r\c then |inj r c v| = c :: |v|.
(2) If nullable r then |mkeps r | = [].

Proof. Both properties are by routine inductions: the first one can, for example,
be proved by induction over the definition of derivatives; the second by an in-
duction on r. There are no interesting cases. ut

Having defined the mkeps and inj function we can extend Brzozowski’s
matcher so that a value is constructed (assuming the regular expression matches
the string). The clauses of the Sulzmann and Lu lexer are

lexer r []
def
= if nullable r then Some (mkeps r) else None

lexer r (c :: s) def
= case lexer (r\c) s of

None ⇒ None
| Some v ⇒ Some (inj r c v)

If the regular expression does not match the string, None is returned. If the
regular expression does match the string, then Some value is returned. One
important virtue of this algorithm is that it can be implemented with ease in any

7 Sulzmann and Lu state this clause as inj c c (Empty) def
= Char c, but our deviation

is harmless.
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([], 1) → Empty
P1

([c], c) → Char c
Pc

(s, r1) → v
(s, r1 + r2) → Left v

P+L
(s, r2) → v s /∈ L(r1)

(s, r1 + r2) → Right v
P+R

(s1, r1) → v1 (s2, r2) → v2
@ s3 s4.a. s3 6= [] ∧ s3 @ s4 = s2 ∧ s1 @ s3 ∈ L(r1) ∧ s4 ∈ L(r2)

(s1 @ s2, r1 · r2) → Seq v1 v2
PS

([], r?) → Stars []
P[]

(s1, r) → v (s2, r?) → Stars vs |v| 6= []
@ s3 s4.a. s3 6= [] ∧ s3 @ s4 = s2 ∧ s1 @ s3 ∈ L(r) ∧ s4 ∈ L(r?)

(s1 @ s2, r?) → Stars (v :: vs)
P?

Fig. 2. Our inductive definition of POSIX values.

functional programming language and also in Isabelle/HOL. In the remaining
part of this section we prove that this algorithm is correct.

The well-known idea of POSIX matching is informally defined by some rules
such as the Longest Match and Priority Rules (see Introduction); as correctly
argued in [13], this needs formal specification. Sulzmann and Lu define an “or-
dering relation” between values and argue that there is a maximum value, as
given by the derivative-based algorithm. In contrast, we shall introduce a simple
inductive definition that specifies directly what a POSIX value is, incorporating
the POSIX-specific choices into the side-conditions of our rules. Our definition is
inspired by the matching relation given by Vansummeren [14]. The relation we
define is ternary and written as (s, r) → v, relating strings, regular expressions
and values; the inductive rules are given in Figure 2. We can prove that given a
string s and regular expression r, the POSIX value v is uniquely determined by
(s, r) → v.

Theorem 1.
(1) If (s, r) → v then s ∈ L(r) and |v| = s.
(2) If (s, r) → v and (s, r) → v ′ then v = v ′.

Proof. Both by induction on the definition of (s, r) → v. The second parts
follows by a case analysis of (s, r) → v ′ and the first part. ut

We claim that our (s, r) → v relation captures the idea behind the four informal
POSIX rules shown in the Introduction: Consider for example the rules P+L and
P+R where the POSIX value for a string and an alternative regular expression,
that is (s, r1 + r2), is specified—it is always a Left-value, except when the
string to be matched is not in the language of r1; only then it is a Right-value
(see the side-condition in P+R). Interesting is also the rule for sequence regular
expressions (PS). The first two premises state that v1 and v2 are the POSIX
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values for (s1, r1) and (s2, r2) respectively. Consider now the third premise
and note that the POSIX value of this rule should match the string s1 @ s2.
According to the Longest Match Rule, we want that the s1 is the longest initial
split of s1 @ s2 such that s2 is still recognised by r2. Let us assume, contrary
to the third premise, that there exist an s3 and s4 such that s2 can be split up
into a non-empty string s3 and a possibly empty string s4. Moreover the longer
string s1 @ s3 can be matched by r1 and the shorter s4 can still be matched by
r2. In this case s1 would not be the longest initial split of s1 @ s2 and therefore
Seq v1 v2 cannot be a POSIX value for (s1 @ s2, r1 · r2). The main point is that
our side-condition ensures the Longest Match Rule is satisfied.

A similar condition is imposed on the POSIX value in the P?-rule. Also
there we want that s1 is the longest initial split of s1 @ s2 and furthermore
the corresponding value v cannot be flattened to the empty string. In effect, we
require that in each “iteration” of the star, some non-empty substring needs to
be “chipped” away; only in case of the empty string we accept Stars [] as the
POSIX value. Indeed we can show that our POSIX values are lexical values which
exclude those Stars that contain subvalues that flatten to the empty string.

Lemma 10. If (s, r) → v then v ∈ LV r s.

Proof. By routine induction on (s, r) → v. ut

Next is the lemma that shows the function mkeps calculates the POSIX value
for the empty string and a nullable regular expression.

Lemma 11. If nullable r then ([], r) → mkeps r .

Proof. By routine induction on r. ut

The central lemma for our POSIX relation is that the inj-function preserves
POSIX values.

Lemma 12. If (s, r\c) → v then (c :: s, r) → inj r c v.

Proof. By induction on r. We explain two cases.

• Case r = r1 + r2. There are two subcases, namely (a) v = Left v ′ and (s,
r1\c) → v ′; and (b) v = Right v ′, s /∈ L(r1\c) and (s, r2\c) → v ′. In (a)
we know (s, r1\c) → v ′, from which we can infer (c :: s, r1) → inj r1 c v ′

by induction hypothesis and hence (c :: s, r1 + r2) → inj (r1 + r2) c (Left
v ′) as needed. Similarly in subcase (b) where, however, in addition we have
to use Proposition 1(2) in order to infer c :: s /∈ L(r1) from s /∈ L(r1\c).

