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Abstract. This paper studies derivatives and automata for expressions
in star normal form as defined by Brüggemann-Klein. For an expression
in star normal form, the paper shows that the derivatives are either ∅ or
unique, while in general Berry and Sethi’s result shows the derivatives are
either ∅ or similar. It is known that the partial derivative automaton and
the follow automaton are two small automata, each of which is a quotient
of the position automaton. For the relation between the partial derivative
and follow automata, however, Ilie and Yu stated that a rigorous analysis
is necessary but difficult. The paper tackles the issue, and presents several
results. Our work shows that there are different conditions under which
the relation of the two automata can be different.
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1 Introduction

Finite automata are basic for efficient implementation and application of regular
expressions. Derivatives are a fundamental concept for regular expressions and a
useful tool to study automata construction from regular expressions. This paper
studies derivatives and automata of regular expressions in star normal form,
defined by Brüggemann-Klein [3]. It is known that every regular expression can
be transformed into star normal form in linear time [3], and several algorithms
depend on star normal form (e. g., [3,8]).

Derivatives of regular expressions were introduced by Brzozowski [5]. The
notion was generalized to partial derivatives by Antimirov [1]. There has been
no result about derivatives particular for expressions in star normal form.
Among the many constructions of ε-free non-deterministic finite automata (NFA)
from regular expressions, we consider position automata proposed separately by
Glushkov [10] and McNaughton and Yamada [12], partial derivative or equation
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automata using partial derivatives [1], and follow automata proposed by Ilie and
Yu [11]. The position automaton has size at most quadratic and can be com-
puted in quadratic time [3,9,14]. Berry and Sethi [2] showed a natural connec-
tion between the position automaton and the derivatives. The partial derivative
automaton has also been proved to be equivalent to the automaton constructed
from the prebase [13]. Champarnaud and Ziadi [7] proposed a quadratic algo-
rithm for computing the partial derivative automata which improved very much
the original algorithm [1], and proved that the partial derivative automaton is a
quotient of the position automaton. Ilie and Yu [11] proposed a simplified proof
of the result. Lombardy and Sakarovitch [15] gave another proof in the more
general setting of expressions with multiplicity which applies to present Boolean
case. Recently Ilie and Yu [11] introduced the follow automaton which can be
computed in quadratic time, and proved that the follow automaton is a quotient
of the position automaton. Champarnaud, Nicart and Ziadi presented another
quadratic algorithm [8] for computing the follow automaton.

The paper first shows that, for an expression in star normal form, the deriva-
tives of the marked expression (see Sect. 2 for the explanation of marked expres-
sion) with respect to word of the form wa for any word w and a fixed symbol a
are either ∅ or unique, while Berry and Sethi’s result [2] establishes that in gen-
eral the above derivatives are either ∅ or similar. This uniqueness of derivatives
is of course an attractive property.

The paper then discusses the relation between the partial derivative and
follow automata. It has been known that both the partial derivative and follow
automata are quotients of the position automaton. The question is what is the
relation between the first two automata. In [11] Ilie and Yu compared some
examples and stated that “a more rigorous comparison” between the automata
“should be done” but “seems difficult”. Champarnaud et al. [6] gave a condition
(“normalized” regular expressions) under which the partial derivative automaton
is a quotient of the follow automaton1. The paper gives several conditions for
the following relations between the two automata: (1) the partial derivative
automaton is a quotient of the follow automaton, (2) the converse, and (3) the
two automata are isomorphic. Our work thus shows, for the first time, there are
different conditions under which the relation of the two automata is different.

