
Testing Extended Regular Language
Membership Incrementally by Rewriting

Grigore Roşu and Mahesh Viswanathan
Department of Computer Science

University of Illinois at Urbana-Champaign, USA

Abstract. In this paper we present lower bounds and rewriting algo-
rithms for testing membership of a word in a regular language described
by an extended regular expression. Motivated by intuitions from moni-
toring and testing, where the words to be tested (execution traces) are
typically much longer than the size of the regular expressions (patterns
or requirements), and by the fact that in many applications the traces
are only available incrementally, on an event by event basis, our algo-
rithms are based on an event-consumption idea: a just arrived event is
“consumed” by the regular expression, i.e., the regular expression mod-
ifies itself into another expression discarding the event. We present an
exponential space lower bound for monitoring extended regular expres-
sions and argue that the presented rewriting-based algorithms, besides
their simplicity and elegance, are practical and almost as good as one can
hope. We experimented with and evaluated our algorithms in Maude.

1 Introduction

Regular expressions represent a compact and useful technique to specify pat-
terns in strings. There are programming and/or scripting languages, such as
Perl, which are mostly based on efficient implementations of pattern matching
via regular expressions. Extended regular expressions (ERA), which add com-
plementation (¬R) to the usual union (R1 + R2), concatenation (R1 · R2), and
repetition (R?) operators, make the description of regular languages more con-
venient and more succinct. The membership problem for an extended regular
expression R and a word w = a1a2 . . . an is to decide whether w is in the regular
language generated by R. The size of w is typically much larger than that of R.

Due to their convenience in specifying patterns, regular expressions, and
implicitly the membership problem, have many applications and not only in
computer science. For example, [14] suggests interesting applications in molec-
ular biology. Monitoring and testing are other interesting application areas for
regular expressions, because the execution of physical processes or computer pro-
grams can usually be abstracted by an external observer, or monitor, as a linear
sequence of events. Since monitoring or testing of a process or program typically
terminates after a period of time and a result of the monitoring/testing session
is desired quickly, efficient implementations of the membership problem are of
critical importance to these areas. Moreover, since monitoring sessions can be
quite long, sometimes days or weeks, algorithms which do not need to store the
execution trace or equivalent size information are typically preferred.

There has been some interest manifested recently in the software analysis
community in using temporal logics in testing [9, 10]. The Temporal Rover tool

RTA'03, Lecture Notes in Computer Science (LNCS) 2706, pp 499-514. 2003

(TR) and its follower DB Rover [5] are already commercial; they are based on
the idea of extending or instrumenting Java programs to enforce checking their
execution trace against formulae expressed in temporal logics. The MaC tool
[18] has developed its own language to express monitoring safety requirements,
using an interval past time temporal logic at its core. In [21, 20] various algo-
rithms to generate testing automata from temporal logic formulae are described.
Java PathExplorer [7] is a runtime verification environment under current de-
velopment at NASA Ames, whose logical monitoring part consists of checking
execution traces against formulae expressed in both future time and past time
temporal logics. [6, 8] present efficient algorithms for monitoring future time lin-
ear temporal logic formulae, while [11] gives a method to synthesize efficient
monitors from past time temporal formulae. An interesting aspect of linear tem-
poral logics in the context of monitoring/testing, is that they specify patterns
for the execution traces of the monitored processes, which can also be specified
by extended regular expressions of comparable or sometimes smaller size.

In this paper we focus on the membership problem for EREs. Previous work
on the membership problem for regular expressions and their extensions [12, 19,
22, 17], have focussed on developing dynamic programming or automata based
algorithms that run in time that is polynomial in both the size of the regular
expression and the trace. These algorithms, however, suffer from a couple of
drawbacks that make them unamenable as monitoring or testing algorithms.
First, they are not incremental. They assume that the entire word is available
when the algorithm is run. Second, the running time of these algorithms is at
least quadratic in the size of the word. This is an unacceptably high overhead in
monitoring and testing, because the word is usually enormous.

We, instead, investigate the membership problem in a model that is more ap-
propriate for the context of monitoring and testing. More precisely, we assume
that the ERE R to monitor is given apriori, but the letters a1, a2, ..., an forming
the word w are received one by one, from the first (1) to the last (n). We often
call the expression R a “requirement formula” and the letters in w “events”. We
also assume that w is large enough that one does not want to store it for future
processing; therefore, each event has to be processed as it arrives. For that rea-
son, we interchangeably call this problem the “monitoring” or the “incremental
membership” problem. We give an exponential space lower bound by showing
that any monitoring algorithm for EREs uses space that is Ω(2c

√
m) in the size

m of the ERE, for some fixed constant c. Then, inspired by a related technique
in [8] for future time linear temporal logic, we give a simple exponential space
rewriting algorithm which solves the incremental membership problem in space
O(2m

2

), thus giving an upper bound for the membership problem. In the end we
give an improved version of the algorithm which we implemented and evaluated
using Maude, which performs much better than the proved upper bound, thus
opening the door for further interesting research in this direction.

