
Are Regular Expressions a Lingua Franca?
An Empirical Study on the Re-use and Portability of Regular Expressions

James C. Davis
Virginia Tech

Blacksburg, Virginia, USA
davisjam@vt.edu

Louis Michael
Virginia Tech

Blacksburg, Virginia, USA
louism@vt.edu

Christy A. Coghlan∗
Virginia Tech

Blacksburg, Virginia, USA
ccogs@vt.edu

Francisco Servant
Virginia Tech

Blacksburg, Virginia, USA
fservant@vt.edu

Dongyoon Lee
Virginia Tech

Blacksburg, Virginia, USA
dongyoon@vt.edu

ABSTRACT
This paper explores the extent towhich regular expressions (regexes)
are portable across programming languages. Many languages of-
fer similar regex syntaxes, and it would be natural to assume that
regexes can be ported across language boundaries. But can regexes
be copy/pasted across language boundaries while retaining their
semantic and performance characteristics?

In our survey of 159 professional software developers, most in-
dicated that they re-use regexes across language boundaries and
about half reported that they believe regexes are a universal lan-
guage. We experimentally evaluate the riskiness of this practice
using a novel regex corpus — 537,806 regexes from 193,524 projects
written in JavaScript, Java, PHP, Python, Ruby, Go, Perl, and Rust.
Using our polyglot regex corpus, we explore the hitherto-unstudied
regex portability problems: logic errors due to semantic differ-
ences and security vulnerabilities due to performance differences.

We report that developers’ belief in a regex lingua franca is un-
derstandable but incorrect. Though most regexes compile across
language boundaries, 15% exhibit semantic differences across lan-
guages, and 10% exhibit performance differences across languages.
We explained these differences using regex documentation, and
further illuminate our findings by investigating regex engine im-
plementations. Along the way we found bugs in JavaScript-V8,
Python, Ruby, and Rust, as well as thousands of modules affected
by potential semantic and performance regex bugs.

Regexes are not a lingua franca — almost, but not quite.

CCS CONCEPTS
• Software and its engineering→ Empirical software valida-
tion; Software libraries and repositories; • Security and privacy
→ Denial-of-service attacks;

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ESEC/FSE 2019, 26–30 August, 2019, Tallinn, Estonia
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

KEYWORDS
Regular expressions, portability, empirical software engineering,
mining software repositories, ReDoS, catastrophic backtracking
ACM Reference Format:
James C. Davis, Louis Michael, Christy A. Coghlan, Francisco Servant,
and Dongyoon Lee. 2019. Are Regular Expressions a Lingua Franca?: An
Empirical Study on the Re-use and Portability of Regular Expressions. In
Proceedings of The 27th ACM Joint European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering (ESEC/FSE
2019). ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

1 INTRODUCTION
Regular expressions (regexes) are a core component of all modern
programming languages. They are commonly used for text process-
ing and input sanitization [103] and appear in an estimated 30-40%
of open-source Python and JavaScript projects [19, 25].

Crafting a correct regex is difficult [99], and developers may pre-
fer to re-use than write from scratch. It is understandable, then, that
“regex” is a popular tag on Stack Overflow [8], and that one com-
plex regex has been copy/pasted into more than 2,000 projects [25].
Like other code snippets [107], regexes may flow from forums and
projects into other software projects. Unlike most code snippets,
however, regexes can flow unchanged (although perhaps incor-
rectly) across language boundaries.

Re-using regexes across programming languages can be dan-
gerous. Programming languages have similar regex syntaxes, so
re-used regexes may compile without modification. However, we
observe that surface-level syntactic compatibility can mask more
subtle semantic and performance portability problems. If regex se-
mantics vary, then a regex will match different sets of strings across
programming languages, resulting in logical errors. If regex per-
formance varies, a regex may have differing worst-case behavior,
exposing service providers to security vulnerabilities [24, 77].

Despite the widespread use of regexes in practice, the research
literature is nearly silent on the topic of regex re-use and portabil-
ity. We know only anecdotally that some developers struggle with
“[regex] inconsistencies across [languages]” [19]. In this paper we
explore the coupled concepts of cross-language regex re-use and

*Christy A. Coghlan is now employed by Google, Inc.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ESEC/FSE 2019, 26–30 August, 2019, Tallinn, Estonia Davis et al.

regex portability using a mixed-methods approach. To confirm our
intuition about regex practices, we surveyed 159 professional de-
velopers and empirically corroborated the practices they reported.
We then empirically measured semantic and performance portabil-
ity problems, attempted to explain these problems using existing
regex documentation, and explored regex engine implementations
to illuminate our findings.

Our contributions are:
• We describe the regex re-use practices of 159 professional devel-
opers (§4).

• We present a first-of-its-kind polyglot regex corpus consisting of
537,806 unique regexes extracted from 193,524 software projects
written in 8 popular programming languages (§5).

• We empirically show that regex re-use is widespread, both within
and across languages and from Internet sources (§6).

• We identify and explain semantic and performance regex porta-
bility problems (§7). We report that approximately 15% of the
regexes in our corpus have semantic portability problems, while
10% have performance portability problems. Most of these prob-
lems could not be explained using existing regex documentation.

• We identify thousands of potential regex bugs in real software,
as well as bugs in JavaScript-V8, Python, Ruby, and Rust (§8).

2 BACKGROUND
2.1 A Regex Primer
We anticipate that our readers are generally familiar with the con-
cept of regexes, throughwhich a developer may concisely describe a
domain-specific language (DSL) of strings. As an example, a possible
regex describing the DSL for emails is /.+@.+\..+/ — i.e., strings
that contain character(s), then an @, and then more characters with
a period somewhere in the middle, e.g., blinded@esec-fse19.ut.eu.

Popular modern programming languages support regexes. Pro-
gramming languages document their regex dialect: the features
they support and the syntax used to express them. Under the hood,
programming languages implement a regex engine to test candidate
inputs for membership in the DSL of a regex. Most regex engines
evaluate a regex match by simulating the behavior of an equiva-
lent Finite Automaton (Deterministic or Non-) on the candidate
string [89], but they vary widely in the particular algorithm. Our
study investigates the distinct semantic and performance charac-
teristics of each language’s regex dialect.

2.2 Developer Practices Around Regexes
Despite the widespread use of regexes in practice [19, 25], surpris-
ingly little is known about how software developers write and main-
tain them. Recent studies have shed some light on the typical DSLs
developers encode in regexes [19, 25], the relative readability of
different regex notations [20], developer regex test practices [100],
and developer regex maintenance practices [25, 99]. However, most
of these works have focused on software artifacts rather than on
developers’ thought processes and day-to-day practices.

The only qualitative perspective on developers’ approach to
regex development in the wild is the exploratory survey by Chap-
man and Stolee [19]. In this work they surveyed 18 professional
software developers employed by a single company. They reported

high-level regex practices like the frequency with which those
developers use regexes and the tasks they use regexes for.

2.3 Regex Denial of Service (ReDoS)
Despite the recommendations of automata theorists [23, 94], in
most programming languages a regex match may require greater-
than-linear time in the length of the regex and the input string. Such
a super-linear (SL) match may require polynomial or exponential
time in the worst case [24, 77].

SL regex behavior had long been considered an unlikely attack
vector in practice, but in the past year this has begun to change.
Davis et al. [26] and Staicu and Pradel [91] identified Regular ex-
pression Denial of Service (ReDoS) as a major problem facing
Node.js applications, and Davis et al. reported thousands of SL
regexes affecting over 10,000 JavaScript projects [25]. Although it
is known that SL regex behavior is possible in JavaScript, Python,
and Java [25, 102, 105], from a portability perspective we do not
know the relative risk of ReDoS across different programming lan-
guages. Cox [23] has suggested that languages fall into two classes
of performance, though he did not systematically support his claim.

3 RESEARCH QUESTIONS
In this work we seek to better understand developer regex re-use
practices and understand the potential risks they face. First, we
survey professional software developers to learn their regex per-
ceptions and practices. We then measure regex re-use practices in
real software to corroborate the findings of our survey, Finally, we
empirically evaluate the semantic and performance portability prob-
lems that may result from cross-language regex re-use practices,
and explain differences across languages.

Our research questions are:

Theme 1: Developer perspectives
RQ1: Do developers re-use regexes?
RQ2: Where do developers re-use regexes from?
RQ3: Do developers believe regexes are a lingua franca?

Theme 2: Measuring regex re-use
RQ4: How commonly are regexes re-used from other software?
RQ5: How commonly are regexes re-used from Internet sources?

Theme 3: Empirical portability
RQ6: Semantic portability: When and why do regexes match dif-

ferent sets of strings in different programming languages?
RQ7: Performance portability: When and why do regexes have

different worst-case performance in different programming
languages?

4 THEME 1: DEVELOPER PERSPECTIVES
We surveyed developers to better understand regex re-use and
porting issues from their perspective.

Findings: (RQ1) 94% of developers re-use regexes,
(RQ2) commonly from Stack Overflow and other code.
(RQ3) 47% of developers treat regexes like a lingua franca.

Are Regular Expressions a Lingua Franca? ESEC/FSE 2019, 26–30 August, 2019, Tallinn, Estonia

4.1 Methodology
Survey content.We developed a 33-question survey with a mix of
closed and open-ended questions1. We asked participants about: (1)
the process they follow when writing regexes; (2) their regex re-use
practices; and (3) what awareness they have of regex portability
problems2. We drafted our survey based on discussions with profes-
sional software developers, and followed best practices in survey
design [51, 87]. We refined the survey through internal iteration
and two pilot rounds with graduate students.
Survey deployment. After obtaining approval from our institu-
tion’s ethics board, we took a two-pronged ethics board approach
to surveying professional developers: acquaintances and strangers.
First, we pursued snowball sampling by contacting developers of
our acquaintance and asking them to take the survey and propagate
it to their colleagues [16, 80]. Second, to increase the diversity of
responses we posted the survey on popular Internet message boards
frequented by software developers (HackerNews [1] and Reddit [4]3
). We compensated legitimate responses with a $5 Amazon gift card.
Filtering results. Posting our survey on Internet message boards
introduced the threat of illegitimate responses. After the first 100
responses we performed a manual inspection and developed filters
for validity. We only analyzed responses that were internally con-
sistent4, exceeded a minimum response time (5 minutes), and gave
a thoughtful answer to at least one of our open-ended questions.
This filtered out 253 responses, mostly from a spoofing campaign.

