
POSIX Lexing with Bitcoded Derivatives
Chengsong Tan !

King’s College London

Christian Urban !

King’s College London

Abstract
Sulzmann and Lu described a lexing algorithm that calculates Brzozowski derivatives using bitcodes annotated
to regular expressions. Their algorithm generates POSIX values which encode the information of how a regular
expression matches a string—that is, which part of the string is matched by which part of the regular expression.
The purpose of the bitcodes is to generate POSIX values incrementally while derivatives are calculated. They
also help with designing an “aggressive” simplification function that keeps the size of derivatives finite. Without
simplification the size derivatives can grow arbitrarily big resulting in an extremely slow lexing algorithm. In this
paper we describe a variant of Sulzmann and Lu’s algorithm: Our algorithm is a recursive functional program,
whereas Sulzmann and Lu’s version involves a fixpoint construction. We (i) prove in Isabelle/HOL that our
algorithm is correct and generates unique POSIX values; we also (ii) establish a finite bound for the size of the
derivatives.

2012 ACM Subject Classification Design and analysis of algorithms; Formal languages and automata
theory

Keywords and phrases POSIX matching, Derivatives of Regular Expressions, Isabelle/HOL

Digital Object Identifier 10.4230/LIPIcs...

1 Introduction

In the last fifteen or so years, Brzozowski’s derivatives of regular expressions have sparked quite
a bit of interest in the functional programming and theorem prover communities. The beauty of
Brzozowski’s derivatives [3] is that they are neatly expressible in any functional language, and easily
definable and reasoned about in theorem provers—the definitions just consist of inductive datatypes
and simple recursive functions. Derivatives of a regular expression, written r\c, give a simple solution
to the problem of matching a string s with a regular expression r: if the derivative of r w.r.t. (in
succession) all the characters of the string matches the empty string, then r matches s (and vice versa).
We are aware of a mechanised correctness proof of Brzozowski’s matcher in HOL4 by Owens and
Slind [9]. Another one in Isabelle/HOL is part of the work by Krauss and Nipkow [6]. And another
one in Coq is given by Coquand and Siles [4].

There are two difficulties with derivative-based matchers and also lexers: First, Brzozowski’s
original matcher only generates a yes/no answer for whether a regular expression matches a string or
not. Sulzmann and Lu [10] overcome this difficulty by cleverly extending Brzozowski’s matching
algorithm to POSIX lexing. This extended version generates additional information on how a regular
expression matches a string. They achieve this by

The second problem is that Brzozowski’s derivatives can grow to arbitrarily big sizes. For example
if we start with the regular expression (a + aa)∗ and take successive derivatives according to the
character a, we end up with a sequence of ever-growing derivatives like

(a + aa)∗ _\a−→ (1 + 1a) · (a + aa)∗
_\a−→ (0 + 0a + 1) · (a + aa)∗ + (1 + 1a) · (a + aa)∗
_\a−→ (0 + 0a + 0) · (a + aa)∗ + (1 + 1a) · (a + aa)∗ +

(0 + 0a + 1) · (a + aa)∗ + (1 + 1a) · (a + aa)∗
_\a−→ . . .

© ;
licensed under Creative Commons License CC-BY 4.0

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:chengsong.tan@kcl.ac.uk
mailto:christian.urban@kcl.ac.uk
https://doi.org/10.4230/LIPIcs...
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

XX:2 POSIX Lexing with Bitcoded Derivatives

where after around 35 steps we run out of memory on a typical computer (we define the precise
details of the derivative operation later). Clearly, the notation involving 0s and 1s already suggests
simplification rules that can be applied to regular regular expressions, for example 0r ⇒ 0, 1r ⇒ r,
0 + r ⇒ r and r + r ⇒ r. While such simple-minded reductions have been proved in our earlier
work to preserve the correctness of Sulzmann and Lu’s algorithm, they unfortunately do not help with
limiting the gowth of the derivatives shown above: yes, the growth is slowed, but the derivatives can
still grow beyond any finite bound.

Sulzmann and Lu introduce a bitcoded version of their lexing algorithm. They make some claims
about the correctness and speed of this version, but do not provide any supporting proof arguments, not
even “pencil-and-paper” arguments. They wrote about their bitcoded “incremental parsing method”
(that is the algorithm to be studied in this section):

“Correctness Claim: We further claim that the incremental parsing method [..] in combination
with the simplification steps [..] yields POSIX parse trees. We have tested this claim extensively
[..] but yet have to work out all proof details.”