Note that the simple-minded technique to first generate a nondeterministic
(NFA) or a deterministic finite automaton (DFA) from the ERE and then to
monitor against that NFA or DFA is not practical. This is because the size of

RTA'03, Lecture Notes in Computer Science (LNCS) 2706, pp 499-514. 2003

the NFA or DFA can be non-elementarily larger than the initial regular ERE, be-
cause negation involves an NFA-to-DFA translation, which implies an exponen-
tial blow-up; since negations can be nested, the size of such NFAs or DFAs could
be highly exponential. Even if one would succeed in storing such an immense
automaton, say a DFA, monitoring against it would still be highly exponential
because a transition in a DFA requires time logarithmic in the total number of
states (the next state needs to be at least read and each state label/name needs
at least a logarithmic number of bits). ERE to (perhaps alternating) automata
effective translations may well be possible, and we believe they are, but the
simplistic ones are clearly too inconvenient to be considered.

2 Monitoring Extended Regular Expressions
In this section we define extended regular expressions (ERE) and languages
formally, and give an exponential space lower bound for monitoring ERE.

2.1 Definitions

Extended regular expressions (ERE) define languages by inductively applying
union (+), concatenation (·), Kleene Closure (?), intersection (∩), and comple-
mentation (¬). More precisely, for an alphabet Σ, an ERE over Σ is defined as
follows, where A ∈ Σ: R ::= ∅ | ε | A | R+R | R ·R | R? | R ∩R | ¬R.

The language defined by an expression R, denoted by L(R), is defined induc-
tively as L(∅) = ∅, L(ε) = {ε}, L(A) = {A}, L(R1 + R2) = L(R1) ∪ L(R2),
L(R1 · R2) = {w1 · w2 | w1 ∈ L(R1) and w2 ∈ L(R2)}, L(R?) = (L(R))?,
L(R1 ∩ R2) = L(R1) ∩ L(R2), L(¬R) = Σ? \ L(R). Given an ERE, as defined
above using union, concatenation, Kleene Closure, intersection and complemen-
tation, one can translate it into an equivalent expression that does not have
any intersection operation, by applying De Morgan’s Laws. The translation only
results in a linear blowup in size. Therefore, in the rest of the paper we do not
consider expressions containing intersection. More precisely, we only consider
EREs of the form R ::= R+R | R ·R | R? | ¬R | A | ε | ∅.
2.2 Monitoring

In this subsection we will show that any monitoring algorithm for extended
regular expressions must use space that is exponential in the size of the regular
expression describing the correctness property. We will give an example of a
language for which a lot of information needs to be remembered in order for it
to determine if a trace satisfies the property.

The language that will be used in proving the lower bound was first present
in [3] to show the power of alternation. Since then this example also has been used
to prove lower bounds on LTL model checking [15, 16]. Consider the language

Lk = {σ#w#σ′$w | w ∈ {0, 1}k and σ, σ′ ∈ {0, 1,#}?}.
We will first show that the above language can be described using an ERE

of size Θ(k2). We will then show that any monitoring algorithm must keep track
of all strings over {0, 1} of length k that appear between # symbols before the
$ in the trace, in order for it to decide membership in Lk. This will give us a
space lower bound of 2k for monitoring algorithms.

RTA'03, Lecture Notes in Computer Science (LNCS) 2706, pp 499-514. 2003

Proposition 1. There is an ERE Rk such that L(Rk) = Lk and |Rk| = Θ(k2).
Proof. The ERE will be a conjunction of the following two facts.
(a) There is exactly one $ symbol in the trace, and
(b) There is a # symbols after which there is a string of length k over {0, 1}

before the next #, such that for every i, the ith symbol after the # is exactly
the same as the ith symbol after the $.

In other words, Rk is the following extended regular expression.
Rk = (¬$)

?
$(¬$)

?
⋂

(0 + 1 + #)
?
#[

k⋂
i=0

[((0 + 1)
i
0(0 + 1)

k−i−1
#(0 + 1 + #)

?
$(0 + 1)

i
0(0 + 1)

k−i−1
)

+((0 + 1)
i
1(0 + 1)

k−i−1
#(0 + 1 + #)

?
$(0 + 1)

i
1(0 + 1)

k−i−1
)]]

Observe that |Rk| = Θ(k2).

In order to prove the space lower bound, the following equivalence relation
on strings over (0 + 1 + #)? is useful. For a string σ ∈ (0 + 1 + #)?, define
S(σ) = {w ∈ (0 + 1)k | ∃λ1, λ2. λ1#w#λ2 = σ}. We will say that σ1 ≡k σ2 iff

S(σ1) = S(σ2). Now observe that the number of equivalence classes of ≡k is 22
k

;
this is because for any S ⊆ (0 + 1)k, there is a σ such that S(σ) = S. We are
now ready to prove the space lower bound.

Theorem 1. Any ERE monitoring algorithm requires space Ω(2c
√
m), where m

is the size of the input ERE and c is some fixed constant.
Proof. Since |Rk| = θ(k2) by Proposition 1, it follows that there is some constant
c′ such that |Rk| ≤ c′k2 for all large enough k. Let c be the constant 1/

√
c′.

We will prove this lower bound result by contradiction. Suppose A is an ERE
monitoring algorithm that uses less that 2c

√
m space for any EREs of large

enough size m. We will look at the behavior of the algorithm A on inputs of the
form Rk. So m = |Rk| ≤ c′k2, and A uses less than 2k space. Since the number

of equivalence classes of ≡k is 22
k

, by pigeon hole principle, there must be two
strings σ1 6≡k σ2 such that the memory of A(Rk) after reading σ1$ is the same as
the memory after reading σ2$. In other words, A(Rk) will give the same answer
on all inputs of the form σ1$w and σ2$w. Now since σ1 6≡k σ2, it follows that
(S(σ1) \ S(σ2)∪ (S(σ2) \ S(σ1)) 6= ∅. Take w ∈ (S(σ1) \ S(σ2)∪ (S(σ2) \ S(σ1)).
Then clearly, exactly one out of σ1$w and σ2$w is in Lk, and so A(Rk) gives the
wrong answer on one of these inputs. Therefore, A is not a correct.

