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Abstract—Constraints in form regular expressions over
strings are ubiquitous. They occur often in programming
languages like Perl and C#, in SQL in form of LIKE expres-
sions, and in web applications. Providing support for regular
expression constraints in program analysis and testing has
several useful applications. We introduce a method and a tool
called Rex, for symbolically expressing and analyzing regular
expression constraints. Rex is implemented using the SMT
solver Z3, and we provide experimental evaluation of Rex.
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I. I NTRODUCTION

Regular expressions are used in a large variety of ap-
plications to express validity constraints on strings. The
original motivation for this work comes from two particular
applications. One is the support for regular expression con-
straints over strings in the context of program analysis and
parameterized unit testing of code [1], [2]. The other one
is the support for like-patterns in the context of symbolic
analysis of database queries [3], where like-patterns are
special kinds of regular expressions that are common in SQL
select-statements.

Many languages such as C# and Java support strings as a
built-in algebraic datatype: strings are treated as immutable
values(unlike arrays for example), and are associated with
purely functional operations over them. For analysis it is
therefore useful to view strings as elements of a correspond-
ing sort. Here we define strings aslists of characters, where a
list of elements of a given sort is a built-in algebraic datatype
supported by the SMT solver Z3 [4] that we are using as
the underlying constraint solver. Characters are defined as
n-bitvectors of a fixedn ≥ 1, e.g. n = 16 for UTF-16
characters.

We translate (extended) regular expressions orregexes[5]
into a symbolic representation of finite automata calledSFAs.
In an SFA, moves are labeled by formulas representingsets
of characters rather than individual characters. An SFAA is
translated into a set of (recursive) axioms that describe the
acceptance condition for the strings accepted byA and build
on the representation of strings as lists. This set of axiomsis

asserted to the SMT solver as the theoryTh(A) of A. The
correctness of the axiomatization is proved in Theorem 1.

We revisit several classical algorithms for finite automata
and describe the corresponding algorithms for SFAs. The
key modification to the classical versions is the use ofsatis-
fiability checkingof constraints over characters (bitvectors)
in order to keep the SFAs “clean” (avoiding unsatisfiable
formulas as labels on moves). We evaluate the performance
of these algorithms based on our implementation called
Rex. We compare different equivalent axiomatizations of
language acceptors for a collection of sample regexes. In par-
ticular, when considering intersection constraints on regular
expressions, it turns out that using the theory of the product
of two SFAs is more efficient than using the conjunction of
the individual theories.

All the algorithms and the translations in the paper are
described formally and follow closely their implementation
in Rex. Rex is evaluated on a set of benchmarks that shows
an order of magnitude improvement compared to other
approaches that have so far been used in Pex for supporting
regex constraints [6].

The rest of the paper is structured as follows. In Section II
we introduce some definitions and revisit some basic notions
from logic that are used throughout the paper. Section III
introduces SFAs and describes the variations of the classical
algorithms on SFAs, that are used in Rex. Section IV
explains how SFAs are translated into the corresponding
axioms for the solver. Section V discusses a couple of key
aspects of the implementation of Rex. Section VI provides
some benchmarks regarding the implementation of Rex.
Section VII describes related work. Section VIII provides
some final remarks and some future work is mentioned in
Section IX.

II. PRELIMINARIES

We assume that the reader is familiar with classical
automata theory, we follow [7] in this regard. We also
assume elementary knowledge about logic and model theory,
our terminology is consistent with [8] in this regard.

We are working in a fixed multi-sorted universeU of
values. For each sortσ, Uσ is a separate subuniverse ofU .



The basic sorts needed in this paper are the Boolean sortB,
UB = {true, false}, and the sort ofn-bitvectors, for a given
numbern ≥ 1; an n-bitvector is essentially a vector ofn
Booleans. We also need other sorts but they are introduced
at the point when they are used.

Characters are represented byn-bitvectors of a fixed
length n, assuming that the alphabet of all characters has
size 2n. For example,n = 7 (n = 8) for representing
the standard (extended) ASCII character set, andn = 16
for representing the UTF-16 encoding.1 We let C stand for
a fixed character sort for some fixedn, and the complete
alphabet is thusUC. Without loss of generality, assume for
example thatn = 7 and that standard ASCII encoding is
used to represent the characters. Keeping this intuition in
mind, we write for examplea to denote the character ‘a’.

There is a built-in (predefined)signature of function
symbols and a built-in theory (set of axioms) for those
symbols. Each function symbolf of arity n ≥ 0 has a
given domain sortσ0 × · · · × σn−1 and a given range
sort σ, f : σ0 × · · · × σn−1 → σ. For example, there is
a built-in relation or predicate(Boolean function) symbol
< : C × C → B that provides a strict total order of all the
characters. One can also declarefresh (new) uninterpreted
function symbolsf of arity n ≥ 0, for a given domain sort
and a given range sort. Using model theoretic terminology,
these new symbolsexpandthe signature.

Terms and formulas (or Boolean terms) are defined by
induction as usual and are assumed to be well-sorted. We
write FV (t) for the set of free variables in a term (or
formula) t. A term or formula without free variables is
closed. Let FC denote the set of all formulas without
uninterpreted function symbols and at most one fixed free
variable of sortC. Throughout the paper, we denote that
variable byχ. Given a formulaϕ ∈ FC, and a character
or term t of sort C, we write ϕ[t] for the formula where
each occurrence ofχ is replaced byt. For example, ifϕ is
a < χ∧χ < d thenFV (ϕ) = {χ} andϕ[b] is the formula
a < b ∧ b < d.

