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Abstract  

In 1964, Janusz Brzozowski introduced the notion of derivatives [3]. Derivatives provide a concise 

way to represent regular expressions. Automata is the default implementation of regular expressions 

most programmers go to, however like most implementations, has its limitations.  

The aims of this project is to implement these derivative regular expressions in a Lexer that follows 

the algorithm described by Martin Sulzmann and Kenny Zhuo Ming Lu in their paper POSIX 

Regular Expression Parsing with Derivatives [1].  Following this, implement optimisations to 

improve the runtime of this proposed lexer.  

The goal of the project is to obtain a good understanding of how derivative regular expressions 

work both within and outside the context of a lexer. Furthermore provide an implementation of the 

proposed lexing algorithm with optimisations that effectively reduces the time and increases the 

size of strings a regular expression can match. 
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Chapter 1  

Introduction 

A string is a list of characters, such that {‘a’, ‘b’, ‘c’} is the string “abc”. To see if a string exists in 

a sequence of text, algorithms such as the Knuth-Morris-Pratt algorithm were devised [4]. For many 

processes, it is more useful to match string patterns rather than exact strings, this for example could 

be searching for all numbers in a sequence of text. To do this, regular expressions are often used. 

Regular expressions give the notation for patterns to be defined.  

Most modern implementations of regular expressions involve the use of Automata. Automata is an 

abstract machine consisting of a finite number of states and transitions from state to state, such that 

transitions can be deterministic or non deterministic. Every regular expression has an equivalent 

deterministic finite automata. The process of converting a regular expression to a deterministic 

finite automata is done as follows: A regular expression is translated via the Thompson Construction 

into an epsilon non-deterministic finite automata (εNFA) [6]. This εNFA can then be translated into 

a non-deterministic finite automata (NFA) by removing all epsilon-transitions. Following this, the 

NFA is converted via subset construction to a deterministic finite automata (DFA) [6]. This is 

depicted in Figure 1. 

Figure 1: Shows the construction of a DFA  
from a regular expression 
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In 1964, Janusz Brzozowski introduced the notion of derivatives. Derivatives offered an alternative 

way to represent regular expressions. Brzozowski presented a method for identifying string patterns 

with derivative regular expressions [3]. This was taken further by Martin Sulzmann and Kenny 

Zhuo Ming Lu in their paper POSIX Regular Expression Parsing with Derivatives [1] where they 

use Brzozowski matcher in the context of lexical analysis. 

1.1 Project aims 

The aim of this project is to look into how regular expressions work and how they can be 

implemented using an alternative method called derivatives. Along with this, implement the 

proposed lexing algorithm using derivatives, based on the research of Martin Sulzmann and Kenny 

Zhuo Ming Lu [1]. After implementing these regular expressions in the context of a lexer, the aims 

of the project become open ended in the sense that different optimisations are to be applied to the 

lexer, however no specific optimisations are stated.  

1.2 Report structure 

The layout of this project does not follow the default structure. This is due to this being a research 

driven project rather than a software development driven project. 

The report begins with giving background information on the topics relevant to the problem of 

lexing. Along with this, current implementations of regular expressions will be further discussed, 

and an overview of the benefits of derivative based implementations of regular expressions will be 

made. 

The next chapter will cover the design of the proposed lexer. A detailed description of the functions 

used in the lexing algorithm will be given, along with the functional definitions. Where possible, 

inductive proofs or referenced papers will be given to prove statements and to put the functions in 

context. Along with this, different optimisations to the lexer will be described using detailed 

function definitions. Where appropriate example dry runs of the functions will be made. 

The next chapter will cover experimentation, presenting data from lexing different sized inputs with 

different regular expressions.  Any unusual results will be investigated and discussed here. 

Following this, the data from the experiments and assumptions made in the design are compared 

and evaluated. The strengths and weaknesses of the algorithm will be identified and discussed. 
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Finally, a summary is given on what was learned and what was successful about the project, 

followed by an outline of future work that could be conducted to build on the work in this project. 

No requirements or specification section was given in this report due to the open ended nature of 

the requirements. No implementation section was given in this report due the functional definitions 

being almost identical to the implemented functions.  

�9



Chapter 2 

Background 

2.1 Regular expressions 

Regular expressions are one of the core concepts for this project. They were introduced by Stephen 

Kleene in the 1950s and are a method for describing regular languages [4].  A language in this 

context is a set of strings. Regular expressions are used in many text processing tasks such as syntax 

highlighting, lexical analysis, pattern finding in hostile network traffic, web-crawlers, dictionaries, 

DNA-data, ad filters etc. 

The following are the basic regular expressions required to be able to describe regular languages [5].  

r = 0 | 1 | c | r + r | r · r | r ⋆ 

Each regular expression has a meaning, which can be defined by describing the set of strings they 

describe. This is known as the language and is defined using a function L [5,19]. 

L(0) = {} 

L(1) =  {[]} 

L(c) = {”c”} 

L(r1·r2) = L(r1)@L(r2) 

L(r1+r2) = L(r1 ) ∪ L(r2 )  

L(r *) = U0<nL(r)n 

Here 0 represents the empty language. This is a language that consists of nothing, not even the 

empty string. 1 represents a language containing only the empty string. c represents a language 

consisting of a single character, where c could represent any character. The concatenation of two 

languages A and B can be defined as follows: A@B = {s1@s2 |s1∈A∧s2∈B}, therefore each string 

in A is joined with every string in B. (r1 · r2) is a sequence of regular expressions. The language 

�10



defined by (r1 · r2) is the concatenation of the language of r1 and the language of r2. The union of 

two languages r1 and r2 is a new language r3, where the language of r3 consists of all the strings in 

r1 and all the strings in r2. (r1 + r2) represents an alternative or choice between the left regular 

expression r1 and the right regular expression r2. The language it represents therefore is the union 

of the two languages. r* describes a language consisting of the empty string and the concatenation 

of one or more of the languages described by r, more formally [5]: 

L(r)0 = {[]} 

L(r)n+1 = L(r) @ L(r)n   where concatenation is redefined to {s1@ s2 | s1 ∈ L(r) ∧ s2 ∈ L(r)n }  

Regular expressions can now be formulated using these definitions to obtain a description of a 

regular language. For example (‘a’ + ‘b’) is the regular expression who’s language consists of ‘a’ 

and ‘b’. 

Most programming languages offer libraries that can be used to check if a given string is an element 

of a language as described by a regular expression. Along with the above basic regular expressions, 

the extended regular expression set is also usually given [18]. 

r = r+ | r? | r{n} | r{n,m} | […] 

And again can be defined using the function L: 

L(r+) = L(r) @ L(r*) 

L(r?) = {[]} ∪ L(r) 

L(r{n}) = L(r) @ L(r) @ … @ L(r)      L(r) is repeated n times 

L(r{n,m}) = L(r{n}) ∪ L(r{n+1}) ∪ … ∪ L(r{m-1}) ∪ L(r{m}) 

L([…]) =  {…}     where … is a set of characters 

Different programming languages will have different symbols to represent these operations, but will 

most likely have these operations in some form. The extended regular expressions provide a more 

concise way to represent longer regular expression statements however, give no additional 

descriptive power to regular expressions. This is with the exception of backtracking regular 
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expressions which is not covered in this report. As regular expressions describe regular languages, 

there is no regular expression for describing the language of n a’s followed by n b’s, where n is the 

number of a's, followed by the same number of b's also described as (a^n . b^n ). This is because 

(a^n . b^n ) is not a regular language. It can be proved that this is the case by using the Pumping 

Lemma [17]. Alternatively they do provide a convenient way to describe URL’s. A regular 

expression for a URL could be, for example: 

url = w.w.w...[a-z]+...c.o.m.:.[0-9]{4}.(/...[a-z])+ 

A string is matched by a regular expression if the string is a part of the language the regular 

expression describes. This can be defined as s ∈ L(r), where s is the string and L(r) is the language 

of the regular expression r. The following URL’s are a part of the language url: 

 www.example.com ∈ L(url) 

 www.exampleone.com:8080 ∈ L(url) 

 www.exampletwo.com:8080/example/resource.html ∈ L(url) 

But the following are not elements of the language of url: 

 example.com ∉ L(url) 

 http://www.example.com ∉ L(url) 

 www.example.com/hello.png ∉ L(url) 

Research into regular expressions has been going on for around 60 years, however an interesting 

characteristics of the subject still causes problems for programmers who implement regular 

expressions. The characteristic is known as an 'evil regular expression'.  Evil regular expressions 

cause regular expression matchers to run in exponential time when asked to match strings of 

increasing size and can cause catastrophic backtracking. As a result, given a matcher m that is not 

optimised to handle evil regular expressions and m tries to match a string to a evil regular 

expression, m will run slowly and not be able to complete it’s matching operation. Evil regular 

expressions can therefore cause some serious problems, for example, in web-application. Attackers 

are able to look for instances where the matching engine behaves badly and then mount a Regular 
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Expression Denial of Service Attacks (ReDoS) against the application [4]. As a result, paralysing 

the availability of the application and thus stoping other users using the service. 

2.2 Matching choice 

An interesting observation of regular expression matching, is that in some instances, regular 

expressions are able to match strings in more than one way. For example, given the regular 

expression r = (a | b | ab)* and string s = ab, r is able to match s in two ways. The first by matching 

a then b (POSIX), and the second by matching ab (Greedy). As a result, we have a choice on the 

method in which we match the regular expression. The two main approaches here are Greedy 

matching and POSIX matching [19]. For this project a POSIX matching strategy will be followed, 

where the rules for such a matching strategy can be defined as [19]: 

The Longest Match Rule / Maximal Munch Rule: The longest initial substring matched by any 
regular expression is taken as the next token.  

Priority Rule: For a particular longest initial substring, the first regular expression that can match 
determines the token. 

The above definitions where taken from the paper POSIX Lexing with Derivatives of Regular 

Expressions [2]. The greedy matching strategy is affected by the order of alternative statements. 

Where as the POSIX matching strategy gives preference to the largest matched string and thus is 

more complicated as a dependency is created for information about the length of matched strings 

[19]. 

2.3 Current implementation  

Regular expressions as described in the background section can be implemented using automata, as 

every regular expression has an equivalent deterministic finite automata (DFA). A DFA can be 

obtained through Thompsons Construction followed by Subset Construction [6]. The resulting DFA 

can then be traversed resulting in an accepting or rejecting state being reached. This method of 

implementing regular expressions is the basis of most current regular expression matchers. Using 

automata however can be very slow due to the fact that the conversion of an NFA into a DFA can 

produce 2^n states and therefore matching with such a DFA could take considerable time. For the 

same reason it can be impractical to produce a DFA for large NFA’s. The case is worsened when 
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considering that DFA minimisation is an NP-complete problem and thus a deterministic 

polynomial-time algorithm has not yet been discovered. Even if DFA minimisation was not an NP-

complete problem, the DFA produced from the minimisation could still be exponential in size. 

Alternatively NFA backtracking could used, however again this has limitations. As a result, 

developers of regular expression matchers are always looking for different techniques to match 

regular expressions that are both quick and reliable when considering evil regular expressions. 

2.4 Derivative implementation 

Another proposed way to implement regular expressions is a notion called derivatives. The use of 

derivatives in the field of regular expressions was introduced by Janusz Brzozowski in 1964 [3] and 

where, to quote the paper Regular-expression derivatives re-examined [7], ‘lost in the sands of 

time’. Brzozowski proposed a regular expression matcher that used this notion of derivatives 

instead of using automata. It is a simple idea. The derivative function will take a string and a regular 

expression. Then iterating the characters of the string, it will output a new regular expression that 

matches all the strings defined by the original regular expression that start with the given character, 

but with the first character removed. This is repeated for all characters in the string. If at the end the 

regular expression returned can match the empty string, the regular expression must match the input 

string. This is described in detail in the next chapter of this report. 