3 An Event Consuming Rewriting Algorithm
In this section we introduce a rewriting-based monitoring procedure. It is based
on an event consumption idea, in the sense that an extended regular expression
R and an event a produce another extended regular expression, denoted R{a},
with the property that for any trace w, aw ∈ R if and only if w ∈ R{a}.
The ERE R{a} is also known as a ”derivative” of ”residual” in the literature
(see [2, 1], where several interesting properties of derivatives are also presented).
The intuition here is that in order to incrementally test for membership of an
incoming sequence of events to a given ERE, one can “process” the events as they
are available, by modifying accordingly the monitoring requirement expression.

RTA'03, Lecture Notes in Computer Science (LNCS) 2706, pp 499-514. 2003

The rewriting systems in this paper are all considering that the operator +
is associative and commutative and that the operator · is associative. In other
words, rewriting is performed modulo the equations:

(R1 +R2) +R3 ≡ R1 + (R2 +R3),
R1 +R2 ≡ R2 +R1,

(R1 ·R2) ·R3 ≡ R1 · (R2 ·R3).

3.1 Rewriting Rules

We next consider an operation { } which takes an extended regular expres-
sion and an event, and give seven rewriting rules which define its operational
semantics recursively, on the structure of the regular expression:

(R1 +R2){a} → R1{a}+R2{a}
(R1 ·R2){a} → (R1{a}) ·R2 + if (ε ∈ R1) then R2{a} else ∅ fi

(R?){a} → (R{a}) ·R?

(¬R){a} → ¬(R{a})
b{a} → if (b = a) then ε else ∅ fi
ε{a} → ∅
∅{a} → ∅

(1)
(2)
(3)
(4)
(5)
(6)
(7)

The right-hand sides of these rules use operations which we describe next.
“if () then else fi” takes a boolean term and two EREs as arguments and
has the expected meaning defined by two rewriting rules:

if (true) then R1 else R2 fi→ R1

if (false) then R1 else R2 fi→ R2

(8)
(9)

We assume a set of rewriting rules that properly evaluate boolean expressions.
Boolean expressions include the constants true and false, as well as the usual
connectors ∧ , ∨ , and not. Testing for empty trace membership (which is
used by (2)) can be efficiently implemented via the following rewriting rules:

ε ∈ (R1 +R2)→ (ε ∈ R1) ∨ (ε ∈ R2)
ε ∈ (R1 ·R2)→ (ε ∈ R1) ∧ (ε ∈ R2)

ε ∈ (R?)→ true
ε ∈ (¬R)→ not(ε ∈ R)

ε ∈ b→ false
ε ∈ ε→ true
ε ∈ ∅ → false

(10)
(11)
(12)
(13)
(14)
(15)
(16)

The 16 rules defined above are natural and intuitive. Since the memory of our
monitoring algorithm will consist of an ERE and since our main consideration
here is memory, we pay special attention to the size of an ERE. The following
three rules keep the size of the ERE generated by the other rules small. For that
reason, we call them “simplifying rules”. The latter may seem backwards at first
sight. Its crucial role in maintaining EREs small will become clearer later:

R+ ∅ → R
R+R→ R

R1 ·R+R2 ·R→ (R1 +R2) ·R

(17)
(18)
(19)

RTA'03, Lecture Notes in Computer Science (LNCS) 2706, pp 499-514. 2003

The sizes of the right-hand sides of these three rules are smaller (by at least 2)
than their corresponding left-hand sides.

LetR denote the rewriting system defined above. Some notions and notations
are needed before we can state the important results. Let ≡C denote the congru-
ence relation generated by the set C containing the three equations just before
Subsection 3.1 (associativity of + and · and commutativity of +). Then the
rewriting relation modulo C generated by the rules above, written →R/C , is the
relation ≡C ;→R;≡C , where semicolon denotes composition of binary relations
and →R is the ordinary (non-AC) relation generated by R. We say that R is
terminating modulo C if and only if →R/C is terminating, and that it is ground
Church-Rosser modulo C if and only if ↔?

R∪C is contained in →?
R/C ;≡C ;↔?

R/C
on all ground terms (concrete EREs in our case). The typical technique to show
termination modulo some equations is to define a weight function of terms, as-
signing a natural number to each term, and then show that this map is invariant
with respect to equations and decreasing with respect to the rewriting rules.

Theorem 2. R is terminating and ground Church-Rosser modulo C; let nf R/C(R)
be the normal form of R in R modulo C. Furthermore, for a given extended reg-
ular expression R and a given event a, L(nf R/C(R{a})) = {w | aw ∈ R}.

Proof. Let γ be a function to natural numbers defined inductively as follows on
terms of sort extended regular expression:

γ(R{a}) = (γ(R) + 1)2,
γ(R1 +R2) = γ(R1 ·R2) = γ(R1) + γ(R2) + 1,
γ(R?) = γ(¬R) = γ(R) + 1,
γ(b) = γ(ε) = γ(∅) = 1,

and on terms of sort bool:

γ(ε ∈ R) = 2 · γ(R),
γ(B1 ∧B2) = γ(B1 ∨B2) = γ(B1) + γ(B2) + 1,
γ(not(B)) = γ(B) + 1,
γ(true) = γ(false) = 1.