In concrete, it first presents several simple characterizations, in terms of
derivatives, of the above relations between the two automata. Then based on the
structure of expressions, we find conditions that are connected to the relations,
and give several properties of the conditions. We show that for an expression in
star normal form satisfying CONC condition (see Sect. 4), the partial derivative
automaton is a quotient of the follow automaton. Compared with the work in [6],
the CONC condition is more general (meaning that it allows more expressions
than normalized regular expressions), and captures more adequately the nature
of expressions for which the resulting partial derivative and follow automata

1 This quotient result, however, is not given in [6]. In [6] the main theorem (Theorem
4, p.11) states for a “normalized” regular expression, the size of the partial derivative
automaton is smaller than the size of the follow automaton.
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retain the above quotient relation. For example, none of the expressions given
in Example 37 are normalized regular expressions, while they all satisfy CONC
condition, and for each of the expressions the partial derivative automaton is a
quotient of the follow automaton. See Sect. 4 for a discussion. We further present
conditions for some special situations, in which the two automata are isomorphic
or the follow automaton is a quotient of the partial derivative automaton. Since
regular expressions can be transformed to star normal form in linear time, we can
easily get the smaller automaton when one of the above conditions is satisfied.

Section 2 introduces basic notations and notions. Derivatives for expressions
in star normal form are considered in Sect. 3. Section 4 focuses on the relation
of partial derivative and follow automata. Section 5 gives concluding remarks.

2 Preliminaries

We assume the reader to be familiar with basic regular language and automata
theory, e.g., from [16]. We introduce here only some notations and notions used
later in the paper.

Let Σ be an alphabet of symbols. The empty word is denoted by ε. The set
of all finite words over Σ is denoted by Σ∗. A regular expression over Σ is ∅, ε or
a ∈ Σ, or is the union E1+E2, the concatenation E1E2, or the star E∗

1 for regular
expressions E1 and E2. For a regular expression E, the language specified by E is
denoted by L(E). Define λ(E) = ε if ε ∈ L(E) and ∅ otherwise. The size of E is
denoted by |E| and is the length of E when written in postfix (parentheses are not
counted). The number of symbol occurrences in E, or the alphabetic width of E,
is denoted by ‖E‖. The symbols that occur in E, which is the smallest alphabet
of E, is denoted by ΣE . We assume that rules E +∅ = ∅+E = E,E∅ = ∅E = ∅,
and Eε = εE = E (rules-∅ε) hold in the paper.

For a regular expression we can mark symbols with subscripts so that in the
marked expression each marked symbol occurs only once. For example (a1 +
b2)∗a3b4(a5 + b6) is a marking of the expression (a + b)∗ab(a + b). The marking
of an expression E is denoted by E. The same notation will also be used for
dropping of subscripts from the marked symbols: E = E. We extend the notation
for words and automata in the obvious way. It will be clear from the context
whether · adds or drops subscripts.

For an expression E over Σ, we define the following sets: first(E) =
{a | aw ∈ L(E), a ∈ Σ,w ∈ Σ∗}, last(E) = {a | wa ∈ L(E), w ∈ Σ∗, a ∈
Σ}, follow(E, a) = {b | uabv ∈ L(E), u, v ∈ Σ∗, b ∈ Σ} for a ∈ Σ.

Define followlast(E) = {b | vbw ∈ L(E), v ∈ L(E), v �= ε, b ∈ Σ,w ∈
Σ∗}. An expression E is in star normal form (SNF) [4] if, for each starred
subexpression H∗ of E, followlast(H) ∩ first(H) = ∅ and ε /∈ L(H). It is
known that regular expressions can be transformed to SNF in linear time [3].

A finite automaton is a quintuple M = (Q,Σ, δ, q0, F ), where Q is a finite
set of states, Σ is the alphabet, δ ⊆ Q × Σ × Q is the transition mapping, q0 is
the start state, and F ⊆ Q is the set of accepting states. Denote the language
accepted by the automaton M by L(M).
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Fig. 1. (a) Mpos(E1), (b) Mpd(E1), and (c) Mf(E1), corresponding to E1 = (ab(c+ε))∗.

Let ≡⊆ Q × Q be an equivalence relation. We say that ≡ is right invariant
w.r.t. M iff (1) ≡⊆ (Q−F )2 ∪F 2 and (2) for any p, q ∈ Q, a ∈ Σ, if p ≡ q, then
p1 ≡ q1 for p1 ∈ δ(p, a), q1 ∈ δ(q, a). If ≡ is right invariant, then we can define a
quotient automaton M/≡ in the usual way.

