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Abstract—Constraints in form regular expressions over  asserted to the SMT solver as the thediy(A) of A. The
strings are ubiquitous. They occur often in programming  correctness of the axiomatization is proved in Theorem 1.
languages like Perl and C#, in SQL in form of LIKE expres- We revisit several classical algorithms for finite automata
sions, and in web applications. Providing support for reguér . - .
expression constraints in program analysis and testing has and desp_rlbe_ the Correspon_dlng alg_orlth_ms for SFAs. The
several useful applications. We introduce a method and a tao ~ key modification to the classical versions is the useatfs-
called Rex, for symbolically expressing and analyzing regular  fiability checkingof constraints over characters (bitvectors)
expression constraints. Rex is implemented using the SMT in order to keep the SFAs “clean” (avoiding unsatisfiable
solver Z3, and we provide experimental evaluation of Rex.  fqrmylas as labels on moves). We evaluate the performance

of these algorithms based on our implementation called

Keywords-regular expressions; finite automata; satisfiability ~ Rex We compare different equivalent axiomatizations of
modulo theories; strings language acceptors for a collection of sample regexes.rin pa
ticular, when considering intersection constraints orulag
expressions, it turns out that using the theory of the produc

Regular expressions are used in a large variety of apef two SFAs is more efficient than using the conjunction of
plications to express validity constraints on strings. Thethe individual theories.
original motivation for this work comes from two particular  All the algorithms and the translations in the paper are
applications. One is the support for regular expression condescribed formally and follow closely their implementatio
straints over strings in the context of program analysis andh Rex. Rex is evaluated on a set of benchmarks that shows
parameterized unit testing of code [1], [2]. The other onean order of magnitude improvement compared to other
is the support for like-patterns in the context of symbolicapproaches that have so far been used in Pex for supporting
analysis of database queries [3], where like-patterns areegex constraints [6].
special kinds of regular expressions that are common in SQL The rest of the paper is structured as follows. In Section II
select-statements. we introduce some definitions and revisit some basic notions

Many languages such as C# and Java support strings asfram logic that are used throughout the paper. Section Il
built-in algebraic datatype: strings are treated as imiviata introduces SFAs and describes the variations of the classic
values(unlike arrays for example), and are associated withalgorithms on SFAs, that are used in Rex. Section IV
purely functional operations over them. For analysis it isexplains how SFAs are translated into the corresponding
therefore useful to view strings as elements of a correspondixioms for the solver. Section V discusses a couple of key
ing sort. Here we define strings ists of characterswhere a  aspects of the implementation of Rex. Section VI provides
list of elements of a given sort is a built-in algebraic dgpat some benchmarks regarding the implementation of Rex.
supported by the SMT solver Z3 [4] that we are using asSection VII describes related work. Section VIII provides
the underlying constraint solver. Characters are defined asome final remarks and some future work is mentioned in
n-bitvectors of a fixedn > 1, e.g.n = 16 for UTF-16  Section IX.

I. INTRODUCTION

characters.
We translate (extended) regular expressionegexeg5] Il. PRELIMINARIES
into a symbolic representation of finite automata ca&és We assume that the reader is familiar with classical

In an SFA, moves are labeled by formulas represerdetg automata theory, we follow [7] in this regard. We also
of characters rather than individual characters. An SFi&  assume elementary knowledge about logic and model theory,
translated into a set of (recursive) axioms that descrilee thour terminology is consistent with [8] in this regard.
acceptance condition for the strings accepteditand build We are working in a fixed multi-sorted univergé of

on the representation of strings as lists. This set of axisms values. For each soet, 1/ is a separate subuniverseldf



The basic sorts needed in this paper are the BooleaBsort valid (true in all models). Some examples< bAb < d is

U® = {true, false}, and the sort of.-bitvectors for a given  valid; a < Y Ax < b is unsatisfiable because there exists no
numbern > 1; an n-bitvector is essentially a vector of  character that is strictly greater thatand strictly smaller
Booleans. We also need other sorts but they are introducetianb; 0 < x A x < 4 is satisfiable, e.g., lef = 3.

at the point when they are used.

Characters are represented by-bitvectors of a fixed
length n, assuming that the alphabet of all characters has We use a representation of finite automata where several
size 2. For example;n = 7 (n = 8) for representing transitions from a source state to a target state are couhbine
the standard (extended) ASCII character set, ane 16 into a single symbolic move. Formally, a collection of tran-
for representing the UTF-16 encodihgVe letC stand for  Sitions (p, a1, q), ..., (p,an, q) are represented by a single
a fixed character sort for some fixed and the complete (Symbolic) movep, ¢, q) from p to g, wherey € F¢, such
alphabet is thu#/C. Without loss of generality, assume for that [¢] = {a1,...,as}, where
example thatr = 7 and that standard ASCII e_znc_odln_g is [o] & {a|a € US, E ola]}.
used to represent the characters. Keeping this intuition in
mind, we write for exampl@ to denote the character ‘a’.  Let also