Let us now define a binary relation � on extended regular expression terms as
R � R′ if and only if γ(R) > γ(R′). It can easily be seen that � is well-founded
and that γ(R) = γ(R′) for each associativity or commutativity equation R = R′

in C. We claim that � includes the rewriting relation →R/C . It suffices to show
that � includes the relation →R, which can be simply tested on each of the
rewriting rules in R above. For example, rule (2) can be tested as follows:

γ((R1 ·R2){a}) > γ((R1{a}) ·R2 + if (ε ∈ R1) then R2{a} else ∅ fi), iff
(γ(R1 ·R2) + 1)2 > γ((R1{a}) ·R2) + γ(if (ε ∈ R1) then R2{a} else ∅ fi) + 1, iff
(γ(R1) + γ(R2) + 2)2 > (γ(R1) + 1)2 + γ(R2) + 2 · γ(R1) + (γ(R2) + 1)2 + 3, iff
2 · γ(R1) · γ(R2) + γ(R2) > 1.

For simplicity, assume that rule (5) is replaced by a finite set of rules b{a} → ∅
for each different a, b in the alphabet and a{a} → ε for each a. We therefore can
conclude that R is terminating modulo C. Due to space limitations, the Church-
Rosser property of R modulo C will be shown elsewhere. However, since R is not

RTA'03, Lecture Notes in Computer Science (LNCS) 2706, pp 499-514. 2003

left-linear (see rules (18) and (19)), one cannot apply the classical critical pair
completion procedure by Huet in [13].

We next show that for any extended regular expression R and any event
a, L(nf R/C(R{a})) = {w | aw ∈ R}. First notice that for any two extended
regular expressions (without containing the operation { }) R and R′, it is the
case that L(R) = L(R′) whenever R →R/C R′; this is because the rules (17),
(18) and (19) in R and all the equations in C, the only which can be applied, are
all valid properties of regular languages. In particular, L(R) = L(nf R/C(R) for
any extended regular expression R. We can now start showing our main result
inductively, on the structure of the extended regular expression:

L(nf R/C((R1 +R2){a})) = L(nf R/C(R1{a}+R2{a}))
= L(nf R/C(R1{a}) + nf R/C(R2{a}))
= L(nf R/C(R1{a})) ∪ L(nf R/C(R2{a}))
= {w | aw ∈ L(R1)} ∪ {w | aw ∈ L(R2)}
= {w | aw ∈ L(R1 +R2)}.

Before we continue, note that for any ground or concrete ERE R, the nor-
mal form of ε ∈ R in R modulo C is either true or false. Moreover, it fol-
lows that nf R/C(ε ∈ R) = true if and only if ε ∈ L(R), which implies that
nf R/C(if (ε ∈ R1) then R2{a} else ∅ fi) is either nf R/C(R2{a}) when ε ∈
L(R1) or ∅ when ε 6∈ L(R1). Then

L(nf R/C((R1 ·R2){a})) = L(nf R/C((R1{a}) ·R2 +

if (ε ∈ R1) then R2{a} else ∅ fi))
= L(nf R/C(nf R/C(R1{a}) ·R2 +

nf R/C(if (ε ∈ R1) then R2{a} else ∅ fi)))

= L(nf R/C(nf R/C(R1{a}) ·R2 +

nf R/C(R2{a}))) when ε ∈ L(R1), or

L(nf R/C(nf R/C(R1{a}) ·R2 + ∅)) when ε 6∈ L(R1)

= L(nf R/C(R1{a})) · L(R2) ∪ L(nf R/C(R2{a}))
when ε ∈ L(R1), or
L(nf R/C(R1{a})) · L(R2) when ε 6∈ L(R1)

= {w | aw ∈ L(R1)} · L(R2) ∪ {w | aw ∈ L(R2)
when ε ∈ L(R1), or
{w | aw ∈ L(R1) · L(R2) when ε 6∈ L(R1)

= {w | aw ∈ L(R1 ·R2)}.

Similarly, the inductive property follows for repetition and complement:

L(nf R/C(R?{a})) = L(nf R/C(R{a} ·R?))

= L(nf R/C(R{a}) ·R?)

= L(nf R/C(R{a})) · L(R?)

= {w | aw ∈ R} · L(R?)
= {w | aw ∈ R?},

RTA'03, Lecture Notes in Computer Science (LNCS) 2706, pp 499-514. 2003

and
L(nf R/C((¬R){a})) = L(nf R/C(¬(R{a})))

= L(¬nf R/C(R{a}))
= Σ? \ L(nf R/C(R{a}))
= Σ? \ {w | aw ∈ R}
= {w | aw 6∈ R}
= {w | aw ∈ ¬R}.

The remaining proofs, when R is a singleton, ε or ∅, are trivial. Thus we conclude
that L(nf R/C(R{a})) = {w | aw ∈ R} for any extended regular expression R
and any event a.

From now on in the paper, we let R{a} also (ambiguously) denote the term
nf R/C(R{a}), and consider that the rewrites in R modulo C are always applied
automatically.