Derivatives are defined using a functional notation and thus are easy to implement in functional 

programming languages such as Scala, F#, ML, Haskell etc. Its functional definition allows for 

additions to easily be made and or later made to the implementation. To implement a new regular 

expression, only the addition of the expression case needs to be added to the already defined 

functions, and would not require the alteration of any prior code - for example, adding the extended 

regular expression set, given only the basic regular expressions are implemented. Their functional 

definition also make derivatives easier to reason with in theorem provers such as ISABELLE [8]. 

As a result, it is possible to prove the regular expressions operate as they are intended to. This is 

important as Kuklewicz observes nearly all POSIX-based regular expression matchers are buggy 

[22]. For companies that implement these Matchers in systems such as Lexers, they can be 

confident of their operational soundness. This is an important selling point when using this software 

in environments such as space and medicine. This is a great advantage for derivative base 
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implementations of regular expressions over automata, which is difficult to reason with in theorem 

provers due to its graphical nature. 

2.5 Lexer 

A Lexical Analyser (also known as a Lexer or Tokeniser), processes a sequence of characters such as 

a programming language into a sequence of tokens. Tokens are a 2-tuple of strings. This is done by 

using regular expressions to match/identify sequences of characters in the given input. Following 

the POSIX rules [19], the largest possible substring is matched to a given regular expression that 

represents an instance, for example a keyword in a programming language. This process is repeated 

until all characters in the input have been matched. Consider a statement in a programming 

language. It is required to be able to identify all the elements that make up the statement.  

For example: 

Given the following statement: 

 int num = 3 + 3 

The tokens produced could be of the form: 

 [(keyword, int), (identifier, num), (operator, =), (number,3), (operator, =),( number,3)] 

A lexer is generally combined with a parser, where the output of the parser is a distinct abstract 

syntax tree that can be used in processes such as compilation or interpretation. In this instance most 

current programming languages implement this process using push down automata however, as 

with lexing, there is more than one way to implement a Parser of which Parser Combinators is an 

alternative solution. In some instances a lexer and parser are combined into one program leading to 

terms such as scanner-less parsing or lexerless parsing. The use of lexing can be extended to other 

tasks, an example that seems trivial at first could be the removal of white spaces in a section of text. 

Lexing can be implemented in many ways, such as the Sulzmann & Lu algorithm [1] or using 

automata as implemented in most current languages. Most programmers however don’t implement 

lexers from scratch for their projects. There are many libraries available that implement lexers for 

example GNU for the C language [9]. When programmers are implementing e.g. bespoke 

compilers, they will usually turn to these libraries for lexer implementations. 
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Chapter 3 

Design 

The general concept of a lexer is as follows. A lexer takes a string, a set of regular expression rules 

and outputs a list of tokens that tell us what elements make up the string, for example: Identifier, 

Keyword, String, Number etc. In this project a lexer is implemented based on the use of derivatives, 

as defined by Martin Sulzmann and Kenny Zhuo Ming Lu in their paper POSIX Regular Expression 

Parsing with Derivatives [1]. Due to the algorithm already being functionally defined in their paper, 

this section will be used to describe these algorithms in a more abstract way to obtain a better 

understanding of what each function is doing. 




Figure 3 shows the general model of a lexing programme,  
defining the inputs and the result of the programme. 
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3.1 Derivative based Lexing algorithm 

The following algorithm is taken from the paper POSIX Regular Expression Parsing with 

Derivatives by Martin Sulzmann and Kenny Zhuo Ming Lu [1]. The functional definitions and 

naming conventions are taken from the Martin Sulzmann and Kenny Zhuo Ming Lu, POSIX 

Regular Expression Parsing with Derivatives paper [1] and the POSIX Lexing with Derivatives of 

Regular Expressions (Proof Pearl) paper [2]. 

The lexing algorithm is split into two parts, the matching phase and the injection phase.  The 

matching phase is an implementation of Brzozowski Matcher [3], where regular expressions are 

matched using derivatives. The injection function then produces a value for how a string was 

matched by the derivative regular expression. 

3.1.1 Matching phase 

A regular expression matcher should give a boolean output based on if the given string is an 

element of the language described by the regular expression, such that s ∈ L(r), where s is the string 

and L(r) is the language the regular expression r describes. The matcher proposed by Brzozowski [3] 

is again broken down into two parts. The first part of the matcher is the function nullable. The 

nullable function takes as an argument a regular expression and outputs a boolean value of true or 

false, based on if the given regular expression is able to match the empty string. A recursive 

definition of the function is as follows [10]: 

nullable (0) = False  

nullable (1) = True  

nullable (c) = False  

nullable (r1 + r2) = nullable r1 ∨ nullable r2  

nullable (r1 · r2) = nullable r1 ∧ nullable r2  

nullable (r ⋆ ) = True 

The property that Martin Sulzmann and Kenny Zhuo Ming Lu [1] are trying to achieve from the 

function, is if the regular expression r describes a language containing the empty string return true, 

else return false, more formally: 
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nullable(r) if and only if [] ∈ L(r)  

‘nullable(r)’ represents the function we can implement and ‘if [] ∈ L(r)’ represents the specification 

of the function, ‘what we want to achieve’. It can be seen that this property holds for all lines in the 

function through the use of induction where nullable(0), nullable(1) and nullable(‘c’) are base cases.  

nullable(0) iff [] ∈ L(0):  nullable(0) by the above definition is False, thus obtaining False for the 

left hand side of the property. The language of the empty language is just the empty language 

therefore the empty string is not an element and the right side of the property is False. As both the 

left and right parts of the property are False, nullable(0) = False holds. 

nullable(1) iff [] ∈ L(1): nullable(1) by the above definition is True, thus obtaining True for the left 

hand side of the property. The language of the empty string is just the empty string therefore the 

empty string is an element and the right side of the property is True. As both the left and right parts 

of the property are True, nullable(0) = True holds. 

nullable(c) iff [] ∈ L(c): nullable(c) by the above definition is False, thus obtaining False for the left 

hand side of the property. The language of ‘c’ is just the character ‘c’ therefore the empty string is 

not an element of the language and the right side of the property is False. As both the left and right 

parts of the property are False, nullable(c) = False holds. 

nullable (r1 + r2) iff [] ∈ L(r1 + r2):  

Can assume the following holds due to the base cases holding 

nullable(r1) iff [] ∈ L(r1) , 

nullable(r2) iff [] ∈ L(r2) 

nullable (r1 + r2) by definition is nullable(r1) ∨ nullable(r2) 

 nullable(r1) ∨ nullable(r2) 

 [] ∈ L(r1) ∨ [] ∈ L(r2) 

 [] ∈ L(r1) ∪ L(r2)  

 [] ∈ L(r1 + r2)   (By the definition of L as described in the introduction) 
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nullable (r1 · r2) iff [] ∈ L(r1 . r2): 

Can assume the following holds due to the base cases holding 

nullable(r1) iff [] ∈ L(r1) , 

nullable(r2) iff [] ∈ L(r2) 

nullable (r1.r2) by definition is nullable(r1) ∧ nullable(r2) 

 nullable(r1) ∧ nullable(r2) 

 [] ∈ L(r1) ∧ [] ∈ L(r2) 

 [] ∈ L(r1) @ L(r2)  

 [] ∈ L(r1 . r2)   (By the definition of L as described in the introduction) 

nullable (r ⋆ )  by definition is True. By definition [] ∈ L(r*). As a result both sides are True making 

the statement True. 

The second part of the matching algorithm calculates a derivative of a regular expression through 

the use of the function der. If thinking of regular expressions as the set of strings they describe, the 

derivative function performs a transformation to the set of strings they describe, this function will 

be defined as derl.  The transformation results in a set that contains all the strings that start with the 

given character, except with the first character removed. For example A = {aone, btwo, cthree, 

afour} then given c is the character, the set returned would be {one, four}. As der works on regular 

expressions, not sets of strings, given L is a function that represents the language of a regular 

expression, L(der a r) = derl c L(r). 

Der takes as arguments a regular expression r, a character c and returns a new regular expression. 

This new regular expression can match a string of the following form, if r can match a string of the 

form c :: s, the new regular expression will match just s. 
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Der is defined as follows [10]: 

der (c, 0) = 0 

der (c, 1) = 0  

der (c’, c) = if c’ = c then 1 else 0  

der (c, (r1 + r2)) = der(c r1) + der(c r2)  

der (c, (r1 . r2)) = if nullable(r1)  

   then (der(c r1) . r2) + der(c r2) 

   else der(c r1) . r2 

der (c, (r⋆)) = der(c r) . (r⋆) 

The regular expressions 0 and 1 are unable to match a string of the form c :: s as the languages they 

represent are the empty language and a language consisting of only the empty string. As a result 0 is 

returned, thus showing that the given regular expression can’t match this input/string. For the third 

statement where a character regular expression is given, a decision on whether the character 

matches the regular expression is made. If they match, return 1, this is because given a regular 

expression matches one character and the derivative of this is required, (a regular expression that 

matches the string s if given a string of the form c::s) only the empty string will be matched by the 

derivative regular expression. If the character does not match, return 0. For the alternative case, two 

regular expressions are given (r1 + r2), all strings of the form c :: s are matched by either r1 or r2. 

As a result, a recursive call of der is made on each of the regular expressions and the results are 

appended by the alternative (+) regular expression. For the fourth case, if a sequence of regular 

expressions (r1 · r2) matches a string of the form c :: s, the first regular expression in the sequence 

r1 must have matched c. But r1 can also match the empty string, in which case, either the first 

regular expression r1 or second regular expression r2 matched c. Therefore, nullable must be used 

to check if the first regular expression r1 matches the empty string. If r1 matches the empty string it 

has to be considered that r2 can match c thus (der(c r1) . r2) + der(c r2). If r1 is not nullable, only r1 

needs to be considered to match c, therefore der(c r1) . r2. For the last case of r*, if r* matches a 

string of the form c :: s, c must have been matched by r. When it is said r matches c it is meant a 

single copy of r* matches c. As a result der is called on a single copy of r. r* is appended to the end. 
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All components for Brzozowski Matcher [3] have now been defined. To implement, the der 

function must be extended to include a string instead of only a single character, we call this new 

function ders. Ders takes as arguments a string, a regular expression and outputs a new regular 

expression. Ders recursively calls itself. In each recursive call, one character from the original string 

is used in a der function call, with the current partial derivative regular expression. The rest of the 

string is passed to the recursive call along with the result of the der function just made. Recursion 

stops when the string is exhausted.  For example, if matching “abc” with a regular expression r, the 

ders function will iterate der, thus building the following statement der( c, der( b, der( a, r ) ) ). Ders 

is recursively defined as follows [5]: 

ders (c::s) r = ders s (der c r) 

Now using the function ders, Brzozowski matching algorithm [3] can be defined for a string s and 

regular expression r [5]:  

matches s r = nullable(ders s r)  

matches will return true or false based on the result of nullable. The goal of this matches function is 

to satisfy the following property: 

matches s r if and only if s ∈ L(r)  

Figure 3.1 gives a diagrammatic overview of the matching process. 




Figure 3.1: Brzozowski matching algorithm [3] 
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3.1.2 Injection phase 

Injection is the next step of the algorithm described by Martin Sulzmann and Kenny Zhuo Ming Lu 

[10]. So far a matching algorithm has been described which returns true or false depending on if a 

string can be matched by a regular expression. Now an understanding of how the string was 

matched is required to then be able to tokenise it. 