If a regular expression matches a string, then in general there is more than one way of how the
string is matched. There are two commonly used disambiguation strategies to generate a unique
answer: one is called GREEDY matching [5] and the other is POSIX matching [1, 7, 8, 10, 11]. For
example consider the string xy and the regular expression (x + y + xy)?. Either the string can be
matched in two ‘iterations’ by the single letter-regular expressions x and y, or directly in one iteration
by xy. The first case corresponds to GREEDY matching, which first matches with the left-most
symbol and only matches the next symbol in case of a mismatch (this is greedy in the sense of
preferring instant gratification to delayed repletion). The second case is POSIX matching, which
prefers the longest match.

The derivative has the property (which may almost be regarded as its specification) that, for every
string s and regular expression r and character c, one has cs ∈ L r if and only if s ∈ L (r\c).

0\c def= 0

1\c def= 0

d\c def= if c = d then 1 else 0

(r1 + r2)\c def= (r1\c) + (r2\c)
(r1 · r2)\c def= if nullable r1

then (r1\c) · r2 + (r2\c)
else (r1\c) · r2

(r?)\c def= (r\c) · r?

nullable (0) def= False

nullable (1) def= True

nullable (c) def= False

nullable (r1 + r2) def= nullable r1 ∨ nullable r2

nullable (r1 · r2) def= nullable r1 ∧ nullable r2

nullable (r?) def= True

2 Background

In our Isabelle/HOL formalisation strings are lists of characters with the empty string being represented
by the empty list, written [], and list-cons being written as __ :: __ ; string concatenation is __ @ __ .
Often we use the usual bracket notation for lists also for strings; for example a string consisting of
just a single character c is written [c]. Our egular expressions are defined as usual as the elements of
the following inductive datatype:

r := 0 | 1 | c | r1 + r2 | r1 · r2 | r?

C. Tan and C. Urban XX:3

r1 r2
_\a

r3
_\b

r4
_\c

nullable

v4v3
inj r3 c

v2
inj r2 b

v1
inj r1 a

mkeps

Figure 1 The two phases of the algorithm by Sulzmann & Lu [10], matching the string [a, b, c]. The first
phase (the arrows from left to right) is Brzozowski’s matcher building successive derivatives. If the last regular
expression is nullable, then the functions of the second phase are called (the top-down and right-to-left arrows):
first mkeps calculates a value v4 witnessing how the empty string has been recognised by r4. After that the
function inj “injects back” the characters of the string into the values.

where 0 stands for the regular expression that does not match any string, 1 for the regular expression
that matches only the empty string and c for matching a character literal. The language of a regular
expression, written L, is defined as usual (see for example [2]).

Central to Brzozowski’s regular expression matcher are two functions called nullable and
derivative. The latter is written r\c for the derivative of the regular expression r w.r.t. the character c.
Both functions are defined by recursion over regular expressions.

nullable(0) def= false
nullable(1) def= true
nullable(c) def= false
nullable(r1 + r2) def= nullable(r1) ∨ nullable(r2)
nullable(r1 · r2) def= nullable(r1) ∧ nullable(r2)
nullable(r∗) def= true

The derivative function takes a regular expression, say r and a character, say c, as input and returns
the derivative regular expression.

0\c def= 0

1\c def= 0

d\c def= if c = d then 1 else 0

(r1 + r2)\c def= r1\c + r2\c
(r1 · r2)\c def= if nullable(r1)

then (r1\c) · r2 + r2\c
else (r1\c) · r2

(r∗)\c def= (r\c) · r∗

Sulzmann and Lu presented two lexing algorithms in their paper from 2014 [10]. This first
algorithm consists of two phases: first a matching phase (which is Brzozowski’s algorithm) and then
a value construction phase. The values encode how a regular expression matches a string. Values are
defined as the inductive datatype

v := Empty | Char c | Left v | Right v | Seq v1 v2 | Stars vs

where we use vs to stand for a list of values.
Sulzmann and Lu also define inductively an inhabitation relation that associates values to regular
expressions:

XX:4 POSIX Lexing with Bitcoded Derivatives

([], 1)→ Empty
P1

([c], c)→ Char c
Pc

(s, r1)→ v

(s, r1 + r2)→ Left v
P+L

(s, r2)→ v s /∈ L r1

(s, r1 + r2)→ Right v
P+R

(s1, r1)→ v1 (s2, r2)→ v2

@ s3 s4. s3 6= [] ∧ s3 @ s4 = s2 ∧ s1 @ s3 ∈ L r1 ∧ s4 ∈ L r2

(s1 @ s2, r1 · r2)→ Seq v1 v2
PS

([], r?)→ Stars []
P[]

(s1, r)→ v (s2, r?)→ Stars vs |v| 6= []
@ s3 s4. s3 6= [] ∧ s3 @ s4 = s2 ∧ s1 @ s3 ∈ L r ∧ s4 ∈ L (r?)