A model is a mapping from function symbols to their
interpretations (values). The built-in function symbols have
the same interpretation in all models, keeping that in mind,
we may omit them from the model. A modelM satisfies
a closed formulaϕ, written M |= ϕ, if M provides an
interpretation for all the uninterpreted function symbolsin
ϕ that makesϕ true. For example, letf : C → C be an
uninterpreted function symbol andc : C be an uninterpreted
constant. LetM be a model wherecM (the interpretation of
c in M ) is a andfM is a function that maps all characters
to b. ThenM |= a < f(c) but M 6|= a < c.

A closed formulaϕ is satisfiable if it has a model. A
formula ϕ with FV (ϕ) = x̄ is satisfiableif its existential
closure∃x̄ϕ is satisfiable. We write|=U ϕ, or |= ϕ, if ϕ is

1Some Unicode encodings such as UTF-32, need more than 16 bits.

valid (true in all models). Some examples:a < b∧b < d is
valid; a < χ∧χ < b is unsatisfiable because there exists no
character that is strictly greater thata and strictly smaller
thanb; 0 < χ ∧ χ < 4 is satisfiable, e.g., letχ = 3.

III. SYMBOLIC FINITE AUTOMATA

We use a representation of finite automata where several
transitions from a source state to a target state are combined
into a single symbolic move. Formally, a collection of tran-
sitions (p, a1, q), . . . , (p, an, q) are represented by a single
(symbolic) move(p, ϕ, q) from p to q, whereϕ ∈ FC, such
that [[ϕ]] = {a1, . . . , an}, where

[[ϕ]]
def
= {a | a ∈ UC, |= ϕ[a]}.

Let also

[[(p, ϕ, q)]]
def
= {(p, a, q) | a ∈ [[ϕ]]},

and, given a set∆ of moves, let

[[∆]]
def
= {τ | δ ∈ ∆, τ ∈ [[δ]]}.

Note that[[(p, ϕ, q)]] = ∅ iff ϕ is unsatisfiable. Define also

Source((p, ϕ, q))
def
= p,

Target((p, ϕ, q))
def
= q,

Cond((p, ϕ, q))
def
= ϕ.

For example, the move(p, a ≤ χ∧χ ≤ z , q) represents the
set of all transitions(p, c, q) wherec is a character between
a and z . Formally, we refer to such a representation of a
finite automata (FA) as follows.

Definition 1: A Symbolic Finite Automatonor SFAA is a
tuple (Q, q0, F,∆), whereQ is a finite set ofstates, q0 ∈ Q
the initial state, F ⊆ Q is the set offinal states, and∆ :
Q×FC ×Q is themove relation.

We sometimes useA as a subscript to identify its compo-
nents. Just as with finite automata, it is often useful to add
epsilon movesto an SFA. Consider a special symbolε that
is not in the background universe.

Definition 2: An SFA with epsilon movesor εSFA is a
tuple (Q, q0, F,∆), whereQ, q0 andF are as above, and
∆ : Q× (FC ∪ {ε})×Q.

The term SFA without the additional qualification allow-
ing epsilon moves implies that epsilon moves do not occur.
(Obviously, any SFA is also anεSFA.) Let [[(p, ε, q)]]

def
=

(p, ε, q). An εSFA A = (Q,∆, q0, F ) denotes the finite
automaton[[A]] with epsilon moves, where

[[A]]
def
= (Q,UC, [[∆]], q0, F ).

We write ∆ε
A for the set of all epsilon moves in∆A and

∆6 ε
A for ∆A \ ∆ε

A.
Definition 3: An εSFA A is normalized if there are no

two distinct moves(p, ϕ1, q), (p, ϕ2, q) in ∆6 ε
A.

It is clear that for anyεSFAA there is a normalized SFA
A′ such that[[A]] = [[A′]]: for all statesp andq in QA, make
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a disjunctionϕ of all the conditions of the moves fromp
to q in ∆6 ε

A and let(p, ϕ, q) be the single move in∆6 ε
A′ that

goes fromp to q.
A move is satisfiableif its condition is satisfiable. Note

that unsatisfiable moves are clearly superfluous and can
always be omitted.

Definition 4: An εSFAA is clean if all moves in∆6 ε
A are

satisfiable.
Definition 5: An SFAA is deterministic, calledDSFA, if

[[A]] is deterministic.
The following proposition follows easily from the defini-

tions and is used in characterizing DSFAs.
Proposition 1: The following statements are equivalent.
1) A is deterministic.
2) For any two moves(p, ϕ1, q1) and(p, ϕ2, q2) in ∆A,

if q1 6= q2 thenϕ1 ∧ ϕ2 is unsatisfiable.
Definition 6: The language (set of strings)acceptedby

an SFAA, L(A), is the language accepted by the finite
automaton[[A]]. Two SFAs areequivalentif they accept the
same language.

Definition 7: A DSFA A is minimal if A is normalized,
clean, and[[A]] is minimal.

Note that if a DSFAA is minimal then it is unique up to
logical equivalence of conditions and renaming of states.

A. From regular expressions toεSFAs

We use [5] as the concrete language definition of reg-
ular expression patterns orregexesin this paper. Not all
constructs are supported. Advanced regular expression lan-
guages offer features that go beyond classical regular expres-
sions, e.g. with constructs such as “as few times as possible”-
quantifiers (see also Section IX). Regarding the supported
subset of regexes, besides a few extensions, the translation
from a regex to anεSFA follows very closely the standard
algorithm described in [7, Section 2.5] for converting a
standard regular expression into a finite automaton with
epsilon moves. For handling negations and character ranges,
the translation creates a corresponding formula inFC. A
sample regex and correspondingεSFA are illustrated in
Figure 1.