There is abuilt-in (predefined)signature of function def
symbols and a buiIt—i(rI1O theory (getgof axioms) for those [, 0, a)] = {(p, ) [a € [l
symbols. Each function symbqgf of arity n > 0 has a and, given a sef\ of moves, let
given domain sortocg x --- X 0,1 and a given range def
sorto, f: 09 X+ X 01 — o. For example, there is [A]=A{r[d€A, e[}
a built-in relation or predicate (Boolean function) symbol Note that[(p, », q)] = 0 iff » is unsatisfiable. Define also
<: C x C — B that provides a strict total order of all the

IIl. SYMBOLIC FINITE AUTOMATA

def

characters. One can also decldmesh (new) uninterpreted Source((p, ¢, 9)) d:f p;
function symbolsf of arity n > 0, for a given domain sort Target((p,v,q)) = 4q,
and a given range sort. Using model theoretic terminology, Cond((p,0,q)) £ .

these new symbolsxpandthe signature.

Terms and formulas (or Boolean terms) are defined by FOr example, the movgp,a < x A x <z, ¢) represents the
induction as usual and are assumed to be well-sorted. Weet of all transitiongp, ¢, ) wherec is a character between
write F'V(t) for the set of free variables in a term (or & gndz. Formally, we refer to such a representation of a
formula) ¢. A term or formula without free variables is finite automata (FA) as follows. _
closed Let F¢ denote the set of all formulas without ~ Definition 1: A Symbolic Finite Automatoor SFAA is a
uninterpreted function symbols and at most one fixed fredUPIe (Q; o, F; A), whereq is a finite set ofstates ¢) € @
variable of sortC. Throughout the paper, we denote that the initial state, I C @ is the set offinal states and A :
variable by y. Given a formulay € F¢, and a character @ < Fc ¥ Q_'S the move relation _ _ o
or termt of sort C, we write o[t] for the formula where Ve sometimes usd as a subscript to identify its compo-
each occurrence of is replaced by. For example, ify is nen.ts. Just as with finite automata, it is o1_‘ten useful to add
a< xAy<dthenFV(p) = {x} andy[b] is the formula gpsnor_\ moves$o an SFA. Co_n&der a special symhothat
a<bAb<d. is not in the background universe.

A modelis a mapping from function symbols to their Definition 2: An SFA with epsilon moveer ¢eSFAis a
interpretations (values). The built-in function symbotse  tuPle (Q, go, F; A), where@Q, o and I are as above, and

the same interpretation in all models, keeping that in mind,A QX (FcU {5}).>< Q- N o
we may omit them from the model. A modél satisfies The term SFA without the additional qualification allow-

; ; ; ing epsilon moves implies that epsilon moves do not occur.
a closed formulap, written M = ¢, if M provides an N9 €P P P o

interpretation for all the uninterpreted function symbls (Obviously, any SFA is also anSFA) Let [(p,¢,q)] =
¢ that makesy true. For example, lef : C — C be an  (P,6,9). An eSFA A = (Q,A,qo, F) denotes the finite

uninterpreted function symbol and C be an uninterpreted automaton]A] with epsilon moves, where

" . . ]

cqnstant.. LetV/ be]\? model Wh_ere (the interpretation of [4] def Q. U, [A], g0, F).

cin M) is a and f* is a function that maps all characters

tob. ThenM =a < f(c) but M £ a <ec. We write A for the set of all epsilon moves i 4 and
A closed formulay is satisfiableif it has a model. A Af, for Ay \ AG. . o

formula ¢ with FV(p) = z is satisfiableif its existential Definition 3: An ¢SFA A is normalizedif there are no

closureJiy is satisfiable. We writd=y, ¢, or = o, if pis  two distinct moves(p, 1, q), (p, ¢2,q) in A%
It is clear that for any:SFA A there is a hormalized SFA

Some Unicode encodings such as UTF-32, need more than 16 bits A’ such that[ A] = [A’]: for all statesp andq in @ 4, make



a disjunctiony of all the conditions of the moves from . #>=ARH<=F .

to g in Aﬁ and let(p, ¢, ¢) be the single move imj, that @ e #<DlfioH
goes fromp to q.
A move is satisfiableif its condition is satisfiable. Note &)
that unsatisfiable moves are clearly superfluous and can #>=A&H<=F
always be omitted.
#<D|#>H
Definition 4: An eSFA A4 is cleanif all moves inA% are o s

satisfiable. . ! b) w

Definition 5: An SFA A is deterministi¢ calledDSFA if
[[A]] is deterministic. Figure 1. a) SampleecSFA generated by Rex from the regex

. . . .. ([A-F]I['D-H]) {1,2 }; b) equivalent SFA. The initial state is grey,
_ The fOllQWIhg prpp05|t|on fO!IQWS easily from the defini- e epsilon moves are dashed. The symbas used for conjunction and
tions and is used in characterizing DSFAs. the symbol| is used for disjunction. The variable is denoted by#.

Proposition 1: The following statements are equivalent.

1) A is deterministic.