• Case r = r1 · r2. There are three subcases:
(a) v = Left (Seq v1 v2) and nullable r1
(b) v = Right v1 and nullable r1
(c) v = Seq v1 v2 and ¬ nullable r1
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For (a) we know (s1, r1\c) → v1 and (s2, r2) → v2 as well as

@ s3 s4.a. s3 6= [] ∧ s3 @ s4 = s2 ∧ s1 @ s3 ∈ L(r1\c) ∧ s4 ∈ L(r2)

From the latter we can infer by Proposition 1(2):

@ s3 s4.a. s3 6= [] ∧ s3 @ s4 = s2 ∧ c :: s1 @ s3 ∈ L(r1) ∧ s4 ∈ L(r2)

We can use the induction hypothesis for r1 to obtain (c :: s1, r1) → inj r1 c
v1. Putting this all together allows us to infer (c :: s1 @ s2, r1 · r2) → Seq
(inj r1 c v1) v2. The case (c) is similar.
For (b) we know (s, r2\c) → v1 and s1 @ s2 /∈ L((r1\c) · r2). From the
former we have (c :: s, r2) → inj r2 c v1 by induction hypothesis for r2. From
the latter we can infer

@ s3 s4.a. s3 6= [] ∧ s3 @ s4 = c :: s ∧ s3 ∈ L(r1) ∧ s4 ∈ L(r2)

By Lemma 11 we know ([], r1) → mkeps r1 holds. Putting this all together,
we can conclude with (c :: s, r1 · r2) → Seq (mkeps r1) (inj r2 c v1), as
required.
Finally suppose r = r1

?. This case is very similar to the sequence case,
except that we need to also ensure that |inj r1 c v1| 6= []. This follows from
(c :: s1, r1) → inj r1 c v1 (which in turn follows from (s1, r1\c) → v1 and
the induction hypothesis). ut

With Lemma 12 in place, it is completely routine to establish that the Sulzmann
and Lu lexer satisfies our specification (returning the null value None iff the
string is not in the language of the regular expression, and returning a unique
POSIX value iff the string is in the language):

Theorem 2.
(1) s /∈ L(r) if and only if lexer r s = None
(2) s ∈ L(r) if and only if ∃ v. lexer r s = Some v ∧ (s, r) → v

Proof. By induction on s using Lemma 11 and 12. ut

In (2) we further know by Theorem 1 that the value returned by the lexer must
be unique. A simple corollary of our two theorems is:

Corollary 1.
(1) lexer r s = None if and only if @ v.a. (s, r) → v
(2) lexer r s = Some v if and only if (s, r) → v

This concludes our correctness proof. Note that we have not changed the al-
gorithm of Sulzmann and Lu,8 but introduced our own specification for what
a correct result—a POSIX value—should be. In the next section we show that
our specification coincides with another one given by Okui and Suzuki using a
different technique.

8 All deviations we introduced are harmless.
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6 Ordering of Values according to Okui and Suzuki

While in the previous section we have defined POSIX values directly in terms
of a ternary relation (see inference rules in Figure 2), Sulzmann and Lu took a
different approach in [13]: they introduced an ordering for values and identified
POSIX values as the maximal elements. An extended version of [13] is available
at the website of its first author; this includes more details of their proofs, but
which are evidently not in final form yet. Unfortunately, we were not able to
verify claims that their ordering has properties such as being transitive or having
maximal elements.

Okui and Suzuki [10,11] described another ordering of values, which they
use to establish the correctness of their automata-based algorithm for POSIX
matching. Their ordering resembles some aspects of the one given by Sulzmann
and Lu, but overall is quite different. To begin with, Okui and Suzuki identify
POSIX values as minimal, rather than maximal, elements in their ordering. A
more substantial difference is that the ordering by Okui and Suzuki uses positions
in order to identify and compare subvalues. Positions are lists of natural numbers.
This allows them to quite naturally formalise the Longest Match and Priority
rules of the informal POSIX standard. Consider for example the value v

v def
= Stars [Seq (Char x) (Char y), Char z ]

At position [0,1] of this value is the subvalue Char y and at position [1] the
subvalue Char z. At the ‘root’ position, or empty list [], is the whole value v.
Positions such as [0,1,0] or [2] are outside of v. If it exists, the subvalue of v at
a position p, written v�p, can be recursively defined by

v�[]
def
= v

Left v�0::ps
def
= v�ps

Right v�1::ps
def
= v�ps

Seq v1 v2�0::ps
def
= v1�ps

Seq v1 v2�1::ps
def
= v2�ps

Stars vs�n::ps
def
= vs[n]�ps

In the last clause we use Isabelle’s notation vs[n] for the nth element in a list.
The set of positions inside a value v, written Pos v, is given by

Pos (Empty) def
= {[]}

Pos (Char c) def
= {[]}

Pos (Left v) def
= {[]} ∪ {0 :: ps | ps ∈ Pos v}

Pos (Right v) def
= {[]} ∪ {1 :: ps | ps ∈ Pos v}

Pos (Seq v1 v2)
def
= {[]} ∪ {0 :: ps | ps ∈ Pos v1} ∪ {1 :: ps | ps ∈ Pos v2}

Pos (Stars vs) def
= {[]} ∪ (

⋃
n < len vs {n :: ps | ps ∈ Pos vs[n]})
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whereby len in the last clause stands for the length of a list. Clearly for every
position inside a value there exists a subvalue at that position.