To be able to define how a regular expression matches a string, Martin Sulzmann and Kenny Zhuo 

Ming Lu introduced the notion of a Value. Values are defined as follows [10]: 

v = Empty | Char c | Left v | Right v | Seq v1 v2 | Stars vs 

Each Value corresponds to a regular expression. The regular expression 0 is not represented by a 

value as it does not match a string. 1 corresponds to Empty. c corresponds Char(c). (r1· r2) 

corresponds to Seq v1 v2. (r1+r2) corresponds to both Left v1 and Right v2. r* corresponds to Stars 

vs where vs is a list of values, one for each copy of r that was needed to match the string.   

Now given a regular expression r = ((c + b) + c) and a string ‘c’ a value for how this regular 

expression r matches the string ‘c’ is Left( Left( Char c ) ). Here it is important to remember the 

order of choice on how a regular expression is matched, if it is possible to match a string in more 

that one way. The choice of how we match the string is based on the POSIX rules [19]. 

The second phase of the algorithm is organised so that it will calculate a value for how the 

derivative regular expression has matched a string. It is important to reiterate here that the goal of 

the second part of the algorithm is to obtain a value that defines how a regular expression matches a 

string, not to re-obtain a regular expression. This is done using two functions, mkeps and inj. mkeps 

calculates a value for a regular expression that matches the empty string and inj calculates a value 

for how a regular expression matches a given character. In context, mkeps and inj are shown by the 

system diagram in figure 3.2, by the green highlights. 
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Figure 3.2: Martin Sulzmann and Kenny Zhuo Ming Lu  
Lexing algorithm [1], emphasising the Injection phase 

 

From figure 3.2, r4 represents the result of ders, with the input of “abc” and a regular expression 

that matches this.  Therefore the regular expression iterated through the character a, then b and 

finally c. As a result r4 is a regular expression that once matched abc however, now matches the 

empty string. The goal for inj and mkeps is to represent how this regular expression matched “abc” 

using values. 

The mkeps function calculates a value for how a regular expression has matched the empty string. It 

takes as a parameter a regular expression, which is obtained from the result of ders, and returns a 

value. mkeps is defined as follows [10]:  

 mkeps (1) = Empty  

 mkeps (r1 + r2) = if nullable r1 then Left (mkeps r1) else Right (mkeps r2) 

 mkeps (r1 · r2) = Seq (mkeps r1) (mkeps r2)  

 mkeps (r ⋆ ) = Stars [] 

There are no cases for 0 and c as these regular expressions cannot match the empty string and thus 

no value can be calculated. As a result, the function will not come into contact with such 

expressions. 1 is a regular expression that matches only the empty string, thus mkeps returns Empty. 

For a choice between two regular expressions, also know as an alternative statement, the empty 

string is matched by either the left or right regular expression. The alternative case in mkeps gives 
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preference to the regular expression on the left-hand side, this choice of preference is given by the 

POSIX rules [19]. For a sequence of regular expressions to match the empty string, the empty string 

must be in the language of all the regular expressions in the sequence, therefore mkeps calls itself 

on each regular expression in the sequence. The star regular expression matches the empty string by 

default as it is an element of every language it describes. Thus, the corresponding value is returned 

with no values in its list. mkeps is required, as at the end of the matcher a regular expression that 

matches the empty string is produced. To be able to inject the characters from the string, a value for 

how the regular expression matched the empty string must first be calculated. This gives the initial 

value used in the injection function. 

inj is similar to mkeps, however injects a given character based on how the regular expression has 

matched the string so far (as given by the value). Inj takes 3 arguments. The first argument is a 

character. It is obtained from the original string used in the matching process. If iterating inj the 

characters are input in reverse order. E.g. if “abc” is the string, inj would first inject c then b and 

finally a. Next is a regular expression which is obtained from the corresponding derivative step. If 

injecting for example the character ‘c’ from the string “abc” the regular expression resulting from 

der(b,(der(a,“abc”))) is used, or if looking at Figure 3.2, r3. The third parameter is a value, it is 

obtained from how the regular expression has matched the string so far. Figure 3.1.5 shows how 

values are passed from inj to inj along with all the major interactions in this step of the algorithm. 

The initial value is obtained from mkeps. inj returns a new value and is defined as follows [10]: 

 inj d c Empty = Char d  

 inj (r1 + r2) c (Left v1) = Left (inj r1 c v1)  

 inj (r1 + r2) c (Right v2) = Right (inj r2 c v2)  

 inj (r1 · r2) c (Seq v1 v2) = Seq (inj r1 c v1) v2  

 inj (r1 · r2) c (Left (Seq v1 v2)) = Seq (inj r1 c v1) v2  

 inj (r1 · r2) c (Right v2)  = Seq (mkeps r1) (inj r2 c v2)  

 inj (r ⋆ ) c (Seq v (Stars vs)) = Stars (inj r c v :: vs) 

There is no case for 0 or 1 as a character can’t be matched by these regular expressions and thus 

can’t be injected into these positions. If a character regular expression matched the given character, 

the associated value of Char is returned. There are two cases for the alternative regular expression 

(r1 + r2) as either the character was matched by r1 or r2 and thus will be injected as a Left or Right 
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value. How this information is known is based on the given value. There are three cases for the 

sequence regular expressions (r1 · r2), as there are three possible values this regular expression can 

encounter. Again, it is possible for the first regular expression (r1) to match the empty string. This 

means that both r1 and r2 can match the input. The input is matched by r2 if r1 matches the empty 

string, otherwise the input is matched by r1. If the given value is a sequence, the character is 

injected into r1, based on the first value in the sequence. The resulting value is a sequence of the 

result of the injection and the second value in the original sequence. If a Left value is given 

containing a sequence of two values, the character is again injected into r1 with the first value in the 

sequence. The resulting value again is a sequence of the result of the injection and the second value 

in the original sequence. The third case for the sequence regular expression is if a Right value is 

passed. In this case, mkeps is used to get a value for how r1 matched the empty string and the 

character is injected into r2. The result is a sequence of these two results. The star regular 

expression matches the given character with one copy of its self, r. Inj returns a list of values where 

the the first value is used to inject the given character into r. The rest of the values are added to the 

result of the injection to get the sequence of values. 

All the above functions where defined as parts used in a lexing algorithm that can now be defined as 

follows [10]: 

lex r []    = if nullable(r) then mkeps(r)  

     else error 

lex r c::s = inj r c lex(der(c, r), s) 

Similar to ders, lex iterates inj and allows it to perform injection on a string. If the given string is 

empty, the given regular expression must match the empty string to be able to match the input. This 

is checked using the nullable function. If it is able to be matched, a value for how the given regular 

expression matched the empty string is calculated using mkeps. If looking at Figure 3.2 it is the case 

where there is a transformation from r4 to v4. If the given string is not the empty string, the 

characters are used to obtain a derivative regular expression. The derivative is calculated in a nested 

manner until only the empty string can be matched. If looking at figure 3.2 it is the steps from r1 to 

r4.  The resulting derivative regular expressions are then used in the injection function to inject the 

characters back into the expression. 
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Figure 3.3 is a diagrammatic representation of the two phases of the algorithm operating on the 

input string “abc” and a regular expression that matches such a string. 

 

Figure 3.3 Martin Sulzmann and Kenny Zhuo Ming Lu  
Lexing algorithm [1] represented diagrammatically 

3.1.3 Tokenising  

Inj returns a value of how a regular expression matches a given input. To split strings into tokens a 

simple modification to this algorithm must be made. As described in the introduction, tokens are a 

2-tuple. In this implementation it is a 2 tuple of strings. An example input that would need to be 

tokenised is a URL. Therefore splitting the URL into domain name, port number, resource path, 

application layer protocol etc. To do this, an additional regular expression and value is required. 

They are defined as the record regular expressions and record value [6]. They allow for the 

concentration on certain parts of a regular expression. RECD is the record regular expression and 

Rec is the record value. As record is a regular expression nullable, der, mkeps and inj have to be 

extended. They are defined as follows [11]: 
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	 r = RECD(x : r) 

 v = Rec(x : v) 

nullable RECD(_, r1) = nullable(r1) 

der RECD(_, r1) = der(c, r1) 

mkeps RECD(x, r) = Rec(x, mkeps(r)) 

inj (RECD(x, r1), _) = Rec(x, inj(r1, c, v)) 

Given the regular expression a.b + a.c. When tokenising, it is not required to know if the regular 

expression recognises the given string. The only information required is if it matched and if it did 

what part of the string is of interest. In this example either ab or ac can be matched by a.b or a.c and 

only the last character is of interest. The last characters they can match are ‘b’ or ‘c’.  To obtain only 

the last character (or the part of interest) the records regular expression is used. The new regular 

expression looks as follows: 

a . (x : b) + a . (x : c), where x is the identifier/name of the sequence of characters the recorded 

regular expression represents, for example keyword, number etc.  

To put in context given a URL: 

www.example.com:1030/example/page.html 

Here, the host name, port number and resource path needs to be identified. The regular expression 

to identify a URL is: 

w.w.w...[a-z]+...c.o.m.:.[0-9]{4}.(/...[a-z])+ 

To identify the host, port and path using records, the additions to the above regular expression is as 

follows: 

(Host : w.w.w...[a-z]+...c.o.m) . : . (Port : [0-9]{4}) . (Path : (/...[a-z])+) 

Obtaining the tokens: {(Host : www.example.com), (Port : 1030), (Path : /example/page.html)} 
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To extract these recorded identifiers a function called env is implemented. Env takes a value and 

outputs a list of tokens. Env is defined as follows [11]:  

env(Empty) = [] 

env(Char(c)) = [] 

env(Left(v)) = env(v) 

env(Right(v)) = env(v) 

env(Seq(v1, v2)) = env(v1 ) @ env(v2 )  

env(Stars[v1,...,vn]) = env(v1)@...@env(vn) 

env(Rec(x : v)) = (x : |v|) :: env(v) 

When lexing a regular expression with a record regular expression the value is calculated following 

the same logic as previously defined. The recorded regular expression is converted into the 

appropriate value, where it still references the recorded information same as the recorded regular 

expression did. Env iterates through this value and extracts the records. If the given value is Empty, 

no record is identified therefore the empty set is returned. If a character value is given, no record is 

identified, therefore the empty set is returned. If a Left value is given, there may be a record in this 

value, thus env is called on the given value. This is the same case for if a Right value is given. If a 

Seq value is given, a record could be anywhere in the sequence of values therefore env is called on 

every value in the sequence. If a Stars value is given, like the Seq value, a record could be in any 

value in the list. As a result, env is called on every value in the list. If env encounters a record the 

underlying string defined by the value is calculated. This is done using the helper function flatten. 

As there can be records in the value given by the record, e.g. (x:a+(x:b)), env must be called on the 

value. The results are appended as the result of env is a list. flatten takes as an argument a value and 

calculates the underlying string. flatten is defined as follows [2]: 

  flatten Empty = “” 

  flatten Chr(c) = c 

  flatten Left(v) = flatten(v) 

  flatten Right(v) = flatten(v) 

  flatten Sequ(v1, v2) = flatten(v1) + flatten(v2) 

  flatten Stars(vs) = vs.map(flatten).mkString 

  flatten Rec(_, v) = flatten(v) 
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3.2 Optimisation


It can be observed from figure 3.4  that the regular expression a** is able to match 20 a’s in 1.55 

seconds when using the lexer proposed by Martin Sulzmann and Kenny Zhuo Ming Lu [1]. To put 

this in context the same regular expression was run in Python. Python was able to match 20 a’s in 

under 0.1 seconds. Looking at multiple regular expressions it can be concluded that the derivative 

based lexer is slower than other implementations. As a result, it is not useable outside the context of 

theory. By making the derivative based lexer more efficient it becomes more useable and applicable 

to applications. 