The position automaton was introduced independently by Glushkov [10] and
McNaughton and Yamada [12]. The position automaton of E is Mpos(E) =
(Qpos, Σ, δpos, qE , Fpos), where Qpos = ΣE ∪ {qE}, δpos(qE , a) = {x | x ∈
first(E), x = a} for a ∈ Σ, δpos(x, a) = {y | y ∈ follow(E, x), y = a} for
x ∈ ΣE and a ∈ Σ, Fpos = last(E) ∪ {qE} if λ(E) = ε, or last(E) otherwise.

For further purpose we set last0(E) equal to last(E) if ε /∈ L(E) and last(E)∪
{qE} otherwise, and extend follow(E, qE) = first(E).

Example 1. The position automaton Mpos(E1) for the regular expression E1 =
(ab(c + ε))∗ is shown in Fig. 1(a).

As shown by Glushkov [10] and McNaughton and Yamada [12], L(Mpos

(E)) = L(E). Mpos(E) can be computed in quadratic time [3,9,14].
Below we introduce deravatives.

Definition 2 (Brzozowski [5]). Given a regular expression E and a symbol a,
the derivative a−1(E) of E w.r.t. a is defined inductively as follows:

a−1(∅) = a−1(ε) = ∅
a−1(b) = ε if b = a, ∅ otherwise

a−1(F + G) = a−1(F ) + a−1(G)

a−1(FG) = a−1(F )G + a−1(G) if λ(F ) = ε, a−1(F )G otherwise

a−1(F ∗) = a−1(F )F ∗

Derivative w.r.t. a word is computed by ε−1(E) = E, (wa)−1(E) = a−1

(w−1(E)).
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Definition 3 (Antimirov [1]). Given a regular expression E and a symbol a, the
set of partial derivatives ∂a(E) of E w.r.t. a is defined as follows:2

∂a(∅) = ∂a(ε) = ∅
∂a(b) = {ε} if b = a, ∅ otherwise
∂a(F + G) = ∂a(F ) ∪ ∂a(G)
∂a(FG) = ∂a(F )G ∪ ∂a(G) if λ(F ) = ε, ∂a(F )G otherwise
∂a(F ∗) = ∂a(F )F ∗

Partial derivative w.r.t. a word is computed by ∂ε(E) = {E}, ∂wa(E) =⋃
p∈∂w(E) ∂a(p). The language denoted by ∂w(E) is L(∂w(E)) =

⋃
p∈∂w(E) L(p).

It is proved in [1] that the cardinality of the set PD(E) = ∪w∈Σ∗∂w(E) of
all partial derivatives of a regular expression E is less than or equal to ‖E‖ + 1.

The partial derivative or equation automaton [1] constructed by partial deriv-
atives is Mpd(E) = (PD(E), Σ, δpd, E, {q ∈ PD(E) | ε ∈ L(q)}), where
δpd(q, a) = ∂a(q), for any q ∈ PD(E), a ∈ Σ. An example is shown in Fig. 1(b).

It is proved that for a regular expression, the partial derivative automaton is a
quotient of the position automaton [7,11]. Another proof is given by Lombardy
and Sakarovitch [15], which is in the more general setting of expressions with
multiplicity but still applies to present case (multiplicities over the Boolean
semiring).

Expressions with distinct symbols are called linear. For any expression E,
E is the linearized version of E. For linear expressions from Brzozowski [5] and
Berry and Sethi [2] the following fact is easily derived.