B. Algorithms on SFAs

We revisit variations of standard algorithms on finite
automata to perform equivalence preserving transformations
on symbolic finite automata, and we also look at the product
construction in order to encode intersection constraints:

1) Epsilon eliminationfrom εSFAs;
2) Determinizationof SFAs;
3) Minimizationof DSFAs.
4) Productof SFAs.

In Section IV SFAs are encoded as inputs to the SMT solver
in form of language acceptors. The above algorithms are
used in Section VI to evaluate their effect on the performance
of Rex under different equivalent encodings.
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Figure 1. a) SampleεSFA generated by Rex from the regex
([A-F]|[ˆD-H]) {1,2 }; b) equivalent SFA. The initial state is grey,
the epsilon moves are dashed. The symbol& is used for conjunction and
the symbol| is used for disjunction. The variableχ is denoted by#.

Note that all of the listed problems have a naive solution
by using the underlying finite automata algorithms, but
these algorithms often depend on the explicit (rather than
symbolic) use of the characters, and are impractical when
the alphabet is large, e.g., when it contains all the UTF-16
characters.

The algorithms are discussed next.

1) Epsilon elimination:The input to the algorithm is an
εSFAA and the output is an equivalent SFAB. We assume,
without loss of generality, thatA is normalized. We reuse
the notion of theepsilon closure[7, Section 2.4] of a state
q in A, denoted here byεC(q).

(i) For all q ∈ QA computeεC(q) as the least subset
of QA such thatq ∈ εC(q), and if q1 ∈ εC(q) and
(q1, ε, q2) ∈ ∆A thenq2 ∈ εC(q).

(ii) Compute a partial mapE from QA ×QA to FC such
that, for all (q, , r) ∈ ∆6 ε

A,

E(q, r) =
∨

{ϕ | ∃p (p ∈ εC(q), (p, ϕ, r) ∈ ∆6 ε
A)}.

(iii) View Dom(E) as a directed graph and eliminate all
edges and states that are not reachable fromq0A.

(iv) Let B have the following components:

• QB = {p, q | (p, q) ∈ Dom(E)};
• q0B = q0A;
• FB = {q | q ∈ QB, εC(q) ∩ FA 6= ∅};
• ∆B = {(p,E(p, q), q) | (p, q) ∈ Dom(E)}.

Step (iii) is not necessary but eliminates states and moves
that are redundant; often half of the original states are
redundant. The algorithm can be implemented in time linear
in the size ofA. For example the epsilon closures can be
represented by shared linked lists. The result of applying
the algorithm to theεSFA in Figure 1(a) is illustrated if
Figure 1(b).

2) Determinization:The input to the algorithm is an SFA
A and the output is an equivalent DSFAB. We assume,
without loss of generality, thatA is normalized. We use the
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following notations.

∆A(q)
def
= {t | t ∈ ∆A,Source(t) = q}

∆A(q)
def
= ∪{∆A(q) | q ∈ q}

Target(t)
def
= ∪{Target(t) | t ∈ t}

It is convenient to describe the algorithm as a depth-first-
search algorithm using a stackS of B states as a frontier, a
setV of visitedB states, and a setT of moves.

(i) Initially S = ({q0A}), V = {{q0A}}, andT = ∅.
(ii) If S is empty proceed to (iv) else popq from S.
(iii) For each nonempty subsett of ∆A(q), let2

ϕt = (
∧

t∈t

Cond(t)) ∧ (
∧

t∈∆A(q)\t

¬Cond(t))

If ϕt is satisfiablethen

• add (q, ϕt,Target(t)) to T ;
• if Target(t) is not inV then addTarget(t) to V

and pushTarget(t) to S.

Proceed to (ii).
(iv) Let B = (V, {q0A}, {q ∈ V | q ∩ FA 6= ∅}, T ).

The satisfiability check ofϕt is performed for example with
an SMT solver and ensures thatB is clean. Without that
checkB may get cluttered with unsatisfiable moves and
states that are unreachable.

Given (q, ϕt1 ,Target(t1)) and(q, ϕt2 ,Target(t2)) in T
such thatTarget(t1) 6= Target(t2), it follows immediately
that t1 6= t2 and thusϕt1 ∧ ϕt2 is unsatisfiable because
there is at least onet ∈ ∆A(q) such that bothCond(t) and
¬Cond(t) are conjuncts inϕt1∧ϕt2 . ThusB is deterministic
by Proposition 1.

3) Minimization: The input to the algorithm is a DSFA
A and the output is an equivalent minimal DSFAB. We
assume, without loss of generality, thatA is normalized and
clean. In order for the algorithm to work correctly we also
need to assume thatA is total, meaning that for alla ∈ UC

and all q ∈ QA there is a transition(q, a, p) in [[A]] for
somep ∈ QA. To makeA total add a new “dead” stated
to it, add the move(d, true, d), and from each stateq such
that ϕ =

∧

t∈∆A(q) ¬Cond(t) is satisfiable, add the move
(q, ϕ, d).

(i) Initialize E to be the equivalence relation overQA

such thatE(p, q) ⇔ p, q ∈ FA.
(ii) If there exists(p, q) in E such that there are moves

(p, ϕ, p1) and (q, ψ, q1) in ∆A where p1 6= q1 and
(p1, q1) /∈ E and ϕ ∧ ψ is satisfiable, then remove
(p, q) from E and repeat (ii).

(iii) Let B have the following components:

• QB is the set ofE-classes{[q] | q ∈ QA};
• q0B is theE-class[q0A];
• FB is the set ofE-classes{[q] | q ∈ FA};

2Note that the empty conjunction(
∧

t∈∅ . . .) is the same astrue.

• ∆B is {([q], ϕ, [p]) | (q, ϕ, p) ∈ ∆A}.