4.2 Results
Demographics.We received 159 responses from professional soft-
ware developers. Our responses came from direct (52) and indirect
(25) professional contacts, and Internet message boards (73), with
no tracking information for 9 responses. The median respondent
has 3-5 years of professional experience, works at a medium-size
company, and claims intermediate regex skill5 (Figure 1).
RQ1: Reuse Prevalence. When asked about their reuse habits
regarding regexes almost all (94%) of respondents indicated that
they reuse regexes, with 50% indicating that they re-use a regex
at least half of the time that they use a regex (Figure 2 (a)). The
most frequent reason to re-use a regex was to meet a common use
case, e.g., matching emails. This validates a previous hypothesis
that developers may write regexes for a few common reasons [25].
Participants also mentioned time savings: “A good programmer
doesn’t re-invent the wheel.”6

RQ2: Reuse Sources. Developers most frequently said they re-use
regexes from Stack Overflow, but they often reuse regexes from
other code, whether their own, a colleague’s, or miscellaneous
code such as open source projects (Figure 2 (b)). About 90% of

1Our survey instrument is included in our anonymized artifact.
2Due to space limits we do not report all results.
3We posted to 3 subreddits: r/SampleSize, r/coding, and r/compsci.
4For example, their regex experience in a language could not exceed their total experi-
ence in that language. This inconsistency occurred in the automated survey responses.
5We described increasingly complex regex features [40] for skill levels from novel to
master. “Intermediate: For example, you have used more sophisticated features like
non-greedy quantifiers (/a+?/) and character classes (/\d|\w|[abc]|[^\d]/).”
6Space constraints prevent us from including a detailed description of these results.

respondents reported re-using regexes from some Internet source,
and about 90% reported re-using regexes from other code.
RQ3: Developer Perception of Lingua Franca.We asked devel-
opers if their regex design process was influenced by language.
Figure 3 (a) shows that 47% of our respondents do not have a design
process that is language specific. And their actions match their
beliefs: as shown in Figure 3 (b), respondents frequently re-use
regexes without being confident that they were written in the same
language. Only 21% of respondents (34/159) were confident they
never re-used across language boundaries.

5 POLYGLOT REGEX CORPUS
In order to answer our remaining research questions we needed a
polyglot regex corpus: a set of regexes extracted from a large sam-
ple of software projects written in many languages. The existing
regex corpuses are small-scale [19, 105] or include only two lan-
guages [25]. Our corpus is neither, covering about 200,000 projects
in 8 languages — see Table 1.

Figure 1: Our survey reached a diverse set of developers.

Figure 2: (a) When developers must use a regex, they fre-
quently re-use them from another source. (b) Developers
commonly re-use from the Internet and other code bases.

Languages.We are interested in studying common regex practices,
and as a result we focus our attention on “major” programming lan-
guages defined by two conditions: (1) The language has a large mod-
ule ecosystem; (2) The language is widely used by the open-source
community. We operationalized these concepts by consulting the
ModuleCounts website [27] and the GitHub language popularity
report [42]. We also considered Go, Perl, and Rust for scientific

ESEC/FSE 2019, 26–30 August, 2019, Tallinn, Estonia Davis et al.

Figure 3: (a) Many developers design regexes without consid-
ering the programming language. (b) Developers’ regex re-
use decisions also imply belief in a regex as a lingua franca.

Table 1: Our regex corpus was derived from software writ-
ten in 8 programming languages. The first five languages are
ranked by the most available libraries (ModuleCounts [27])
and popularity in open-source (GitHub). We also studied
Go, Perl, and Rust out of scientific interest. The two final
columns show the contribution to our corpus.

Lang. (Reg.) Libs. GH # mod. anal. Unique regexes (avg.)

JavaScript7 (npm) 1 1 24,997 150,922 (6.0)
Java (Maven) 2 3 24,986 19,332 (0.8)
PHP (Packagist) 3 5 24,995 44,237 (1.2)
Python (pypi) 4 2 24,997 43,896 (1.8)
Ruby (RubyGems) 5 4 24,999 153,334 (6.1)

Go (Gopm) 9 9 24,997 22,105 (0.9)
Perl (CPAN) 7 — 31,827 (all) 142,777 (4.5)
Rust (Crates.io) 10 — 11,724 (all) 2,025 (0.2)

Sum: 193,524 578,628

interest; Perl popularized the idea of regexes as a first-class lan-
guage member, and Go and Rust are relatively new languages. The
languages we used are listed in Table 1.
Software projects.Within these languages, we chose to study the
software modules published in each language’s primary module
registry for two reasons. First, it permits a relatively fair cross-
language comparison, since we observe that many modules fill
equivalent ecological niches, e.g., logging or schema validation.
Second, we feel that modules are of greater general interest than
applications. Modules are published, maintained, and used by a mix
of open-source and commercial software developers, and bugs and
security vulnerabilities in modules have a significant ripple effect.

Our goal was to analyze the most important modules in each
language’s primary module registry. To have a uniform measure
of importance across languages, we filtered each registry for the
modules available on GitHub, sorted those by the number of stars,
and analyzed the top 25,000 modules from each registry. Borges

7We also extracted regexes from TypeScript source code, by transpiling it to JavaScript.

and Valente recently showed that GitHub star count is a reason-
able proxy for importance [17]. Unsurprisingly, we found that the
distribution of GitHub stars was similar for the modules in each lan-
guage, and analyzing the top 25,000 modules typically captured all
but the (very long) tail of 0-2 stars. Perl and Rust had relatively few
modules in their registries, and we analyzed all of their modules.
Regex extraction. For each module, we cloned its GitHub reposi-
tory and extracted any statically-declared regexes using techniques
similar to [25]. We extracted regexes declared in regex evaluations
as well as regexes compiled and stored in variables for later use.
In each module we extracted regexes only from source files in the
language corresponding to the registry, thus omitting regexes in
places like build scripts written in another language.
Polyglot regex corpus.Our corpus contains 537,806 unique regexes
extracted from 193,524 projects written in 8 programming lan-
guages. Each language’s contributions are listed in Table 1. Regex
use varies widely by language, from 0.2 regexes per module (Rust)
up to 6.1 regexes per module (Ruby). The total unique regexes by
language exceeds 537,806 due to inter-language duplicates (§6).

6 THEME 2: MEASURING REGEX RE-USE
In this work we are interested in the potential for regex portabil-
ity problems, such as may arise when the same regex appears in
multiple software projects. The software developers in our survey
indicated that they commonly re-use regexes from other software
and from Internet sources like Stack Overflow. They also reported
that they have re-used regexes across language boundaries. Both
of these practices may expose developers to regex portability prob-
lems. In this theme we corroborate their report by measuring the
extent of regex re-use — modules that use non-unique regexes.
Definition of re-use. To the best of our knowledge we are the first
to attempt to measure regex re-use. As a first approximation, in
keeping with the phrasing in our survey (“copy/pasting regexes”),
we label as re-use any pair of identical regexes (string equality). To
eliminate trivially identical regexes like /\s/, we conservatively re-
quire any matching regexes to be at least 15 characters long. While
it is possible that two developers might independently produce the
same (longer) regex, this seems unlikely given that hundreds of
distinct regexes have been reported even for “simple” DSLs like
emails [25]. We do not consider less strict measures of regex equiv-
alence like string [99] or behavioral [19] similarity, though such
measures might better capture the “Ship of Theseus” approach to
regex re-use described by some of our survey respondents.

Findings: (RQ4) Thousands of corpus modules (20%) share
the same complex regexes, both within and across languages.
(RQ5) 5% of all corpus modules (about 10,000), primarily in
JavaScript, use regexes from Stack Overflow and RegExLib.

6.1 RQ4: Re-use from other software
Our survey respondents reported that they often re-use regexes
from other software, sometimes across languages. How much intra-
and inter-language regex re-use occurs in our corpus?

6.1.1 Methodology. When developing our regex corpus (§5), we
tracked the modules and registries in which each regex was found.

Are Regular Expressions a Lingua Franca? ESEC/FSE 2019, 26–30 August, 2019, Tallinn, Estonia

As noted above, we only consider as re-use candidates the regexes
that are at least 15 characters long. When such a regex appeared
in multiple modules in the same registry, we mark those modules
as containing an intra-language duplicate. When such a regex ap-
peared in at least one module in different registries, we mark those
modules as containing an inter-language duplicate. Note, then, that
for a single duplicated regex we may mark several modules as con-
taining intra-language duplicates and/or inter-language duplicates.

6.1.2 Results. The extent of intra- and inter-language regex re-
use by modules is shown in Figure 4 (second and third bars). De-
velopers re-use regexes in the modules in every language, some
more than others. In most languages, 10% or more of the mod-
ules contain an intra-language duplicate, and inter-language dupli-
cates are also common. These duplicates are often due to “popu-
lar” regexes. For example, we found the 16-character email regex
/[\w\-]+\@([^:]+):/ in 476 modules.

Figure 4: Empirical regex re-use practices, by language.

6.2 RQ5: Re-use from Internet sources
The developers in our survey frequently indicated that they re-use
regexes from one of two Internet sources: RegExLib [5] and Stack
Overflow [6]. Next we use our corpus to corroborate their claims.