Proposition 4. Let E be linear. Given a ∈ ΣE, for all words w,
1. If E = E1 + E2, then

(wa)−1(E1 + E2) =
{

(wa)−1(E1) if a ∈ ΣE1

(wa)−1(E2) if a ∈ ΣE2

(1)

2. If E = E1E2, then

(wa)−1(E1E2) =

⎧
⎪⎪⎨

⎪⎪⎩

(wa)−1(E1)E2 if a ∈ ΣE1

(va)−1(E2) if w = uv, λ(u−1(E1)) = ε, a ∈ ΣE2 ,
u ∈ Σ∗

E1
, v ∈ Σ∗

E2∅ otherwise

(2)

3 Derivatives of Expressions in SNF

Two regular expressions E1 and E2 which reduce to the same expression using
associativity, commutativity, and idempotence of + are called ACI-similar [5],

2 RF = {EF |E ∈ R} for a set R of regular expressions and a regular expression F .
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which is denoted by E1 ∼aci E2. Berry and Sethi [2] have shown that, for a
marked expression E, given a fixed x ∈ ΣE , (wx)−1(E) is either ∅ or unique
modulo ∼aci for all words w. In [2], based on this a natural connection between
the position automaton and derivatives is set up.

Here, we further show that, if E is in SNF then the ACI-similarity in the
above is unnecessary.

Proposition 5. For a marked expression E, if E is in SNF then given a fixed
x ∈ ΣE, (wx)−1(E) is either ∅ or unique for all words w.

Proof. We prove it by induction on the structure of E. The cases for E = ε, ∅, x,
x ∈ ΣE , are obvious.

1. E = E1 + E2. By Eq. (1), if x is in E1, then (wx)−1(E1), and the inductive
hypothesis applies to it. The case for x in E2 follows in the same way.

2. E = E1E2. If x is in E1, then by Eq. (2) (wx)−1(E) = (wx)−1(E1)E2, and the
inductive hypothesis applies to it. Otherwise, x is in E2 and (wx)−1(E) =
(vx)−1(E2) for some w = uv or (wx)−1(E) = ∅. Therefore the inductive
hypothesis applies to it.

3. E = E1
∗
. From [5] and [2] (wx)−1(E) is a sum of subterms of the form

(vx)−1(E1)E1
∗

where wx = uvx. We show that there is at most one non-null
subterm.

Suppose there are non-null subterms (v1x)−1(E1)E1
∗

and (v2x)−1(E1)E1
∗
.

If v1 �= v2, suppose |v1| < |v2|. Let wx = a1a2 . . . at. We can suppose v1x =
ar1 . . . at, v2x = ar2 . . . ar1 . . . at, 1 ≤ r2 < r1 ≤ t. Since (v1x)−1(E1) �= ∅, we
have ar1 ∈ first(E1). Since (v2x)−1E1) �= ∅, there exists a word w1, such that
ar2 . . . ar1 . . . atw1 ∈ L(E1). Then ar1 ∈ follow(E1, ar1−1).

A careful analysis on the derivation of (wx)−1(E) shows that if
(v1x)−1(E1) �= ∅, then either ε ∈ L((ar1−1)−1(E1)) or ε ∈ L((an . . . ar1−1)−1

(E1)) for some n < ar1−1. In either case, we have ar1−1 ∈ last(E1). Note the
symbols and positions are in one-one correspondence for E. Therefore E is not
in SNF, which is a contradiction.

If v1 = v2, then v1x = v2x = ar1 . . . at, 2 < r1 ≤ t. Similarly, a careful
analysis on (wx)−1(E) shows that there must be ε ∈ L((an1 . . . ai)−1(E1)), ε ∈
L((an2 . . . ai)−1(E1)) and ε ∈ L((an3 . . . an1−1)−1(E1)), n2 < n1 ≤ i ≤ r1 −
1, n3 < n1. So we have an1 ∈ first(E1), an1 ∈ follow(E1, an1−1), an1−1 ∈
last(E1). Therefore E is not in SNF, which is a contradiction.

So there is at most one non-null subterm, and the inductive hypothesis applies
to it. �

This uniqueness of derivatives is of course an attractive property. There have
been several work relying on finding a unique representative for the set of non-
null (wx)−1(E) [7,11]. If E is in SNF, then (wx)−1(E) is already unique.