2) For any two movesp, ¢1,q1) and(p, 2,q2) in A, Note that all of the listed problems have a naive solution

if ¢1 # g2 thenpy A s is unsatisfiable. by using the underlying finite automata algorithms, but

Definition 6: The language (set of stringsicceptedby  these algorithms often depend on the explicit (rather than
an SFA A, L(A), is the language accepted by the finite symbolic) use of the characters, and are impractical when
automator[A]. Two SFAs areequivalentif they accept the the alphabet is large, e.g., when it contains all the UTF-16
same language. characters.

Definition 7: A DSFA A is minimal if A is normalized, The a|gorithms are discussed next.
clean, and 4] is minimal.

Note that if a DSFAA is minimal then it is unique up to
logical equivalence of conditions and renaming of states.

#>=A&#<=F

1) Epsilon elimination: The input to the algorithm is an
e¢SFA A and the output is an equivalent SFA We assume,
without loss of generality, thatl is normalized. We reuse
A. From regular expressions «SFAs the notion of theepsilon closurg7, Section 2.4] of a state

We use [5] as the concrete language definition of reg? in A, denoted here byC'(q).
ular expression patterns segexesin this paper. Not all (i) For all ¢ € Q4 computecC(q) as the least subset
constructs are supported. Advanced regular expressien lan of Q4 such thatg € ¢C(q), and if ¢ € eC(q) and
guages offer features that go beyond classical regulaesxpr (q1,€,q2) € Ay thengs € eC(q).
sions, e.g. with constructs such as “as few times as po$sible (jj) Compute a partial mapE from Q4 x Q4 to Fe such
quantifiers (see also Section IX). Regarding the supported  that, for all (¢, _,r) € AA'
subset of regexes, besides a few extensions, the tramslatio
from a regex to areSFA follows very closely the standard P
algorithm described in [7, Section 2.5] for converting a E(q,r) = \/{‘p [ 3p(p € eCla), (p,,7) € AQ)}-
standard regular expression into a finite automaton with
epsilon moves. For handling negations and character rangegiii) View Dom(FE) as a directed graph and eliminate all

the translation creates a corresponding formulaFin A edges and states that are not reachable fjgm
sample regex and correspondir§FA are illustrated in  (iv) Let B have the following components:
Figure 1.

9 « Qs ={p.q|(p,q) € Dom(E)};
B. Algorithms on SFAs * goB = (oA,

We revisit variations of standard algorithms on finite o Fp={q|q€Qp,eC(q)NFa#0};
automata to perform equivalence preserving transformatio « Ap={(p, Ep,9),9) | (p,g) € Dom(E)}.

on symbolic finite automata, and we also look at the producStep (iii) is not necessary but eliminates states and moves
construction in order to encode intersection constraints: that are redundant; often half of the original states are

1) Epsilon eliminationfrom ¢SFAs; redundant. The algorithm can be implemented in time linear
2) Determinizationof SFAs; in the size ofA. For example the epsilon closures can be
3) Minimization of DSFAs. represented by shared linked lists. The result of applying
4) Productof SFAs. the algorithm to thesSFA in Figure 1(a) is illustrated if

In Section IV SFAs are encoded as inputs to the SMT solvefigure 1(b).

in form of language acceptorsThe above algorithms are  2) Determinization:The input to the algorithm is an SFA
used in Section VI to evaluate their effect on the perforreanc A and the output is an equivalent DSHB. We assume,
of Rex under different equivalent encodings. without loss of generality, thatl is normalized. We use the



following notations. « Apis{(ld.¢,[p)) [ (¢, ¢,p) € Aa}.

e iv) Normalize B, and if B has a dead state (a state from
A “ft|teAn,S t) = (iv) Nor 4 >
A0) ot {t] A, Source(t) = q} which no final state can be reached), eliminate all
Asla) = U{Aalg) |g€a}l moves to the dead state and eliminate the dead state
Target(t) = U{Target(t) |t € t} unless it isqp.2

_4) Product construction:The input to the algorithm are
two SFAs A and B and the output is an SFA’ that is
the productof A and B, such thatZL(C) = L(A) N L(B).

. . The algorithm is more or less standard, we are describing it
() Initially S = ({q0a}). V = {{qoa}}, andT = . to pinpoint some aspects of it that are important when the
(") If S'is empty proceed to (iv) else papfrom 5. product construct is used below in Section VI.

(iiiy For each nonempty subsetof A4 (q), lef As above, it is convenient to describe the algorithm as a

op = (/\ Cond(t)) A ( /\ ~Cond(t)) depth-first-search algorithm using a staglof states ofC
as a frontier, a set’ of visited states, and a sétof moves.

If o, is satisfiablethen () Initially S = ({goa, q05)), V = {{a0a, q05)}, T = 0.
(i) If S is empty go to (iv) else pofygi, g2) from S.
« add(q, ¢t, Target(t)) to T; (i) lterate for eacht; € Aa(q1) andts € Ap(ge), let
o if Target(t) is notinV then addTarget(t) to V ¢ = Cond(t,) A Cond(ts), let p; = Target(t,), and
and pushTarget(t) to S. let ps = Target(t). If ¢ is satisfiablethen
Proceed to (ii). — add (g1, g2), 0, (p1, p2)) tO T
(v) Let B=(V.{ga},{a €V [anFa#0},T). — if <p(1<,p2> ig not<in 1% t>r)1en add(p;,p2) to V and
The satisfiability check of is performed for example with push(py, ps) t0 S.
an SMT solver and ensures thBt is cle_an. Without that Proceed to (ii).
check B may get cluttered with unsatisfiable moves a”d(iv) Let C = ({qoa. qon), V. {qg € V | q € Fa x Fg},T).
states that are unreachable.