6.2.1 Methodology. To accomplish this, we first extracted regexes
from RegExLib and Stack Overflow, and then searched our corpus
for matches. In both of these relatively-unstructured Internet regex
sources, the resulting set of “regexes” may include false positives;
it is the intersection of our corpus and these sets that is of interest.
An intersection is a case where a real regex from our corpus also
appeared verbatim in one of these Internet sources. Anymodule that
contained one of these (15 characters or longer) Internet regexes
was marked as containing an Internet duplicate.
RegExLib regexes. For RegExLib, we obtained a reasonably com-
plete set of the regexes in the database by submitting a search for
“all regexes”. This result is paginated. On each page we extracted
the contents of all expressionDiv dividers and added them to our
set of RegExLib regexes.
Stack Overflow regexes. For Stack Overflow, we relied on the
“regex” tag to identify regexes. Through manual analysis we found
that questions and posts with the “regex” tag commonly denote
regexes using code snippets. Using all Stack Overflow posts as of

Table 2: Summary of language versions and docs used in our
experiments. Most are at the default for Ubuntu 16.04.

Language Version information Documentation

JavaScript Node.js v10.9.0 (V8 v6.8) [31, 32]
Java Oracle JDK 8 [22]
PHP PHP 7.4.0-dev (cli) [44]

Python Python 3.5.2 [37, 53]
Ruby Ruby 2.3.1p112 [18]
Go go v1.6.2 [43]
Perl Perl v5.22.1 [3, 54, 96]
Rust Rust v1.32.0 (nightly) [29]

September 20188, we found all questions tagged with “regex” as
well as the answers to those questions and automatically extracted
code snippets from those posts. To filter, we then removed snippets
that contained no regex-like characters based on Table 4 of [19].
6.2.2 Results. Our findings are shown in Figure 4 (fourth bar for
each language). Many of the modules in our corpus contain at least
one of these Internet regexes, mostly within JavaScript. Developers
may more commonly duplicate regexes than general code snippets,
where duplication rates are reported at less than 1% in Python [107].
7 THEME 3: EMPIRICAL PORTABILITY
Earlier we used multiple methods to establish that developers re-use
regexes across language boundaries, and in our foray into language
documentation we identified several examples of under-specified
behavior. In this section we experiment on our polyglot regex cor-
pus to investigate the implications of copy/pasting a regex from
one language to another. First we consider semantic portability
(§7.1), then performance portability (§7.2).
Experiment parameters. These experiments were performed on
a 10-node cluster of server-class nodes. We used the same base
tools in both experiments: a tester for each of the 8 languages. Each
tester accepts a regex pattern and input and attempts a partial regex
match. Table 2 lists the language versions used in our tests.

When we compare a regex’s behavior in a pair of languages, we
use the subset of the regex corpus that is syntactically valid in that
pair. This simulates the regex re-use practices we identified. Most
comparisons are on the majority of the corpus — 76% of the corpus
was valid in every language, and 88% in all but Rust.

Findings: (RQ6) 15% of regexes exhibit documented and un-
documented semantic differences. (RQ7) 10% of regexes ex-
hibit performance differences due to regex engine algorithms
and optimizations.

7.1 RQ6: Semantic portability problems
When two languages express the same feature using different syn-
tax, developers face a translation problem. But when two languages
exhibit different features (or behaviors) for the same syntax, devel-
opers must solve a semantic problem. In this section we empirically
study the semantic portability problems that developers may face.
7.1.1 Methodology. To understand variations in regex semantics,
we tested the behavior of each regex in our corpus on a variety of
8See https://archive.org/download/stackexchange/stackoverflow.com-Posts.7z.

https://archive.org/download/stackexchange/stackoverflow.com-Posts.7z

ESEC/FSE 2019, 26–30 August, 2019, Tallinn, Estonia Davis et al.

inputs in each language of interest. Any unexpected behavior is
something a developer would have to discover and address after
re-using the regex.
Input generation. In search of an interesting set of inputs, we
created an ensemble of five state-of-the-art regex input generators:
Rex [98], MutRex [11], EGRET [56], ReScue [86] and Brics [64].
These generators either produce only matching strings (Rex, Brics)
or a mix of matching and mismatching strings (MutRex, EGRET,
ReScue). We used Rex, MutRex, and EGRET unchanged. We modi-
fied ReScue to use the strings it explores during its search for SL
inputs. We modified Brics to generate random input subsets instead
of infinitely many inputs.

For each regex, we requested up to 10,000 inputs from each input
generator with a time limit of 10 seconds. Recent work showed
that using around 100 Rex-generated inputs yields about 50% regex
coverage [100]. We expect higher coverage since our ensemble
generated a median of 2,410 distinct inputs per regex (Table 3).
Attempted match. For each regex, for each input, for each sup-
ported language, we tested for a match using partial-match seman-
tics and default flags9. On a match, we recorded (1) the substring
that matched, and (2) the contents of any capture groups.
Witnesses. Some languages may perfectly agree on the behavior of
a regex on all of its inputs; others may not.We refer to (reдex , input)
pairs that produce different behavior in different programming
languages as difference witnesses between those languages, and
distinguish between three types of witnesses:
(1) Match witness: Languages disagree on whether there is a match.
(2) Substring witness: Languages agree that there is a match but

disagree about the matching substring.
(3) Capture witness: Languages agree on the match and the match-

ing substring, but disagree about the division of the substring
into any capture groups of the regex.
Because we are testing language pairs across 8 languages, a single

difference witness ((reдex , input) pair) may be a match witness for
some language pairs and a substring witness for others.

7.1.2 Results. A high-level summary of our experiment and results
is presented in Table 3. About 15% of regexes participated in at least
one difference witness, and among the language pairs we observed
all three classes of witnesses. In this and the following figure we
report the number of distinct regexes participating in the difference
witnesses rather than the number of distinct witnesses themselves,
because we expect that many of the witnessing inputs for a given
regex are members of an equivalence class on which a difference
manifests. Thus these measures represent a lower bound on the
number of causes of difference witnesses.

A more detailed description of the semantic differences between
languages is presented in Figure 5. The cells are colored propor-
tional to the number of regexes that have a witness of a difference
between that pair of languages. The three numbers in the cell de-
note the percent10 of regexes with match, substring, and capture
witnesses for that pair of languages. As can be seen in Figure 5:
there are many language pairs with match witnesses; PHP and
9As the 8 languages in our study support around 20 distinct regex flags, evaluating a
meaningful subset of the flag combinations was infeasible.
10Each percentage point represents about 5,300 regexes.

Table 3: Statistics for semantic portability experiment.

Metric Value

Inputs per regex: 25th ; 50th ; 75th percentiles 1,057; 2,410; 2,510

Regexes with any witnesses 15.4% (82,582)

Regexes with any match witnesses 8.1% (43,417)
Regexes with any substring witnesses 4.2% (22,597)
Regexes with any capture witnesses 7.5% (40,457)

Python are the primary sources of substring witnesses; and PHP is
the primary source of capture witnesses.

Figure 5: Pairwise view of difference witnesses by language
and type. The individual cells indicate the percent of the
regex corpus with at least one (M)atch, (S)ubstring, and
(C)apture witnesses in that language pair, and darker cells
indicate that regexes more commonly have difference wit-
nesses in that pair of languages. For example, Java, Go, and
Rust generally agree on regex behavior.

7.1.3 Analysis. Wedeveloped an automatic tool, the Cross Examiner,
to estimate the causes of the difference witnesses identified through
our experiment. We iteratively examined unclassified witnesses,
referenced the regex documentation for the disagreeing languages
(Table 2), understood the reason for the different behaviors where
documented, and encoded heuristics to classify witnesses as due to
this behavior. The causes we identified are summarized in Table 4.
Approximately 98% (80,736/82,582) of witnesses could be explained
by one or more of these causes.

Table 4 differentiates the witnesses by type. The first group of
witnesses are cases where some languages support a feature that
others do not. In the second group, languages use the same syntax
for different features. The third group are cases where languages
use the same syntax for the same features but exhibit different
behavior. The final group are bugs we identified, described below.
Documented semantics.We studied each language’s regex doc-
umentation (Table 2) to see if these witnesses could be easily ex-
plained. Comparing the grey cells and boldfacing in Table 4, we note

Are Regular Expressions a Lingua Franca? ESEC/FSE 2019, 26–30 August, 2019, Tallinn, Estonia

that more than half of the “unusual” behaviors were unspecified in
that language’s documentation. Testing, not reading the man-
ual, is the only way for developers to learn these behaviors.

7.1.4 Regex Engine Fuzz Testing. Though in this experiment we
assumed that the regex engines were trustworthy, our methodology
can be viewed as a form of regex engine fuzz testing [21]. Under a
lingua franca hypothesis, if languages disagree then at least one of
them is wrong. During our examination of difference witnesses, we
identified five cases where one language disagreed with the others
and its behavior was inconsistent with the corresponding regex
documentation. We opened bug reports based on the behaviors
briefly described in the third section of Table 4. So far the bugs have
been confirmed in V8-JavaScript, Python, Ruby, and Rust.

7.2 RQ7: Performance portability problems
Programming languages have distinct regex engines which may
exhibit different performance characteristics. A re-used regex might
have worse worst-case performance in its new language than in its
language of origin. For example, software being ported from PHP
to Node.js might develop Regular expression Denial of Service (Re-
DoS) vulnerabilities because regexes often have worse worst-case
performance in Node.js. In this experiment, we measure the fre-
quency with which regexes have different worst-case performance
characteristics in different programming languages.