Figure 3.4: Displays the time it takes to match a** in  
Python and using the derivative based Matcher [3] 
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3.2.1 Simplification function 1 

The size of a regular expression is the number of sub-expressions it is made up of. For example, 

using our basic regular expressions we construct r = 1 + ‘A’, the size of r is 3. It is easier to see why 

the size is such when the regular expression is written as defined by its implementation, 

ALT(ONE,CHAR(‘A’)), as you can see 3 regular expressions are used in the definition. 

The optimisation performed is simplification. Simplification of a regular expression is the process 

of reducing the size, such that it still matches the same language as the unsimplified regular 

expression, they are ‘equivalent’. More formally given a regular expression R1, a simplification 

function S and a function L such that L(R1) represents the language of R1; L(R1) ≡ L(S(R1)). The 

simplification function in this section is introduced and defined in the paper POSIX Lexing with 

Derivatives of Regular Expressions (Proof Pearl) [20]. In this report it is redefined as simp1. 

Some basic simplifications for regular expressions are as follows [20]: 

r · 0 → 0  

0 · r → 0  

r · 1 → r  

1 · r → r  

r + 0 → r  

0 + r → r  

r + r → r  

Therefore given r = (‘A’ · 1) + 0 and using our simplification function S from above that 

implements the simplification rules, we get S(r) = ‘A’. To note,  L(r’) = L(S(r’)) and ideally  

Size(r’) > Size(S(r’)). 

Simplification is performed at each derivative step, therefore trying to keep the size of the 

derivative regular expression small, thus increasing efficiency. Efficiency is increased because less 

expressions have to be stored in memory and also less regular expressions must be processed. 

Simplification however results in the algorithm building a value for the simplified regular 

expression, not the original regular expression. This is fine when just matching the string, however 
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for lexing, it is required to know how the original regular expression matches the string. To 

overcome this, rectification functions are introduced to re-build the value for the original regular 

expression. The rectification function takes as argument a value and returns a new value. This new 

value tells us how the original regular expression matched the input string.  

This simplification function is based on the above basic simplifications. It is split into two cases. 

Instances of alternative statements and instances of sequence statements. It takes as input a regular 

expression and outputs a simplified regular expression and a rectification function. This 

simplification function is defined in the paper POSIX Lexing with Derivatives of Regular 

Expressions (Proof Pearl) [20]. The definition is as follows [20]: 

 
simp1( r1 + r2 ) 
  (r1s, f1s) = simp1(r1)  
  (r2s, f2s) = simp1(r2)  
 if r1s = 0 then return (r2s, λv. Right( f2s(v)))  
 if r2s = 0 then return (r1s, λv. Left( f1s(v)))  
 if r1s = r2s then return (r1s, λv. Left( f1s(v)))  
 return(r1s+r2s,falt(f1s,f2s))  

This half of the function handles the alternative simplification. It uses the following basic 

simplification rules: 0 + r → r, r + 0 → r,  r + r → r. First, the two regular expressions that make up 

the alternative statement are used in a recursive call. This is because there is the potential for each 

component of the statement to be simplified further. The simplification rules are then checked 

against the result of the recursive calls. If the result of simplifying r1 is an empty language regular 

expression then the simplification of r2 is returned. If the simplification of r2 is the empty language 

regular expression then the simplification of r1 is returned. If the two simplified regular expressions 

are the same, the simplification of r1 is returned is returned due to the POSIX matching strategy 

[19]. In any other case, return the two simplified regular expressions as an alternative statement. At 

each return statement, a rectification function is also returned with the regular expression. This 

allows a value for the original regular expression to be calculated. Rectification functions used in 

the alternative simplification are defined as follows [20]: 
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λv. Right(f2s(v)) 
λv. Left( f1s (v))  

falt(f1, f2) =  
 λv. case v = Left(v′): return Left( f1(v′))  

        case v = Right(v′): return Right( f2(v′))  

At each simplification step, a rectification function is returned that is later used to build a value. It 

must be considered that simplification may have occurred inside the left and right regular 

expressions when returning the rectification function. In the case r1 matches the empty language 

regular expression, it must be the case that r2 matches the given input, therefore a value of Right 

would be given. As a result, a rectification function that builds a Right value is returned for this 

level of simplification. However r2 itself may have been simplified, therefore the rectification 

function returned by the simplification of r2 is given to the right rectification function. This is the 

same case as if r2 matched the empty language regular expression. A rectification function that 

builds a Left value is returned with the rectification function returned by simplifying r1. In the case 

that the simplified regular expressions are the same, the POSIX matching rules state the left regular 

expression is to match the input [19]. This leads to a rectification function that builds a Left value 

being returned, again with the rectification function returned from simplifying r1. In any other case 

no more simplifications can be applied. As simplification may have occurred inside the left and 

right regular expressions, the rectification function returned with the alternative statement depends 

on the rectification functions returned from the simplification of the left and right expressions. If a 

value of Left is rectified then the left rectification function is returned, if a Right value is rectified 

then the Right rectification function is returned. 

simp(r1 · r2): 
 (r1s, f1s) = simp(r1) 
  (r2s, f2s) = simp(r2)  
 if r1s = 0 then return (0, ferror)  
 if r2s = 0 then return (0, ferror)  
 if r1s = 1 then return (r2s, λv. Seq( f1s(Empty), f2s(v))) 
 if r2s = 1 then return (r1s, λv. Seq( f1s(v), f2s(Empty))) 
 return (r1s ·r2s, fseq(f1s, f2s))  

This half of the simplification function handles the sequence simplification. It follows the following 

basic simplification rules: 0 · r → 0, r · 0 → 0, 1 · r → r, r · 1 → r.  Again the first the two regular 

expressions that make up the sequence statement are used in a recursive call. This is because there 
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is the potential for each component of the statement to be simplified further. The simplification 

rules are then checked against the results of the recursive calls. If the result of simplifying r1 is an 

empty language regular expression, the empty language regular expression is returned. This means 

the given input can’t be matched by the given regular expression. If the result of simplifying r2 is 

the empty language regular expression, the empty language regular expression is returned. Again, 

this means the given input can’t be matched by the given regular expression. If the result of 

simplifying r1 is an empty string regular expression, the simplification of r2 is returned. If the 

simplification of r2 is the empty string regular expression, the simplification of r1 is returned. In 

any other case, the two simplified regular expressions are returned as a sequence statement. 

Similarly to the alternative simplification, each of these return statements return a rectification 

function along with the regular expression. Again allow a value for the original regular expression 

to be calculated. The rectification functions used in the sequence simplification are defined as 

follows [20]: 

λv. Seq( f1(v1), f2(v2)) 

 fseq(f1, f2) = 
  λv. case v = Seq(v1, v2): return Seq( f1(v1), f2(v2))  

If r1 is simplified to the empty language regular expression then the given regular expression is 

unable to match the input. As a result no rectification is required. This is represented by the ferror. 

This is the same, for the case where r2 is simplified to the empty language regular expression. If r1 

simplifies to the empty string regular expression then the input is matched by r2. As a result, a 

rectification function that builds a Seq value is returned, where the first element is a rectification 

function that builds the empty value and the second element is a rectification function obtained 

from the simplification of r2. This is the same case for if r2 simplifies to the empty string regular 

expression, except the rectification function returned builds a Seq value where the second argument 

is a rectification function that builds the empty value and the first argument is a rectification 

function obtained from the simplification of r1. In any other case, the returned rectification function 

is the sequence rectification function with its two components being the two rectification functions 

from the simplification of the two regular expressions. Lastly if no simplification can be performed 

for example if the regular expression ‘a’ is given. Then the given regular expression is returned, no 

rectification is required. The full simplification function is defined below [20]: 
�33



simp(r): 
             case r = r1 + r2  

  let (r1s, f1s) = simp(r1)  
       (r2s, f2s) = simp(r2)  
  case r1s = 0: return (r2s, λv. Right( f2s(v)))  
  case r2s = 0: return (r1s, λv. Left( f1s(v)))  
  case r1s = r2s: return (r1s, λv. Left( f1s(v)))  
  otherwise: return (r1s +r2s, falt(f1s, f2s))  
 case r = r1 · r2 
  let (r1s, f1s) = simp(r1)  
  (r2s, f2s) = simp(r2)  
  case r1s = 0: return (0, ferror)  
  case r2s = 0: return (0, ferror)  
  case r1s = 1: return (r2s, λv. Seq( f1s(Empty), f2s(v)))  
  case r2s = 1: return (r1s, λv. Seq( f1s(v), f2s(Empty)))  
  otherwise: return (r1s ·r2s, fseq(f1s, f2s))  
 otherwise: 
  return (r, λv. v)  

To add this simplification function to the existing lexer a small modification to the lex function is 

made. It is defined the same as before but with the introduction of the simp1 function [20].  

simp_lex r []  = if nullable(r) then mkeps(r)  

     else error 

simp_lex r c::s = let (rs, fr) = simp1 der(c, r) 

  inj r c fr(simp_lex(rs, s)) 

The first statement is unaltered. In the second statement the derivative of r is built with c as the 

given character.  The derivative is then simplified using simp1. Lexing is continued with the 

simplified derivative regular expression and the rest of the string s. As a result the simp function is 

applied in a nested manner to all derivative regular expressions. After the entire string has been used 

to calculate a simplified derivative regular expression, the first statement calls mkeps, thus returning 

the first value used in the rectification and injection. The returned values are rectified using fr from 

the simplification as described above. The results are injected into the value. 
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3.2.2 Extended regular expressions  

The extended set of regular expressions, as described in the introduction to this report, are 

additional regular expressions that don’t give any additional descriptive power. They do provide a 

more convenient and concise way to define regular languages. As a result, the size of some regular 

expressions can be smaller if represented using the extended regular expression set. All extended 

regular expressions can be implemented using just the basic regular expressions. 

The set of extended regular expressions are defined as follows [18]: 

r := [ char ] | r+ | r? | r{N} | r{n,m} 

Where a description of there functionality is as follows: 

 [ char ] = is a choice of a character from a given set.  

     e.g. [‘a’,’b’,’c’] could match a or b or c. It is equivalent to writing ‘a’+’b’+’c’ 

   r+ = one or more occurrences of r.  

          e.g. (‘a’)+ would match one or more ‘a’. It is equivalent to ‘a’+(’a’⋆) 

   r? = zero or one occurrence of r. 

          e.g. ‘a’? would match the empty string or ‘a’. It is equivalent to ONE+’a’ 

   r{N} = Exactly N occurrences of r 

  e.g. (‘a’){5} would match “aaaaa”. It is equivalent to writing ‘a’.’a’.’a’.’a’.’a’ 

 r{n,m} = n to m occurrences of r 

  e.g. (‘a’){1,4} would match “a” or “aa” or “aaa”. It is equivalent to writing  

  ‘a’ + (‘a’.’a’) + (‘a’.’a’.’a’) 

A definition of the language these regular expressions represent is given in the introduction section 

to this report.  Due to the functional definition of derivatives, implementing the extended regular 

expressions to the set already implemented is simple. Additional rules need to be added to the 

nullable function, der function, mkeps function and inj function. Adding the extended rules to each 

function follows the same ideology as that of the basic regular expression, meaning the property of 

each function does not change. The following are the amended definitions: 
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nullable (0) = False  

nullable (1) = True  

nullable (c) = False  

nullable (r1 + r2) = nullable r1 ∨ nullable r2  

nullable (r1 · r2) = nullable r1 ∧ nullable r2  

nullable (r ⋆ ) = True 

nullable [s] = False 

nullable r+ = nullable r 

nullable r? =  True 

 nullable r{N} = if (n == 0) True else nullable r 

 nullable r{n, m} = if (n == 0) True else nullable r

der (c, 0) = 0 

der (c, 1) = 0  

der (c, c) = if c = d then 1 else 0  

der (c, (r1 + r2)) = der(c r1) + der(c r2)  

der (c, (r1 . r2)) = if nullable(r1)  

   then (der(c r1) . r2) + der(c r2) 

   else der(c r1) . r2 

der (c, (r⋆)) = der(c r) . (r⋆) 

der (c, [s]) = if(s.contains(c)) 1 else 0 

der (c, r+) = der(c,r) . r* 

der (c, r?) = der(c,r) 

der (c, r{N}) = if (n == 0) 0 else der(c, r) . r{n - 1} 

der (c, r{n, m}) = if(m <= 0)  then 0 

    else if(n == 0) then der(c,r) . r{n,m-1} 

    else der(c,r) . r{n-1,m-1}



The amendments to the functions highlight how easy it is to add and subtract regular expressions. 