To help understanding the ordering of Okui and Suzuki, consider again the
earlier value v and compare it with the following w:

v def
= Stars [Seq (Char x) (Char y), Char z ]

w def
= Stars [Char x, Char y, Char z ]

Both values match the string xyz, that means if we flatten these values at their
respective root position, we obtain xyz. However, at position [0], v matches
xy whereas w matches only the shorter x. So according to the Longest Match
Rule, we should prefer v, rather than w as POSIX value for string xyz (and
corresponding regular expression). In order to formalise this idea, Okui and
Suzuki introduce a measure for subvalues at position p, called the norm of v at
position p. We can define this measure in Isabelle as an integer as follows

‖v‖p
def
= if p ∈ Pos v then len |v�p| else − 1

where we take the length of the flattened value at position p, provided the
position is inside v; if not, then the norm is −1. The default for outside positions
is crucial for the POSIX requirement of preferring a Left-value over a Right-value
(if they can match the same string—see the Priority Rule from the Introduction).
For this consider

v def
= Left (Char x) and w def

= Right (Char x)

Both values match x. At position [0] the norm of v is 1 (the subvalue matches
x), but the norm of w is −1 (the position is outside w according to how we
defined the ‘inside’ positions of Left- and Right-values). Of course at position
[1], the norms ‖v‖[1] and ‖w‖[1] are reversed, but the point is that subvalues
will be analysed according to lexicographically ordered positions. According to
this ordering, the position [0] takes precedence over [1] and thus also v will be
preferred over w. The lexicographic ordering of positions, written ≺lex , can
be conveniently formalised by three inference rules

[] ≺lex p :: ps
p1 < p2

p1 :: ps1 ≺lex p2 :: ps2

ps1 ≺lex ps2

p :: ps1 ≺lex p :: ps2

With the norm and lexicographic order in place, we can state the key defini-
tion of Okui and Suzuki [10]: a value v1 is smaller at position p than v2, written
v1 ≺p v2, if and only if (i) the norm at position p is greater in v1 (that is the
string |v1�p| is longer than |v2�p|) and (ii) all subvalues at positions that are
inside v1 or v2 and that are lexicographically smaller than p, we have the same
norm, namely

v1 ≺p v2
def
=

{
(i) ‖v2‖p < ‖v1‖p and

(ii) ∀ q∈Pos v1 ∪ Pos v2. q ≺lex p −→ ‖v1‖q = ‖v2‖q
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The position p in this definition acts as the first distinct position of v1 and v2,
where both values match strings of different length [10]. Since at p the values
v1 and v2 match different strings, the ordering is irreflexive. Derived from the
definition above are the following two orderings:

v1 ≺ v2
def
= ∃ p. v1 ≺p v2

v1 4 v2
def
= v1 ≺ v2 ∨ v1 = v2

While we encountered a number of obstacles for establishing properties like
transitivity for the ordering of Sulzmann and Lu (and which we failed to over-
come), it is relatively straightforward to establish this property for the orderings
≺ and 4 by Okui and Suzuki.

Lemma 13 (Transitivity). If v1 ≺ v2 and v2 ≺ v3 then v1 ≺ v3.

Proof. From the assumption we obtain two positions p and q, where the values
v1 and v2 (respectively v2 and v3) are ‘distinct’. Since ≺lex is trichotomous, we
need to consider three cases, namely p = q, p ≺lex q and q ≺lex p. Let us look
at the first case. Clearly ‖v2‖p < ‖v1‖p and ‖v3‖p < ‖v2‖p imply ‖v3‖p <
‖v1‖p. It remains to show that for a p ′ ∈ Pos v1 ∪ Pos v3 with p ′ ≺lex p that
‖v1‖p ′ = ‖v3‖p ′ holds. Suppose p ′ ∈ Pos v1, then we can infer from the first
assumption that ‖v1‖p ′ = ‖v2‖p ′. But this means that p ′ must be in Pos v2

too (the norm cannot be −1 given p ′ ∈ Pos v1). Hence we can use the second
assumption and infer ‖v2‖p ′ = ‖v3‖p ′, which concludes this case with v1 ≺ v3.
The reasoning in the other cases is similar. ut

The proof for 4 is similar and omitted. It is also straightforward to show that ≺
and 4 are partial orders. Okui and Suzuki furthermore show that they are linear
orderings for lexical values [10] of a given regular expression and given string,
but we have not formalised this in Isabelle. It is not essential for our results.
What we are going to show below is that for a given r and s, the orderings have
a unique minimal element on the set LV r s, which is the POSIX value we defined
in the previous section. We start with two properties that show how the length
of a flattened value relates to the ≺-ordering.

Proposition 4.
(1) If v1 ≺ v2 then len |v2| ≤ len |v1|.
(2) If len |v2| < len |v1| then v1 ≺ v2.

Both properties follow from the definition of the ordering. Note that (2) entails
that a value, say v2, whose underlying string is a strict prefix of another flat-
tened value, say v1, then v1 must be smaller than v2. For our proofs it will be
useful to have the following properties—in each case the underlying strings of
the compared values are the same:

Proposition 5.
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(1) If |v1| = |v2| then Left v1 ≺ Right v2.
(2) If |v1| = |v2| then Left v1 ≺ Left v2 iff v1 ≺ v2
(3) If |v1| = |v2| then Right v1 ≺ Right v2 iff v1 ≺ v2
(4) If |v2| = |w2| then Seq v v2 ≺ Seq v w2 iff v2 ≺ w2
(5) If |v1| @ |v2| = |w1| @ |w2| and v1 ≺ w1 then Seq v1 v2 ≺ Seq w1 w2
(6) If |vs1| = |vs2| then Stars (vs @ vs1) ≺ Stars (vs @ vs2) iff Stars vs1 ≺ Stars vs2
(7) If |v1 :: vs1| = |v2 :: vs2| and v1 ≺ v2 then Stars (v1 :: vs1) ≺ Stars (v2 :: vs2)

One might prefer that statements (4) and (5) (respectively (6) and (7)) are com-
bined into a single iff -statement (like the ones for Left and Right). Unfortunately
this cannot be done easily: such a single statement would require an additional
assumption about the two values Seq v1 v2 and Seq w1 w2 being inhabited by
the same regular expression. The complexity of the proofs involved seems to
not justify such a ‘cleaner’ single statement. The statements given are just the
properties that allow us to establish our theorems without any difficulty. The
proofs for Proposition 5 are routine.