3.2 The Algorithm

We can now introduce our rewriting based algorithm for incrementally testing
membership of words or traces to extended regular languages:

Algorithm A(R, a1, a2, ..., an)
Input: An ERE R and events a1, a2, ..., an received incrementally
Output: true if and only if a1a2...an ∈ L(R); false otherwise
1. let R′ be R
2. let i be 1
3. while i ≤ n do
4. wait until ai is available
5. let R′ be nf R/C(R′{ai})
6. if R′ = ∅ then return false
7. if R′ = ¬(∅) then return true
8. let i be i+ 1
9. return (ε ∈ R′); calculated using R (modulo C or not)

Therefore, a local ERE R′ is updated after receiving each of the events ai.
If R′ ever becomes empty (step 6) then, by Theorem 2, there is no way for the
remaining events to make the whole trace into an accepting one, so the algorithm
returns fail and the remaining events are not processed anymore. Similarly, if
R′ becomes the total language (step 7), then also by Theorem 2 it follows that
any continuation will be accepted so the algorithm safely returns true. Step 8
finally tests whether the empty word is in R′ after all the events have been
processed, which, by Theorem 2 again, tells whether the sequence a1a2...an is in
the language of R.

3.3 Analysis

We will now show that the space and time requirements of our rewriting algo-
rithm are not much worse than the lower bounds proved in the previous section.

RTA'03, Lecture Notes in Computer Science (LNCS) 2706, pp 499-514. 2003

Our rewriting algorithm keeps track of one extended regular expression which it
modifies every time it receives a new event from the trace. We will prove that
the size of this regular expression is bounded, no matter how many events are
processed, and this will give us the desired bounds.

For an extended regular expression R, define the function size as follows:

size(R) = max
n,a1,a2,...an

|R{a1}{a2} · · · {an}|

So size(R) is the maximum size that R can grow to for any sequence of events.

Proposition 2. max|R|=m size(R) ≤ 2m
2

.

Proof. Before presenting a proof of the bounds, we introduce some notation
that will be useful in the proof. For a regular expression R, we will denote by
R{a1}{a2} · · · {an} the regular expression (actually its normal form in R):

R{a1}{a2} · · · {an}+R{a2}{a3} · · · {an}+ · · ·R{an}.

In addition, we define the following functions:

size(R) = maxn,a1,a2,...an |R{a1}{a2} · · · {an}|,
diff(R) = maxn,a1,a2,...an |{R{ai}{ai+1} · · · {an} | 1 ≤ i ≤ n}|,
diff(R) = maxn,a1,a2...an |{R{ai}{ai+1} · · · {an} | 1 ≤ i ≤ n}|.

So size(R) measures the maximum size the expression R can grow to, diff(R)
measures the number of syntactically different terms in R, and finally diff(R) is
similar to diff(R) but defined for R

Using the above functions, we will be able to give bounds on the size of size,
inductively. We first make some important observations regarding the expression
|R{a1}{a2} · · · {an}| based on its form:

|(R1 +R2){a1} · · · {an}| = |R1{a1} · · · {an}+R2{a1} · · · {an}|
≤ |R1{a1} · · · {an}|+ |R2{a1} · · · {an}|+ 1

|(R1 ·R2){a1} · · · {an}| ≤ |(R1{a1} · · · {an}) ·R2 +R2{an}+ · · ·+R2{a1} · · · {an}|
≤ |(R1{a1} · · · {an})|+ 1 + |R2|+ |R{a1} · · · {an}|+ 1

|(R?
1){a1} · · · {an}| ≤ |(R1{a1} · · · {an}) ·R?

1|
= |R1{a1} · · · {an}|+ |R?

1|+ 1

|(¬R1){a1} · · · {an}| = |¬(R1{a1} · · · {an})|
= |R1{a1} · · · {an}|+ 1

The only observation that needs some explanation is the one corresponding to
R?

1. Observe that, R?
1{a1} · · · {an} will get rewritten, in the worst case, as

(R1{a1} · · · {an}) ·R?
1 + (R1{a2} · · · {an}) ·R?

1 + · · · (R1{an}) ·R?
1

which after simplification using the rule (19) will be (R1{a1} · · · {an}) ·R?
1. Note

that, in making the above observations, we make use of the fact that R is ground
Church-Rosser modulo C (see Theorem 2).

RTA'03, Lecture Notes in Computer Science (LNCS) 2706, pp 499-514. 2003

Based on these observations, we can give an inductive bound on size:

size(R1 +R2) ≤ size(R1) + size(R2) + 1,
size(R1 ·R2) ≤ size(R1) + |R2|+ size(R2) + 2,
size(R?

1) ≤ size(R1) + |R?
1|+ 1,

size(¬R1) ≤ size(R1) + 1.

We are now ready to give bounds on size. Observe that:

size(R1 +R2) ≤ size(R1) + size(R2) + 1,
size(R1 ·R2) ≤ size(R1) + |R2|+ size(R2) + 2,
size(R?

1) ≤ size(R1) + |R?
1|+ 1,

size(¬R1) ≤ diff(R1) · size(R1) + 2diff(R1).

The reasons for the above inequalities is similar to those for size. The only case
that needs explanation is the one for ¬R1. Observe that (¬R1){a1} · · · {an} +
(¬R1){a2} · · · {an}+ · · ·+ (¬R1){an} is the same as ¬(R1{a1} · · · {an}) + · · ·+
¬(R1{an}). So based on how many of the terms R1{ai} · · · {an} are different,
we can bound size(¬R1).