These extended functions are able to operate in conjunction with the simp1 function. There is no 

need to alter the simplification function as simplification is based on alternative and sequential 

regular expressions. 
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inj d c () = Char d  

inj (r1 + r2) c (Left v1) = Left (inj r1 c v1)  

inj (r1 + r2) c (Right v2) = Right (inj r2 c v2)  

inj (r1 · r2) c (Seq v1 v2) = Seq (inj r1 c v1) v2  

inj (r1 · r2) c (Left (Seq v1 v2)) = Seq (inj r1 c v1) v2  

inj (r1 · r2) c (Right v2)  = Seq (mkeps r1) (inj r2 c v2)  

inj (r ⋆ ) c (Seq v (Stars vs)) = Stars (inj r c v :: vs) 

inj r{N} c Sequ(v1,Stars(vs)) = Stars(inj(r, c, v1)::vs) 

inj r+ c Sequ(v1, Stars(vs)) = Stars(inj(r, c, v1)::vs) 

inj [s] c Empty = Chr(c) 

inj r? c v = Left(inj(r,c,v)) 

mkeps (1) = Empty  

mkeps (r1 · r2) = Seq (mkeps r1) (mkeps r2)  

mkeps (r1 + r2) = if nullable r1 then Left (mkeps r1) else Right (mkeps r2)  

mkeps (r ⋆ ) = Stars list() 

mkeps r+ = Stars list(mkeps(r)) 

mkeps r? = mkeps(ALT(ONE,r)) 

mkeps r{N} = Stars((for(g <- 0 until n) yield mkeps(r)).toList) 



3.2.3 Simplification function 2 

After performing some matching tests, it was observed that the simp1 function [2] defined earlier in 

this report is unable to optimise this derivative base lexer for alternative heavy regular expressions. 

This is because of duplicated statements inside the alternative regular expression. These tests can 

been seen in the test chapter of this report.  As a result, a modification to the simp1 function was 

made. Simp2 is a simplification function designed by Dr Christian Urban of Kings Collage London 

and is the result of the modification of simp1 [21].  Simp2 optimises the lexer in a similar way to 

simp1. The simplification is based on the given simplification rules defined in simp1 [2], these 

being for alternative and sequence regular expressions. The difference is that simp2 uses an extra 

argument called ‘seen’ to filter out the duplicates. Seen is a set of regular expressions. Every time a 

statement is made it is ‘remembered’ by storing it in seen. If during the simplification, a statement is 

identified as duplicated, this duplication is removed rather than simplified. This leads to the 

reduction in the size of the derivative regular expression. The Simp2 function created by Dr 

Christian Urban of Kings Collage London is defined as follows [21], where ++ is list concatenation: 

simp(r, seen): 
    case r = r1 + r2  

      (r1s, seen1, f1s) = simp(r1, seen)  
      (r2s, seen2, f2s) = simp(r2, seen1)  
  case r1s = 0: return (r2s, seen2, λv. Right( f2s(v)))  
  case r2s = 0: return (r1s, seen2, λv. Left( f1s(v)))  
  otherwise: return (r1s +r2s, seen2,  falt(f1s, f2s))  
 case r = r1 · r2 
      (r1s, _,  f1s) = simp(r1,[])  
      (r2s, _,  f2s) = simp(r2,[])  
  if ( SEQ(r1s, r2s)) ∈ seen ) return (0, seen, F_ERROR) 
  case r1s = 0: return (0,  seen, ferror)  
  case r2s = 0: return (0, seen,  ferror)  
  case r1s = 1: return (r2s, seen ++ r2s, λv. Seq( f1s(Empty), f2s(v)))  
  case r2s = 1: return (r1s, seen ++ r1s, λv. Seq( f1s(v), f2s(Empty)))  
  otherwise: return (r1s ·r2s, seen ++ r1s ·r2s),  fseq(f1s, f2s))  
 otherwise: 
  if (r  ∈ seen) (0, seen, F_ERROR) else (r, seen ++ r, F_ID)             [21] 

As with simp1, simp2 still implements rectification functions due to the fact that a value needs to be 

built for the original regular expression, not the simplified regular expression. The rectification 

functions are defined and implemented in the same way as in simp1. Simp2 interacts with the other 

functions the same as simp1, therefore if implementing simp2, all instances of simp1 in the 

simp_lex function should be changes to simp2. 
�38



3.2.4 Bit-code optimisation 

Incremental Bit-Coded Forward Parse Tree Construction is another way we can look at optimising 

the lexer. This optimisation was proposed by Martin Sulzmann and Kenny Zhuo Ming Lu in their 

paper POSIX Regular Expression Parsing with Derivatives [13] and is further researched in papers 

such as Certified bit-coded regular expression parsing by Rodrigo Ribeiro [12]. This Bit-Coded 

parse tree construction tries to optimise the lexer in two ways. Firstly bit-codes are used to represent 

values more concisely. Secondly, during the matching phase a value is incrementally built up, thus 

the injection function previously used is no longer required, as it is implemented during the 

matching. As a result there is no need to record an entire path of derivative expression. To note, the 

extended regular expressions and the simplification functions are not implemented for the bit-code 

optimisation in this project. 

It is important to understand that this optimisation follows the implementation of the lexer defined 

in prior sections, such that the algorithm is based around the use of derivatives and follows the 

POSIX matching rules [19]. The injection function is taken out and implemented in the matching 

phase, thus a few functions have to be introduced and modified to enable this functionality.  

A bit-code represented as ‘b’ is a number 0 or 1. A bit-code sequence represented as ‘bs’ is a list of 

bit-codes where ‘[]’ represents an empty bit-code sequence. These bit-codes are used to help 

reconstruct a value. More formally they are defined as follows [13]: 

b = 0 | 1  

bs = [] | b : bs 

To compute a bit-code representation of a value, a function called encode is defined. To compute a 

value from a bit-code representation, a function called decode is used. Encode is not required for the 

implementation of the lexer [13] however is useful to implement, as it can be used to check if the 

result of converting a value to a bit-code sequence is the same as the result of the bit-code 

algorithm. Decode takes as arguments a regular expression, a bit-code sequence and outputs a 

value. Encode and decode are defined as follows [13]: 
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encode Empty = []  
encode Chr(c) = []  
encode (Left v) = 0 : encode(v)  
encode (Right v) = 1 : encode(v)  
encode (v1 , v2 ) = encode(v1) ++ encode(v2)  
encode Stars [] = [1]  
encode Stars (v : vs) = (0 : encode(v)) ++ encode(vs)  

decode 1 bs = (Empty, bs)  
decode c bs = (Chr(c), bs)  
decode r1+r2 (0 : bs) = let (v,p) = decoder(r1 bs)  
           (Left v,p)  
decode r1+r2 (1 : bs) = let (v,p) = decode(r2 bs)  
           (Right v,p)  
decode r1.r2 bs = let (v1,p1) = decode(r1 bs)  
             (v2, p2) = decode(r2 p1) 
          ((v1, v2), p2) 
decode r* (0 : bs) = let (v,p1) =decode(r bs) 
      (vs, p2) = decode(r* p1)  
           (Stars(v : vs),p2)  

 decode r* (1 : bs) = (Empty, bs) 

decode’ r bs = let (v,p) = decode(r bs)  
      in case p of  
    Empty -> v 

Bit-codes give information about if an alternative regular expression matched the left or right value 

and if the star regular expression matched the empty string or not. The star expression matches the 

empty string in two cases - the input given is the empty string or all of the input is matched and only 

the empty string is left. If the empty string regular expression is given, this means the empty string 

was matched. As a result, the value associated with the empty string is returned. As bit-codes have 

no effect on decoding the empty regular expression, the bit-code sequence is returned without 

alteration. This is the same case for the character regular expression, except a character value is 

returned. An alternative statement (r1+r2) can match the given input with r1 or r2, to know which, 

bit-codes would have been encoded. If a bit-code of 1 is at the front of the bit-code sequence then 

the r2 matched the input, if it was 0 then r1 matched the input. The regular expression that matched 

the input is then used in a recursive call. The recursive call is given the original bit-code sequence 

minus the first bit-code that was used to tell if the match took place in r1or r2. All regular 

expressions in the sequence regular expression (r1.r2) can match parts of an input, therefore each 

regular expression in the sequence needs to be used in a recursive call. The original bit-code 

�40



sequence is used in the first recursive call, the resulting bit-code sequence of the first recursive call 

is used in the second recursive call. The star regular expression can match the empty string or a 

repetition of the language given by the regular expression. To denote this, bit-codes would have 

been encoded. If a bit-code of 0 is given, like in the sequence case, a recursive call is made on a 

single occurrence of r* with the original bit-code sequence. The bit-code sequence returned from 

this call is then used in the second recursive call on r*. If a bit-code of 1 is given, then Empty is 

returned with the given bit-code sequence. An example is as follows: 

Given: r = (a+(b+c)) and an input ‘c’ 

The value for this is: v = Right(Right(Chr(‘c’))) 

Calling encode(v): 

 Right alternative case is matched: bs = 1 : encode(Right(Chr(‘c’))) 

 Right alternative case is matched: bs = [1] ++ 1 : encode(Chr(‘c’)) 

 Chr is matched: bs = [1,1] ++ [] 

The result of encode is thus a list [1,1] 

If then calling decode on this input decode(r, [1,1]) 

 alternative case is matched:  v, p = decode ((1+c),1) 

 alternative case is matched:  v’,p’ = decode (c,[]) 

         v’ = Chr(c); p’= [] 

         (Right(Chr(c)),[]) is returned 

 v = Right(Chr(c)); p = [] 

 Right(Right(Chr(c))) is returned 

value = Right(Right(Chr(c))) 

To construct a value during matching, an ability to store information in the form of a bit-code 

sequence during the derivative step is required. At current, the defined regular expressions don’t 

allow for the storing of information in any form. Sulzmann & Lu proposed altering the definition of 

regular expressions such that they could be ‘annotated’ with information on how a value can be 

constructed [13]. Annotated regular expressions are regular expressions that can hold information in 
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the form of a bit-code sequence, and are used in conjunction with regular expressions in the 

algorithm. Annotated regular expressions are defined as follows [13]: 

ri = 0 | ( bs @ 1 ) | ( bs @ c ) | ( bs @ ri ⊕ ri) | ( bs @ ri . ri) | ( bs @ ri∗ ) 

Each annotated regular expression is obtained from the basic regular expression by adding the 

ability to store partial parse tree information in the form of bit-code sequences. This is represented 

by the ‘bs’. @ depicts the separation of bit-code sequences from the regular expressions. As the 

empty language regular expression represents no value, the annotated regular expression of the 

empty language does not need to hold any data and thus doesn’t require the ability to store a bit-

code sequence. All the other annotated regular expressions are built by adding empty bit-code 

sequences. The last difference is that choice (r1 + r2) is redefined to use the ⊕ symbol. This is done 

to show that all the information to construct a value can be obtained from the operands of ⊕ without 

having to inspect the surrounding structure.  