Given(q, ¢, , Target(t1)) and(q, ¢t,, Target(t2)) in T
such thatTarget(t1) # Target(ts), it follows immediately
that t; # to and thusyg, A ¢4, iS unsatisfiable because
there is at least onec A 4(q) such that bothCond(t) and
—Cond(t) are conjuncts iy, Apy, . ThusB is deterministic
by Proposition 1.

3) Minimization: The input to the algorithm is a DSFA
A and the output is an equivalent minimal DSFA We
assume, without loss of generality, thatis normalized and
clean. In order for the algorithm to work correctly we also In addition to a quantifier fregjoal formula + that is
need to assume that is total, meaning that for alb € 4C  provided to an SMT solver and for which proof of (or
and allqg € Q4 there is a transition(q,a,p) in [A] for absence of) satisfiability is sought, one can also assert
somep € Q4. To makeA total add a new “dead” stat¢  additional universally quantifiedxiomsto the solver. We
to it, add the moved, true, d), and from each statge such ~ use axioms to encodnguage acceptor$or eSFAs. We

thatp = A —-Cond(t) is satisfiable, add the move are using the programmatic API of the SMT solver Z3 [4],
® tcAa(q) ! . L.
(q,p,d). [9] in Rex. The description below follows closely the use

of Z3 (although using a more mathematical notation) and is
intended to be self-contained.

It is convenient to describe the algorithm as a depth-first
search algorithm using a staékof B states as a frontier, a
setV of visited B states, and a st of moves.

tet teAa(q)\t

(v) Eliminate dead statefrom C (states from which no
final state is reachable).

Note that|Q¢| is at most|Q4| * |@p|. The satisfiability
check in (iii) is important. It prevents unnecessary explo-
ration of unreachablestates, and may avoid a quadratic
blowup of Q¢, whereas (v) avoids introduction of useless
“dead end”-axioms in the symbolic language acceptor.

IV. SYMBOLIC LANGUAGE ACCEPTORS

() Initialize E to be the equivalence relation ovéry
such thatE(p, q) < p,q € Fa.

(i) If there exists(p,q) in E such that there are moves
(p,p,p1) and (¢,v¥,q1) in Ay wherep; # ¢ and
(p1,q1) ¢ FE andp A ¢ is satisfiable then remove During proof search, axioms are triggered by matching
(p,q) from E and repeat (ii). subexpressions in the goal. In Rex, we use particular kinds

(i) Let B have the following components: of axioms that are equivalences of the form
o Qp is the set ofE-classes{[q] | ¢ € Qa};
e qop is the E-class[qoal;
o Fp is the set ofE-classes{[q] | ¢ € Fa};

A. On axioms in SMT solvers

VZ(pins < Orhs) 1)

SNote that there can be at most one dead state, and if the lgagua
accepted byA is empty thenB has a single state that is not final asd
°Note that the empty conjunctioff\ ,cy - - ) is the same agrue. has no moves.



where FV (pns) = T and FV (¢ons) € Z. The lhsyyy,s of
(1) is called thepattern of (1). In the axioms below, we
underline the patterns.

enables us to define the patterns below, since constructors
of algebraic datatypes can be used effectively in patterns.
Intuitively, when such an axiom is used then there is always

The high-level view behind the use of axioms like (1) is something that strictly decreases and implies that thastsex

as follows. The axiom (1) itriggeredby the current goal,

if 4 contains a subformula and there exists a substitutién
such thaty = o0, i.e.,¥ matches the patterof the axiom.
If (1) is triggered, then the current goalis replaced by the

a well-ordering so that each time an axiom is applied the
resulting goal is smaller with respect to that orderingsit i
not possible to write axioms that use integers in this way
because then one cannot associate a well-ordering with the

logically equivalentformula wherey has been replaced by axioms.

(prhse

Forg € Q4, assumeA 4(q) is

Thus, the axioms are used as “rewrite rules” in our case,

and each application of an axiom preserves the logical equiv {(@ o1, ),

(Qa Pms Qm) (q, €,p1) SRR (q, Eapn)}

alence to the original goal. As long as there exists an axiomyng define the axiomaz0;! and az1, where the patterns
that can be triggered, then triggering is guaranteed. Thus, e underlined.

termination is in general not guaranteed when (mutually)

recursive axioms are being used.

B. Representation of strings
For each sortr there is also dist sort L{c). Lists are

provided as built-in algebraic datatypes and are accompa-
nied with standard constructors and accessors in Z3. For

a given element sort there is an empty listil (of sort
L{s)) and if e is an element of sort and ! is a list
of sort L{c) then cons(e,l) is a list of sortL{(s). The
accessors are, as usuad] (head) and:! (tail). Strings are
represented by lists of characters; we wistdor the sort
L(C). The empty string is abbreviated Y and a string
cons(a, cons(b, cons(c, nil))) is abbreviated by'abc" ,

e.g.,hd("abc" ) =a andtl("abc" ) ="bc" .