(iv) NormalizeB, and ifB has a dead state (a state from
which no final state can be reached), eliminate all
moves to the dead state and eliminate the dead state
unless it isq0B .3

4) Product construction:The input to the algorithm are
two SFAsA and B and the output is an SFAC that is
the product of A andB, such thatL(C) = L(A) ∩ L(B).
The algorithm is more or less standard, we are describing it
to pinpoint some aspects of it that are important when the
product construct is used below in Section VI.

As above, it is convenient to describe the algorithm as a
depth-first-search algorithm using a stackS of states ofC
as a frontier, a setV of visited states, and a setT of moves.

(i) Initially S = (〈q0A, q0B〉), V = {〈q0A, q0B〉}, T = ∅.
(ii) If S is empty go to (iv) else pop〈q1, q2〉 from S.
(iii) Iterate for eacht1 ∈ ∆A(q1) and t2 ∈ ∆B(q2), let

ϕ = Cond(t1) ∧ Cond(t2), let p1 = Target(t1), and
let p2 = Target(t2). If ϕ is satisfiablethen

– add (〈q1, q2〉, ϕ, 〈p1, p2〉) to T ;
– if 〈p1, p2〉 is not in V then add〈p1, p2〉 to V and

push〈p1, p2〉 to S.

Proceed to (ii).
(iv) Let C = (〈q0A, q0B〉, V, {q ∈ V | q ∈ FA × FB}, T ).
(v) Eliminate dead statesfrom C (states from which no

final state is reachable).

Note that |QC | is at most|QA| ∗ |QB|. The satisfiability
check in (iii) is important. It prevents unnecessary explo-
ration of unreachablestates, and may avoid a quadratic
blowup of QC , whereas (v) avoids introduction of useless
“dead end”-axioms in the symbolic language acceptor.

IV. SYMBOLIC LANGUAGE ACCEPTORS

In addition to a quantifier freegoal formula ψ that is
provided to an SMT solver and for which proof of (or
absence of) satisfiability is sought, one can also assert
additional universally quantifiedaxioms to the solver. We
use axioms to encodelanguage acceptorsfor εSFAs. We
are using the programmatic API of the SMT solver Z3 [4],
[9] in Rex. The description below follows closely the use
of Z3 (although using a more mathematical notation) and is
intended to be self-contained.

A. On axioms in SMT solvers

During proof search, axioms are triggered by matching
subexpressions in the goal. In Rex, we use particular kinds
of axioms that are equivalences of the form

∀x̄(ϕlhs ⇔ ϕrhs) (1)

3Note that there can be at most one dead state, and if the language
accepted byA is empty thenB has a single state that is not final andB
has no moves.
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whereFV (ϕlhs) = x̄ andFV (ϕrhs) ⊆ x̄. The lhsϕlhs of
(1) is called thepattern of (1). In the axioms below, we
underline the patterns.

The high-level view behind the use of axioms like (1) is
as follows. The axiom (1) istriggeredby the current goalψ,
if ψ contains a subformulaγ and there exists a substitutionθ
such thatγ = ϕlhsθ, i.e.,γ matches the patternof the axiom.
If (1) is triggered, then the current goalψ is replaced by the
logically equivalentformula whereγ has been replaced by
ϕrhsθ.

Thus, the axioms are used as “rewrite rules” in our case,
and each application of an axiom preserves the logical equiv-
alence to the original goal. As long as there exists an axiom
that can be triggered, then triggering is guaranteed. Thus,
termination is in general not guaranteed when (mutually)
recursive axioms are being used.

B. Representation of strings

For each sortσ there is also alist sort L〈σ〉. Lists are
provided as built-in algebraic datatypes and are accompa-
nied with standard constructors and accessors in Z3. For
a given element sortσ there is an empty listnil (of sort
L〈σ〉) and if e is an element of sortσ and l is a list
of sort L〈σ〉 then cons(e, l) is a list of sort L〈σ〉. The
accessors are, as usual,hd (head) andtl (tail). Strings are
represented by lists of characters; we writeS for the sort
L〈C〉. The empty string is abbreviated by"" and a string
cons(a, cons(b, cons(c ,nil))) is abbreviated by"abc" ,
e.g.,hd("abc" ) = a and tl("abc" ) = "bc" .

C. Unary numbers

One can define other (arbitrarily nested) algebraic
datatypes in Z3. We are usingunary natural numbersas an
algebraic datatype for reasons explained below. We declare
N as the corresponding sort, and we declare the constructors

0 : N, s : N → N.

We write k + 1 for s(k).

D. From εSFAs to axioms

Let A be a givenεSFA. AssumeA is normalized. For all
q ∈ QA, declare the predicate symbol

AccA
q : S × N → B

The idea behind the axioms defined below is thatAccA
q (s, k)

holds for a strings iff the length ofs is at mostk and there
is a path fromq that readss and leads to a final state. In
particular, ifAccA

q0A
(s, k) is true thens is accepted by[[A]].

Let
AccA def

= AccA
q0A

The role of the second argument ofAccA
q is to guarantee

that the triggering process of axioms terminates. To this end,
the sortN is used (rather than the built-in integer sort). This

enables us to define the patterns below, since constructors
of algebraic datatypes can be used effectively in patterns.
Intuitively, when such an axiom is used then there is always
something that strictly decreases and implies that there exists
a well-ordering so that each time an axiom is applied the
resulting goal is smaller with respect to that ordering. It is
not possible to write axioms that use integers in this way
because then one cannot associate a well-ordering with the
axioms.