Corollary 6. If E is in SNF and there are non-null (w1)−1(E) and (w2)−1(E),
such that (w1)−1(E) ∼aci (w2)−1(E), then (w1)−1(E) = (w2)−1(E).
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From the proof of Proposition 5 above, it follows

Corollary 7. If E = E∗
1 is in SNF, then for a non-null (wx)−1(E), (wx)−1(E)

= (vx)−1(E1)E for some wx = uvx.

4 Partial Derivative and Follow Automata

The follow automaton Mf(E) was introduced by Ilie and Yu [11]. It is constructed
by eliminating ε-transitions from an ε-automaton defined in [11]. We do not
present the construction in detail here. An example is shown in Fig. 1(c). What
is important here is the following.

Define the equivalence ≡f ⊆ Q2
pos by x1 ≡f x2 iff x1 ∈ last0(E) ⇔ x2 ∈

last0(E) and follow(E, x1) = follow(E, x2). The equivalence relation is right
invariant w.r.t. Mpos(E). Define M1 � M2 if M1 and M2 are isomorphic. It is
known that

Proposition 8 [11]. Mf(E) � Mpos(E)/≡f
.

As we have mentioned, it is well-known that the partial derivative automaton
is a quotient of the position automaton [7,11,15]. Here it is presented following
[11]. For a letter x ∈ ΣE , denote Cx(E) any expression (wx)−1(E) �= ∅. Denote
also CqE (E) = E (qE is the start state of the position automaton of E). For
an SNF expression E, Cx(E) is already unique. For general expressions assume
that we find a proper representative for each Cx(E) [7,11]. Define the equivalence
=c⊆ Q2

pos by x1 =c x2 iff Cx1(E) = Cx2(E). Define the equivalence ≡c⊆ Q2
pos

by x1 ≡c x2 iff Cx1(E) = Cx2(E). Each of the equivalence relations is right
invariant w.r.t. Mpos(E). It is known that

Proposition 9. (1) Mpd(E) � Mpos(E)/≡c
; (2) Mpd(E) � Mpos(E)/=c

.

From Propositions 8 and 9 both Mpd(E) and Mf(E) are always smaller than
or equal to Mpos(E). However, for the relation between Mpd(E) and Mf(E), Ilie
and Yu [11] compared some examples and showed that it is difficult to give a
theoretical analysis. Here we try to do so.

First we give characterizations of the different relations between the two
automata. It is easy to see the following:

Lemma 10. For any a ∈ ΣE, (1) first(Ca(E)) = follow(E, a) [2], and
(2) a ∈ last0(E) ⇔ λ(Ca(E)) = ε.

From Lemma 10 and the above definitions of the equivalence relations, the
following are implied

Lemma 11. (1) =c ⊆ ≡f ; (2) =c ⊆ ≡c.

Then we give a characterization of =c = ≡f as follows.

Proposition 12. For an expression E, we have =c = ≡f iff ∀a, b ∈ Qpos,
first(Ca(E)) = first(Cb(E)) ∧ λ(Ca(E)) = λ(Cb(E)) ⇒ Ca(E) = Cb(E).
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Similarly the following are other characterizations.

Proposition 13. For an expression E, we have =c = ≡c iff ∀a, b ∈ Qpos,
Ca(E) = Cb(E) ⇒ Ca(E) = Cb(E).

Proposition 14. For an expression E, we have ≡c = ≡f iff ∀a, b ∈ Qpos,
Ca(E) = Cb(E) ⇔ first(Ca(E)) = first(Cb(E)) ∧ λ(Ca(E)) = λ(Cb(E)).

On the other hand, from Propositions 8, 9 and Lemma 11 it follows

Theorem 15. For an expression E,

(1) if =c = ≡f , then Mpd(E) is a quotient of Mf(E), Mpd(E) � Mf(E); and
(2) if =c = ≡c, then Mf(E) is a quotient of Mpd(E), Mpd(E) � Mpd(E); and
(3) if ≡c = ≡f , then Mpd(E) � Mf(E).