Finally, we give the bounds on the function diff and diff based on a similar
reasoning:

diff(R1 +R2) ≤ diff(R1) · diff(R2),

diff(R1 ·R2) ≤ diff(R1) · diff(R2),

diff(R?
1) ≤ diff(R1),

diff(¬R1) ≤ diff(R1).

To complete the analysis, observe that diff(R) ≤ diff(R).
If we take (max|R|=m diff(R)) and (max|R|=m diff(R)) to be bounded by 2m,

and (max|R|=m size(R)) and (max|R|=m size(R)) to be bounded by 2m
2

, then we
see that all of the inequalities are satisfied. Hence the proposition follows.

Theorem 3. The monitoring algorithm based on rewriting uses space O(22m
2

)

and time O(n · 22m2

); time is measured in number or rewriting steps.

Proof. The space needed by the algorithm consists of the space needed to store
the evolving ERE. By the proposition above, we know that, after simplification,
such an ERE will never be larger than O(2m

2

), where m is the size of the initial
ERE. However, before simplification, the stored ERE first suffers an increase in
size. We claim that, regardless of the order in which rewrite rules are applied,
the size of the intermediate term obtained by deriving a given ERE of size M
will never grow larger than M2. This is indeed true, because if one analyzes the
rewriting rules which can increase the size of the term, namely rules (1)–(7) and
(10)–(11), then one can see that the worst case scenario is given by a recurrence
S(M1 + M2 + 1) ≤ S(M1) + S(M2) + M1 + M2 + c, where c is some (small)
constant; this recurrence implies S(M) = O(M2). Therefore, the space needed

by our rewriting algorithm is O(22m
2

).

The number of rewrites needed to process one event is also O(22m
2

). Note
first that the number of rewrites for a test ε ∈ R is |R|. Then one can easily give

RTA'03, Lecture Notes in Computer Science (LNCS) 2706, pp 499-514. 2003

a recurrence for the number of rewrites to push an event to leaves; for example,
in the case of concatenation this is N((R1R2){a}) ≤ N(R1) + |R1|+N(R2) + 1.

Therefore, there are O(22m
2

) applications of rules (1)–(16). Since each of the
remaining rules, the simplifying ones, decrease the size of the term by 2 and
the maximum size of the term is O(22m

2

), it follows that the total number of

rewrites needed to process an event is indeed O(22m
2

).

The above results can be improved if one considers only regular expressions,
instead of extended regular expressions. Applying the same rewrite algorithm to
expressions that do not have negations, we can use the very same analysis to
observe that the rewrite algorithm uses space O(m2) and running time O(n ·m2)

Theorem 4. The monitoring algorithm based on rewriting, when applied to ex-
pressions not containing any negation, use space O(m2) and time O(n ·m2).

4 Implementation, Evaluation and Conclusion

We have implemented in Maude [4] several improved versions of the rewriting-
based algorithm in Section 3. In this section we present an implementation which
worked best on our test suits. Space/time analysis seems hard to do rigorously
and is not given for this implementation, but the given experimental data sug-
gest that the O(2m

2

) space upper bound proved in Subsection 3.3 is more of
a theoretical importance than practical. We hope to calculate the exact worst-
case complexity of the next rewriting procedure soon, but for now are happy to
present it as a procedure for monitoring extended regular expressions which per-
forms very well in practice. The usual operations on extended regular expressions
can be defined in a functional module (fmod ... endfm) as follows:

fmod ERE is

sorts Event Ere .

subsort Event < Ere .

op _+_ : Ere Ere -> Ere [assoc comm prec 60] .

op __ : Ere Ere -> Ere [assoc prec 50] .

ops (_*) (~_) : Ere -> Ere .

ops epsilon empty : -> Ere .

endfm

Precedences were given to some operators to avoid writing parentheses: the
lower the precedence the tighter the binding.

10 rules for ε-membership and for simplifying extended regular expressions
were given in Section 3 (rules (10)-(19)). These rules were shown to keep the

size of any evolving extended regular expression lower than O(2m
2

), where m
is its initial size. Driven by practical experiments, we have decided to define a
partial ERE inclusion operator, called in , using 22 rewriting rules (some of
them conditional) which correctly extends the needed (total) ε-membership in
Section 3. Together with other 10 simplifying rules, ERE inclusion is defined in
the following module:

RTA'03, Lecture Notes in Computer Science (LNCS) 2706, pp 499-514. 2003

fmod SYMPLIFY-ERE is including ERE .

vars R R’ R1 R2 R1’ R2’ : Ere . vars A B : Event .

eq empty R = empty . eq R empty = empty .

eq epsilon R = R . eq R epsilon = R .

eq ~ ~ R = R . eq R * * = R * .

eq epsilon * = epsilon . eq empty * = empty .

ceq R1 + R2 = R2 if R1 in R2 . eq R1 R + R2 R = (R1 + R2) R .

op _in_ : Ere Ere -> Bool .

eq empty in R = true . eq epsilon in A = false .

eq A in B = (A == B) . eq R in R = true .

eq epsilon in (R1 + R2) = epsilon in R1 or epsilon in R2 .

eq A in (R1 + R2) = A in R1 or A in R2 .

ceq R in (R1 + R2) = true if R in R1 .