For q ∈ QA, assume∆A(q) is

{(q, ϕ1, q1), . . . , (q, ϕm, qm), (q, ε, p1), . . . , (q, ε, pn)}

and define the axiomsax0A
q andax1A

q , where the patterns
are underlined,4

ax0A
q

def
=

∀x (AccA
q (x, 0) ⇔

∨n

i=1 AccA
pi

(x, 0) ∨ x = nil
︸ ︷︷ ︸

if q ∈ FA

)

ax1A
q

def
=

∀x y (AccA
q (x, s(y)) ⇔

(x 6= nil ∧ (
∨m

i=1(ϕi[hd(x)] ∧AccA
qi

(tl(x), y))))

∨
∨n

i=1 AccA
pi

(x, s(y)) ∨ x = nil
︸ ︷︷ ︸

if q ∈ FA

)

Let Th(A)
def
= {ax0A

q , ax1
A
q | q ∈ QA}. The set of

formulasTh(A) (or equivalently
∧

Th(A)) is asserted to
the solver as theaxioms forA.

Definition 8: An epsilon loopin an εSFA A is a path of
epsilon moves that starts and ends in the same state.

Theorem 1:Let A be an εSFA without epsilon loops.
Then

∧
Th(A) ∧ AccA(s, k) is satisfiable iffA acceptss

and the length ofs is at mostk.
Proof: First, we observe that, for all statesq ∈ QA, if

εC(q) ∩ FA = ∅ then

ax0A
q ⇔ ∀x (AccA

q (x, 0) ⇔ false)

ax1A
q ⇔ ∀x y (AccA

q (x, s(y)) ⇔ x 6= nil ∧
∨

t∈∆A(εC(q)) Cond(t)[hd(x)] ∧ AccA
Target(t)(tl(x), y))

and if εC(q) ∩ FA 6= ∅ then

ax0A
q ⇔ ∀x (AccA

q (x, 0) ⇔ x = nil)

ax1A
q ⇔ ∀x y (AccA

q (x, s(y)) ⇔ x = nil ∨ (x 6= nil ∧
∨

t∈∆A(εC(q)) Cond(t)[hd(x)] ∧ AccA
Target(t)(tl(x), y)))

These logical equivalences follow from the assumption that
A has no epsilon loops: the disjunctions in the original
axioms resulting from the epsilon moves can repeatedly be
replaced by the corresponding right hand sides of the axioms
for the target states of the epsilon moves, and this process
terminates due to absence of epsilon loops.5

By using the equivalent definitions for the axioms, it is
straightforward to show, by induction onk, that, for any state

4Note that the empty disjunction is the same asfalse .
5Effectively, this corresponds to epsilon elimination.
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q ∈ QA and strings,
∧

Th(A)∧AccA
q (s, k) is satisfiable iff

[[A]] starting fromq and readings of length≤ k can enter
a final state. In particular, letq be the initial state ofA and
the statement follows.

Let us consider a few examples.
Example 1:ConsiderA = ({q}, q, ∅, ∅). The language

accepted byA is obviously empty. The axiomsTh(A) for
A are

ax0A
q = ∀x (AccA

q (x, 0) ⇔ false)

ax1A
q = ∀x y (AccA

q (x, s(y)) ⇔ false)

Thus, ifM |= Th(A) then there is no strings or numberk
such thatM |= AccA

q (s, k). �

Example 2:ConsiderA = ({q}, q, {q}, {(q, true, q)}).
The language accepted byA is the set of all strings. The
axiomsTh(A) for A are

ax0A
q = ∀x (AccA

q (x, 0) ⇔ x = nil)

ax1A
q = ∀x y (AccA

q (x, s(y)) ⇔

(x 6= nil ∧ AccA
q (tl(x), y)) ∨ x = nil)

AssumeM |= Th(A). SinceM |= ax0A
q , we know that

AccA
q ("" , 0)M = true. By induction onk, it follows from

M |= ax1A
q that AccA

q (s, k)M = true for all stringss of
length at mostk. �

Example 3:Consider the regex[a-z]+ and the follow-
ing SFAA for it (that also happens to be minimal):

0 1
((#>=a)&(#<=z))

((#>=a)&(#<=z))

The axiomsTh(A) for A are as follows, whereϕ[χ] is the
formula (χ ≥ a) ∧ (χ ≤ z),

ax0A
0 = ∀x (AccA

0 (x, 0) ⇔ false)

ax1A
0 = ∀x y (AccA

0 (x, s(y)) ⇔ x 6= nil ∧ ϕ[hd(x)]

∧ AccA
1 (tl(x), y))

ax0A
1 = ∀x (AccA

1 (x, 0) ⇔ x = nil)

ax1A
1 = ∀x y (AccA

1 (x, s(y)) ⇔ (x 6= nil ∧ ϕ[hd(x)]

∧ AccA
1 (tl(x), y)) ∨ x = nil)

Declare a fresh (uninterpreted) constants :S and assert
the axiomsTh(A) and the goalAccA

0 (s, 2) to the solver.
We describe a plausible scenario for the resulting model
generation process. First, the axioms are triggered:

AccA
0 (s, 2)

ax1A

0

 s 6= nil ∧ ϕ[hd(s)] ∧

AccA
1 (tl(s), 1)

ax1A

1

 s 6= nil ∧ ϕ[hd(s)] ∧

((tl(s) 6= nil ∧ ϕ[hd(tl(s))] ∧

AccA
1 (tl(tl(s)), 0)) ∨ tl(s) = nil)

ax0A

1

 s 6= nil ∧ ϕ[hd(s)] ∧

((tl(s) 6= nil ∧ ϕ[hd(tl(s))] ∧

tl(tl(s)) = nil) ∨ tl(s) = nil)

Second, a model is generated for the resulting (quantifier
free) formula (if a model exists) using the built-in theories.
In this case a possible modelM is such thatsM = "ok" .