Example 16. Let E1 = aa∗ + ba∗, E2 = (a∗ + ε)a∗a∗, E3 = a∗, one can verify
that Mpd(E1) is a quotient of Mf(E1), Mf(E2) is a quotient of Mpd(E2), and
Mpd(E3) � Mf(E3).

The above characterizations are given in terms of Cx(E). Below we consider
conditions in terms of the structure of expressions. We first prove the following
Lemmas. Recall that we assume that the rules (rules-∅ε) hold. It is known that
the following property holds:

first(F + G) = first(F ) ∪ first(G), first(F ∗) = first(F ),

first(FG) = first(F ) ∪ first(G) if ε ∈ L(F ), first(F ) otherwise.

last(F + G) = last(F ) ∪ last(G), last(F ∗) = last(F ),

last(FG) = last(F ) ∪ last(G) if ε ∈ L(G), last(G) otherwise.

follow(F + G, a) =
{

follow(F , a), if a ∈ ΣF

follow(G, a), if a ∈ ΣG

follow(FG, a) =

⎧
⎨

⎩

follow(F , a), if a ∈ ΣF − last(F )
follow(F , a) ∪ first(G), if a ∈ last(F )
follow(G, a), if a ∈ ΣG

follow(F ∗, a) =
{

follow(F , a), if a ∈ ΣF − last(F )
follow(F , a) ∪ first(F ), if a ∈ last(F )

Lemma 17. For b ∈ ΣE, if follow(E, b) = ∅ then b ∈ last(E).

Lemma 18. For b ∈ ΣE, follow(E, b) = ∅ iff ∀w ∈ Σ∗
E
, (wb)−1(E) = ∅ or

(wb)−1(E) = ε.

Lemma 19. For E = F + G, a ∈ ΣF and b ∈ ΣG, a ≡f b ⇔ a =c b.
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Definition 20. For an expression E, the leftmost expression of E w.r.t. con-
catenation is le(E) = le(F ) if E = FG; E otherwise. We say an expression E
is leftmost ε-reduced if le(E) does not contain any subexpression F + ε or ε + F
where λ(F ) = ε. Obviously if E = FG then E is leftmost ε-reduced iff F is
leftmost ε-reduced.

The expressions a + ε, (a∗ + ε)∗, a + (a∗ + ε)b, b∗(a∗ + ε), (a + ε) + b∗ are
leftmost ε-reduced, while a∗ + ε, (a + ε) + ε, (a∗ + ε)b∗, (ε + a∗)b, (a + b∗) + ε
are not leftmost ε-reduced.

Definition 21. For an expression E, and b ∈ ΣE, we denote ψ1(E, b) the fol-
lowing condition: b ∈ last(E) ⇔ ε ∈ L(E); and denote ψ2(E, b) the following
condition: first(E) = follow(E, b).

Lemma 22. The following are equivalent statements.

(1) qE ≡f b;
(2) ψ1(E, b) and ψ2(E, b);
(3) ∀w ∈ Σ∗

E
, if (wb)−1(E) �= ∅ then L((wb)−1(E)) = L(E).

Definition 23. For an expression E, we call the following the emptiness con-
dition of E: If le(E) = F

∗
, b ∈ last(F ), and first(F

∗
) = follow(F

∗
, b), then

followlast(F ) ∩ first(F ) = ∅.
Lemma 24. For an expression E and b ∈ ΣE, if ψ1(E, b), ψ2(E, b), E is
leftmost ε-reduced, and satisfies the emptiness condition, then ∀w ∈ Σ∗

E
, if

(wb)−1(E) �= ∅ then (wb)−1(E) = E.

From the proof of the above lemma, it follows

Corollary 25. For an expression E and b ∈ ΣE, if ψ1(E, b), ψ2(E, b), E is
leftmost ε-reduced, and satisfies the emptiness condition, then E can be only of
the form F ∗ or T ∗

nGn . . . G0, n ≥ 0, where b ∈ ΣTn
, and T ∗

n satisfies the same
conditions as for E.