(s1 @ s2, r?)→ Stars (v :: vs)
P?

Figure 2 Our inductive definition of POSIX values.

` Empty : 1 ` Char c : c

` v1 : r1

` Left v1 : r1 + r2

` v2 : r1

` Right v2 : r2 + r1

` v1 : r1 ` v2 : r2

` Seq v1 v2 : r1 · r2

∀ v∈ r. ` v : vs ∧ |v| 6= []
` Stars r : vs?

Note that no values are associated with the regular expression 0. It is routine to establish how values
“inhabiting” a regular expression correspond to the language of a regular expression, namely

I Proposition 1. L r = {|v| | ` v : r}

Sulzmann-Lu algorithm with inj. State that POSIX rules. metion slg is correct.

mkeps 1 def= Empty

mkeps (r1 · r2) def= Seq (mkeps r1) (mkeps r2)
mkeps (r1 + r2) def= if nullable r1 then Left (mkeps r1) else Right (mkeps r2)
mkeps (r?) def= Stars []

(1) inj d c (Empty) def= Char d

(2) inj (r1 + r2) c (Left v1) def= Left (inj r1 c v1)
(3) inj (r1 + r2) c (Right v2) def= Right (inj r2 c v2)
(4) inj (r1 · r2) c (Seq v1 v2) def= Seq (inj r1 c v1) v2

(5) inj (r1 · r2) c (Left (Seq v1 v2)) def= Seq (inj r1 c v1) v2

(6) inj (r1 · r2) c (Right v2) def= Seq (mkeps r1) (inj r2 c v2)
(7) inj (r?) c (Seq v (Stars vs)) def= Stars (inj r c v :: vs)

C. Tan and C. Urban XX:5

3 Bitcoded Regular Expressions and Derivatives

In the second part of their paper [10], Sulzmann and Lu describe another algorithm that generates
POSIX values but dispences with the second phase where characters are injected “back” into values.
For this they annotate bitcodes to regular expressions, which we define in Isabelle/HOL as the datatype

breg ::= ZERO | ONE bs
| CHAR bs c
| ALTs bs rs
| SEQ bs r1 r2

| STAR bs r

where bs stands for bitsequences; r, r1 and r2 for bitcoded regular expressions; and rs for lists of
bitcoded regular expressions. The binary alternative ALT bs r1 r2 is just an abbreviation for ALTs bs
[r1, r2]. For bitsequences we just use lists made up of the constants Z and S. The idea with bitcoded
regular expressions is to incrementally generate the value information (for example Left and Right) as
bitsequences. For this Sulzmann and Lu define a coding function for how values can be coded into
bitsequences.

code (Empty) def= []
code (Char c) def= []
code (Left v) def= Z :: code v

code (Right v) def= S :: code v

code (Seq v1 v2) def= code v1 @ code v2

code (Stars []) def= [S]
code (Stars (v :: vs)) def= Z :: code v @ code (Stars vs)

As can be seen, this coding is “lossy” in the sense that we do not record explicitly character values
and also not sequence values (for them we just append two bitsequences). However, the different
alternatives for Left, respectively Right, are recorded as Z and S followed by some bitsequence.
Similarly, we use Z to indicate if there is still a value coming in the list of Stars, whereas S indicates
the end of the list. The lossiness makes the process of decoding a bit more involved, but the point is
that if we have a regular expression and a bitsequence of a corresponding value, then we can always
decode the value accurately. The decoding can be defined by using two functions called decode′ and
decode:

decode′ bs (1) def= (Empty, bs)
decode′ bs (c) def= (Char c, bs)
decode′ (Z ::bs) (r1 + r2) def= let (v, bs1) = decode′ bs r1 in (Left v, bs1)
decode′ (S ::bs) (r1 + r2) def= let (v, bs1) = decode′ bs r2 in (Right v, bs1)
decode′ bs (r1 · r2) def= let (v1, bs1) = decode′ bs r1 in

let (v2, bs2) = decode′ bs1 r2 in (Seq v1 v2, bs2)
decode′ (Z ::bs) (r∗) def= (Stars [], bs)
decode′ (S ::bs) (r∗) def= let (v, bs1) = decode′ bs r in

let (Stars vs, bs2) = decode′ bs1 r∗ in (Stars v ::vs, bs2)

decode bs r
def= let (v, bs′) = decode′ bs r in

if bs′ = [] then Some v else None

The function decode checks whether all of the bitsequence is consumed and returns the corresponding
value as Some v; otherwise it fails with None. We can establish that for a value v inhabited by a
regular expression r, the decoding of its bitsequence never fails.