In Z3 the resulting modelM provides also an interpreta-
tion for all the predicate symbolsAccA

q . For entries(e, k)
that did not occur in the derivation, the interpretation is
arbitrary – typically a default value of the range sort, thatis
false for B. In other words,M is not necessarily a model
for Th(A), since it may violate the axioms for entries that
are irrelevant with respect to the goal. �

The condition thatA has no epsilon loops is necessary
in Theorem 1. The theorem would fail otherwise, as the
following example illustrates.

Example 4:ConsiderA = ({q}, q, ∅, {(q, ε, q)}). The
language accepted byA is obviously empty because there
are no final states. The axiomsTh(A) for A are

ax0A
q = ∀x (AccA

q (x, 0) ⇔ AccA
q (x, 0))

ax1A
q = ∀x y (AccA

q (x, s(y)) ⇔ AccA
q (x, s(y)))

The axioms are simply useless logical tautologies. Consider
for example a modelM with an interpretation forAccA

q

such thatM |= AccA
q ("" , 0). Trivially, M is also a model

for Th(A) but "" is not accepted byA. Moreover, if the
axioms were asserted to Z3, the resulting proof search for a
goal such asAccA

q ("" , 0) would not terminate. �

When anεSFA is created from a regex the property that
there are no epsilon loops follows immediately from the
constructions in [7]. So the case when epsilon loops are
present is not relevant here.

V. I MPLEMENTATION AND USE

The automata algorithms discussed in Section III and
the axiom generation discussed in Section IV have been
implemented inRex. The SMT solver Z3 is used for sat-
isfiability checking and model generation. Interaction with
Z3 is implemented through its programmatic API rather than
using a textual format, such as the smt-lib format [10]. The
main reasons for this are:

• the API provides access to built-in datatypes, such as
algebraic datatypes, and corresponding theories that are
not (yet) part of the smt-lib standard;

• the API enables working within a given Z3 context.
The first point was illustrated clearly in Section IV. The sec-
ond point is equally important, it allows Rex to be used as a
decision procedure that is seamlessly integrated with Z3, and
used by other tools such as Pex [11], [1] (for dealing with
regular expression constraints in parameterized unit tests)
and Qex [12], [3] (for dealing with LIKE expressions in
database unit tests). In Rex, Z3 is also used for checking con-
straint satisfiability in the implementation of the algorithm
steps described in Section III-B2(iii), Section III-B3(ii), and
Section III-B4(iii).
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Table I
SAMPLE REGEXES.

#1 \w+([-+.]\w+) * @\w+([-.]\w+) * \.\w+([-.]\w+) * ([,;]\s * \w+([-+.]\w+) * @\w+([-.]\w+) * \.\w+([-.]\w+) * ) *
#2 $?(\d{1,3},?(\d{3},?) * \d{3}(\.\d{0,2})?|\d{1,3}(\.\d{0,2})?|\.\d{1,2}?)

#3 ([A-Z]{2}|[a-z]{2} \d{2} [A-Z]{1,2}|[a-z]{1,2} \d{1,4} )?([A-Z]{3}|[a-z]{3} \d{1,4})?

#4 [A-Za-z0-9](([ \.\-]?[a-zA-Z0-9]+) * )@([A-Za-z0-9]+)(([\.\-]?[a-zA-Z0-9]+) * )\. ([A-Za-z][A-Za-z]+)

#5 (\w|-)+@((\w|-)+\.)+(\w|-)+

#6 [+-]?([0-9] * \.?[0-9]+|[0-9]+\.?[0-9] * )([eE][+-]?[0-9]+)?

#7 ((\w|\d|\-|\.)+)@{1}(((\w|\d|\-){1,67})|((\w|\d|\-) +\.(\w|\d|\-){1,67}))\.((([a-z]|[A-Z]|\d){2,4})(\.( [a-z]
|[AZ]|\d){2})?)

#8 (([A-Za-z0-9]+ +)|([A-Za-z0-9]+\-+)|([A-Za-z0-9]+\.+ )|([A-Za-z0-9]+\++)) * [A-Za-z0-9]+@((\w+\-+)|(\w+\.)) * \w
{1,63}\.[a-zA-Z]{2,6}

#9 (([a-zA-Z0-9 \-\.]+)@([a-zA-Z0-9 \-\.]+)\.([a-zA-Z]{2 ,5}){1,25})+([;.](([a-zA-Z0-9 \-\.]+)@([a-zA-Z0-9 \-\ .
]+)\.([a-zA-Z]{2,5}){1,25})+) *

#10 ((\w+([-+.]\w+) * @\w+([-.]\w+) * \.\w+([-.]\w+) * )\s * [,]{0,1}\s * )+

A. Working within a Z3 context

A (Z3) contextincludes declarations for a set of symbols,
assertions for a set of formulas, and the status of the last
satisfiability check (if any). There is acurrent contextand a
backtrack stack of previous contexts. Contexts can be saved
throughpushingand restored throughpopping.

The following is an actual code snippet from Rex illus-
trating how the satisfiability of a formulaf is checked in
the current context without “cluttering” the context.

z3.Push();
z3.AssertCnstr(f);
LBool isSat = z3.Check();
z3.Pop(); ...

B. Model generation

Besides allowing to check satisfiability, perhaps the most
important feature of SMT solvers is generating amodel
as a witness of the satisfiability check, i.e., a mapping of
the uninterpreted function symbols in the current context
to their interpretations. The Z3 API has a separate method
for satisfiability checking with model generation. This code
snippet illustrates the use of that functionality:

Model m;
z3.AssertCnstr(f);
LBool sat = z3.CheckAndGetModel(out m);
Term v = m.Eval(s); ...