7.2.1 Methodology. We generally follow the methodology of Davis
et al. [25] and use their tools13. In brief, for each regex we (1) query
an ensemble of state-of-the-art super-linear regex detectors, and
then (2) evaluate any super-linear regex behaviors in each language
of interest using partial-match semantics.
Experiment parameters. We allowed each of the detectors to
evaluate regexes for up to 60 seconds using no more than 2 GB
of memory. If a detector predicted that a regex would be super-
linear, we evaluated its proposed worst-case input in each of the
8 languages in our study using input strings intended to trigger
exponential or polynomial behavior14. If a regex match took more
than 10 seconds in some language, we marked it as super-linear.
Reducing false positives.We extended their methodology in two
ways to reduce the number of false negatives (i.e., SL regexesmarked
as linear-time). First, we added Shen et al.’s new dynamic SL regex
detector [86] to their ensemble ([74, 102, 105]). More critically, we
introduce a new technique that identifies both polynomial and
exponential SL regexes that their detector ensemble would not
detect. The static detectors in their ensemble: (1) assume full-match
semantics, and (2) do not scale well to regexes with large NFAs.
We combat these problems by querying detectors with the original
regex as well as regex variants that they can more readily analyze.

The first query variant addresses an unrealistic assumption in the
analysis performed by some of the detectors in the ensemble ([74,
102, 105]). Although these detectors assume that the regex engine
is using full-match semantics, regex engines generally default to
partial-match semantics. For example, some detectors predict linear

12Table 4: The behavior of meaningless escapes was not documented until Python 3.6.
12Table 4: Surprisingly, all languages agree on /((a+)*)/.
13See https://github.com/davisjam/vuln-regex-detector.
14We used 100 pumps for exponential and 100,000 pumps for polynomial.

Figure 6: Proportion of SL regexes in each language. There
are three distinct families of worst-case regex performance.
We identified no regexes with exponential behavior in Go
and Rust, and only 6 regexes had polynomial behavior in
those languages. Regexeswith exponential behavior are rare
in PHP and Perl (Perl – 227; PHP – 0), but polynomial behav-
ior still occurs. In contrast, over 1,000 regexes have exponen-
tial behavior in Ruby, Java, JavaScript, and Python, and poly-
nomial behavior is also more common in those languages.

behavior for /a+$/, but it is quadratic in many languages when
used with a partial-match API. To address this assumption, we
query the detector ensemble with an (anchored) full-match variant
of unanchored regexes, e.g., /^[\s\S]*?a+$/.

The second query variant addresses inefficient implementations
in the detector ensemble. Some of the detectors exceed our time
limit on regexes with large NFA representations. For example, they
time out on the (exponential) regex /(a{1,1000}){1,1000}$/ be-
cause its NFA explodes in size. To account for this inefficiency, we
query the detector ensemble with variants that replaces bounded
quantifiers with unbounded ones, e.g., /(a+)+$/.

These variants reduce the extent of false negatives without intro-
ducing false positives. Although we query the detector ensemble
on several variants, we always test any worst-case input on the
original regex (dynamic validation). The first variant may unmask
polynomial regexes that would otherwise go undetected, and the
second may identify both polynomial and exponential regexes.

7.2.2 Results. Figure 6 illustrates the extent to which the regexes
in our polyglot corpus exhibit worst-case super-linear behavior in
each of the 8 languages under study.

Figure 6 indicates that SL regexes may be more common — by up
to an order of magnitude! — than was previously reported [25]. The
majority of the newly-discovered regexes were identified through
our variant testing technique; as expected, the new detector by
Shen et al. [86] identified only exponential regexes (1,421 of them).
Our results agree with a small-scale estimate in Java [105]. Al-
though Figure 6 does not provide a direct comparison to [25]15, the
same larger proportions occur when considering the subset of our
corpus derived from JavaScript and Python (as theirs was).
15We have a different corpus and are testing regexes from multiple origin languages.

https://github.com/davisjam/vuln-regex-detector

ESEC/FSE 2019, 26–30 August, 2019, Tallinn, Estonia Davis et al.

Table 4: Difference witnesses identified during our semantic portability experiment. Each row indicates a witness regex, the
expected behavior(s), and each language’s interpretation. The first three groups describe different classes of valid but seman-
tically distinct behavior. The final group describes the bugs we found; E- means Engine, D- means Docs. Boldface indicates
potentially-surprising behavior (cf. §8). “-” indicates languages where a feature causes syntax errors. The behavior in the grey
cells was not specified in the documentation.

Witness Description JavaScript Java PHP Python Ruby Go Perl Rust

False friends 1: Regex notation describes a feature in one language and no feature in another.
/\Qa\E/ Quote directive ; “QaE” “QaE” Quote Quote “QaE”11 “QaE” Quote Quote -
/\G/ Match assertion ; “G” “G” Assertion Assertion “G” Assertion - Assertion -
/\Ab\Z/ Anchors ; “AbZ” “AbZ” Anchors Anchors Anchors Anchors - Anchors -
/a\z/ End of line ; “az” “az” EOL EOL “az” EOL EOL EOL EOL
/\K/ Match reset ; “K” “K” - Reset “K” Reset - Reset -
/\e/ ESC ; “e” “e” ESC ESC “e” ESC - ESC -
/\cC/ ctrl-C ; “cC” ctrl-C ctrl-C ctrl-C “cC” ctrl-C - ctrl-C -
/\x{41}/ “A” (hex) ; “x...x” “x...x” “A” “A” - - “A” “A” “A”
/(a)\g1/ Backref notation ; “ag1” “ag1” - Backref “ag1” “ag1” - Backref -
/(a)\g<1>/ Backref notation ; “ag<1>” “ag<1>” - Backref “ag<1>” Backref - - -
/\p{N}/ Unicode digit ; “pN” “p{N}” 1 1 “p{N}” 1 1 1 1
/\pN/ Unicode digit ; “pN” “pN” Digit Digit “pN” “pN” Digit Digit Digit
/[[:digit:]]/ Digit ; Custom Char. Class (CCC) CCC CCC Digit CCC Digit Digit Digit Digit

False friends 2: The same regex notation describes different features.
/^a/ ^: Beginning of input or line Input Input Input Input Line Input Input Input
/a++/ Possessive quantifier ; regular - Possessive Possessive - Possessive - Possessive Regular
/(a)\1/ Backref ; octal Backref Backref Backref Backref Backref - Backref Octal
/\h/ Horz. whitespace; Hex; “h” “h” Whitespace Whitespace “h” Hex - Whitespace -

Nuanced: The same regex notation describes the same feature, but engines exhibit subtly different behavior.
/(a)(?b)/ Named and unnamed capture groups Both Both Both - Returns named - Both -
/[]]/ CCC of “]” ; empty CCC + “]” Empty “]” “]” “]” “]” “]” “]” “]”
/((a*)+)/ Diff. capture of \2 on “aa”12 \2: “aa” \2: empty \2: empty \2: empty \2: empty \2: “aa” \2: empty \2: “aa”
/((a)|(b))+/ Diff. capture of \2 on “ab” Empty “a” “a” “a” “a” “a” “a” “a”

Bugs we found in regex engines.
E-Python: /(ab|a)*?b/ Diff. capture of \1 on input: “ab ” “a” “a” “a” Empty “a” “a” “a” “a”
E-Rust: /(aa$)?/ Matched substring on “aaz” Empty Empty Empty Empty Empty Empty Empty “aa”
E-Rust: /(a)\d*\.?\d+\b/ Matched substring on “a0.0c ” “a0” “a0” “a0” “a0” “a0” “a0” “a0” “a0.0”
E-JavaScript: Complicated Input order matters? Yes No No No No No No No
D-OracleJava: /$\s+/ $ matches before final \r? No Yes No No No No No No
D-Ruby: /a{2}?/ Lazy “aa” ; optional “aa” Lazy Lazy Lazy Lazy Optional Lazy Lazy Lazy

7.2.3 Analysis. The proportion of regexes that exhibit exponential
and polynomial worst-case behavior varies widely by language. The
regex engines in these languages appear to fall into three families:
(1) Slow (JavaScript, Java, Python, Ruby); (2) Medium (PHP, Perl);
and (3) Fast (Go, Rust). To clarify this taxonomy, Figure 7 shows
the frequency with which regexes exhibit worse behavior in one of
a pair of languages. For example, we see that the ~10% of regexes
that are super-linear in both Java and JavaScript (cf. Figure 6) are
the same regexes. The worst-case performance of a regex generally
worsens when moved between these families, but not within them.

In this section we explore the reasons behind these three families
of regex performance. We studied the language documentation and
the implementation of these engines and identified a variety of
mechanisms by which some regex engines fall prey to super-linear
behavior and others avoid it. To the best of our knowledge, this is the
first description of these mechanisms in the scientific literature16.
We hope our findings will inform themaintenance and development
of regex engines that are less susceptible to super-linear behavior.
Documented performance. We studied each language’s regex
documentation (Table 2) to see whether its worst-case performance
is discussed. Every languagementions performance, though JavaScript,

16Besides our description, we are only aware of descriptions of these defenses in
discussion forum posts [68] and the source code itself (e.g., see line 7835 of [69]). These
mechanisms are not described in the PHP and Perl documentation that we studied.

Java, and Python only provide tips on minor optimizations. PHP
and Ruby comment vaguely on worst-case performance: “can take
a long time to run” [44]. The best documentation explicitly states
worst-case expectations: linear (Rust and Go) or exponential (Perl).
Under the hood. The primary distinction between these fami-
lies is their core regex matching algorithms and varying support
for super-linear regex features (e.g., backreferences [9]). Go and
Rust offer linear behavior because they primarily rely on Thomp-
son’s 1968 algorithm for linear-time regex evaluations [94], though
in consequence they offer a limited set of regex features. In con-
trast, the remaining 6 languages perform regex matches using some
variant of Spencer’s backtracking algorithm [90]. Thompson’s al-
gorithm is similar to a breadth-first traversal of the NFA graph,
while Spencer’s is analogous to a depth-first traversal. Some im-
plementations of the Spencer-style DFS may exhibit super-linear
behavior due to redundant state visits, though there are also truly
exponential (NP-complete) regexes with backreferences [9, 15].