Next we establish how Okui and Suzuki’s orderings relate to our definition
of POSIX values. Given a POSIX value v1 for r and s, then any other lexical
value v2 in LV r s is greater or equal than v1, namely:

Theorem 3. If (s, r) → v1 and v2 ∈ LV r s then v1 4 v2.

Proof. By induction on our POSIX rules. By Theorem 1 and the definition of
LV, it is clear that v1 and v2 have the same underlying string s. The three base
cases are straightforward: for example for v1 = Empty, we have that v2 ∈ LV
1 [] must also be of the form v2 = Empty. Therefore we have v1 4 v2. The
inductive cases for r being of the form r1 + r2 and r1 · r2 are as follows:

• Case P+L with (s, r1 + r2) → Left w1: In this case the value v2 is either of
the form Left w2 or Right w2. In the latter case we can immediately conclude
with v1 4 v2 since a Left-value with the same underlying string s is always
smaller than a Right-value by Proposition 5(1). In the former case we have
w2 ∈ LV r1 s and can use the induction hypothesis to infer w1 4 w2.
Because w1 and w2 have the same underlying string s, we can conclude with
Left w1 4 Left w2 using Proposition 5(2).

• Case P+R with (s, r1 + r2) → Right w1: This case similar to the previous
case, except that we additionally know s /∈ L(r1). This is needed when v2
is of the form Left w2. Since |v2| = |w2| = s and w2 : r1, we can derive a
contradiction for s /∈ L(r1) using Proposition 2. So also in this case v1 4 v2.

• Case PS with (s1 @ s2, r1 · r2) → Seq w1 w2: We can assume v2 = Seq u1
u2 with u1 : r1 and u2 : r2. We have s1 @ s2 = |u1| @ |u2|. By the side-
condition of the PS-rule we know that either s1 = |u1| or that |u1| is a strict
prefix of s1. In the latter case we can infer w1 ≺ u1 by Proposition 4(2) and
from this v1 4 v2 by Proposition 5(5) (as noted above v1 and v2 must have
the same underlying string). In the former case we know u1 ∈ LV r1 s1 and
u2 ∈ LV r2 s2. With this we can use the induction hypotheses to infer w1
4 u1 and w2 4 u2. By Proposition 5(4,5) we can again infer v1 4 v2.
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The case for P? is similar to the PS-case and omitted. ut

This theorem shows that our POSIX value for a regular expression r and string
s is in fact a minimal element of the values in LV r s. By Proposition 4(2) we also
know that any value in LV r s ′, with s ′ being a strict prefix, cannot be smaller
than v1. The next theorem shows the opposite—namely any minimal element
in LV r s must be a POSIX value. This can be established by induction on r,
but the proof can be drastically simplified by using the fact from the previous
section about the existence of a POSIX value whenever a string s ∈ L(r).

Theorem 4. If v1 ∈ LV r s and ∀ v2 ∈LV r s. v2 6≺ v1 then (s, r) → v1.

Proof. If v1 ∈ LV r s then s ∈ L(r) by Proposition 2. Hence by Theorem 2(2)
there exists a POSIX value vP with (s, r) → vP and by Lemma 10 we also
have vP ∈ LV r s. By Theorem 3 we therefore have vP 4 v1. If vP = v1 then
we are done. Otherwise we have vP ≺ v1, which however contradicts the second
assumption about v1 being the smallest element in LV r s. So we are done in
this case too. ut

From this we can also show that if LV r s is non-empty (or equivalently s ∈
L(r)) then it has a unique minimal element:

Corollary 2. If LV r s 6= ∅ then ∃ !vmin. vmin ∈ LV r s ∧ (∀ v∈LV r s.
vmin 4 v).

To sum up, we have shown that the (unique) minimal elements of the ordering
by Okui and Suzuki are exactly the POSIX values we defined inductively in
Section 5. This provides an independent confirmation that our ternary relation
formalises the informal POSIX rules.

7 Bitcoded Lexing

Incremental calculation of the value. To simplify the proof we first define the
function flex which calculates the “iterated” injection function. With this we
can rewrite the lexer as

lexer r s = (if nullable (r\s) then Some (flex r id s (mkeps (r\s))) else None)

8 Optimisations

Derivatives as calculated by Brzozowski’s method are usually more complex
regular expressions than the initial one; the result is that the derivative-based
matching and lexing algorithms are often abysmally slow. However, various op-
timisations are possible, such as the simplifications of 0 + r, r + 0, 1 · r and r ·
1 to r. These simplifications can speed up the algorithms considerably, as noted
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in [13]. One of the advantages of having a simple specification and correctness
proof is that the latter can be refined to prove the correctness of such simplifi-
cation steps. While the simplification of regular expressions according to rules
like

0 + r ⇒ r r + 0 ⇒ r 1 · r ⇒ r r · 1 ⇒ r (2)

is well understood, there is an obstacle with the POSIX value calculation algo-
rithm by Sulzmann and Lu: if we build a derivative regular expression and then
simplify it, we will calculate a POSIX value for this simplified derivative regu-
lar expression, not for the original (unsimplified) derivative regular expression.
Sulzmann and Lu [13] overcome this obstacle by not just calculating a simplified
regular expression, but also calculating a rectification function that “repairs” the
incorrect value.