XX:6 POSIX Lexing with Bitcoded Derivatives

I Lemma 2. If ` v : r then decode (code v) r = Some v.

Proof. This follows from the property that decode′ ((code v) @ bs) r = (v, bs) holds for any bit-
sequence bs and ` v : r. This property can be easily proved by induction on ` v : r. J

Sulzmann and Lu define the function internalise in order to transform standard regular expressions
into annotated regular expressions. We write this operation as r↑. This internalisation uses the
following fuse function.

fuse bs (ZERO) def= ZERO

fuse bs (ONE bs′) def= ONE (bs @ bs′)
fuse bs (CHAR bs′ c) def= CHAR (bs @ bs′) c

fuse bs (ALTs bs′ rs) def= ALTs (bs @ bs′) rs

fuse bs (SEQ bs′ r1 r2) def= SEQ (bs @ bs′) r1 r2

fuse bs (STAR bs′ r) def= STAR (bs @ bs′) r

A regular expression can then be internalised into a bitcoded regular expression as follows.

(0)↑ def= ZERO

(1)↑ def= ONE []
(c)↑ def= CHAR [] c

(r1 + r2)↑ def= ALT [] (fuse [Z] r↑1) (fuse [S] r↑2)
(r1 · r2)↑ def= SEQ [] r↑1 r↑2

(r∗)↑ def= STAR [] r↑

There is also an erase-function, written a↓, which transforms a bitcoded regular expression into a
(standard) regular expression by just erasing the annotated bitsequences. We omit the straightforward
definition. For defining the algorithm, we also need the functions bnullable and bmkeps, which are
the “lifted” versions of nullable and mkeps acting on bitcoded regular expressions, instead of regular
expressions.

bnullable (ZERO) def= false

bnullable (ONE bs) def= true

bnullable (CHAR bs c) def= false

bnullable (ALTs bs rs) def= ∃ r ∈ rs. bnullable r

bnullable (SEQ bs r1 r2) def= bnullable r1 ∧ bnullable r2

bnullable (STAR bs r) def= true

bmkeps (ONE bs) def= bs

bmkeps (ALTs bs r ::rs) def= if bnullable r

then bs @ bmkeps r

else bs @ bmkeps rs
bmkeps (SEQ bs r1 r2) def=

bs @ bmkeps r1 @ bmkeps r2

bmkeps (STAR bs r) def= bs @ [S]

The key function in the bitcoded algorithm is the derivative of an bitcoded regular expression. This
derivative calculates the derivative but at the same time also the incremental part of bitsequences that
contribute to constructing a POSIX value.

C. Tan and C. Urban XX:7

(ZERO)\c def= ZERO

(ONE bs)\c def= ZERO

(CHAR bs d)\c def= if c = d then ONE bs else ZERO

(ALTs bs rs)\c def= ALTs bs (map (_\c) rs)
(SEQ bs r1 r2)\c def= if bnullable r1

then ALT bs (SEQ [] (r1\c) r2)
(fuse (bmkeps r1) (r2\c))

else SEQ bs (r1\c) r2

(STAR bs r)\c def= SEQ bs (fuse [Z](r\c)) (STAR [] r)

This function can also be extended to strings, written r\s, just like the standard derivative. We omit
the details. Finally we can define Sulzmann and Lu’s bitcoded lexer, which we call blexer:

blexer r s
def= let rder = (r↑)\s in

if bnullable(rder) then decode (bmkeps rder) r else None

This bitcoded lexer first internalises the regular expression r and then builds the bitcoded derivative
according to s. If the derivative is (b)nullable the string is in the language of r and it extracts
the bitsequence using the bmkeps function. Finally it decodes the bitsequence into a value. If the
derivative is not nullable, then None is returned. We can show that this way of calculating a value
generates the same result as with lexer.