Within the set of Spencer engines, though, there are distinct
Medium and Slow Families. Exponential behavior is nearly unheard-
of in PHP and Perl, while it occurs at about the same rates in Java,
JavaScript, Python, and Ruby. Similarly, PHP and Perl have a lower
incidence of polynomial behavior than do the other Spencer engines.
The differences between these two families can be attributed to a
mix of defenses and optimizations.

Are Regular Expressions a Lingua Franca? ESEC/FSE 2019, 26–30 August, 2019, Tallinn, Estonia

Figure 7: Pairwise view of regex performance differences.
Cells are colored according to the number of regexes that ex-
hibit worse behavior in the destination (row) than the hypo-
thetical source (column). Darker rows are dangerous destina-
tions; the individual cells contain the percent of the regexes
supported in that language pair whose worst-case perfor-
mance is worse in the destination. For example, regexes do
not perform any worse in JavaScript than Java, but 8% of
regexes performworsewhenmoved fromRust to JavaScript.

To the best of our knowledge, PHP and Perl are the only Spencer
engines in our study that have explicit defenses against exponential-
time behavior. Both languages rely on counters to track the amount
of work performed during amatch, and if a regex evaluation exceeds
a threshold it is terminated with an exception. In experiments, we
found that these counters are incremented such that exponential
searches may trigger the threshold but poly-time searches will not.
Perl additionally maintains a cache of visited states in order to short-
circuit redundant paths through the NFA, permitting it to evaluate
some searches in linear time that take polynomial or exponential
time in other Spencer engines.

In addition to their exponential defenses, PHP and Perl both
have optimizations that act as a safeguard against polynomial regex
engine behavior. For partial matches, some regex engines will try
every possible starting offset in the string, trivially leading to poly-
nomial behavior. PHP and Perl have optimizations to prune these
starting offsets, and these optimizations appear to reduce the in-
cidence of polynomial behavior in those languages. The relevant
optimizations seem to be: (1) skipping ahead to plausible starting
points, and (2) filtering out inputs that lack necessary substrings.
Three families, not two? In our experiments we were surprised
to find three families of regex engine performance instead of the
two previously described by Cox [23]. Perhaps based on Cox’s
analysis, others argued that exponential regex behavior in Java
would translate to PHP [86]. The defenses and optimizations we
identified in PHP and Perl have previously gone unremarked.

8 REGEX BUGS
Semantic bugs. Although developers may identify some seman-
tic regex problems during testing, others may cause unexpected
regex behavior in practice. To estimate the frequency of semantic
problems in practice, we developed linter-style tools to identify
regexes that use features that are unavailable in their language
(Table 4). For example, in JavaScript the anchor notation /\Ab\Z/ is
interpreted literally as AbZ, but developers who use this notation in
JavaScript projects probably intend anchors. Among the JavaScript
(npm) modules from which we derived our corpus, we identified
31 modules that used this notation. In total we identified hun-
dreds of modules containing potential semantic regex bugs.
We have begun opening bug reports against these modules.

It is possible that these regexes were derived from copy/paste
practices. However, developers might introduce such bugs even
when designing regexes from scratch, since they may design them
based on a (supposed) regex lingua franca that does not extend to
the language in which they are developing (cf. Figure 3).
ReDoS regexes. The super-linear regexes we identified represent
potential ReDoS vectors. After filtering out regexes that appear in
paths like test or build, we have initiated the responsible dis-
closure process to inform the developers of 14,495 modules
about potential security vulnerabilities.

9 DISCUSSION AND FUTUREWORK
Recommendations: software engineers. Our findings suggest
that porting regexes across language boundaries, e.g., from other
code bases or from Stack Overflow, is a potentially risky activity.
Subtle semantic and performance issues can occur and should be
considered by developers introducing regexes into their code. Un-
fortunately, the largest developer communities are in the languages
most vulnerable to ReDoS (cf. Table 1 and Figure 6).

We will release our many-language tools to help developers
understand the possible risks of regexes. Our tools can test the
semantic and performance of regexes in many languages on many
inputs. We hope Table 4 will be a useful reference for developers.
We leave to future work the development of a “universal translator”
and the accompanying semantic and performance considerations.
Recommendations: programming language designers.Weem-
pathize with the developers we surveyed who expected regexes
to behave consistently across programming languages. We believe
that regexes should truly be the lingua franca many developers
already believe them to be. We suggest that having the fastest or
most feature-rich engine is not worth the cost of regex portabil-
ity problems. Programming language designers should agree on
a universal regex specification and relieve software engineers of
the burden of reconciling regexes across languages. We acknowl-
edge that diversity and competition sometimes improve outcomes
for users, but regexes are a mature technology and unifying their
behavior makes sense.

We recommend that language designers in the “Slow Family”
(JavaScript, Java, Python, Ruby) of regex engines adopt techniques
from the “Medium Family” (PHP, Perl) to reduce the incidence of
ReDoS vulnerabilities in these popular languages.

ESEC/FSE 2019, 26–30 August, 2019, Tallinn, Estonia Davis et al.

Each language’s regex documentation currently focuses only
on its own syntax and semantics. We recommend that regex docu-
mentation additionally describe its deviations from external speci-
fication(s), e.g., PCRE [46] or PX-BRE [47]. Explicitly discussing in-
compatibilities will inform developers of “gotchas”, and it will have
the indirect effect of reminding them that regexes are (currently)
not a lingua franca. Longer term, explicitly considering each lan-
guage’s divergence from specification(s) will help designers reach
agreement on a next-generation universal regex specification. A uni-
versal comparison table like Table 4 would also be a helpful addition
to the widely-used website https://www.regular-expressions.info/.
Lastly, languages should also document their worst-case regex per-
formance.
Corpus applications. Our polyglot regex corpus is larger and
represents many more languages than previous regex corpuses. It
may be an interesting basis for future research. First, the corpus
might be used to understand the differences in regex needs across
programming languages. For example, just as regex usage patterns
vary by language (Table 1), we suggest that the dominant regex use
cases may vary by language. Different needs benefit from different
optimizations, and our corpus could be used in a benchmark. Second,
our corpus may cover all common regex use cases, and semantic
code search techniques [50] could be extended to the discovery of
relevant regexes. This should be an improvement over the current
practice of browsing Stack Overflow and other code for relevant
regexes.
Other Lingua Francas. There are other technologies where users
may assume a lingua franca but specifications and implementa-
tions actually vary — consider JavaScript, the TEX family, compilers,
and SQL. For example, web browsers use distinct and not-always-
portable JavaScript implementations [30], leading to the poten-
tial for flaky cross-browser behavior and fueling interest in more
portable alternatives like Web Assembly [7]. The consequences of
portability problems in these technologies range from ugly websites
and embarrassing wingdings to misbehaving software and database
disasters. As a contrast, one universal technology is JavaScript Ob-
ject Notation (JSON) [2] — but perhaps JSON is simply too young
to have experienced specification drift yet.

10 THREATS TO VALIDITY
Internal validity. Survey. Our survey instrument has not been
validated [51]. We assume the survey respondents who survived
our “bogus response” filter replied in good faith.

Performance portability. Our results assume that the SL regex
detector ensemble is effective. These detectors were designed with
the naive Spencer-style regex engines in mind (“Slow family”) and
might miss SL regexes in theMedium and Fast families. For example,
it is not clear whether the defenses of PHP and Perl are sound or
simply effective against these detectors’ inputs.
External validity. Regex corpus. Our methodology for procuring
the regex corpus faces two threats. First, our corpus is composed
only of statically-declared regexes. To generalize, we assume that
either most regexes are statically declared, or that dynamically-
declared regexes have similar properties. Second, we only extract
regexes from modules. We do not know whether developers follow

the same regex practices when writing regexes in modules and in
applications, so our results may not generalize to applications.
Construct validity. Regex re-use. We took a simple approach to
identifying regex re-use in our corpus: exact string matches for
regexes at least 15 characters long. We chose this threshold based
on our assessment of regexes more or less likely to have been
independently derived by multiple developers. However, there may
have been shorter re-used regexes, longer independently-derived
regexes, and many regexes that were re-used with modifications to
tailor them to specific use cases.

Our definition of re-use does not account for the possibility of
wholesale file duplication, which is not true regex re-use. File du-
plication would only affect our intra-language regex re-use results.

11 RELATEDWORK
Empirical studies of regexes. The empirical study of regex use
is a recent endeavor. Several lines of research have resulted. Chap-
man and Stolee assessed the use of different regex features in
Python [19]. Using that corpus, Chapman et al. assessed the rela-
tive understandability of regex synonyms to determine community
preferences [20]. Wang and Stolee have also reported that regexes
appear to be relatively poorly unit tested in Java applications [100],
though this might be due to developer processes not captured by
version control, e.g., using tools for semantics [11, 55, 56, 64, 98]
or performance [74, 86, 102, 105]. Our polyglot regex corpus will
enable generalizing some of these results to other programming
languages.
Software reuse: other code. Software reuse is a prevalent practice
in software engineering [14, 33, 39, 85]. Developers re-use code from
their own or other projects [88], introducing code clones [41, 78].
Multiple studies estimate that more than 50% of the code in Github is
duplicated [58, 63], with similar ratios for Android applications [79].

Whether code clones are good practice is a matter of debate.
Some researchers have pointed out the benefits of code clones [67],
and found little difference between cloned and non-cloned code
in qualities such as comprehensibility [82] and defect-proneness
[73, 83]. But other studies have examined negative effects of cloning
code [49], such as maintenance difficulties [38] due to frequent [59]
but inconsistent [52] changes. As a result, a wide variety of tech-
niques have been proposed to detect code clones, e.g., [75, 78, 81].