C. Unary numbers

G,Q','OA def
q
V:E(Acc (2,0) & Vi_ 1Acc (2,0) V a = nil)
if qEFA
G,Q','IA def
wa(ACC (z,5(y)) &

(o # nil A (VT (il ()] A Acc (6(2), )
V Vil Accy, (x,8(y)) V. a = nil)
if g€ Fy
Let Th(A) = {az07, az1 | ¢ € Qa}. The set of
formulas Th(A) (or equwalently/\ Th(A)) is asserted to
the solver as thaxioms forA.
Definition 8: An epsilon loopin an eSFA A is a path of
epsilon moves that starts and ends in the same state.
Theorem 1:Let A be aneSFA without epsilon loops.
Then A\ Th(A) A Acc’ (s, k) is satisfiable iff A acceptss

One can define other (arbitrarily nested) algebraic@d the length of is at mostk.

datatypes in Z3. We are usinmary natural numbersas an

Proof: First, we observe that, for all statesc Q@ 4, if

algebraic datatype for reasons explained below. We declaC'(¢) N Fa = 0 then
N as the corresponding sort, and we declare the constructor%wA oV (Acc (:C 0) & false)

0:N, s:N—N.
We write k + 1 for s(k).
D. From eSFAs to axioms

Let A be a givencSFA. AssumeA is normalized. For all
q € Qa, declare the predicate symbol

Accj?:SxN—ﬂB%

The idea behind the axioms defined below is thatj;‘(s, k)
holds for a strings iff the length of s is at mostk and there

is a path fromq that readss and leads to a final state. In

particular, ifAcc‘;)A (s, k) is true thens is accepted byA].
Let
Ace™ = Accly

q{)A

The role of the second argumenmf:c;4 is to guarantee

that the triggering process of axioms terminates. To this en
the sortN is used (rather than the built-in integer sort). This

a:cZA @ny(Acc (z,8(y)) © x # nil A
vtEAA(EC(q)) Cond( )[hd(l’)] A Accg’arget(t)(tl(x)a y))

and if eC(q) N Fa # 0 then

az0y <V (Acc)) (x 0) & z = nil)
a:cZA @ny(Acc (x,8(y)) © x=mnil V (xr # nil A
\/tEAA(eC(q)) Cond(t)[hd(x)] N Acc%arget(t)(tl(fﬂ)a Y)))

These logical equivalences follow from the assumption that
A has no epsilon loops: the disjunctions in the original
axioms resulting from the epsilon moves can repeatedly be
replaced by the corresponding right hand sides of the axioms
for the target states of the epsilon moves, and this process
terminates due to absence of epsilon lodps.

By using the equivalent definitions for the axioms, it is
straightforward to show, by induction dn that, for any state

“Note that the empty disjunction is the samefase.
SEffectively, this corresponds to epsilon elimination.



q € Q4 and strings, A Th(A)/\Acc‘q“(s,E) is satisfiable iff t(tl(s)) = nil) V ti(s) = nil)
[A] starting fromg and readings of length < k can enter
a final state. In particular, let be the initial state ofA and
the statement follows. [ |
Let us consider a few examples.
Example 1:ConsiderA = ({q},¢,0,0). The language
accepted byA is obviously empty. The axiom&h(A) for

Second, a model is generated for the resulting (quantifier
free) formula (if a model exists) using the built-in thearie
In this case a possible modaf is such thats™ = "ok" .

In Z3 the resulting modeM provides also an interpreta-
tion for all the predicate symbolzicc;“. For entries(e, k)
that did not occur in the derivation, the interpretation is

A are A o arbitrary — typically a default value of the range sort, tisat
ar0y = Vax(Aceg (2,0) < false) false for B. In other words,M is not necessarily a model
a:rzg‘ = Vzy (Accqx(a:, s(y)) & false) for Th(A), since it may violate the axioms for entries that

D are irrelevant with respect to the goal. X

Thus, if M |= Th(A) then there is no string or numberk The condition that4d has no epsilon loops is necessary

A
such thatM |= Accy (s, k). ™M in Theorem 1. The theorem would fail otherwise, as the
Example 2:Consider A = ({q},q,{a}, {(a: true,a)})-  following example illustrates.