The rectification functions can be (slightly clumsily) implemented in Is-
abelle/HOL as follows using some auxiliary functions:

FRight f v def
= Right (f v)

FLeft f v def
= Left (f v)

FAlt f 1 f 2 (Right v) def
= Right (f 2 v)

FAlt f 1 f 2 (Left v) def
= Left (f 1 v)

FSeq1 f 1 f 2 v def
= Seq (f 1 ()) (f 2 v)

FSeq2 f 1 f 2 v def
= Seq (f 1 v) (f 2 ())

FSeq f 1 f 2 (Seq v1 v2)
def
= Seq (f 1 v1) (f 2 v2)

simpAlt (0, ) (r2, f 2)
def
= (r2, FRight f 2)

simpAlt (r1, f 1) (0, )
def
= (r1, FLeft f 1)

simpAlt (r1, f 1) (r2, f 2)
def
= (r1 + r2, FAlt f 1 f 2)

simpSeq (1, f 1) (r2, f 2)
def
= (r2, FSeq1 f 1 f 2)

simpSeq (r1, f 1) (1, f 2)
def
= (r1, FSeq2 f 1 f 2)

simpSeq (r1, f 1) (r2, f 2)
def
= (r1 · r2, FSeq f 1 f 2)

The functions simpAlt and simpSeq encode the simplification rules in (2) and
compose the rectification functions (simplifications can occur deep inside the
regular expression). The main simplification function is then

simp (r1 + r2)
def
= simpAlt (simp r1) (simp r2)

simp (r1 · r2)
def
= simpSeq (simp r1) (simp r2)

simp r def
= (r , id)

where id stands for the identity function. The function simp returns a simplified
regular expression and a corresponding rectification function. Note that we do
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not simplify under stars: this seems to slow down the algorithm, rather than
speed it up. The optimised lexer is then given by the clauses:

lexer+ r []
def
= if nullable r then Some (mkeps r) else None

lexer+ r (c :: s) def
= let (r s, f r) = simp (r\c) in

case lexer+ r s s of
None ⇒ None

| Some v ⇒ Some (inj r c (f r v))

In the second clause we first calculate the derivative r\c and then simpli
text Incremental calculation of the value. To simplify the proof we first

define the function @{const flex} which calculates the ‘‘iterated ′ ′ injection func-
tion. With this we can rewrite the lexer as \begin{center} @{thm lexer__flex}
\end{center} \begin{center} \begin{tabular}{lcl} @{thm (lhs) code.simps(1)}
& $\dn$ & @{thm (rhs) code.simps(1)}\\ @{thm (lhs) code.simps(2)} &
$\dn$ & @{thm (rhs) code.simps(2)}\\ @{thm (lhs) code.simps(3)} & $\dn$
& @{thm (rhs) code.simps(3)}\\ @{thm (lhs) code.simps(4)} & $\dn$ &
@{thm (rhs) code.simps(4)}\\ @{thm (lhs) code.simps(5)[of v1 v2]} & $\dn$
& @{thm (rhs) code.simps(5)[of v1 v2]}\\ @{thm (lhs) code.simps(6)} &
$\dn$ & @{thm (rhs) code.simps(6)}\\ @{thm (lhs) code.simps(7 )} & $\dn$
& @{thm (rhs) code.simps(7 )} \end{tabular} \end{center} \begin{center}
\begin{tabular}{lcl} @{term areg} & $::=$ & @{term AZERO}\\ & $\mid$
& @{term AONE bs}\\ & $\mid$ & @{term ACHAR bs c}\\ & $\mid$
& @{term AALT bs r1 r2}\\ & $\mid$ & @{term ASEQ bs r1 r2}\\ &
$\mid$ & @{term ASTAR bs r} \end{tabular} \end{center} \begin{center}
\begin{tabular}{lcl} @{thm (lhs) intern.simps(1)} & $\dn$ & @{thm (rhs)
intern.simps(1)}\\ @{thm (lhs) intern.simps(2)} & $\dn$ & @{thm (rhs) in-
tern.simps(2)}\\ @{thm (lhs) intern.simps(3)} & $\dn$ & @{thm (rhs) in-
tern.simps(3)}\\ @{thm (lhs) intern.simps(4)[of r1 r2]} & $\dn$ & @{thm
(rhs) intern.simps(4)[of r1 r2]}\\ @{thm (lhs) intern.simps(5)[of r1 r2]} &
$\dn$ & @{thm (rhs) intern.simps(5)[of r1 r2]}\\ @{thm (lhs) intern.simps(6)}
& $\dn$ & @{thm (rhs) intern.simps(6)}\\ \end{tabular} \end{center} \begin{center}
\begin{tabular}{lcl} @{thm (lhs) erase.simps(1)} & $\dn$ & @{thm (rhs)
erase.simps(1)}\\ @{thm (lhs) erase.simps(2)[of bs]} & $\dn$ & @{thm (rhs)
erase.simps(2)[of bs]}\\ @{thm (lhs) erase.simps(3)[of bs]} & $\dn$ & @{thm
(rhs) erase.simps(3)[of bs]}\\ @{thm (lhs) erase.simps(4)[of bs r1 r2]} & $\dn$
& @{thm (rhs) erase.simps(4)[of bs r1 r2]}\\ @{thm (lhs) erase.simps(5)[of
bs r1 r2]} & $\dn$ & @{thm (rhs) erase.simps(5)[of bs r1 r2]}\\ @{thm
(lhs) erase.simps(6)[of bs]} & $\dn$ & @{thm (rhs) erase.simps(6)[of bs]}\\
\end{tabular} \end{center} Some simple facts about erase \begin{lemma}\mbox{}\\
@{thm erase__bder}\\ @{thm erase__intern} \end{lemma} \begin{center}
\begin{tabular}{lcl} @{thm (lhs) bnullable.simps(1)} & $\dn$ & @{thm (rhs)
bnullable.simps(1)}\\ @{thm (lhs) bnullable.simps(2)} & $\dn$ & @{thm (rhs)
bnullable.simps(2)}\\ @{thm (lhs) bnullable.simps(3)} & $\dn$ & @{thm (rhs)
bnullable.simps(3)}\\ @{thm (lhs) bnullable.simps(4)[of bs r1 r2]} & $\dn$ &
@{thm (rhs) bnullable.simps(4)[of bs r1 r2]}\\ @{thm (lhs) bnullable.simps(5)[of
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bs r1 r2]} & $\dn$ & @{thm (rhs) bnullable.simps(5)[of bs r1 r2]}\\ @{thm
(lhs) bnullable.simps(6)} & $\dn$ & @{thm (rhs) bnullable.simps(6)}\medskip\\
% \end{tabular} % \end{center} % \begin{center} % \begin{tabular}{lcl}
@{thm (lhs) bder .simps(1)} & $\dn$ & @{thm (rhs) bder .simps(1)}\\ @{thm
(lhs) bder .simps(2)} & $\dn$ & @{thm (rhs) bder .simps(2)}\\ @{thm (lhs)
bder .simps(3)} & $\dn$ & @{thm (rhs) bder .simps(3)}\\ @{thm (lhs) bder .simps(4)[of
bs r1 r2]} & $\dn$ & @{thm (rhs) bder .simps(4)[of bs r1 r2]}\\ @{thm (lhs)
bder .simps(5)[of bs r1 r2]} & $\dn$ & @{thm (rhs) bder .simps(5)[of bs r1
r2]}\\ @{thm (lhs) bder .simps(6)} & $\dn$ & @{thm (rhs) bder .simps(6)}
\end{tabular} \end{center} \begin{center} \begin{tabular}{lcl} @{thm (lhs)
bmkeps.simps(1)} & $\dn$ & @{thm (rhs) bmkeps.simps(1)}\\ @{thm (lhs)
bmkeps.simps(2)[of bs r1 r2]} & $\dn$ & @{thm (rhs) bmkeps.simps(2)[of bs
r1 r2]}\\ @{thm (lhs) bmkeps.simps(3)[of bs r1 r2]} & $\dn$ & @{thm (rhs)
bmkeps.simps(3)[of bs r1 r2]}\\ @{thm (lhs) bmkeps.simps(4)} & $\dn$ &
@{thm (rhs) bmkeps.simps(4)}\medskip\\ \end{tabular} \end{center} @{thm
[mode=IfThen] bder__retrieve} By induction on 〈r 〉 \begin{theorem}[Main
Lemma]\mbox{}\\ @{thm [mode=IfThen] MAIN__decode} \end{theorem}
\noindent Definition of the bitcoded lexer @{thm blexer__def } \begin{theorem}
@{thm blexer__correctness} \end{theorem}