To the best of our knowledge, our paper presents the first study
of regex re-use and the problems that can arise from it.
Software reuse: Internet forums. Researchers have also stud-
ied software reuse from Internet forums. Multiple studies found
evidence of code flow from Stack Overflow to software reposito-
ries [107], and found that code frequently flows, although some-
times without respecting license terms [10] or authorship attribu-
tion [12]. Researchers have also studied the interplay of developer
contributions to both resources [97].

Given the prevalence of code snippets in Stack Overflow,multiple
tools have been proposed to help developers reuse them, e.g., to auto-
matically generate comments [104], or to augment the IDE [71, 72].
However, some problems have been identified with reusing code
snippets from Stack Overflow, e.g., quality [66] and usability [106].
Furthermore, other studies have identified particular threats with

https://www.regular-expressions.info/

Are Regular Expressions a Lingua Franca? ESEC/FSE 2019, 26–30 August, 2019, Tallinn, Estonia

code reuse from Stack Overflow, such as API misuse [108], security
vulnerabilities [36, 62], or unreadable code [95].

In this paper we found that Internet forums are also a popular
source of regex reuse among developers, and we observed similar
risks: feature mis-use and ReDoS vulnerabilities.
Migration. Researchers have long discussed the difficulties of code
migration [28, 48, 60, 76, 93, 101]. As new technologies emerge, so
do newmigration tools, e.g.,within [13] and between languages [34,
61, 65, 70, 84, 92, 109] and frameworks [35, 45, 57].

Our work shows that regexes are (currently) not a lingua franca,
creating an opportunity for tools for regex migration.
12 CONCLUSION
Regexes are not a lingua franca. Although about 92% of regexes will
compile in most programming languages, their apparent portability
masks problems of correctness and performance. We empirically
investigated the extent and causes of these portability problems,
offering the first empirical perspective on regex portability. In the
process we identified hundreds of modules with potential semantic
problems and thousands with potential performance problems, plus
documentation and implementation errors in popular languages.

Unfortunately, but quite understandably, about half of the soft-
ware developers we surveyed believe and act as though regexes
are a lingua franca. We hope that this paper increases developer
awareness of regex portability problems. We also hope to motivate
language designers toward regex standardization — toward a true
regex lingua franca

Our survey instrument, polyglot regex corpus, and other supple-
mentary material is available at https://tinyurl.com/esecfse19-lf .

REFERENCES
[1] [n. d.]. Hacker News. https://news.ycombinator.com/.
[2] [n. d.]. JavaScript Object Notation (JSON). https://www.json.org/.
[3] [n. d.]. Perl Regular Expressions - Perl. https://perldoc.perl.org/5.22.0/perlre.

html.
[4] [n. d.]. Reddit. https://www.reddit.com/.
[5] [n. d.]. Regular Expression Library. https://web.archive.org/web/

20180920164647/http://regexlib.com/.
[6] [n. d.]. Stack Overflow - Regex tag. https://stackoverflow.com/questions/tagged/

regex.
[7] [n. d.]. WebAssembly. https://webassembly.org/.
[8] 2018. Tags – StackOverflow. https://web.archive.org/web/20180919183037/https:

//stackoverflow.com/tags?tab=popular.
[9] Alfred V Aho. 1990. Algorithms for finding patterns in strings. Elsevier, Chapter 5,

255–300.
[10] Le An, Ons Mlouki, Foutse Khomh, and Giuliano Antoniol. 2017. Stack Overflow:

A code laundering platform?. In International Conference on Software Analysis,
Evolution and Reengineering (SANER). IEEE.

[11] Paolo Arcaini, Angelo Gargantini, and Elvinia Riccobene. 2017. MutRex: A
Mutation-Based Generator of Fault Detecting Strings for Regular Expressions.
In International Conference on Software Testing, Verification and Validation Work-
shops (ICSTW). https://doi.org/10.1109/ICSTW.2017.23

[12] Sebastian Baltes and Stephan Diehl. 2018. Usage and attribution of Stack Over-
flow code snippets in GitHub projects. Empirical Software Engineering (2018),
1–37.

[13] Earl T. Barr, Mark Harman, Yue Jia, Alexandru Marginean, and Justyna Petke.
2015. Automated Software Transplantation. In International Symposium on
Software Testing and Analysis (ISSTA).

[14] Veronika Bauer et al. 2016. Comparing reuse practices in two large software-
producing companies. Journal of Systems and Software 117 (2016), 545–582.

[15] Martin Berglund and Brink Van Der Merwe. 2017. Regular Expressions with
Backreferences. In Prague Stringology. 30–41.

[16] Patrick Biernacki and Dan Waldorf. 1981. Snowball Sampling: Problems and
Techniques of Chain Referral Sampling. Sociological Methods & Research 10, 2
(11 1981), 141–163. https://doi.org/10.1177/004912418101000205

[17] Hudson Borges and Marco Tulio Valente. 2018. What’s in a GitHub Star? Un-
derstanding Repository Starring Practices in a Social Coding Platform. Journal

of Systems and Software 146 (2018), 112–129. https://doi.org/10.1016/j.jss.2018.
09.016

[18] James Britt and Neurogami Secret Laboratory. [n. d.]. Regexp - Ruby. https:
//ruby-doc.org/core-2.3.1/Regexp.html.

[19] Carl Chapman and Kathryn T Stolee. 2016. Exploring regular expression usage
and context in Python. International Symposium on Software Testing and Analysis
(ISSTA) (2016). https://doi.org/10.1145/2931037.2931073

[20] Carl Chapman, Peipei Wang, and Kathryn T Stolee. 2017. Exploring Regular
Expression Comprehension. In Automated Software Engineering (ASE).

[21] Chen Chen, Baojiang Cui, Jinxin Ma, Runpu Wu, Jianchao Guo, and Wenqian
Liu. 2018. A systematic review of fuzzing techniques. Computers & Security 75
(2018), 118–137.

[22] Oracle Corp. [n. d.]. Pattern - Java. https://docs.oracle.com/en/java/javase/11/
docs/api/java.base/java/util/regex/Pattern.html.

[23] Russ Cox. 2007. Regular Expression Matching Can Be Simple And Fast (but is
slow in Java, Perl, PHP, Python, Ruby, ...).

[24] Scott Crosby. 2003. Denial of service through regular expressions. USENIX
Security work in progress report (2003).

[25] James C Davis, Christy A Coghlan, Francisco Servant, and Dongyoon Lee. 2018.
The Impact of Regular Expression Denial of Service (ReDoS) in Practice: an
Empirical Study at the Ecosystem Scale. In The ACM Joint European Software En-
gineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE).

[26] James C Davis, Eric R Williamson, and Dongyoon Lee. 2018. A Sense of Time
for JavaScript and Node.js: First-Class Timeouts as a Cure for Event Handler
Poisoning. In USENIX Security Symposium (USENIX Security).

[27] Erik DeBill. [n. d.]. Module Counts. http://modulecounts-production.herokuapp.
com/.

[28] Arie van Deursen, Paul Klint, and Chris Verhoef. 1999. Research Issues in the
Renovation of Legacy Systems. Fundamental Approaches to Software Engineering
1577 (1999), 1–21. https://doi.org/10.1007/978-3-540-49020-3{_}1

[29] The Rust Project Developers. [n. d.]. regex - Rust. https://docs.rs/regex/1.1.0/
regex/.

[30] MDN Web Docs. [n. d.]. Browser support for JavaScript APIs.
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/
Browser_support_for_JavaScript_APIs.

[31] MDN Web Docs. [n. d.]. RegExp - JavaScript. https://developer.mozilla.org/
en-US/docs/Web/JavaScript/Reference/Global_Objects/RegExp.

[32] MDN Web Docs. [n. d.]. Regular Expressions - JavaScript. https://developer.
mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions.

[33] Yael Dubinsky, Julia Rubin, Thorsten Berger, Slawomir Duszynski, Martin
Becker, and Krzysztof Czarnecki. 2013. An exploratory study of cloning in
industrial software product lines. In European Conference on Software Mainte-
nance and Reengineering. IEEE.

[34] M. El-Ramly, R. Eltayeb, and H.A. Alla. 2006. An Experiment in Automatic
Conversion of Legacy Java Programs to C#. IEEE International Conference on
Computer Systems and Applications, 2006. March (2006), 1037–1045. https:
//doi.org/10.1109/AICCSA.2006.205215

[35] Xiaochao Fan and Kenny Wong. 2016. Migrating user interfaces in native
mobile applications. In International Workshop on Mobile Software Engineering
and Systems (MOBILESoft). https://doi.org/10.1145/2897073.2897101

[36] Felix Fischer, Konstantin Bottinger, Huang Xiao, Christian Stransky, Yasemin
Acar, Michael Backes, and Sascha Fahl. 2017. Stack Overflow Considered Harm-
ful? the Impact of Copy&Paste on Android Application Security. In IEEE Sym-
posium on Security and Privacy (IEEE S&P). 121–136. https://doi.org/10.1109/SP.
2017.31

[37] Python Software Foundation. [n. d.]. re – Regular expression operations -
Python. https://docs.python.org/3.6/library/re.html.

[38] Martin Fowler. 2018. Refactoring: improving the design of existing code. Addison-
Wesley Professional.

[39] W. B. Frakes and Kyo Kang. 2005. Software reuse research: status and future.
IEEE Transactions on Software Engineering 31, 7 (July 2005), 529–536. https:
//doi.org/10.1109/TSE.2005.85

[40] Jeffrey EF Friedl. 2006. Mastering regular expressions. " O’Reilly Media, Inc.".
[41] Mohammad Gharehyazie, Baishakhi Ray, Mehdi Keshani, Masoumeh Soleimani

Zavosht, Abbas Heydarnoori, and Vladimir Filkov. 2018. Cross-project code
clones in GitHub. Empirical Software Engineering (2018), 1–36.