To be able to annotate annotated regular expressions a function called fuze is introduced. Fuze takes 

as input a bit-code sequence and an annotated regular expression. The output is an annotated regular 

expression, where the given bit-code sequence, and the bit-code sequence of the given annotated 

regular expression, are combined. This function is used as a helper method for many of the 

functions to be defined. This is because to be able to build up these bit-code representations, an 

ability to add bit-code information is required. Fuze is defined as follows [13]:  

fuse bs 0 = 0  

fuse bs (p@1) = (bs++p@1)  

fuse bs (p@c) = (bs++p@c)  

fuse bs (p@ri1 ⊕ ri2) = (bs++p@ri1 ⊕ ri2)  

fuse bs (p@ri1 . ri2) = (bs++p@ri1 ri2)  

fuse bs (p@ri∗ ) = (bs++p@ri∗ ) 
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Fuzing a bit-code sequence with the empty language annotated regular expression, results in just the 

empty language annotated regular expression, as there is nothing to fuze this given bit-code 

sequence with. For all the other cases the bit-code sequence of the given regular expression is 

appended to the end of the given bit-code sequence and then recombined with the annotated regular 

expression. 

Now, there is the problem of how to convert the regular expressions into the annotated regular 

expressions. This is required as the derivative function will be working with annotated regular 

expressions. When calling the lexing function, a regular expression is given, not an annotated 

regular expression. To do this the internalize function is introduced. Internalize converts a regular 

expression into an annotated regular expression by inserting empty bit-code sequences. Internalize 

takes as an argument a regular expression and outputs an annotated regular expression, it is defined 

as follows [13]: 

internalize 0 = 0  

internalize 1 = ([]@1)  

internalize c = ([]@c)  

internalize (r1 + r2) = ([]@(fuse [0] (internalize r1)) ⊕ (fuse [1] (internalize r2)))  

internalize (r1 . r2) = ([]@(internalize r1) (internalize r2))  

internalize r ∗ = ([]@(internalize r) ∗ )  

The empty language does not represent any value and therefore doesn’t need to store any 

information, so the annotated regular expression of the empty language is the same as the regular 

expression. The empty string and character expressions are combined with an empty bit-code 

sequence to obtain the annotated regular expression. The alternative (r1 + r2) is converted to the ⊕ 

symbol and the bit-code 0 is fuzed to the result of the recursive call of internalize on r1. The same is 

done to r2 but a bit-code of 1 is fuzed to the result of the recursive call. The sequence regular 

expression (r1 . r2) is combined with an empty bit-code sequence, however due to r1 and r2 being 

regular expressions not annotated regular expressions, they must also be internalized into annotated 

regular expressions, hence the internalize call on r1 and r2. The star regular expression is combined 

with an empty bit-code sequence and as the regular expression inside the star is not a annotated 

regular expression internalize is called. 
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An example of the operation of internalize is as follows: 

 given a regular expression r = (a+(b+c)) and ‘:’ is the binary operator fuze 

 internalize(r)  = [] @ 0 : internalize(a) ⊕ 1 : internalize(b+c) 

   = [] @ 0 : ([]@a) ⊕ 1 : ([]@0:internalize(b) ⊕ 1:internalize(c)) 

   = [] @ 0 : ([]@a) ⊕ 1: ([]@ 0:[]@b ⊕ 1:[]@c) 

   = [] @ ([0]@a) ⊕ 1 : ([]@ [0]@b ⊕ [1]@c) 

   = [] @ ([0]@a) ⊕ ([1]@ [0]@b ⊕ (1]@c) 

At current, functions have been defined that allow for describing bit-code sequences, describing 

annotated regular expressions, allowing for the conversion of bit-codes into values and back, the 

combining of bit-code sequences with annotated regular expressions and finally a function that 

obtains an annotated regular expressions from regular expressions. All that needs to be done now is 

to redefine the derivative function. The derivative functioned needs to operate on annotated regular 

expression to build up a bit-code sequence. The new derivative function that operates on annotated 

regular expressions is called Ider. The name is changed from der to Ider to avoid confusion and to 

be able to distinguish the two functions. Ider operates in a similar way to der. The function takes as 

arguments a character, an annotated regular expression and outputs a new annotated regular 

expression. Assuming the given annotated regular expression can match a string of the form c :: s, 

the new annotated regular expression can match a string of the form s. In addition to this it copies 

and inserts value information in terms of bit-codes. It can be thought that Ider is a combination of 

both the der function and the inj function from the original algorithm. Ider is defined as follows [13]: 

Ider c’ 0 = 0 

Ider c’ (bs@1) = 0  

Ider c' (bs@c) = if c’ == c then (bs@1) 

  else 0  

Ider c’ (bs@ri1 ⊕ ri2) = (bs@ Ider(c’, ri1) ⊕ Ider(c’, ri2))  

Ider c’ (bs@ri1 . ri2) = if nullable(ri1)  

   then bs@ ([]@Ider(c’,ri1) ri2) ⊕ (fuse(mkEpsBC(ri1), Ider(c,ri2))) 

       else bs@Ider(c’, ri1) ri2 

Ider c’ (bs@ri∗) = (bs@(fuse [0] Ider(c’, ri)) ([]@ri∗ )) 
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Calling Ider on the empty language annotated regular expression, returns just the empty language 

annotated regular expression as no string of the form c’ :: s can match this. This is the same for the 

empty string annotated regular expression. Calling Ider on the character annotated regular 

expression is similar to that of the der function. If c’ can be matched by the annotated regular 

expression an annotated regular expression that matches a string of the form s is returned, if the 

given string is of the form c’ :: s. As the given annotated regular expression can only match 

characters, the result must be an annotated regular expression that matches the empty string, thus 

returns the empty string annotated regular expression. If it can’t match c’ then the empty language 

annotated regular expression is returned. No annotations are made to the bit-codes at this point, this 

is because no annotation is required if just matching a character. For the alternative expression 

(bs@ri1 ⊕ ri2), either the ri1 or ri2 matched the input, therefore Ider is called on both ri1 and ri2. 

No annotation to the expressions are made here as the bit-codes were added when calling 

internalize. Like in der, when considering the sequence case (bs@ri1 . ri2) it must be taken into 

account that ri1 can match the empty string and thus c’ can be matched by ri2. To tell if an 

annotated regular expression matches the empty string a small alteration to nullable is made, all 

regular expressions are changed to annotated regular expressions [13].  

nullable 0 = false 

nullable (bs@1) = true 

nullable (bs@c) = false 

nullable (bs@ri1 ⊕ ri2) = nullable(ri1) || nullable(ri2) 

nullable (bs@ri1 . ri2) = nullable(ri1) && nullable(ri2) 

nullable (bs@ri∗) = true 

Continuing with the description of the sequence case in Ider. If the empty string can’t be matched 

by ri1, then ri1 must match c’. As a result, the sequence annotated regular expression is returned 

where a recursive call of Ider is made on ri1 with c’. If it is the case where ri1 matches the empty 

string, ri1 or ri2 matches c’. This leads to the returning of an alternative annotated regular 

expression where the first component is the same as if only ri1 matched the input, and the second 

component considers the case where ri1 matched the empty string, therefore calling mkepsBC on 

ri1 and fuzing it with a recursive call of Ider on ri2 and c’. mkEpsBC operates in a similar fashion 
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to that of mkeps. Given an annotated regular expression it returns an annotated bit-code sequence of 

how the given expression matches the empty string [13].  

mkepsBC(bs@1) = bs  

mkepsBC(bs@ri1⊕ri2)  

  | nullable(ri1) = bs++mkepsBC ri1  

  | nullable(ri2) = bs++mkepsBC ri2    

mkepsBC(bs@ri1 . ri2) = bs++mkepsBC ri1 ++mkepsBC ri2 

mkepsBC(bs@ri∗) = bs++[1] 

The star annotated regular expression must record the number of iterations it has performed ri. This 

is done by fuzing a bit-code of 0 in each iteration it doesn’t match the empty string. If it does match 

the empty string, a bit-code of 0 is fuzed with the empty string annotated regular expression 

therefore nothing is fuzed. Calling Ider on the star annotated regular expression returns a sequence 

regular expression where the first component is a recursive call on a single occurrence of ri* (the 

result of this is fuzed with 0) and the second component is r*, this allows ri* to match multiple 

occurrences of ri.  An example of Ider operating on the annotated regular expression obtained from 

internalize(a+(b+c)) as calculated prior is as follows: 

 Ider([] @ ([0]@a) ⊕ ([1]@ [0]@b ⊕ (1]@c))  

  = [] @ Ider(c,[0]@a) ⊕ Ider(c, [1]@([0]@b)⊕([1]@c)) 

  = [] @ 0 ⊕ [1]@Ider(c,[0]@b) ⊕ Ider(c,[1]@c) 

  = [] @ 0 ⊕ ([1]@0 ⊕ [1]@1) 

 An then using mkeps to get the bitcode sequence 

mkepsBC([] @ 0 ⊕ ([1]@0 ⊕ [1]@1)) 

 = [] ++ mkepsBC([1]@0 ⊕ [1]@1) 

 = [] ++ [1] ++ mkepsBC([1]@1) 

 = [] ++ [1] ++ [1] 

 = [1,1] 
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The result of mkepsBC is [1,1]. This the same result that was obtained earlier when using encode to 

calculate a bit-code sequence for the corresponding value. As shown earlier the decode function 

would then produce the expected value from this bit-code sequence. 

Now all components have been redefined and or introduced we can redefine the lex function [13]. 

lex ri []    = if nullable(ri) then mkepsBC(ri)  

     else error 

lex ri c::s = lex(Ider(c, ri)), s) 

lexer r s = decode(r, lex(internalize(r), s.toList)) 

lexer first converted the given regular expression into an annotated regular expression using 

internalize. lex then checks if the given annotated regular expression matches the empty string. If it 

can, mkepsBC is used to obtain the bit-code sequence for how this annotated regular expression 

matched the empty string. If the given annotate regular expression does not match the empty string, 

lex iterates the derivative function with the characters of the string. Given the expression can match 

the input, the result of iterating Ider is an annotated regular expression that matches the empty 

string. The resulting bit-code sequence is then decoded thus producing a value for how the regular 

expression matched the given input. 
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Chapter 4 

Testing 

4 optimisations have been researched and analysed in this report, these being the simp1 function, 

extended regular expression set, simp2 and bit-code parse tree construction. The simplification 

functions both concentrated on reducing the size of the derivative regular expression being built in 

the matching phase. The extended regular expressions optimised by providing a way of concisely 

defining the regular expression in the first place, for example, a{30} is one expression if using the 

extended regular expressions but is 29 when using the basic regular expressions. Bit-code forward 

parse tree construction optimised by building a value at the same time as calculating the derivative 

regular expression and concisely representing these values using bit-codes. 

These optimisations are trying to optimise this lexing algorithm [1] in the sense of time and 

memory. They try to reduce the size of the regular expression. As a result less memory is required to 

store the regular expression. The effect this has is that now there are less expressions to analyse 

when lexing an input. This leads to a decrease in the time it takes to lex an input. 

One of the major concerns with lexical analysis and matching in general is the effects of ‘evil’ 

regular expressions on the time it takes. The experiments here are looking into what evil regular 

expressions the optimisations allow the lexer to handle and what they are unable to allow it to 

handle. First the matcher is tested. For convenience, the alternative regular expression (r + r) is 

redefined as (r | r) to avoid confusion with the plus extended regular expression. 