section Optimisations
text Derivatives as calculated by \Brz ′s method are usually more complex

regular expressions than the initial one; the result is that the derivative−based
matching and lexing algorithms are often abysmally slow. However , various op-
timisations are possible, such as the simplifications of @{term ALT ZERO r},
@{term ALT r ZERO}, @{term SEQ ONE r} and @{term SEQ r ONE} to
@{term r}. These simplifications can speed up the algorithms considerably, as
noted in \cite{Sulzmann2014}. One of the advantages of having a simple specifi-
cation and correctness proof is that the latter can be refined to prove the correct-
ness of such simplification steps. While the simplification of regular expressions
according to rules like \begin{equation}\label{Simpl} \begin{array}{lcllcllcllcl}
@{term ALT ZERO r} & 〈⇒〉 & @{term r} \hspace{8mm}%\\ @{term ALT r
ZERO} & 〈⇒〉 & @{term r} \hspace{8mm}%\\ @{term SEQ ONE r} & 〈⇒〉

& @{term r} \hspace{8mm}%\\ @{term SEQ r ONE} & 〈⇒〉 & @{term
r} \end{array} \end{equation} \noindent is well understood, there is an
obstacle with the POSIX value calculation algorithm by Sulzmann and Lu: if
we build a derivative regular expression and then simplify it, we will calculate
a POSIX value for this simplified derivative regular expression, \emph{not}
for the original (unsimplified) derivative regular expression. Sulzmann and Lu
\cite{Sulzmann2014} overcome this obstacle by not just calculating a simpli-
fied regular expression, but also calculating a \emph{rectification function}
that ‘‘repairs ′ ′ the incorrect value. The rectification functions can be (slightly
clumsily) implemented in Isabelle/HOL as follows using some auxiliary func-
tions: \begin{center} \begin{tabular}{lcl} @{thm (lhs) F__RIGHT .simps(1)}
& $\dn$ & 〈Right (f v)〉\\ @{thm (lhs) F__LEFT .simps(1)} & $\dn$ &
〈Left (f v)〉\\ @{thm (lhs) F__ALT .simps(1)} & $\dn$ & 〈Right (f 2 v)〉\\
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@{thm (lhs) F__ALT .simps(2)} & $\dn$ & 〈Left (f 1 v)〉\\ @{thm (lhs)
F__SEQ1.simps(1)} & $\dn$ & 〈Seq (f 1 ()) (f 2 v)〉\\ @{thm (lhs) F__SEQ2.simps(1)}
& $\dn$ & 〈Seq (f 1 v) (f 2 ())〉\\ @{thm (lhs) F__SEQ.simps(1)} & $\dn$
& 〈Seq (f 1 v1) (f 2 v2)〉\medskip\\ %\end{tabular} % %\begin{tabular}{lcl}
@{term simp__ALT (ZERO, DUMMY ) (r2, f 2)} & $\dn$ & @{term (r2,
F__RIGHT f 2)}\\ @{term simp__ALT (r1, f 1) (ZERO, DUMMY )} & $\dn$
& @{term (r1, F__LEFT f 1)}\\ @{term simp__ALT (r1, f 1) (r2, f 2)} &
$\dn$ & @{term (ALT r1 r2, F__ALT f 1 f 2)}\\ @{term simp__SEQ (ONE ,
f 1) (r2, f 2)} & $\dn$ & @{term (r2, F__SEQ1 f 1 f 2)}\\ @{term simp__SEQ
(r1, f 1) (ONE , f 2)} & $\dn$ & @{term (r1, F__SEQ2 f 1 f 2)}\\ @{term
simp__SEQ (r1, f 1) (r2, f 2)} & $\dn$ & @{term (SEQ r1 r2, F__SEQ f 1
f 2)}\\ \end{tabular} \end{center} \noindent The functions 〈simpAlt〉 and
〈simpSeq〉 encode the simplification rules in \eqref {Simpl} and compose the rec-
tification functions (simplifications can occur deep inside the regular expression).
The main simplification function is then \begin{center} \begin{tabular}{lcl}
@{term simp (ALT r1 r2)} & $\dn$ & @{term simp__ALT (simp r1) (simp
r2)}\\ @{term simp (SEQ r1 r2)} & $\dn$ & @{term simp__SEQ (simp r1)
(simp r2)}\\ @{term simp r} & $\dn$ & @{term (r , id)}\\ \end{tabular}
\end{center} \noindent where @{term id} stands for the identity function.
The function @{const simp} returns a simplified regular expression and a cor-
responding rectification function. Note that we do not simplify under stars: this
seems to slow down the algorithm, rather than speed it up. The optimised lexer is
then given by the clauses: \begin{center} \begin{tabular}{lcl} @{thm (lhs)
slexer .simps(1)} & $\dn$ & @{thm (rhs) slexer .simps(1)}\\ @{thm (lhs)
slexer .simps(2)} & $\dn$ & 〈let (r s, f r) = simp (r 〉$\backslash$〈 c) in〉\\
& & 〈case〉 @{term slexer r s s} 〈of 〉\\ & & \phantom{$|$} @{term None}
〈⇒〉 @{term None}\\ & & $|$ @{term Some v} 〈⇒〉 〈Some (inj r c (f r v))〉
\end{tabular} \end{center} \noindent In the second clause we first calcu-
late the derivative @{term der c r} and then simplify the result. This gives us
a simplified derivative 〈r s〉 and a rectification function 〈f r 〉. The lexer is then