The language accepted by is the set of all strings. The " Eyample 4:Consider A — ({g}, 4,0, {(q,,9)}). The
axioms Th(A) for A are language accepted hy is obviously empty because there

amo;‘ = Vr (Acch“(x,ﬁ) & x = nil) are no final states. The axion¥$(A) for A are
arly = Vaoy(Acey (z,s(y) & a0 = Va(Acc}(2,0) & Acc(2,0))
(x # nil A Aceg (th(z),y)) V & = nil) arl? = Vay(Acci(z,5(y)) & Accl(z,5()))

AssumeM |= Th(A). Since M = az0;', we know that The axioms are simply useless logical tautologies. Conside

Acc‘q“("" ,0)M = true. By induction onk, it follows from  for example a modelM/ with an interpretation forAcch4

M = axlg‘ that Accj;‘(s,E)M = true for all stringss of  such thatM = Accg‘("" ,0). Trivially, M is also a model

length at most. X for Th(A) but™ is not accepted byl. Moreover, if the
Example 3:Consider the regefa-z]+ and the follow- axioms were asserted to Z3, the resulting proof search for a
ing SFA A for it (that also happens to be minimal): goal such as4ccg‘("" ,0) would not terminate. X
((F>=a)&(#<=2)) When aneSFA is created from a regex the property that
(#>=a)8(#<=7)) there are no epsilon loops follows immediately from the
@ @ constructions in [7]. So the case when epsilon loops are

The axiomsTh(A) for A are as follows, where[y] is the ~ Presentis not relevant here.

formula (x > a) A (x < z), V. IMPLEMENTATION AND USE
ar0y = VY (Acci (x,0) < false) The automata algorithms discussed in Section Il and
aﬂgl - V:cy(AccOZ(:c,s(y)) &z # nil A lhd(z)] the axiom generation discussed in Section IV have been
ﬁc‘f‘(tl(x} ) implemented inRex The SMT solver Z3 is used for sat-
a0d = Vo (Aech(2,0) & o = nil) isfiability checking and model generation. Interactionhwit

A Y. v . Z3 is implemented through its programmatic API rather than
awly = Vay(Acey(z,8@y)) < (v # nil Aplhd(@)] using a textual format, such as the smt-lib format [10]. The

A .
A Accet (tl(z),y)) V « = nil) main reasons for this are:
Declare a fresh (uninterpreted) constantS and assert « the API provides access to built-in datatypes, such as

the axiomsTh(A) and the goaldcc](s,2) to the solver. algebraic datatypes, and corresponding theories that are
We describe a plausible scenario for the resulting model  not (yet) part of the smt-lib standard;
generation process. First, the axioms are triggered: « the API enables working within a given Z3 context.
A, = azld ‘ The first point was illustrated clearly in Section IV. The sec
Accy (s,2)  ~ s 7 nil Aplhd(s)] A ond point is equally important, it allows Rex to be used as a
Acci(ti(s), 1) decision procedure that is seamlessly integrated with 28, a
az1f , used by other tools such as Pex [11], [1] (for dealing with
~ s # nidl Aplhd(s)] A regular expression constraints in parameterized unis)test
((t(s) # nil A plhd(tl(s))] A and Qex [12], [3] (for dealing with LIKE expressions in
Acc’l“(tl(tl(s)),ﬁ)) V t(s) = nil) database unit tests). In Rex, Z3 is also used for checking con
az0? ‘ straint satisfiability in the implementation of the algbrit
~ s # nil Aplhd(s)] A steps described in Section 111-B2(iii), Section I1I-B3(iand
((tl(s) # nil A [hd(tl(s))] A Section 11I-BA4gjii).



Table

SAMPLE REGEXES

#1 \w([-+.]\w+) = @WH([-J\w+) o \wH(-]\we) *([,;]\s = \WAH([-+.]\w+) > @WH([-J\w+) o \\wH([-]wH+) *) *

#2 | $20d{1,3},20\0{3},?) \d{BH\\A{0,21) 2\, 3}(\\d{0, 21) 2\ K1, 2}?)

#3 | (A-ZK2}lla-z{2} \d{2} [A-ZI{1,2}[a-z]{1,2} \d{1,4} )?([A-Z]{3}I[a-Z]{3} \d{1,4})?

#4 | [A-Za-z0-9](([ \\-]?[a-zA-Z0-9]+) )@ ([A-Za-20-9]+)((\\-]?[a-zA-Z0-9]+) \. (A-Za-Z][A-Za-z]+)

# | (WH)+@(W)H) W)+

#6 | [+12(0-9]  *\.?[0-9]+|[0-9]+\.2[0-9] *)([eEI+-17[0-911)?

#7 | ((whd-N\)+H@{THOWN\-KL,67DI(WIN]\-) H.(WN\-H1,6 7HN.((([a-ZI[A-Z]Nd){2,41) (\.( [a-Z]
[AZ]Nd){2})?)

#8 (([A-Za-z0-9]+ +)|([A-Za-z0-9]+\-+)|([A-Za-z0-9]+\.+ )|([A-Za-z0-9]+\++)) * [A-Za-z0-9]+@((\W+\-+)|(\w+\.)) *\w
{1,630\.[a-zA-Z}{2,6}

#9 | (([azA-Z0-9 \\]H@([a-zA-Z0-9 \\ [N\ (a-zA-Z]{2 SN{L.25N)+(; 1(([a-zA-Z0-9 \\[")@([a-zA-Z0-9 \\
I\ ([a-zA-Z]{2,5}){1,25})+) *

#10 | (W+([-+.]\w+) * @WH([-J\Ww+) o w([-] ) *\s *[]{0,1)\s *)+

A. Working within a Z3 context
A (Z3) contextincludes declarations for a set of symbols,

assertions for a set of formulas, and the status of the Ias|t ]

satisfiability check (if any). There is@urrent contexiand a

backtrack stack of previous contexts. Contexts can be save

throughpushingand restored througpopping

The following is an actual code snippet from Rex illus-
trating how the satisfiability of a formula is checked in
the current context without “cluttering” the context.

z3.Push();

z3.AssertCnstr(f);

LBool isSat = z3.Check();
z3.Pop(); ...