4.1 Matcher testing 

Python, Java and Ruby are introduced to provide benchmark times to compare the implemented 

matchers against. Basic, simp1 and simp2 in the graphs all represent Brzozowski matcher [3] using 

the given optimisation, with basic being the matcher with no optimisation. 
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Figure 4.1: Shows the number of a’s matched by  

different optimised matchers [3] 

Figure 4.1 shows matching with the evil regular expression a**b. The basic matcher was able to try 

to match 20 a’s in 1.27675s. Scala returned the following message when trying to match 21 a’s, 

’java.lang.OutOfMemoryError’. The matcher using the simp1 optimisation was able to try to match 

100,000 a’s in 0.02023s. Inputs of larger size are able to be tried, however 100,000 was the 

maximum size input tried for this test.  Simp2 again was able to match 100,000 a’s in 0.03947s. 

Like with simp1 inputs of larger size are able to be tried to match but 100,000 was the maximum 

size input tried for this test.  Bit-code doesn’t implement a matcher therefore no test was performed. 

Python and Java where both able to match 31 a’s in 211.062469006s and 144.993193808s 

respectively. Matching of larger inputs were not performed in Python and java due to the length of 

time it took to match.  Ruby was able to match 100,000 a’s in 0.00410s. Again the max size input 

for the test was 100,000 however larger inputs are able to be tried to be matched.  From this data it 

can be seen that the simplified matchers are able to match larger inputs in less time than that of 

Python and Java. At the same time they look to be able to perform at a similar level to ruby. This 

however is all with respect to the given evil regular expression. The basic matcher matched the 

smallest input out of all the matching implementations. It was the only matcher to return a memory 

overflow error. To identify why the basic matcher performed in the way it did, the size of the 

derivative built was investigated. 
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Figure 4.2 Shows the size of the derivative regular expressions produced by the basic matcher given 

the evil regular expression a**b with respect to different input sizes. The basic matcher’s derivative 

size increased exponentially as the input size increased, given an input size of 20 a’s the matcher 

built a derivative regular expression of size 7,000,000+. This gives an explanation as to why a 

‘java.lang.OutOfMemoryError’ was given. Due to the size of the regular expression, it was not able 

to be stored, this is because not enough memory was allocated. As a result of such a large 

expression being built, the time in which it took to analyse such an expression also increased 

exponentially, thus giving reason as to why it took 1.27675s to match 20 a’s. In comparison, both 

simplification functions where able to keep the size of the derivative regular expression constant, at 

a size of 8. Figure 4.2 only shows the size up to an input size of 20, however the constant size of 8 

is true for up to a size of 100,000 a’s (This is where the texting size stopped). As a result the simp 

functions were both able to match far larger inputs in less time, therefore being more efficient in 

both space and time. This leads to a correlation between the size of the derivative regular expression 

and the time it takes to match. As the size of the derivative regular expression increases so does the 

time it takes to match. 

Figure 4.2: Size of derivative regular expression [3] 
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As stated prior, these results only show how effective the optimisations are with respect to the given 

regular expression. The simplification functions do not optimise the matcher for all evil regular 

expressions. 

Figure 4.3: Number of a’s matched by the 
 different optimised matchers [3] using (a|aa)+ 

Figure 4.3 shows the matchers trying to match against the evil regular expression  

(a|aa)(a|aa)* / (a|aa)+ using both the basic and extended regular expression sets. The fist notable 

point is that simp1 is only able to match 30 a’s followed by an out of memory error. It matches 30 

a’s in 6.07615s when using the basic regular expressions and 30 a’s in 8.78593s when using the 

extended regular expressions. This is an example where the simp1 function is unable to optimise the 

matcher. The size of the derivative regular expression is 12,752,042 for both basic and extended 

regular expression implementations when trying to match 30 a’s. This therefore shows that the 

simplification function is has little effect on keeping the derivative regular expression small and at a 

constant size. This explains why the matcher returns a memory overflow and takes comparatively 

longer to match. The simp2 matcher however is able to handle this regular expression. It is able to 

match 100,000 a’s in 0.06287s when using the basic regular expressions and 0.04289s when using 
�51

(a|aa)+

N
um

be
r o

f a
’s 

m
at

ch
ed

1

100

10000

basic simp1 simp2 python ruby

100,000100,000100,000

3028

100,000100,000100,000

3028

basic regular expressions extended regular expressions



the extended set. The size for the derivative for both is 17 and this is constant through out the 

matching. Python and Ruby are both able to match 100,000 a’s in times 0.2s for both the basic and 

extended regular expression sets.  The second notable point from figure 4.3 is that the extended 

regular expression set had minimal impact on the time and space efficiency of the matchers for this 

given expression. For the cases where the matchers performed ‘badly’; a possible reason for this 

could be that the alternative statements grow at an exponential rate and as a result no extended 

regular expression was able to be used to minimise this. Following on from this, in the case of 

simp1, simplification of the alternative statements is not efficient enough to allow for such an 

expression to match large inputs. This is one of the main reasons for the creation of simp2 by Dr 

Christian Urban [21]. However this does not mean the the simp2 function is more efficient than the 

simp1 function. 

Figure 4.5: Shows the number of a’s matched by the  
different optimised matchers [3] 

From figure 4.5 it can be seen that non of the matchers are able to handle the regular expression 

a{n}a?{n} when using the basic regular expressions. By implementing the extended regular 

expressions most of the matchers are able to improved the number of a’s they are able to match. The 

basic matcher was able to match 20 a’s in 4.77053s using the basic regular expression set. The size 

of the derivative was 8,394,299, resulting in a memory error when trying to match inputs of greater 

size. The basic matcher was not tested using the extended regular expressions. Simp1 was able to 

�52

a{n}a?{n}

N
um

be
r o

f a
’s 

m
at

ch
ed

1

100

10000

basic simp1 simp2 python ruby

100,000

29

1,900
3,500

3229232320

basic regular expressions extended regular expressions



match 23 a’s in 8.85230s where a memory overflow error was given after this point. The size of the 

derivative regular expression was 553. In comparison, when simp1 used the extended regular 

expression set, it was able to match 3,500 a’s in 0.34663s. The size of the derivatives regular 

expression was 10,506.  There are a few interesting questions that arise by looking at the results of 

simp1. When it is matching using the basic regular expressions it is only able to match 23 a’s 

however the size of the derivative regular expression is only 553. This contradicts the previously 

assumed correlation of size to time. One possible reason for this occurring is that the time it takes 

the simplification function to operate increases. As a result it may be able to reduce the number of 

regular expressions being used to build the regular expression resulting in why the derivative is only 

553, but at the same time take longer to complete the simplification function. This leads to the 

overall matching time increasing. Secondly, when matching using the extended regular expression, 

the size in which the derivative regular expression grew was linear. The size of the derivative grew 

by 3 for each additional ‘a’ being matched, where the initial size was 6. In previous tests, either the 

size grew exponentially or was constant, thus giving reference to whether the optimisation worked 

for the given evil regular expression or not. This shows that the simp1 function is able to optimise 

this matcher for this evil regular expression however, for sufficiently large input sizes simp1 would 

not be able to optimise the matcher well enough to enable it to handle such an input. This leads to 

the need to find another solution to optimise this matcher for such an evil regular expression if 

considering larger inputs. However it is sufficient if inputs of less than 3,500 are being used. When 

looking at the results of simp2, similar occurrences arise. Simp2 matches 23 a’s in 13.76830s when 

using the basic regular expressions. The size of the derivative is 553. Again the reasons for these 

results are the same as for simp1. Simp2 is able to match 1,900 a’s in 0.84593s when using the 

extended regular expressions. The size of the derivative is 5,706.  The same linear growth of 3 in 

the derivative size occurred during simp2. To note here no errors were returned after matching for 

simp1 and simp2 when using the extended regular expressions, while testing it was decided to stop 

matching at these points. 

When not using the extended regular expressions, all of the matchers perform at a similar standard 

with python and ruby being the most efficient. When using the extended regular expressions, simp1 

and simp2 are able to optimise their matchers better than that of python, with respect to the regular 

expression. As a result, the set of evil regular expressions the simp1 and simp2 matchers are able to 

handle increases by implementing the extended regular expressions. Figure 4.5 also shows an 

instance where simp1 operates more efficiently than simp2. Simp1 is able to match 3,500 a’s in 

0.34663’s compared to 1,900 a’s in 0.84593s for simp2. This shows that different optimisations 
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perform better for different evil regular expressions. This enforces the fact that each test gives 

information with respect to the given evil regular expression and doesn’t show its efficiency for all 

evil regular expressions. 

4.2 Lexing testing 

The optimisations (with the exception of bit-codes) optimise the matching phase of the lexer. The 

lexing time will therefore be similar to that of matching, but with the value calculation overhead.  

Basic, simp1, simp2 and bit-code all represent the lexer proposed by Martin Sulzmann and Kenny 

Zhuo Ming Lu [1] with the corresponding optimisation applied. The basic lexer has no optimisation. 

Due to the bit-codes not implementing the extended regular expression set, only the basic regular 

expressions are used in these tests. Memory was increased to 3GB resulting in the lexer being able 

to lex more a’s in some instances compared to the matcher. This was done to see the exponential 

runtime of the lexer. The following three graphs give an overview of the lexer performance with 

respect to the three evil regular expressions that were tested against the matcher.


 

Figure 4.6: Displays the runtime of the  
different optimised lexers [1] on a**b 
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Figure 4.7: Displays the runtime of the  
different optimised lexers [1] on (a|aa)+ 

 

Figure 4.8: Displays the runtime of the  
different optimised lexers [1] on a{n}a?{n} 
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The first thing to note about the graphs above is that the run times for basic, simp1 and simp2 is 

similar to that of there corresponding matcher. This is with exception to simp1 and simp2 when the 

a**b evil regular expression is used. The lexer must be able to match all parts of the input string. As 

a result the input string was changed to a sequence of a’s followed by a single b as opposed to just a 

sequence of a’s used in the matcher. Therefore the derivative regular expression size became 

constant at 1 and thus the matcher operated differently to the way it did in the pervious section. The 

similarities in runtime for the other cases are due to the fact that the optimisation of the lexer occurs 

in the matching phase. As the value construction is similar for all three optimised variations of the 

Lexer, there is little change in run times if taking into account the value construction overhead. Due 

to most of the explanations for the behaviour of these lexers being described in the matching tests, 

these graphs are mainly for comparison against the bit-code optimisation. 

In the case of the a**b regular expression, the bit-code optimisation was able to match 22 a’s in 

33.42296s with the size of the derivative annotated regular expression being 58,720,298. This grew 

exponentially throughout the lexing, a memory overflow error was returned when trying to lexer 

larger inputs.  In comparison, the basic lexer was able to match 22 a’s in 20.61080s. Simp1 and 

simp2 were able to match up to 100,000 a’s in under 0.01s. The reason for the memory overflow 

error is similar to that of the cases in the matching. The size of the annotated regular expression was 

to large to be stored in memory thus memory overflow. Due to the size increasing exponentially so 

too did the time it then took to lex. The bit-code optimisation was able to lex the same number of 

a’s as the basic lexer, therefore for this evil regular expression, the bit-code optimisation was unable 

to increase the efficiency of the lexing algorithm.  

Looking at the case where the lexers are matching against the evil regular expression 

 (a|aa)+, rewritten as (a|aa) . (a|aa)*. The bit-code optimisation enables the input to be lexed in a 

shorter time than that of the basic and simp1 lexers. The bit-code implementation lexed 32 a’s in 

14.07713s with the derivative annotated regular expression size reaching 81,186,671. As a result a 

memory overflow error occurred for inputs of larger size. This is in comparison to the basic and 

simp1 lexers lexing 32 a’s in 40.25687s and 57.72836s respectively. Although the bit-code 

optimisation performs better than that of the basic lexer or using the simp1 optimisation, matching 

only 32 a’s results in this optimisation not being efficient enough for use in application. This is 

because most applications of this lexer will require it to be able to handle inputs of greater size than 

32. 
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For the evil regular expression a{n}a?{n} the bit-code optimisation was able to lex 23 a’s in 

48.30028s. The size of the derivative annotated regular expression was 553. In this test all of the 

lexers perform poorly, explanations for why simp1 and simp2 perform as such is due to the 

matching performing poorly and thus described in the prior section.  