recursively called with the simplified derivative, but before we inject the char-
acter @{term c} into the value @{term v}, we need to rectify @{term v}
(that is construct @{term f r v}). Before we can establish the correctness of
@{term slexer}, we need to show that simplification preserves the language and
simplification preserves our POSIX relation once the value is rectified (recall
@{const simp} generates a (regular expression, rectification function) pair):
\begin{lemma}\mbox{}\smallskip\\\label{slexeraux} \begin{tabular}{l l} (1)
& @{thm L__fst__simp[symmetric]}\\ (2) & @{thm[mode=IfThen] Posix__simp}
\end{tabular} \end{lemma} \begin{proof } Both are by induction on 〈r 〉. There
is no interesting case for the first statement. For the second statement, of interest
are the @{term r = ALT r1 r2} and @{term r = SEQ r1 r2} cases. In each case
we have to analyse four subcases whether @{term fst (simp r1)} and @{term
fst (simp r2)} equals @{const ZERO} (respectively @{const ONE}). For exam-
ple for @{term r = ALT r1 r2}, consider the subcase @{term fst (simp r1) =
ZERO} and @{term fst (simp r2) 6= ZERO}. By assumption we know @{term s
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∈ fst (simp (ALT r1 r2)) → v}. From this we can infer @{term s ∈ fst (simp
r2) → v} and by IH also (∗) @{term s ∈ r2 → (snd (simp r2) v)}. Given
@{term fst (simp r1) = ZERO} we know @{term L (fst (simp r1)) = {}}. By
the first statement @{term L r1} is the empty set, meaning (∗∗) @{term s /∈ L
r1}. Taking (∗) and (∗∗) together gives by the \mbox{〈P+R〉}−rule @{term s
∈ ALT r1 r2 → Right (snd (simp r2) v)}. In turn this gives @{term s ∈ ALT
r1 r2 → snd (simp (ALT r1 r2)) v} as we need to show. The other cases are
similar .\qed \end{proof } \noindent We can now prove relatively straightfor-
wardly that the optimised lexer produces the expected result: \begin{theorem}
@{thm slexer__correctness} \end{theorem} \begin{proof } By induction on
@{term s} generalising over @{term r}. The case @{term []} is trivial. For
the cons−case suppose the string is of the form @{term c # s}. By induction
hypothesis we know @{term slexer r s = lexer r s} holds for all @{term r} (in
particular for @{term r} being the derivative @{term der c r}). Let @{term r s}
be the simplified derivative regular expression, that is @{term fst (simp (der c
r))}, and @{term f r} be the rectification function, that is @{term snd (simp
(der c r))}. We distinguish the cases whether (∗) @{term s ∈ L (der c r)}
or not. In the first case we have by Theorem∼\ref {lexercorrect}(2) a value
@{term v} so that @{term lexer (der c r) s = Some v} and @{term s ∈ der
c r → v} hold. By Lemma∼\ref {slexeraux}(1) we can also infer from∼(∗) that
@{term s ∈ L r s} holds. Hence we know by Theorem∼\ref {lexercorrect}(2)
that there exists a @{term v ′} with @{term lexer r s s = Some v ′} and @{term
s ∈ r s → v ′}. From the latter we know by Lemma∼\ref {slexeraux}(2) that
@{term s ∈ der c r → (f r v ′)} holds. By the uniqueness of the POSIX relation
(Theorem∼\ref {posixdeterm}) we can infer that @{term v} is equal to @{term
f r v ′}−−−that is the rectification function applied to @{term v ′} produces the
original @{term v}. Now the case follows by the definitions of @{const lexer}
and @{const slexer}. In the second case where @{term s /∈ L (der c r)} we
have that @{term lexer (der c r) s = None} by Theorem∼\ref {lexercorrect}(1).
We also know by Lemma∼\ref {slexeraux}(1) that @{term s /∈ L r s}. Hence
@{term lexer r s s = None} by Theorem∼\ref {lexercorrect}(1) and by IH then
also @{term slexer r s s = None}. With this we can conclude in this case too.\qed
\end{proof } fy the result. This gives us a simplified derivative r s and a rec-
tification function f r. The lexer is then recursively called with the simplified
derivative, but before we inject the character c into the value v, we need to rec-
tify v (that is construct f r v). Before we can establish the correctness of lexer+,
we need to show that simplification preserves the language and simplification
preserves our POSIX relation once the value is rectified (recall simp generates a
(regular expression, rectification function) pair):