B. Model generation

Besides allowing to check satisfiability, perhaps the mos

important feature of SMT solvers is generatingnedel
as a witness of the satisfiability check, i.e., a mapping o

the uninterpreted function symbols in the current contex

Table I
EVALUATION RESULTS FOR SAMPLE REGEXES
<SFATT) SFA(T) DSFA(r) || mDSFA(r)
size [ tms size [ tms size [ tms size | tms
#1 91 100 || 73 40 81 70 20 140
d#2 90 10 64 10 71 30 29 40
#3 83 10 70 10 104 | 30 69 100
#4 45 40 35 60 53 70 26 70
#5 98 100 71 10 74 30 15 40
#6 31 0 12 0 16 10 10 10
#7 2728 | 840 [| 920 1800
#8 281 40 269 60 380 | 170 || 296 | 870
#9 1944 | 280 || 2128 | 260
#10 || 112 30 104 30

excludes some of the samples from [6] due to shortcomings
pf the regex parser that we use temporarily in Rex.

For each regex we conducted the following experiments,
that are summarized in Table Il. We constructed ¢B€A,
SFA, DSFA and minimal DSFA for- using the algorithms

to their interpretations. The Z3 API has a separate metho®Scribed in Section IIl. For regexes #7, #9 and #10,

for satisfiability checking with model generation. This eod

snippet illustrates the use of that functionality:

Model m;

z3.AssertCnstr(f);

LBool sat = z3.CheckAndGetModel(out m);
Term v = m.Eval(s); ...

Suppose that above is the conjunction ofh(A) for
a given SFAA and the goaldcc(s,|Qa). If L(A) is
nonempty then the value of is a string inL(A).

VI. EXPERIMENTS

We evaluated the performance of Rex on a collection

of sample regexes shown in Tablé€ These are typical
examples of concrete regexes appearing in various pra
tical contexts. The regexes are taken from [@here the
technique is not able to handle regexes #7 and Eble |

5The experiments were run on a Lenovo T61 laptop with Intel doge
T7500 2.2GHz processor.

determinization timed out (using a timeout of 10 seconds).

The size of each automaton, shown in colusizg is its
number of moves plus its number of states. The graph of
each automaton is sparse, having, in average, at most twice
as many moves as states; e.g., Figure 2 shows a ty3€a
generated for one of the regexes in Table I.

For every automatord we performed an independent
member generatioexperiment as follows.

1) Declare a fresh constantS and assertl’:(A) and
Acc” (s,1Qal).

2) Generate a modél/ for the assertions.

3) Validate thats™ indeed matches using the built-in
.NET regex class.

(;I:he member generation time (in milliseconds) is shown in
columnt. The time contains the regex parsing time, the
automaton construction time, the axiom construction time,
and the model generation time with Z3. For éBFAs and
SFAs the construction time is negligible (a few millisecend

or less than a millisecond). In case of DSFAs and minimal



heuristic could be to try to determinize (and minimize)
using a time limit and fall back to using the original
SFA upon timeout. Some regexes are inherently hard to
determinize, since the resulting (minimal) DSFA may be
exponentially larger than theSFA. The classical example
is[a-c] =ala-c]{n} wheren is a fixed positive number;
the number of states in th&SFA is in this caser + 3, e.g.,

the eSFA for [a-c] *a[a-c]{2} is

((#>=a)&(#t<=c))
@ . 0 #=a e #>=a)&(#<=C) ° (#>=a)&(#<=C]

and the corresponding SFA is

(#>=a)&(#<=c))
@ #za ) (¢=a)a(e=c) 3 ) (E==a)a(e=c) @

but the number of states in the (minimal) DSFA2%*!,

We conducted the above member generation experiment for
this regex andh = 1,...,11. In all cases, using theSFA

or SFA, time was negligible (a few milliseconds); whereas,
by making the DSFA, time increased exponentially as sown

in Figure 3.
14000
12000 /f
10000 /
8000

time

6000 /
4000 /
2000

Figure 3. Determinization and member generation times (mit) Rex
for [a-c] *ala-c] {n}, wheren=1,...,11.

Figure 2. ¢SFA of regex #2 in Table I. The final experiment in this section shows scalability and
the use of the product construction. We ran the following
member generation check farup to 1000.