Many more evil regular expressions were performed on the lexers and matchers as a part of the 

testing. These three evil regular expressions were chosen to discuss as they best displayed the range 

of properties shown by the lexers and matchers. These being for example the effect on the size of 

the derivatives, optimisers working better with different evil regular expressions, the effects of 

extended regular expressions etc. From the tests that have been presented it can be concluded that 

the simp1 and simp2 optimisations combined with the extended regular expressions enable the lexer 

[1] to handle the largest set of evil regular expressions. The bit-code optimisation [13] looks to 

provide little optimisation to the lexer. It must be taken into account that only a small set of possible 

evil regular expressions have been tested therefore this conclusion is based only on this small 

sample. Although the bit-code optimisation looked to perform poorly, there is still additional 

material that can be applied to the optimisation such as including the extended regular expressions. 

In the paper by Sulzmann and Lu [1] where the bit-code algorithm is defined [13], a simplification 

function is also described for the bit-codes. This simplification was not implemented in this project 

however is a factor to take into account when comparing the performance. 

4.3 A simple C lexing grammar 

The application of a lexer is not to test how many a’s it is able to match, as has been the bases of the 

experiments so far. As mentioned in the introduction sections they are used in a large variety of text 

based processes such as syntax highlighting, lexing programs, finding patterns in hostile network 

traffic, web-crawlers, dictionaries, DNA-data, ad filters etc. When lexing in an application such as 

compilation, a lexing program will have to tokenise a programming language, for example Scala or 

Python. A programming language can be broken down into components of which some include 

keywords, identifiers, integers, floats, strings, operators, whitespaces, comments and many more. A 

simple C-language lexing grammar was implemented following the lexing rules as defined from 

Programming languages — C [15]. The C lexing rules where implemented using the derivative 

regular expressions. Glibc was used as a source of C programs to see how many programs could be 

lexed using a simple C-lexer. Glibc was downloaded from GitHub with the source directory being 
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glibc [16]. A pool of 248 C programs where chosen from glibc to lex. The files were taken form the 

file location glibc/posix/ . Only the simp1 lexer was tested in tokenising these programs. This is 

because the simp1 lexer was the only implementation that included the record regular expressions. 

This is with the exception of basic lexer. The simp1 lexer was able to lex 63 and failed 185 C 

programs, it did this in 7.094653243s .  As a result it took on average 0.02861s to lex one C 

program. Where the lexer was unable to tokenise, a stack overflow error was returned. 
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Chapter 5 

Professional and ethical issues 

5.1 British Computing Society Code of Conduct & Code of Good Practice 

The Code of Conduct & Code of Good Practice issued by the British Computer Society was strictly 

followed during all phases of the development of this project. Following the code of conduct 

protects all parties concerned with such a project, and helps with avoiding legal and ethical issues. 

Many sources of information in this report are taken from different open source academic research 

papers. The code of conduct helps protect intellectual property from being illegally used. This for 

example could be using others research without proper referencing, such an improper use of 

information is unethical. This project was based around the use of a pre-proposed implementation 

of a lexing algorithm, therefore all relevant information in this report that is not my personal work 

has been explicitly stated.  

5.2 Packaging for release 

Packaging this lexer as a software product would require a few considerations. Firstly, would Scala 

impose restrictions on the distribution? Secondly the lexer is implemented based on the functional 

design given by Sulzmann and Lu [1], with optimisations coming from Fahad Ausaf, Roy 

Dyckhoff, and Christian Urban [2]. As a result, would this pose any restrictions? In terms of Scala 

posing a distribution barrier; If a copy of the Scala licence is contained within the code and the 

following three conditions are met as stated on the Scala webpage [14]: 

• Redistributions of source code must retain the above copyright notice, this list of conditions and 
the following disclaimer. 

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions 
and the following disclaimer in the documentation and/or other materials provided with the 
distribution. 

• Neither the name of the EPFL nor the names of its contributors may be used to endorse or 
promote products derived from this software without specific prior written permission. 
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there would be no legal barrier imposed by Scala. As the lexing algorithm and definitions are in the 

public domain, the contributors to the respective papers by Martin Sulzmann, Kenny Zhuo Ming 

Lu, Fahad Ausaf, Roy Dyckhoff, and Christian Urban would not require any monetary 

compensation to allow for the distribution of the product. There would of course be many other 

legal cases that would need to be considered to move forward with packaging this lexer for 

distribution. 
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Chapter 6 

Evaluation 

6.1 Project 

Background research into how the proposed lexer operated took a large amount of time. Obtaining a 

good understanding of how derivatives could be used to represent regular expressions, and how 

they can then be applied to a lexing algorithm was essential. This is because the basic lexer was the 

foundation the optimisations where built off. Understanding how bit-codes could be used to 

optimise the lexing algorithm took the most amount of time to research and implement out of all the 

optimisations. This is because it took a different approach to optimisation when compared to 

simplification. Although bit-codes build of the original lexer, it required the most amount of code 

implementation. Along with this, the bit-code research papers where difficult to understand due to 

the notation changing in each research paper. 

The implementation of the functions was easy due to the use of the programming language Scala. 

This was mainly as a result of Scala’s pattern matching ability. Overall a functional language such 

as Scala was the best fit for the project. If a non functional language such as Java or C was used, the 

implementation of the algorithm would have required a larger amount of code, and taken more time 

to implement. This is because Java, C and other alike programming languages don’t provide pattern 

matching. As a result, the functions could not be implemented in the same way. A series of ‘if’ 

statements could be used as an alternative to pattern matching, however this would not be an 

elegant solution. Overall, implementing this algorithm in Java or C would result in the project 

taking longer, the code would be less concise, harder to read and therefore harder to fix should any 

problems arise. 

The textual notation used by derivatives, combined with the concise patterned matching of Scala, 

kept the size of the project relatively small. It took 100 lines of code to implement the lexer with no 

optimisation and 100 extra lines of code to implement simplification and the extended regular 
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expressions. As a result the derivative based lexer is concise and, once understood, takes relative 

little effort to implement. An automata implementation would require a greater amount of code and 

though processing. Questions arise such as how a transition should be represented, how states are 

stores etc. This leads to the fact that the implementation of a data structure is a code intensive task. 

When comparing automata to derivative based implementations, derivatives are quicker and more 

concise to implement. 

6.2 Tests 

The test approach was done in a well structured manner. The tests focused on matching. This was 

done as the majority of the optimisations effected the matching phase of the algorithm. As a result, 

more detail data was obtained as to what the optimisations where doing.  

The tests covered a large range of evil regular expressions for which the lexer had to match inputs 

to. In all instances the lexer was able to successfully match a string, even if it was only of length 10. 

This showed the lexer to work. For the lexer to be ‘useful’ however, it had to be able to match more 

that an input string of length 10. In this sense the lexer may have worked but it was not ‘useful’ (not 

usable in applications). 

The optimisations increased the set of evil regular expressions the lexer could handle. As a result, 

the input size that could be matched increased. This lead to the lexer becoming usable in 

applications. When choosing the appropriate optimisations, the lexer was able to handle all the evil 

regular expressions tested. If however trying to generalise the lexer to handle all the evil regular 

expressions used in the tests, this is not the case. For each optimisation there was always a evil 

regular expression that the lexer couldn’t handle. The bit-code optimisation didn’t provide any 

benefit in terms of time or memory. It must be taken into account that the bit-code implementation 

in this project was only the basic optimisation. It could be thought of as a set up for the main 

optimisation. The simplification function specific to the bit-code optimisation was not implemented. 

The implementation of this simplification function, I believe, would greatly effect the run time of a 

bit-code optimised lexer. 

Implementing the simple C lexing grammar and testing it against some of the C programs from 

glibc provided some of the most useful data. Although it was a short test, it showed how useful this 

implementation would be if it was commercialised. The derivative based lexer could be used to lex 

�62



commercial code successfully. On the other hand it showed there is still research that needs to be 

performed before this lexer is ready for distribution as there where many C programs that resulted 

in a stack overflow when lexing. 

Overall the lexer was successful at lexing commercial code, and in general the optimisations greatly 

improved the efficiency of the lexer. In some instances, the optimised matcher was quicker and able 

to match larger inputs than commercial matchers. No one optimisation however provides a solution 

of enabling the lexer to handle all evil regular expressions. 
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Chapter 7 

Conclusion and future work 

7.1 Conclusion 

The goal of the project was to take the research of  Sulzmann and Lu and implement their proposed 

lexer [1] with different optimisations. This was successful. The lexer tokenised many different input 

strings using different evil regular expressions. Along with this the optimisations successfully 

increased the set of evil regular expressions the lexer was able to handle. There are however still 

many evil regular expressions and optimisations this project didn’t look at that need to be 

investigated, as discussed in future work. 

The reemergence of research into the use of derivatives is showing potential to provide a more 

efficient implementation for regular expressions and lexers in general. It provides many benefits 

over the automata implementation, for example, the ability to prove correctness. This gives good 

reason for continued research into the area, due to the need for faster and correct systems.  

7.2 Future work 

This project was a good introduction to lexers. It gave a broad view of how lexical analysis works 

with derivative and automata. There are many areas in this project that require continued work and 

research of which some are as follows: 

• Bit-codes: There are still many aspects of the bitcode optimisation not implemented from the 

POSIX Regular Expression Parsing with Derivatives paper [13]. These being the extended regular 

expressions and the proposed simplification function. This would be a good starting point when 

continuing the work from this project. 
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• Simplification: As shown in the test section of this report, the derivative based Lexer [1] is not 

perfect. There are still evil regular expressions that cause the optimised lexer to run in exponential 

time. One of the main benefits of a derivative based lexer is the ease of implementing new regular 

expressions. This is the same case for implementing new optimisations, as seen when 

implementing simp2. From the work in this project, the use of simplification looked to reduce the 

time it took to lex strings with respect to an evil regular expressions the best. As a result, further 

investigation into the two simplification functions should be made. This would identify instances 

where they are able to optimise and where they are unable. Following on from these tests, new 

simplification functions should be formulated. Furthermore an investigation into how multiple 

simplification functions could be used together could be made to thus utilising the best 

optimisation for the given evil regular expression. This idea of using multiple simplification 

functions could also be extended to using multiple optimisations in general.  

• Lexing grammars: Only a simple C lexing grammar was implemented. The investigation into the 

results of the C lexing grammar was confined to identifying if the implemented lexer could or 

could not tokenise the C program. Further investigation into the results of the C lexing rules could 

be made to identify why a stack overflow exception occurred. Following on from this, 

improvements could be made to the simple C lexing grammar. Also, lexing rules for other 

programming languages could be implemented to obtain a wider scope of application. 

Implementing the lexer in a compiler or text processor will again give informative data about how 

this algorithm copes when used in applications. 

• Looking at commercial systems: There are already implementations of lexers using automata that 

are efficient enough to make regular expressions useful. The reason for this project and the 

research by Sulzmann and Lu was to investigate how the lexers can be optimised further. At the 

same time other programmers have been trying to optimise regular expressions in other ways.  

When providing benchmarks in the test chapter, ruby was able to match large input sizes with 

almost all the tested evil regular expressions. Research into how ruby implements its matching 

algorithms could be made. The optimisation approaches used in ruby could then be applied to the 

derivative base lexing algorithm. This is the same case for the newly released Java 9 matching 

algorithm. 
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