[42] GitHub. 2018. The State of the Octoverse. https://octoverse.github.com/.
[43] Google. [n. d.]. regexp - Go. https://golang.org/pkg/regexp/.
[44] The PHP Group. [n. d.]. Regexp - PHP. http://php.net/manual/en/regexp.

introduction.php.
[45] Ahmed E. Hassan and Richard C. Holt. 2005. A lightweight approach for

migrating web frameworks. Information and Software Technology 47, 8 (2005),
521–532. https://doi.org/10.1016/j.infsof.2004.10.002

[46] Hazel, Philip. 2018. PCRE - Perl Compatible Regular Expressions. https://web.
archive.org/web/20180919101106/https://www.pcre.org/.

[47] IEEE and The Open Group. 2018. The open group base specifications issue 7,
2018 edition, ieee std 1003.1-2017.

https://tinyurl.com/esecfse19-lf
https://news.ycombinator.com/
https://www.json.org/
https://perldoc.perl.org/5.22.0/perlre.html
https://perldoc.perl.org/5.22.0/perlre.html
https://www.reddit.com/
https://web.archive.org/web/20180920164647/http://regexlib.com/
https://web.archive.org/web/20180920164647/http://regexlib.com/
https://stackoverflow.com/questions/tagged/regex
https://stackoverflow.com/questions/tagged/regex
https://webassembly.org/
https://web.archive.org/web/20180919183037/https://stackoverflow.com/tags?tab=popular
https://web.archive.org/web/20180919183037/https://stackoverflow.com/tags?tab=popular
https://doi.org/10.1109/ICSTW.2017.23
https://doi.org/10.1177/004912418101000205
https://doi.org/10.1016/j.jss.2018.09.016
https://doi.org/10.1016/j.jss.2018.09.016
https://ruby-doc.org/core-2.3.1/Regexp.html
https://ruby-doc.org/core-2.3.1/Regexp.html
https://doi.org/10.1145/2931037.2931073
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/regex/Pattern.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/regex/Pattern.html
http://modulecounts-production.herokuapp.com/
http://modulecounts-production.herokuapp.com/
https://doi.org/10.1007/978-3-540-49020-3{_}1
https://docs.rs/regex/1.1.0/regex/
https://docs.rs/regex/1.1.0/regex/
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Browser_support_for_JavaScript_APIs
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Browser_support_for_JavaScript_APIs
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/RegExp
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/RegExp
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions
https://doi.org/10.1109/AICCSA.2006.205215
https://doi.org/10.1109/AICCSA.2006.205215
https://doi.org/10.1145/2897073.2897101
https://doi.org/10.1109/SP.2017.31
https://doi.org/10.1109/SP.2017.31
https://docs.python.org/3.6/library/re.html
https://doi.org/10.1109/TSE.2005.85
https://doi.org/10.1109/TSE.2005.85
https://octoverse.github.com/
https://golang.org/pkg/regexp/
http://php.net/manual/en/regexp.introduction.php
http://php.net/manual/en/regexp.introduction.php
https://doi.org/10.1016/j.infsof.2004.10.002
https://web.archive.org/web/20180919101106/https://www.pcre.org/
https://web.archive.org/web/20180919101106/https://www.pcre.org/

ESEC/FSE 2019, 26–30 August, 2019, Tallinn, Estonia Davis et al.

[48] Ivar Jacobson and Fredrik Lindström. 1991. Reengineering of old systems to
an object-oriented architecture. ACM SIGPLAN Notices 26, 11 (1991), 340–350.
https://doi.org/10.1145/118014.117980

[49] Elmar Juergens, Florian Deissenboeck, Benjamin Hummel, and Stefan Wagner.
2009. Do code clonesmatter?. In International Conference on Software Engineering
(ICSE). IEEE.

[50] Yalin Ke, Kathryn T. Stolee, Claire Le Goues, and Yuriy Brun. 2016. Repairing
programs with semantic code search. In Automated Software Engineering (ASE).
295–306. https://doi.org/10.1109/ASE.2015.60

[51] Barbara A. Kitchenham and Shari L. Pfleeger. 2008. Personal opinion surveys.
In Guide to Advanced Empirical Software Engineering. https://doi.org/10.1007/
978-1-84800-044-5{_}3

[52] Jens Krinke. 2007. A study of consistent and inconsistent changes to code clones.
In Working conference on reverse engineering (WCRE). IEEE.

[53] A.M. Kuchling. [n. d.]. Regular Expression HOWTO - Python. https://docs.
python.org/3.6/howto/regex.html.

[54] Mark Kvale. [n. d.]. Perl Regular Expressions Tutorial - Perl. https://perldoc.
perl.org/5.22.0/perlretut.html.

[55] Eric Larson. 2018. Automatic Checking of Regular Expressions. In Source Code
Analysis and Manipulation (SCAM).

[56] Eric Larson and Anna Kirk. 2016. Generating Evil Test Strings for Regular
Expressions. In International Conference on Software Testing, Verification and
Validation (ICST). https://doi.org/10.1109/ICST.2016.29

[57] Terry Lau, Jianguo Lu, Erik Hedges, and Emily Xing. 2001. Migrating E-
commerce Database Applications to an Enterprise Java Environment. In Con-
ference of the Centre for Advanced Studies on Collaborative Research. http:
//portal.acm.org/citation.cfm?id=782096.782105&dl=GUIDE&dl=ACM

[58] Cristina V Lopes, Petr Maj, Pedro Martins, Vaibhav Saini, Di Yang, Jakub Zitny,
Hitesh Sajnani, and Jan Vitek. 2017. DéjàVu: a map of code duplicates on GitHub.
Proceedings of the ACM on Programming Languages (OOPSLA).

[59] Angela Lozano, Michel Wermelinger, and Bashar Nuseibeh. 2007. Evaluating
the harmfulness of cloning: A change based experiment. In Mining Software
Repositories (MSR). IEEE.

[60] Andrew J Malton. 2001. The Software Migration Barbell. Proceedings of the
ASERC Workshop on Software Architecture (2001).

[61] J. Martin and H.a. Muller. 2002. C to Java migration experiences. Proceedings
of the Sixth European Conference on Software Maintenance and Reengineering
(2002), 143–153. https://doi.org/10.1109/CSMR.2002.995799

[62] Na Meng, Stefan Nagy, Danfeng Yao, Wenjie Zhuang, and Gustavo Arango-
Argoty. 2018. Secure coding practices in java: Challenges and vulnerabilities. In
International Conference on Software Engineering (ICSE). IEEE.

[63] Audris Mockus. 2007. Large-scale code reuse in open source software. In First
International Workshop on Emerging Trends in FLOSS Research and Development,
FLOSS’07. https://doi.org/10.1109/FLOSS.2007.10

[64] Anders Møller. 2010. dk. brics. automaton–finite-state automata and regular
expressions for Java, 2010.

[65] M. Mossienko. 2003. Automated Cobol to Java recycling. In Conference on
Software Maintenance and Reengineering (CSMR), Vol. 7. IEEE, 40–50. https:
//doi.org/10.1109/CSMR.2003.1192409

[66] Seyed Mehdi Nasehi, Jonathan Sillito, Frank Maurer, and Chris Burns. 2012.
What makes a good code example?: A study of programming Q&A in Stack-
Overflow. In IEEE International Conference on Software Maintenance (ICSM).
IEEE.

[67] Joel Ossher, Hitesh Sajnani, and Cristina Lopes. 2011. File cloning in open source
java projects: The good, the bad, and the ugly. In IEEE International Conference
on Software Maintenance (ICSM). IEEE.

[68] PerlMonks. [n. d.]. Perl regexp matching is slow?? https://perlmonks.org/
?node_id=597262.

[69] PerlMonks. [n. d.]. Snapshot of Perl 5 regex.c. https://web.archive.org/web/
20190206210240/https://github.com/Perl/perl5/blob/blead/regexec.c.

[70] Hung Dang Phan, Anh Tuan Nguyen, Trong Duc Nguyen, and Tien N. Nguyen.
2017. Statistical migration of API usages. In International Conference on Software
Engineering Companion (ICSE-C 2017. https://doi.org/10.1109/ICSE-C.2017.17

[71] Luca Ponzanelli, Alberto Bacchelli, and Michele Lanza. 2013. Seahawk: Stack
overflow in the ide. In International Conference on Software Engineering (ICSE).
IEEE Press.

[72] Luca Ponzanelli, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and
Michele Lanza. 2014. Mining StackOverflow to turn the IDE into a self-confident
programming prompter. In Working Conference on Mining Software Repositories
(MSR). ACM.

[73] Foyzur Rahman, Christian Bird, and Premkumar Devanbu. 2012. Clones: What
is that smell? Empirical Software Engineering 17, 4-5 (2012), 503–530.

[74] Asiri Rathnayake and Hayo Thielecke. 2014. Static Analysis for Regular Expres-
sion Exponential Runtime via Substructural Logics. Technical Report.

[75] Dhavleesh Rattan, Rajesh Bhatia, and Maninder Singh. 2013. Software clone
detection: A systematic review. Information and Software Technology 55, 7 (2013),
1165–1199.

[76] Baishakhi Ray, Miryung Kim, Suzette Person, and Neha Rungta. 2013. Detect-
ing and characterizing semantic inconsistencies in ported code. In Automated

Software Engineering (ASE). IEEE. https://doi.org/10.1109/ASE.2013.6693095
[77] Alex Roichman and Adar Weidman. 2009. VAC - ReDoS: Regular Expression

Denial Of Service. Open Web Application Security Project (OWASP) (2009).
[78] Chanchal K Roy, James R Cordy, and Rainer Koschke. 2009. Comparison and

evaluation of code clone detection techniques and tools: A qualitative approach.
Science of computer programming 74, 7 (2009), 470–495.

[79] Israel J Mojica Ruiz, Meiyappan Nagappan, Bram Adams, and Ahmed E Has-
san. 2012. Understanding reuse in the android market. In IEEE International
Conference on Program Comprehension (ICPC). IEEE.