eq (R1 + R2) in R = R1 in R and R2 in R .

eq epsilon in (R1 R2) = epsilon in R1 and epsilon in R2 .

eq A in (R1 R2) =

A in R1 and epsilon in R2 or A in R2 and epsilon in R1 .

ceq (R1 R2) in (R1’ R2’) = true if (R1 in R1’) /\ (R2 in R2’) .

eq epsilon in (R *) = true .

ceq R1 in (R *) = true if R1 in R .

ceq (R1 R2) in (R *) = true if (R1 in (R *)) /\ (R2 in (R *)) .

eq R in (~ empty) = true .

eq R in (~ epsilon) = not (epsilon in R) .

eq R in (~ A) = not (A in R) .

eq epsilon in (~ R) = not (epsilon in R) .

eq A in (~ R) = not(A in R) .

eq (~ R) in (~ R’) = R’ in R .

eq R in empty = R == empty .

eq R in epsilon = R == empty or R == epsilon .

endfm

The module above therefore adds 32 equational constraints to the EREs defined
syntactically in the module ERE (included with the Maude keyword including).
Maude executes these equations as (conditional) rewrite rules. The major sim-
plifying rule in SIMPLIFY-ERE is the 5th on the left column, which properly gen-
eralizes rule (18) in Section 3; this was the rule motivating the definition of the
ERE partial inclusion.

We can now define the event consuming operator, { }, together with its
associated seven rules (1)-(7) from Section 3:

fmod CONSUME-EVENT is protecting SYMPLIFY-ERE .

vars R1 R2 R : Ere . vars A B C : Event .

op _{_} : Ere Event -> Ere [prec 45] .

eq (R1 + R2){A} = R1{A} + R2{A} .

eq (R1 R2){A} =

R1{A} R2 + if (epsilon in R1) then R2{A} else empty fi .

eq (R *){A} = R{A} (R *) .

eq (~ R){A} = ~ (R{A}) .

RTA'03, Lecture Notes in Computer Science (LNCS) 2706, pp 499-514. 2003

eq B{A} = if B == A then epsilon else empty fi .

eq epsilon{A} = empty .

eq empty{A} = empty .

endfm

The conditional operator if then else fi, whose semantics was given by the
rules (8)-(9) in Section 3, is part of the builtin BOOL module in Maude.

One can now use the rewriting procedure above by either launching Maude
reduce commands directly, such as:

red (A(A + B)*)* {A} .

red ((A + B)((C + A)* (A B *)*)*)* {A} .

red ((A + B)((C + A)* (A B *)*)*)* {B} .

red ((A + B)((C + A)* (A B *)*)*)* {C} .

which give the following expected answers,

==

reduce in CONSUME-EVENT : (A (A + B) *) *{A} .

rewrites: 14 in 0ms cpu (0ms real) (~ rewrites/second)

result Ere: (A + B) * (A (A + B) *) *

==

reduce in CONSUME-EVENT : ((A + B) ((A + C) * (A B *) *) *) *{A} .

rewrites: 32 in 0ms cpu (0ms real) (~ rewrites/second)

result Ere: ((A + C) * (A B *) *) * ((A + B) ((A + C) * (A B *)*)*)*

==

reduce in CONSUME-EVENT : ((A + B) ((A + C) * (A B *) *) *) *{B} .

rewrites: 32 in 0ms cpu (0ms real) (~ rewrites/second)

result Ere: ((A + C) * (A B *) *) * ((A + B) ((A + C) * (A B *)*)*)*

==

reduce in CONSUME-EVENT : ((A + B) ((A + C) * (A B *) *) *) *{C} .

rewrites: 31 in 0ms cpu (0ms real) (~ rewrites/second)

result Ere: empty

or by calling it from a different place (procedure, thread, process) where the
algorithm in Subsection 3.2 is implemented – it is worth mentioning that this
algorithm can also be implemented directly in Maude, using its loop mode feature
[4] which is specially designed to process events interactively.

We have tested the event consuming procedure above on several extended
regular expressions and several sequences of events, and the results were quite
encouraging. We were not able to notice any measurable running time on mean-
ingful formulae that one would want to enforce in real software monitoring ap-
plications. In order to do proper worst-case measurements, we have implemented
(also by rewriting in Maude) another procedure which takes as input a natural
number m and does the following:

1. Generates all extended regular expressions of size m over 0 and 1;
2. For each such expression R, it calculates the number size(R) (see Subsection

3.3) by exhaustively generating the set of all the extended regular expressions
R{a1}{a2} · · · {an} for all n and a1, a2, ..., an ∈ {0, 1}; by Proposition 2, this
set is finite;

RTA'03, Lecture Notes in Computer Science (LNCS) 2706, pp 499-514. 2003

3. It returns the largest of size(R) for all R above.

This algorithm is obviously very inefficient1. We were only able to run it for all
m ≤ 12 in less than 24 hours, generating the following table:

m 1 2 3 4 5 6 7 8 9 10 11 12
max|R|=m(size(R)) 1 2 6 8 18 24 39 51 57 77 92 108

Since the space requirements of our rewriting monitoring procedure is given
by the size of the current formula, the table above gives us a measure of the
space needed in the worst case by our rewriting algorithm. It shows for ex-
ample that an extended regular expression of size 12, in the worst possible
case grows to size 108, which is of course infinitely better than the upper
bound that we were able to prove for the simplified algorithm, namely 212

2

=
22, 300, 745, 198, 530, 623, 141, 535, 718, 272, 648, 361, 505, 980, 416. This tells us
that there is plenty of room for further research in finding better rewriting based
algorithms and better upper bounds for space requirements than the ones we
were able to find in Section 3. The improved rewriting procedure presented in
this section can be such a significantly better membership algorithm, but proving
it seems to be hard.