Before we can proceed we need to define a helper function, called retrieve, which Sulzmann and
Lu introduced for the correctness proof.

retrieve (ONE bs) (Empty) def= bs

retrieve (CHAR bs c) (Char d) def= bs

retrieve (ALTs bs [r]) v
def= bs @ retrieve r v

retrieve (ALTs bs (r :: rs)) (Left v) def= bs @ retrieve r v

retrieve (ALTs bs (r :: rs)) (Right v) def= bs @ retrieve (ALTs [] rs) v

retrieve (SEQ bs r1 r2) (Seq v1 v2) def= bs @ retrieve r1 v1 @ retrieve r2 v2

retrieve (STAR bs r) (Stars []) def= bs @ [S]
retrieve (STAR bs r) (Stars (v :: vs)) def= bs @ [Z] @ retrieve r v @ retrieve (STAR [] r) (Stars vs)

The idea behind this function is to retrieve a possibly partial bitcode from a bitcoded regular expression,
where the retrieval is guided by a value. For example if the value is Left then we descend into the
left-hand side of an alternative in order to assemble the bitcode. Similarly for Right. The property
we can show is that for a given v and r with ` v : r, the retrieved bitsequence from the internalised
regular expression is equal to the bitcoded version of v.

I Lemma 3. If ` v : r then code v = retrieve (r↑) v.

We also need some auxiliary facts about how the bitcoded operations relate to the “standard” operations
on regular expressions. For example if we build a bitcoded derivative and erase the result, this is the
same as if we first erase the bitcoded regular expression and then perform the “standard” derivative
operation.

I Lemma 4.
(1) (a\s)↓ = (a↓)\s
(2) bnullable(a) iff nullable(a↓)
(3) bmkeps(a) = retrieve a (mkeps (a↓)) provided nullable(a↓).

XX:8 POSIX Lexing with Bitcoded Derivatives

Proof. All properties are by induction on annotated regular expressions. There are no interesting
cases. J

This brings us to our main lemma in this section: if we build a derivative, say r\s and have a value,
say v, inhabited by this derivative, then we can produce the result lexer generates by applying this
value to the stacked-up injection functions flex assembles. The lemma establishes that this is the
same value as if we build the annotated derivative r↑\s and then retrieve the corresponding bitcoded
version, followed by a decoding step.

I Lemma 5 (Main Lemma). If ` v : r\s then

Some (flex r id s v) = decode(retrieve (r↑\s) v) r

Proof. This can be proved by induction on s and generalising over v. The interesting point is that
we need to prove this in the reverse direction for s. This means instead of cases [] and c ::s, we have
cases [] and s @ [c] where we unravel the string from the back.1

The case for [] is routine using Lemmas 2 and 3. In the case s @ [c], we can infer from the
assumption that ` v : (r\s)\c holds. Hence by Lemma ?? we know that (*) ` inj (r\s) c v : r\s
holds too. By definition of flex we can unfold the left-hand side to be

Some (flex r id (s @ [c]) v) = Some (flex r id s (inj (r\s) c v))

By induction hypothesis and (*) we can rewrite the right-hand side to

decode (retrieve (r↑\s) (inj (r\s) c v)) r

which is equal to decode (retrieve (r↑\(s @ [c])) v) r as required. The last rewrite step is possible
because we generalised over v in our induction. J

With this lemma in place, we can prove the correctness of blexer such that it produces the same result
as lexer.

I Theorem 6. lexer r s = blexer r s

Proof. We can first expand both sides using Lemma ?? and the definition of blexer. This gives us
two if -statements, which we need to show to be equal. By Lemma 4(2) we know the if -tests coincide:

bnullable(r↑\s) iff nullable(r\s)

For the if -branch suppose rd
def= r↑\s and d

def= r\s. We have (*) nullable d. We can then show by
Lemma 4(3) that

decode(bmkeps rd) r = decode(retrieve a (mkeps d)) r

where the right-hand side is equal to Some (flex r id s (mkeps d)) by Lemma 5 (we know ` mkeps d : d

by (*)). This shows the if -branches return the same value. In the else-branches both lexer and blexer
return None. Therefore we can conclude the proof. J

This establishes that the bitcoded algorithm by Sulzmann and Lu without simplification produces
correct results. This was only conjectured in their paper [10]. The next step is to add simplifications.