It is easy to see that qE =c b equals the statement: ∀w ∈ Σ∗
E

, if (wb)−1(E) �= ∅
then (wb)−1(E) = E. Then from Lemmas 11 and 22 we have the following:

Lemma 26. Given b ∈ ΣE, if ∀w ∈ Σ∗
E
, and whenever (wb)−1(E) �= ∅ we have

(wb)−1(E) = E, then ψ1(E, b) and ψ2(E, b).

Definition 27. For any starred subexpression F ∗ of an expression E, we call the
following the equivalence condition of E: If a, b ∈ last(F ) and follow(F

∗
, a) =

follow(F
∗
, b), then follow(F , a) = follow(F , b).

For an SNF expression, we have

Lemma 28. Suppose F ∗ is in SNF. If a, b ∈ last(F ) and follow(F
∗
, a) =

follow(F
∗
, b), then follow(F , a) = follow(F , b).
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Definition 29. For an expression E, we call the following the CONC (Con-
catenation) condition of E: If ψ1(E, b) and ψ2(E, b) for some b ∈ ΣE then E
is leftmost ε-reduced and satisfies the emptiness condition; For any subexpres-
sion FG of E, if follow(F , a) = ∅, ψ1(G, b) and ψ2(G, b) for some a ∈ ΣF and
b ∈ ΣG then G is leftmost ε-reduced and satisfies the emptiness condition.

The significance of the CONC condition can be seen from the following two
lemmas.

Lemma 30. For E = FG, a ∈ ΣF and b ∈ ΣG, a ≡f b iff follow(F , a) = ∅,
ψ1(G, b) and ψ2(G, b).

Lemma 31. For E = FG, a ∈ ΣF and b ∈ ΣG, if follow(F , a) = ∅, ψ1(G, b),
ψ2(G, b), G is leftmost ε-reduced and satisfies the emptiness condition, then
a =c b.

From Lemmas 11 and 30 it follows

Corollary 32. For E = FG, a ∈ ΣF and b ∈ ΣG, if a =c b then follow(F , a) =
∅, ψ1(G, b) and ψ2(G, b).

The following is a sufficient condition for =c = ≡f .

Theorem 33. For an expression E satisfying CONC and equivalence condi-
tions, we have =c = ≡f .

Note the restriction that final and non-final states cannot be ≡f -equivalent is
essential, as shown by the expression E = b∗a(b∗a)∗. Let E = b∗

1a2(b∗
3a4)∗. Then

Ca2(E) = Ca4(E) �= Cb3(E), follow(E, a2) = follow(E, b3) = follow(E, a4).
However, a2, a4 ∈ last(E) and b3 /∈ last(E).

According to Lemma 28, we have

Corollary 34. For an SNF expression E satisfying CONC condition, we have
=c = ≡f .

Corollary 35. For an expression E satisfying CONC and equivalence condi-
tions, Mpd(E) � Mf(E), and Mpd(E) is a quotient of Mf(E).

Corollary 36. For an SNF regular expression E satisfying CONC condition,
Mpd(E) � Mf(E), and Mpd(E) is a quotient of Mf(E).

Example 37. Let E1 = a∗(a∗ + ε)c∗, E2 = a(a∗ + ε + b), E3 = (a∗ + ε)b∗c∗ + d,
they all are in SNF and satisfy CONC condition. One can verify that for each
Ei, =c=≡f , and Mpd(Ei) is a quotient of Mf(Ei), i = 1, 2, 3.

Also, the expressions E1 in Example 1, E1 and E3 in Example 16 are in SNF
and satisfy CONC condition, and their partial derivative automata are quotients
of the follow automata.