It is worth mentioning that, even if one removes the auxiliary rewriting rules
from the module above and keeps only the 19 rules presented in the previous
section, the size of the evolving ERE still stays smaller that 2m. This stimulates
us to conclude with the following:

Conjecture. The rewriting-based algorithm presented in Section 3 runs in space
O(2m) and time O(n2m), where m is the size of the ERE and n is the size of the
event trace. Moreover, these are the lower bounds for the membership problem.

References

1. V.M. Antimirov. Partial derivatives of regular expressions and finite automaton
constructions. Journal of Theoretical Computer Science, 155(2):291–319, 1996.

2. V.M. Antimirov and P.D. Mosses. Rewriting extended regular expressions. Journal
of Theoretical Computer Science, 143(1):51–72, 1995.

3. A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. Journal of the
ACM, 28(1):114–133, 1981.

4. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and J. Que-
sada. Maude: specification and programming in rewriting logic. SRI International,
January 1999, http://maude.csl.sri.com.

5. D. Drusinsky. The Temporal Rover and the ATG Rover. In SPIN Model Checking
and Software Verification, volume 1885 of Lecture Notes in Computer Science,
pages 323–330. Springer, 2000.

6. D. Giannakopoulou and K. Havelund. Automata-Based Verification of Temporal
Properties on Running Programs. In Proceedings, International Conference on
Automated Software Engineering (ASE’01), pages 412–416. Institute of Electrical
and Electronics Engineers, 2001. Coronado Island, California.

1 We are, however, happy to provide it on request.

RTA'03, Lecture Notes in Computer Science (LNCS) 2706, pp 499-514. 2003

7. K. Havelund and G. Roşu. Monitoring Java Programs with Java PathExplorer.
In Proceedings of Runtime Verification (RV’01), volume 55 of Electronic Notes in
Theoretical Computer Science. Elsevier Science, 2001.

8. K. Havelund and G. Roşu. Monitoring Programs using Rewriting. In Proceedings,
International Conference on Automated Software Engineering (ASE’01), pages
135–143. Institute of Electrical and Electronics Engineers, 2001. Coronado Island,
California.

9. K. Havelund and G. Roşu. Runtime Verification 2001, volume 55 of Electronic
Notes in Theoretical Computer Science. Elsevier Science, 2001. Proceedings of a
Computer Aided Verification (CAV’01) satellite workshop.

10. K. Havelund and G. Roşu. Runtime Verification 2002, volume 70(4) of Electronic
Notes in Theoretical Computer Science. Elsevier Science, 2002. Proceedings of a
Computer Aided Verification (CAV’02) satellite workshop.

11. K. Havelund and G. Roşu. Synthesizing monitors for safety properties. In Tools
and Algorithms for Construction and Analysis of Systems (TACAS’02), volume
2280 of Lecture Notes in Computer Science, pages 342–356. Springer, 2002.

12. S. Hirst. A new algorithm solving membership of extended regular expressions.
Technical report, The University of Sydney, 1989.

13. G. Huet. Confluent reductions: Abstract properties and applications to term rewrit-
ing systems. Journal of the ACM, 27(4):797–821, 1980.

14. J.R. Knight and E.W. Myers. Super-pattern matching. Algorithmica, 13(1/2):211–
243, 1995.

15. O. Kupferman and M. Y. Vardi. Freedom, Weakness, and Determinism: From
linear-time to branching-time. In Proceedings of the IEEE Symposium on Logic in
Computer Science, pages 81–92, 1998.

16. O. Kupferman and M. Y. Vardi. Model Checking of Safety Properties. In Proceed-
ings of the Conference on Computer-Aided Verification, 1999.

17. O. Kupferman and S. Zuhovitzky. An Improved Algorithm for the Membership
Problem for Extended Regular Expressions. In Proceedings of the International
Symposium on Mathematical Foundations of Computer Science, 2002.

18. I. Lee, S. Kannan, M. Kim, O. Sokolsky, and M. Viswanathan. Runtime Assurance
Based on Formal Specifications. In Proceedings of the International Conference on
Parallel and Distributed Processing Techniques and Applications, 1999.

19. G. Myers. A four russians algorithm for regular expression pattern matching.
Journal of the ACM, 39(4):430–448, 1992.

20. T. O’Malley, D. Richardson, and L. Dillon. Efficient Specification-Based Oracles
for Critical Systems. In In Proceedings of the California Software Symposium,
1996.

21. D. J. Richardson, S. L. Aha, and T. O. O’Malley. Specification-Based Test Oracles
for Reactive Systems. In Proceedings of the Fourteenth International Conference
on Software Engineering, Melbourne, Australia, pages 105–118, 1992.

22. H. Yamamoto. An automata-based recognition algorithm for semi-extended reg-
ular expressions. In Proceedings of the International Symposium on Mathematical
Foundations of Computer Science, pages 699–708, 2000.

RTA'03, Lecture Notes in Computer Science (LNCS) 2706, pp 499-514. 2003