Suppose thatf above is the conjunction ofTh(A) for
a given SFAA and the goalAccA(s, |QA|). If L(A) is
nonempty then the value ofv is a string inL(A).

VI. EXPERIMENTS

We evaluated the performance of Rex on a collection
of sample regexes shown in Table I.6 These are typical
examples of concrete regexes appearing in various prac-
tical contexts. The regexes are taken from [6],where the
technique is not able to handle regexes #7 and #8. Table I

6The experiments were run on a Lenovo T61 laptop with Intel dual core
T7500 2.2GHz processor.

Table II
EVALUATION RESULTS FOR SAMPLE REGEXES.

εSFA(r) SFA(r) DSFA(r) mDSFA(r)
r size t ms size t ms size t ms size t ms

#1 91 100 73 40 81 70 20 140
#2 90 10 64 10 71 30 29 40
#3 83 10 70 10 104 30 69 100
#4 45 40 35 60 53 70 26 70
#5 98 100 71 10 74 30 15 40
#6 31 0 12 0 16 10 10 10
#7 2728 840 920 1800
#8 281 40 269 60 380 170 296 870
#9 1944 280 2128 260
#10 112 30 104 30

excludes some of the samples from [6] due to shortcomings
of the regex parser that we use temporarily in Rex.

For each regexr we conducted the following experiments,
that are summarized in Table II. We constructed theεSFA,
SFA, DSFA and minimal DSFA forr using the algorithms
described in Section III. For regexes #7, #9 and #10,
determinization timed out (using a timeout of 10 seconds).

The size of each automaton, shown in columnsize, is its
number of moves plus its number of states. The graph of
each automaton is sparse, having, in average, at most twice
as many moves as states; e.g., Figure 2 shows a typicalεSFA
generated for one of the regexes in Table I.

For every automatonA we performed an independent
member generationexperiment as follows.

1) Declare a fresh constants :S and assertTh(A) and
AccA(s, |QA|).

2) Generate a modelM for the assertions.
3) Validate thatsM indeed matchesr using the built-in

.NET regex class.

The member generation time (in milliseconds) is shown in
column t. The time contains the regex parsing time, the
automaton construction time, the axiom construction time,
and the model generation time with Z3. For allεSFAs and
SFAs the construction time is negligible (a few milliseconds
or less than a millisecond). In case of DSFAs and minimal
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Figure 2. εSFA of regex #2 in Table I.

DSFAs, the time spent in model generation in Z3 is in many
cases only a small fraction oft. Thus, minimization could
pay off if the automaton is created once, but used several
times. (We have rounded the measurements and use0 if the
entries are less than a millisecond.)

In most casest is marginally better for SFAs, with case #7
being an exception, where theεSFA is 3 timeslarger than
the SFA butt is twice smaller. One possible explanation is
that after epsilon elimination the conditions on the moves in
the SFA, although fewer, are more complex.

In general, using a (minimal) DSFA eliminates choices
during backtracking and could be preferable in a context
where it is combined with other constraints. A general

heuristic could be to try to determinize (and minimize)
using a time limit and fall back to using the original
SFA upon timeout. Some regexes are inherently hard to
determinize, since the resulting (minimal) DSFA may be
exponentially larger than theεSFA. The classical example
is [a-c] * a[a-c]{n} wheren is a fixed positive number;
the number of states in theεSFA is in this casen+ 3, e.g.,
the εSFA for [a-c] * a[a-c]{2} is

0

((#>=a)&(#<=c))

1 42#=a 3((#>=a)&(#<=c)) ((#>=a)&(#<=c))

and the corresponding SFA is

0

((#>=a)&(#<=c))

2#=a 43((#>=a)&(#<=c)) ((#>=a)&(#<=c))

but the number of states in the (minimal) DSFA is2n+1.
We conducted the above member generation experiment for
this regex andn = 1, . . . , 11. In all cases, using theεSFA
or SFA, time was negligible (a few milliseconds); whereas,
by making the DSFA, time increased exponentially as sown
in Figure 3.

Figure 3. Determinization and member generation times (ms)with Rex
for [a-c] * a[a-c] {n}, wheren = 1, . . . , 11.

The final experiment in this section shows scalability and
the use of the product construction. We ran the following
member generation check forn up to 1000.

1) Construct A as the product of the SFAs for
[a-c] * a[a-c]{n+1} and [a-c] * b[a-c]{n} .

2) Declare a fresh s : S and assert Th(A) and
AccA(s, |QA|).

3) Generate a modelM for the assertions (also validate
that sM indeed matches both regexes).

The result of the experiment is shown as a chart in Figure 4.
The trendline is also shown, that is polynomial inn. One can
also assert the acceptors for the two regexes as a conjunction
(without building the product), also in this case the time
complexity scales reasonably well, e.g., forn = 50 it
takes around 10 seconds, but which is still in the order
of 100 slower than using the product construction. The
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Figure 4. Member generation times (ms) for the intersectionof the regexes
[a-c] * a[a-c] {n+1} and [a-c] * b[a-c] {n} for n up to 1000.

main reason for this is that, during the product construction,
unsatisfiablemoves are eliminated, anddead statesare
eliminated, as explained in Section III-B4. This means that
the corresponding axioms are never created and the search
space that Z3 needs to cover during model generation is
dramatically reduced. The satisfiability checks during the
product construction are also done with Z3, but these checks
are typically very fast because they are “local” to the moves.