1 Isabelle/HOL provides an induction principle for this way of performing the induction.

C. Tan and C. Urban XX:9

(SEQ bs ZERO r2) (ZERO) (SEQ bs r1 ZERO) (ZERO) (SEQ bs1 (ONE bs2) r) fuse (bs1 @ bs2) r
r1 r2

(SEQ bs r1 r3) (SEQ bs r2 r3)
r3 r4

(SEQ bs r1 r3) (SEQ bs r1 r4)

(ALTs bs []) (ZERO) (ALTs bs [r]) fuse bs r
rs1

s
 rs2

(ALTs bs rs1) (ALTs bs rs2)
rs1

s
 rs2

r :: rs1
s
 r :: rs2

r1 r2

r1 :: rs
s
 r2 :: rs

ZERO :: rs
s
 rs ALTs bs rs1 :: rs2

s
 (map (fuse bs) rs1 @ rs2)

L (r1
↓) ⊆ L (r2

↓)
(rs1 @ [r2] @ rs2 @ [r1] @ rs3) s

 (rs1 @ [r2] @ rs2 @ rs3)

Figure 3 ???

4 Simplification

Derivatives as calculated by Brzozowski’s method are usually more complex regular expressions
than the initial one; the result is that the derivative-based matching and lexing algorithms are often
abysmally slow.

However, as Sulzmann and Lu wrote, various optimisations are possible, such as the simplifications
of 0 + r,r + 0,1 · r and r · 1 to r. These simplifications can speed up the algorithms considerably.

I Lemma 7. If r1 r2 then bnullable r1 = bnullable r2.

I Lemma 8. If r1 r2 and bnullable r1 then bmkeps r1 = bmkeps r2.

I Lemma 9. r ∗ bsimp r

I Lemma 10. If r1 r2 then r1\c ∗ r2\c.

I Lemma 11. r\s ∗ r\simp s

I Theorem 12. blexer r s = blexer+ r s

Sulzmann & Lu apply simplification via a fixpoint operation
; also does not use erase to filter out duplicates.
not direct correspondence with PDERs, because of example problem with retrieve
correctness

5 Bound - NO

6 Bounded Regex / Not

7 Conclusion

[2]

XX:10 POSIX Lexing with Bitcoded Derivatives

References

1 The Open Group Base Specification Issue 6 IEEE Std 1003.1 2004 Edition, 2004. http://pubs.opengroup.
org/onlinepubs/009695399/basedefs/xbd_chap09.html.

2 F. Ausaf, R. Dyckhoff, and C. Urban. POSIX Lexing with Derivatives of Regular Expressions (Proof
Pearl). In Proc. of the 7th International Conference on Interactive Theorem Proving (ITP), volume 9807
of LNCS, pages 69–86, 2016.

3 J. A. Brzozowski. Derivatives of Regular Expressions. Journal of the ACM, 11(4):481–494, 1964.
4 T. Coquand and V. Siles. A Decision Procedure for Regular Expression Equivalence in Type Theory. In

Proc. of the 1st International Conference on Certified Programs and Proofs (CPP), volume 7086 of LNCS,
pages 119–134, 2011.

5 A. Frisch and L. Cardelli. Greedy Regular Expression Matching. In Proc. of the 31st International
Conference on Automata, Languages and Programming (ICALP), volume 3142 of LNCS, pages 618–629,
2004.

6 A. Krauss and T. Nipkow. Proof Pearl: Regular Expression Equivalence and Relation Algebra. Journal of
Automated Reasoning, 49:95–106, 2012.

7 C. Kuklewicz. Regex Posix. https://wiki.haskell.org/Regex_Posix.
8 S. Okui and T. Suzuki. Disambiguation in Regular Expression Matching via Position Automata with

Augmented Transitions. In Proc. of the 15th International Conference on Implementation and Application
of Automata (CIAA), volume 6482 of LNCS, pages 231–240, 2010.

9 S. Owens and K. Slind. Adapting Functional Programs to Higher Order Logic. Higher-Order and
Symbolic Computation, 21(4):377–409, 2008.

10 M. Sulzmann and K. Lu. POSIX Regular Expression Parsing with Derivatives. In Proc. of the 12th
International Conference on Functional and Logic Programming (FLOPS), volume 8475 of LNCS, pages
203–220, 2014.

11 S. Vansummeren. Type Inference for Unique Pattern Matching. ACM Transactions on Programming
Languages and Systems, 28(3):389–428, 2006.

http://pubs.opengroup.org/onlinepubs/009695399/basedefs/xbd_chap09.html
http://pubs.opengroup.org/onlinepubs/009695399/basedefs/xbd_chap09.html
https://wiki.haskell.org/Regex_Posix

	1 Introduction
	2 Background
	3 Bitcoded Regular Expressions and Derivatives
	4 Simplification
	5 Bound - NO
	6 Bounded Regex / Not
	7 Conclusion