Remark. Champarnaud et al. [6] has proposed a condition called “normalized”
regular expressions, which requires that in an SNF expression no subexpression
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F + ε with λ(F ) = ε should exist. For a “normalized” regular expression the
partial derivative automaton is a quotient of the follow automaton. A “normal-
ized” expression is of course leftmost ε-reduced, and trivially satisfies CONC
condition. Conversely, if an SNF expression satisfies CONC condition, it may
not necessarily be a “normalized” expression. For example, none of expressions
given in Example 37 are “normalized”, while they all satisfy CONC condition,
and for each of the expressions the partial derivative automaton is a quotient of
the follow automaton. As the above example hints, for many expressions that are
not “normalized”, the quotient relation between the partial derivative automa-
ton and the follow automaton still exists. Actually “normalized” expressions
simply forbid the occurrence of any subexpression F + ε where λ(F ) = ε, but
CONC condition only forbid the occurrence of the above subexpression in some
sensitive positions in an expression. Therefore “normalized” expressions impose
too strong restrictions on expressions to ensure the quotient. On the other hand,
CONC condition captures more adequately the nature of expressions for which
the partial derivative automaton is a quotient of the follow automaton.

We further present the following conditions for some special situations, con-
cerning also =c and ≡c.

Condition 1. Let E = F1F2 . . . Fn, Fr is of the form: a, a∗, a∗ + ε or ε+a∗, a ∈
Σ, r = 1, . . . , n, n ≥ 1.

(a) F1 is of the form a or a∗, and
(b) if Fr = a, then Fr+1 is of the form b or b∗.

Theorem 38. For a regular expression E satisfying Condition 1, we have =c =
≡f , =c = ≡c, and ≡c = ≡f .

Condition 2. Let E = F1F2 . . . Fn, n ≥ 1 the same as in Condition 1. The
following is satisfied at least once:

(a) F1 is of the form a∗ + ε or ε + a∗, or
(b) if Fr = a, then Fr+1 is of the form b∗ + ε or ε + b∗.

Note Condition 2 is the negated one of Condition 1 w.r.t E.

Theorem 39. For a regular expression E satisfying Condition 2, we have =c �=
≡f and =c = ≡c.

Corollary 40. For a regular expression E satisfying Condition 1, Mpd(E) �
Mf(E) � Mpd(E). For a regular expression E satisfying Condition 2, Mpd(E) ��
Mf(E),Mpd(E) � Mpd(E) and Mf(E) is a quotient of Mpd(E).

For example, the expressions E3 in Example 16 and E1 in Example 37 satisfy
Condition 1, and their partial derivative and follow automata are isomorphic.
The expression E2 in Example 16 satisfies Condition 2, and its follow automaton
is a quotient of the partial derivative automaton.

If an expression E is linear, there is a one-one correspondence between the
symbols in E and E. Then for Ca(E) �= Cb(E) it cannot be Ca(E) = Cb(E). So



Derivatives and Finite Automata of Expressions in SNF 247

Theorem 41. For a linear expression E, we have =c = ≡c.

Corollary 42. For a linear expression E, Mpd(E) � Mpd(E), and Mf(E) is a
quotient of Mpd(E).

For example, the expression E1 in Example 1 is linear, so =c = ≡c. We also
know that for E1 we have =c = ≡f . Therefore ≡c = ≡f , that is, Mpd(E1) �
Mf(E1). Similarly, for the expression E3 in Example 37, we have Mpd(E3) �
Mf(E3) since it is linear and from Example 37 for E3 we have =c = ≡f .

So far we have presented some conditions for the relations among =c,≡c and
≡f , hence the relations between Mpd(E) and Mf(E). Since regular expressions
can be transformed to SNF in linear time [3], we can easily get the smaller
automaton when one of the above conditions is satisfied. Further, it would be
interesting to find some more conditions, which remains as a further research.

5 Concluding Remarks

The paper discussed derivatives and automata for expressions in SNF. It showed
that if an expression E is in SNF, then (wx)−1(E) is either ∅ or unique for all
words w, which is a stronger property than Berry and Sethi’s [2]. For a regular
expression in SNF it presented several conditions for the quotient or isomorphism
relation between the partial derivative and follow automata.

Several problems can be investigated as future work. For conditions based on
the structure of expressions, although CONC condition allows more expressions,
presently it is unclear whether it captures all expressions for which Mpd(E) is a
quotient of Mf(E). As mentioned above, whether there are some more conditions
for the relation between Mpd(E) and Mf(E) remains as a further research.
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