VII. R ELATED WORK

It was suggested earlier [13] to annotate transitions of an
FA with predicates. Van Noord et.al. [14] later formalized
the basic idea, and it was implemented [14] as an extension
to a Prolog-based automata library [15]. However, they [14]
merely suggest in a footnote that “an implementation might
choose to ignore transitions for which the corresponding
predicate is not satisfiable”. We formally introduce the
notion of “clean” SFAs, which we construct and maintain
by systematically pruning infeasible transitions in our de-
terminization, minimization and product construction algo-
rithms using an SMT solver to prove unsatisfiability. This is
the key to efficiency, which we evaluated as well.

A connection between logic and automata has been dis-
covered already fifty years ago [16], [17], and revived about
a decade ago [18] in the context of symbolic reasoning with
Binary Decision Diagrams (BDDs) [19]. With BDDs, rather
dense automata over large alphabets can be represented com-
pactly and reasoned about efficiently. However, with BDDs
all characters must be encoded as strings over Boolean
variables, while our approach allows transition predicates
over variables that belong to any theory support by the
underlying (SMT) solver.

Several program analysis techniques for programs with
strings [20], [21], [22], [23] build on automata libraries [18],
[24] that efficiently handle transitions over sets of characters
as BDDs and interval constraints. Most of those program
analysis approaches suffer from the separation of the deci-

sion procedures, as constraints over strings are decided by
one solver, while constraints over other domains are decided
by other solvers, and the specialized solver usually cannot
be combined in a sound or complete fashion. Our approach
avoids this problem by building on top of an SMT solver
which has decision procedures for a variety of theories.
We discussed symbolic analysis of SQL queries with an
SMT solver in earlier work [3]. Another instance is the
analysis .NET programs, which use a rich set of string
operations; we developed a framework to reason about such
string operations using an SMT solver by separating index
and length constraints from character constraints [2], andin
earlier work we discussed how regular expression matching
could be handled by a general-purpose program analysis
framework for .NET [1] after translating the queries to a
.NET program [6].

Hooimeijer et.al. give a decision procedure for subset
constraints over regular language variables [25]. They do
so in a self-contained way, reasoning over dependency
graphs. In contrast, we showed how finite automata can
be generalized by making transitions symbolic, and how a
decision procedure can be embedded into a logic of an SMT
solver.

HAMPI [26] is another string solver, closely related to
ours, which turns string constraints over fixed-size string
variables into a query to STP [27], a solver for bit-vectors
and arrays. As their solver neither supports lazily instantiated
quantifiers nor the theory of data types (or variable-length
lists), they can only handle fixed-size inputs. They use
“templates” that resemble our quantifiers, but their templates
get instantiated eagerly upfront. Also, they do not formally
generalize finite automata to symbolic finite automata.

Yu et.al. [28] describe the derivation of unary length
automata from finite automata, in order to analyze the
relationship among string and integer variables in programs.
Their unary length automata are related to our unary en-
coding of string lengths. They verify program properties by
an over-approximating fixpoint computation, while we are
concerned with exact decidability.

VIII. C ONCLUSION

The scalability of the approach taken in Rex was highly
surprising to us. Rex is able to handle large regexes, for
which the automata often have hundreds or even thousands
of states, often under a second. It shows also how effective
the underlying SMT solver Z3 is in handling large collec-
tions of axioms that are created on-the-fly, since the number
of axioms is proportional to the size of the automaton.
Moreover, the initial experiments show that it does not
seem to pay off to determinize (and minimize) SFAs for
this application, since the performance is very unpredictable
then. The integration of Rex in Pex and Qex looks really
promising. Moreover, there are still a lot of opportunities
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for further improving the performance, we mention some
below.

IX. FUTURE WORK

There are several possible optimizations on the set of
axioms Th(A) for a given εSFA A, that have not been
tried out or implemented yet. One such optimization is to
use individual characters in patterns of axioms when the
condition on the corresponding move is the matching of a
single character.

In the context of integrating Rex in Pex one technical
challenge is the conversion between different representations
of strings. In Pex strings are currently represented by arrays
of bitvectors rather than lists. We can define axioms that
provide such conversions (the direction from lists to arrays
is easy), in order to combine regex constraints with other
constraints on strings that arise in path conditions.

A more thorough evaluation of Rex is also needed in
order to better understand the role of the list sorts and the
lazy instantiation of the axioms, in particular, comparing
the performance with related approaches like HAMPI [26].
Moreover, evaluation of Rex integrated into Pex will enable
its evaluation when regex constraints arise in program ver-
ification and testing in combination with other constraints
(such as string length constraints). In this context, it is also
interesting to compare the approach to existing techniques
based on constraint reasoning using regular sets that can also
be combined with other string constraints [29].

The current implementation of Rex uses an incomplete
regex parser. In order to expand the technique presented in
the paper to a more expressive class of regexes, the presented
axiomatization needs to be extended in a nontrivial way.
Modern regular expression languages have features such
as laziness and as-few-times-as-possible quantifiers thatgo
beyond classical regular languages. It is possible to define
symbolic language acceptors for more complex languages
(for example for CFGs), by using additional parameters.
However, the price to pay is that the prerequisites for the
correctness of the axiomatizaton will be more involved, and
the variations of the classical algorithms that can be used
for SFAs and enable the use of automata theoretic methods
will be unclear.

On the theoretical side, we have not formally studied the
computational complexity of the SFA algorithms, i.e., how
much harder are they than the classical versions? Note that
it is not reasonable to view the size of the alphabet as a
constant in this case, that would for example be232 for
UTF-32 character encoding.

Furthermore, none of the algorithms really depends on
the actual sort of the characters, which could be unbounded,
such as integers or reals. We have not investigated how
changing the character sort from bitvectors to some other
sort affects the performance of Rex.
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