[80] Georgia Robins Sadler, Hau-Chen Lee, Rod Seung-Hwan Lim, and Judith Fuller-
ton. 2010. Research Article: Recruitment of hard-to-reach population subgroups
via adaptations of the snowball sampling strategy. Nursing & Health Sciences
12, 3 (9 2010), 369–374. https://doi.org/10.1111/j.1442-2018.2010.00541.x

[81] Vaibhav Saini, Farima Farmahinifarahani, Yadong Lu, Pierre Baldi, and Cristina V
Lopes. 2018. Oreo: Detection of clones in the twilight zone. In European Soft-
ware Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE). ACM.

[82] Vaibhav Saini, Hitesh Sajnani, and Cristina Lopes. 2018. Cloned and non-cloned
Java methods: a comparative study. Empirical Software Engineering (2018), 1–47.

[83] Hitesh Sajnani, Vaibhav Saini, and Cristina V Lopes. 2014. A comparative study
of bug patterns in java cloned and non-cloned code. In International Working
Conference on Source Code Analysis and Manipulation (SCAM). IEEE.

[84] Hanan Samet. 1981. Experience with software conversion. Software: Practice
and Experience 11, 10 (1981), 1053–1069. https://doi.org/10.1002/spe.4380111005

[85] Walt Scacchi. 2007. Free/open source software development: recent research
results and emerging opportunities. In European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE).

[86] Yuju Shen, Yanyan Jiang, Chang Xu, Ping Yu, Xiaoxing Ma, and Jian Lu. 2018.
ReScue: Crafting Regular Expression DoS Attacks. In Automated Software Engi-
neering (ASE).

[87] Janet Siegmund, Christian Kästner, JÃűrg Liebig, Sven Apel, and Stefan Ha-
nenberg. 2014. Measuring and modeling programming experience. Empiri-
cal Software Engineering 19, 5 (10 2014), 1299–1334. https://doi.org/10.1007/
s10664-013-9286-4

[88] Susan Elliott Sim, Charles LA Clarke, and Richard C Holt. 1998. Archetypal
source code searches: A survey of software developers and maintainers. In
International Workshop on Program Comprehension (IWPC). IEEE.

[89] Michael Sipser. 2006. Introduction to the Theory of Computation. Vol. 2. Thomson
Course Technology Boston.

[90] Henry Spencer. 1994. A regular-expression matcher. In Software solutions in C.
35–71.

[91] Cristian-Alexandru Staicu and Michael Pradel. 2018. Freezing the Web: A
Study of ReDoS Vulnerabilities in JavaScript-based Web Servers. In USENIX
Security Symposium (USENIX Security). https://www.npmjs.com/package/
safe-regexhttp://mp.binaervarianz.de/ReDoS_TR_Dec2017.pdf

[92] A.A. Terekhov. 2001. Automating language conversion: a case study (an extended
abstract). Proceedings IEEE International Conference on Software Maintenance.
ICSM 2001 (2001), 654–658. https://doi.org/10.1109/ICSM.2001.972782

[93] Andrey A. Terekhov and Chris Verhoef. 2000. The realities of language conver-
sions. IEEE Software 17, 6 (2000), 111–124. https://doi.org/10.1109/52.895180

[94] Ken Thompson. 1968. Regular Expression Search Algorithm. Communications
of the ACM (CACM) (1968).

[95] Christoph Treude and Martin P Robillard. 2017. Understanding stack overflow
code fragments. In IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE.

[96] Iain Truskett. [n. d.]. Perl Regular Expressions Reference - Perl. https://perldoc.
perl.org/5.22.0/perlreref.html.

[97] Bogdan Vasilescu, Vladimir Filkov, and Alexander Serebrenik. 2013. Stackover-
flow and github: Associations between software development and crowdsourced
knowledge. In 2013 International Conference on Social Computing. IEEE, 188–195.

[98] Margus Veanes, Peli De Halleux, and Nikolai Tillmann. 2010. Rex: Symbolic regu-
lar expression explorer. International Conference on Software Testing, Verification
and Validation (ICST) (2010). https://doi.org/10.1109/ICST.2010.15

[99] Peipei Wang, Gina R Bai, and Kathryn T Stolee. 2019. Exploring Regular Ex-
pression Evolution. In Software Analysis, Evolution, and Reengineering (SANER).

[100] Peipei Wang and Kathryn T Stolee. 2018. How well are regular expressions
tested in the wild?. In Foundations of Software Engineering (FSE).

[101] RichardWaters. 1988. Program translation via abstraction and reimplementation
- Software Engineering. IEEE Transactions on Software Engineering 14, 8 (1988).

[102] Nicolaas Weideman, Brink van der Merwe, Martin Berglund, and Bruce Watson.
2016. Analyzing matching time behavior of backtracking regular expression
matchers by using ambiguity of NFA. In Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), Vol. 9705. 322–334.

[103] Wikipedia contributors. 2018. Regular expression — Wikipedia, The Free En-
cyclopedia. https://web.archive.org/web/20180920152821/https://en.wikipedia.
org/w/index.php?title=Regular_expression.

https://doi.org/10.1145/118014.117980
https://doi.org/10.1109/ASE.2015.60
https://doi.org/10.1007/978-1-84800-044-5{_}3
https://doi.org/10.1007/978-1-84800-044-5{_}3
https://docs.python.org/3.6/howto/regex.html
https://docs.python.org/3.6/howto/regex.html
https://perldoc.perl.org/5.22.0/perlretut.html
https://perldoc.perl.org/5.22.0/perlretut.html
https://doi.org/10.1109/ICST.2016.29
http://portal.acm.org/citation.cfm?id=782096.782105&dl=GUIDE&dl=ACM
http://portal.acm.org/citation.cfm?id=782096.782105&dl=GUIDE&dl=ACM
https://doi.org/10.1109/CSMR.2002.995799
https://doi.org/10.1109/FLOSS.2007.10
https://doi.org/10.1109/CSMR.2003.1192409
https://doi.org/10.1109/CSMR.2003.1192409
https://perlmonks.org/?node_id=597262
https://perlmonks.org/?node_id=597262
https://web.archive.org/web/20190206210240/https://github.com/Perl/perl5/blob/blead/regexec.c
https://web.archive.org/web/20190206210240/https://github.com/Perl/perl5/blob/blead/regexec.c
https://doi.org/10.1109/ICSE-C.2017.17
https://doi.org/10.1109/ASE.2013.6693095
https://doi.org/10.1111/j.1442-2018.2010.00541.x
https://doi.org/10.1002/spe.4380111005
https://doi.org/10.1007/s10664-013-9286-4
https://doi.org/10.1007/s10664-013-9286-4
https://www.npmjs.com/package/safe-regex http://mp.binaervarianz.de/ReDoS_TR_Dec2017.pdf
https://www.npmjs.com/package/safe-regex http://mp.binaervarianz.de/ReDoS_TR_Dec2017.pdf
https://doi.org/10.1109/ICSM.2001.972782
https://doi.org/10.1109/52.895180
https://perldoc.perl.org/5.22.0/perlreref.html
https://perldoc.perl.org/5.22.0/perlreref.html
https://doi.org/10.1109/ICST.2010.15
https://web.archive.org/web/20180920152821/https://en.wikipedia.org/w/index.php?title=Regular_expression
https://web.archive.org/web/20180920152821/https://en.wikipedia.org/w/index.php?title=Regular_expression

Are Regular Expressions a Lingua Franca? ESEC/FSE 2019, 26–30 August, 2019, Tallinn, Estonia

[104] Edmund Wong, Jinqiu Yang, and Lin Tan. 2013. Autocomment: Mining question
and answer sites for automatic comment generation. In Automated Software
Engineering (ASE). IEEE.

[105] Valentin Wustholz, Oswaldo Olivo, Marijn J H Heule, and Isil Dillig. 2017. Static
Detection of DoS Vulnerabilities in Programs that use Regular Expressions.
In International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS).

[106] Di Yang, Aftab Hussain, and Cristina Videira Lopes. 2016. From query to usable
code: an analysis of stack overflow code snippets. InMining Software Repositories
(MSR). ACM, 391–402.

[107] Di Yang, Pedro Martins, Vaibhav Saini, and Cristina Lopes. 2017. Stack Overflow
in Github: Any Snippets There?. In IEEE International Working Conference on
Mining Software Repositories (MSR). https://doi.org/10.1109/MSR.2017.13

[108] Tianyi Zhang, Ganesha Upadhyaya, Anastasia Reinhardt, Hridesh Rajan, and
Miryung Kim. 2018. Are Online Code Examples Reliable? An Empirical Study
of API Misuse on Stack Overflow. In International Conference on Software Engi-
neering (ICSE). https://doi.org/10.1145/3180155.3180260

[109] Hao Zhong, Suresh Thummalapenta, Tao Xie, Lu Zhang, and Qing Wang. 2010.
Mining API mapping for language migration. In International Conference on
Software Engineering. https://doi.org/10.1145/1806799.1806831

https://doi.org/10.1109/MSR.2017.13
https://doi.org/10.1145/3180155.3180260
https://doi.org/10.1145/1806799.1806831

	Abstract
	1 Introduction
	2 Background
	2.1 A Regex Primer
	2.2 Developer Practices Around Regexes
	2.3 Regex Denial of Service (ReDoS)

	3 Research Questions
	4 Theme 1: Developer Perspectives
	4.1 Methodology
	4.2 Results

	5 Polyglot Regex Corpus
	6 Theme 2: Measuring regex re-use
	6.1 RQ4: Re-use from other software
	6.2 RQ5: Re-use from Internet sources

	7 Theme 3: Empirical portability
	7.1 RQ6: Semantic portability problems
	7.2 RQ7: Performance portability problems

	8 Regex Bugs
	9 Discussion and Future Work
	10 Threats to Validity
	11 Related Work
	12 Conclusion
	References