DSFAs, the time spent in model generation in Z3 is in many 1) Construct A as the product of the SFAs for

cases only a small fraction @f Thus, minimization could [a-c] *a[a-c{n+1} and[a-c] =b[a-c]{n}

pay off if the automaton is created once, but used several 2) Declare a freshs:S and assert Th(A) and

times. (We have rounded the measurements and ufsihe Acc?(s,]Qal).

entries are less than a millisecond.) 3) Generate a modél/ for the assertions (also validate
In most casesis marginally better for SFAs, with case #7 that s indeed matches both regexes).

being an exception, where th&FA is 3 timeslarger than  The result of the experiment is shown as a chart in Figure 4.
the SFA butt is twice smaller One possible explanation is The trendline is also shown, that is polynomiakinOne can
that after epsilon elimination the conditions on the mowves i g|so assert the acceptors for the two regexes as a conjanctio
the SFA, although fewer, are more complex. (without building the product), also in this case the time
In general, using a (minimal) DSFA eliminates choicescomplexity scales reasonably well, e.g., far = 50 it
during backtracking and could be preferable in a contextakes around 10 seconds, but which is still in the order
where it is combined with other constraints. A generalof 100 slower than using the product construction. The



160,000 - sion procedures, as constraints over strings are decided by
one solver, while constraints over other domains are ddcide
by other solvers, and the specialized solver usually cannot
be combined in a sound or complete fashion. Our approach
avoids this problem by building on top of an SMT solver
which has decision procedures for a variety of theories.
We discussed symbolic analysis of SQL queries with an
SMT solver in earlier work [3]. Another instance is the
analysis .NET programs, which use a rich set of string
operations; we developed a framework to reason about such

' ' string operations using an SMT solver by separating index
° 20 0, o . 1000 and length constraints from character constraints [2],iand

earlier work we discussed how regular expression matching

Figure 4. Member generation times (ms) for the interseaticthe regexes ~ could be handled by a general-purpose program analysis
la-c] +afac] {n+1}and[a-c] *bla-c] {n} for~ up to 1000. framework for .NET [1] after translating the queries to a
.NET program [6].

Hooimeijer et.al. give a decision procedure for subset
constraints over regular language variables [25]. They do
so in a self-contained way, reasoning over dependency

éaphs. In contrast, we showed how finite automata can

140,000 A
120,000 A

100,000 -

main reason for this is that, during the product construgtio
unsatisfiablemoves are eliminated, andead statesare
eliminated, as explained in Section IlI-B4. This means tha
the corresponding axioms are never created and the sear generalized by making transitions symbolic, and how a
space .that Z3 needs to cover d.“”f‘.g model generauon 'Secision procedure can be embedded into a logic of an SMT
dramatically reduced. The satisfiability checks during the

duct constructi Iso done with Z3, but these checke e
Product construction are aiso done wi » DULINESE CNECKS Ly Amp [26] is another string solver, closely related to

are typically very fast because they are "local” to the movesours, which turns string constraints over fixed-size string

variables into a query to STP [27], a solver for bit-vectors
and arrays. As their solver neither supports lazily instaed

It was suggested earlier [13] to annotate transitions of auantifiers nor the theory of data types (or variable-length
FA with predicates. Van Noord et.al. [14] later formalized lists), they can only handle fixed-size inputs. They use
the basic idea, and it was implemented [14] as an extensioRemplates” that resemble our quantifiers, but their tergsia
to a Prolog-based automata library [15]. However, they [14]get instantiated eagerly upfront. Also, they do not forgall
merely suggest in a footnote that “an implementation mighigeneralize finite automata to symbolic finite automata.
choose to ignore transitions for which the corresponding vy, et.al. [28] describe the derivation of unary length
predicate is not satisfiable”. We formally introduce theaytomata from finite automata, in order to analyze the
notion of “clean” SFAs, which we construct and maintain re|ationship among string and integer variables in program
by systematically pruning infeasible transitions in our de Theijr unary length automata are related to our unary en-
terminization, minimization and product construction@®lg  coding of string lengths. They verify program properties by
rithms using an SMT solver to prove unsatisfiability. This is 5y over-approximating fixpoint computation, while we are

VIl. RELATED WORK

the key to efficiency, which we evaluated as well. concerned with exact decidability.
A connection between logic and automata has been dis-
covered already fifty years ago [16], [17], and revived about VIIl. CONCLUSION

a decade ago [18] in the context of symbolic reasoning with
Binary Decision Diagrams (BDDs) [19]. With BDDs, rather  The scalability of the approach taken in Rex was highly
dense automata over large alphabets can be represented casurprising to us. Rex is able to handle large regexes, for
pactly and reasoned about efficiently. However, with BDDswhich the automata often have hundreds or even thousands
all characters must be encoded as strings over Booleaof states, often under a second. It shows also how effective
variables, while our approach allows transition predisate the underlying SMT solver Z3 is in handling large collec-
over variables that belong to any theory support by theions of axioms that are created on-the-fly, since the number
underlying (SMT) solver. of axioms is proportional to the size of the automaton.
Several program analysis techniques for programs wittMoreover, the initial experiments show that it does not
strings [20], [21], [22], [23] build on automata librariebd], seem to pay off to determinize (and minimize) SFAs for
[24] that efficiently handle transitions over sets of chégex  this application, since the performance is very unpretieta
as BDDs and interval constraints. Most of those progranthen. The integration of Rex in Pex and Qex looks really
analysis approaches suffer from the separation of the decpromising. Moreover, there are still a lot of opportunities
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