Lemma 14.
(1) L(fst (simp r)) = L(r)
(2) If (s, fst (simp r)) → v then (s, r) → snd (simp r) v.

Proof. Both are by induction on r. There is no interesting case for the first
statement. For the second statement, of interest are the r = r1 + r2 and r =
r1 · r2 cases. In each case we have to analyse four subcases whether fst (simp
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r1) and fst (simp r2) equals 0 (respectively 1). For example for r = r1 + r2,
consider the subcase fst (simp r1) = 0 and fst (simp r2) 6= 0. By assumption
we know (s, fst (simp (r1 + r2))) → v. From this we can infer (s, fst (simp
r2)) → v and by IH also (*) (s, r2) → snd (simp r2) v. Given fst (simp r1) =
0 we know L(fst (simp r1)) = ∅. By the first statement L(r1) is the empty set,
meaning (**) s /∈ L(r1). Taking (*) and (**) together gives by the P+R-rule
(s, r1 + r2) → Right (snd (simp r2) v). In turn this gives (s, r1 + r2) → snd
(simp (r1 + r2)) v as we need to show. The other cases are similar. ut

We can now prove relatively straightforwardly that the optimised lexer produces
the expected result:

Theorem 5. lexer+ r s = lexer r s

Proof. By induction on s generalising over r. The case [] is trivial. For the cons-
case suppose the string is of the form c :: s. By induction hypothesis we know
lexer+ r s = lexer r s holds for all r (in particular for r being the derivative r\c).
Let r s be the simplified derivative regular expression, that is fst (simp (r\c)),
and f r be the rectification function, that is snd (simp (r\c)). We distinguish the
cases whether (*) s ∈ L(r\c) or not. In the first case we have by Theorem 2(2) a
value v so that lexer (r\c) s = Some v and (s, r\c) → v hold. By Lemma 14(1)
we can also infer from (*) that s ∈ L(r s) holds. Hence we know by Theorem 2(2)
that there exists a v ′ with lexer r s s = Some v ′ and (s, r s) → v ′. From the latter
we know by Lemma 14(2) that (s, r\c) → f r v ′ holds. By the uniqueness of the
POSIX relation (Theorem 1) we can infer that v is equal to f r v ′—that is the
rectification function applied to v ′ produces the original v. Now the case follows
by the definitions of lexer and lexer+.

In the second case where s /∈ L(r\c) we have that lexer (r\c) s = None by
Theorem 2(1). We also know by Lemma 14(1) that s /∈ L(r s). Hence lexer r s s
= None by Theorem 2(1) and by IH then also lexer+ r s s = None. With this
we can conclude in this case too. ut

9 HERE

Lemma 15. If v : (r↓)\c then retrieve (rc) v = retrieve r (inj (r↓) c v).

Proof. By induction on the definition of r↓. The cases for rule 1) and 2) are
straightforward as 0\c and 1\c are both equal to 0. This means v : 0 cannot
hold. Similarly in case of rule 3) where r is of the form ACHAR d with c = d.
Then by assumption we know v : 1, which implies v = Empty. The equation
follows by simplification of left- and right-hand side. In case c 6= d we have again
v : 0, which cannot hold.

For rule 4a) we have again v : 0. The property holds by IH for rule 4b). The
induction hypothesis is

retrieve (rc) v = retrieve r (inj (r↓) c v)
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which is what left- and right-hand side simplify to. The slightly more inter-
esting case is for 4c). By assumption we have v : ((r1

↓)\c) + (((AALTs bs
(r2 :: rs))↓)\c). This means we have either (*) v1 : (r1

↓)\c with v = Left v1
or (**) v2 : ((AALTs bs (r2 :: rs))↓)\c with v = Right v2. The former case is
straightforward by simplification. The second case is …TBD.

Rule 5) TBD.
Finally for rule 6) the reasoning is as follows: By assumption we have v :

((r↓)\c) · (r↓)?. This means we also have v = Seq v1 v2, v1 : (r↓)\c and v2 =
Stars vs. We want to prove

retrieve (ASEQ bs (fuse [Z ] (rc)) (ASTAR [] r)) v (3)

= retrieve (ASTAR bs r) (inj ((r↓)?) c v) (4)

The right-hand side inj-expression is equal to Stars (inj (r↓) c v1 :: vs), which
means the retrieve-expression simplifies to

bs @ [Z ] @ retrieve r (inj (r↓) c v1) @ retrieve (ASTAR [] r) (Stars vs)

The left-hand side (3) above simplifies to

bs @ retrieve (fuse [Z ] (rc)) v1 @ retrieve (ASTAR [] r) (Stars vs)

We can move out the fuse [Z ] and then use the IH to show that left-hand side
and right-hand side are equal. This completes the proof.
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