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Freezing the Web: A Study of ReDoS
Vulnerabilities in JavaScript-based Web Servers

Abstract—Regular expression denial of service (ReDoS) is a
class of algorithmic complexity attacks where matching a regular
expression against an attacker-provided input takes unexpectedly
long. The single-threaded execution model of JavaScript makes
JavaScript-based web servers particularly susceptible to ReDoS
attacks. Despite this risk and the increasing popularity of the
server-side Node.js platform, there is currently little reported
knowledge about the severity of the ReDoS problem in practice.
This paper presents a large-scale study of ReDoS vulnerabilities
in real-world web sites. Underlying our study is a novel method-
ology for analyzing the exploitability of deployed servers. The
basic idea is to search for previously unknown vulnerabilities in
popular libraries, hypothesize how these libraries may be used
by servers, and to then craft targeted exploits. In the course of
the study, we identify 25 previously unknown vulnerabilities in
popular modules and test 2,846 of the most popular websites
against them. We find that 339 web sites (11% of the ones that
use Express, a popular server-side JavaScript framework) suffer
from at least one ReDoS vulnerability and some even suffer from
multiple ones. A single request can block a vulnerable site for
several seconds, and sometimes even much longer, enabling denial
of service attacks that pose a serious threat to the availability of
these sites. We also show that the fact whether a website is vulner-
able is independent of its popularity, indicating that the problem
requires attention across a wide spectrum of web providers. Our
results are a call-to-arms for developing techniques to detect and
mitigate ReDoS vulnerabilities in JavaScript.

I. INTRODUCTION

Regular expressions are widely used in all kinds of software.
Since regular expressions are easy to get wrong [38], which
may help attackers to bypass checks [15], [5], developers are
trained to think about the correctness of regular expressions. In
contrast, another security-related aspect of regular expressions
is often neglected: the performance, specifically, how long
it takes to match a string against the regular expression.
Unfortunately, given a specifically crafted input, matching
against a suboptimally designed regular expression can easily
take several minutes or even hours. For example, matching
the apparently harmless regular expression /(a+)+b/ against
a sequence of 30 “a” characters on the Node.js JavaScript
platform takes about 15 seconds on a standard compute.1

Matching a sequence of 35 “a” characters already takes over
8 minutes, i.e., the matching time explodes exponentially.

If a server implementation suffers from this kind of perfor-
mance problem, then an attacker can exploit it to overwhelm
the server with hard-to-match inputs. This attack is known as
regular expression denial of service, or short ReDoS. Such
attacks are a form of algorithmic complexity attack [10] that

1We use JavaScript syntax for regular expressions, i.e., a pattern is either
enclosed by slashes or given to the RegExp() constructor.

exploits the worst-case complexity behavior of algorithms that
match a string against a regular expression. Since for some
regular expressions, the worst-case complexity is much higher
than the average-case complexity, an attacker can cause denial
of service with a few, relatively small inputs. For example,
given a web server that suffers from ReDoS, a single request
with only a few bytes may block a worker thread for a long
time, providing a low-bandwidth attack vector.

Even though ReDoS has been known for several years,
recent developments in the web server landscape bring new
and increased attention to the problem. The reason is that
JavaScript is becoming increasingly popular not only for
the client-side but also for the server-side of web applica-
tions. However, the single-threaded nature of JavaScript makes
server applications much more susceptible to ReDoS attacks.
In a JavaScript-based web server, e.g., based on the popular
Node.js and Express platforms, every request is handled by
a single thread of execution. In practice, to avoid making
the server unresponsive by blocking this thread, developers
try to split any long-running computation into smaller events,
which are than handled asynchronously. The problem is that
in current JavaScript engines, matching a string against a
regular expression cannot be easily split into multiple chunks
of computation. As a result, a single request can effectively
block the main thread, making the web server unresponsive to
any other incoming requests and preventing it from finishing
any other already established requests.

Despite the importance of ReDoS in web servers, there is
currently little reported knowledge about the prevalence of
ReDoS vulnerabilities in real-world websites. In this paper,
we present the first comprehensive study of ReDoS across a
large number of websites. Our study involves 2,846 of the most
popular websites. We seek to answer the following questions:

• How widespread are ReDoS vulnerabilities in the server-
side part of real-world JavaScript-based websites?

• What is the effect of vulnerabilities on the response time
of web servers?

• What kinds of vulnerabilities are the most prevalent?
• Are more popular websites less vulnerable to ReDoS?
• Are existing defense mechanisms in use and if so, how

effective are they in preventing ReDoS attacks?

Answering these questions involves solving two non-trivial
methodological challenges. First, how to identify ReDoS vul-
nerabilities in the server-side of websites when their source
code is not available. We address this challenge by identifying
a set of previously unknown vulnerabilities in popular libraries



and by speculating how these libraries may be used in servers.
In this process, we apply a combination of automated and
manual analysis to 10,000 software packages and found 25
vulnerabilities and eight exploits. Second, how to analyze
which websites are exploitable without actually performing
a denial of service attack against live websites. We address
this challenge by triggering requests with increasing input
size, using both manually crafted exploit inputs and randomly
generated, harmless inputs, and by statistically comparing the
response times.

Using this methodology, we identify 339 websites that suffer
from at least one ReDoS vulnerability. Based on experiments
with locally installed versions of the vulnerable server-side
libraries, attacking these websites with crafted inputs can cause
a web server to remain unresponsive for several seconds or
even minutes. These problems are due to a very small number
of vulnerabilities, with a single vulnerability that causes 241
sites to be exploitable. While this is encouraging from a
mitigation point of view, it also implies that an attacker
aware of a single, previously unknown vulnerability can cause
serious harm to vulnerable websites.

Some of the vulnerabilities we identify are more serious
that the others. For one of them, 50 characters of carefully
created input can block the main thread for 10 minutes, while
for most of the others at least 10,000 characters are needed to
trigger one second of slowdown. Since we use HTTP header
values to transport payloads, limiting the size of the header can
serve as a first line of defense. We find that many websites
implement this defense mechanism: 85% of the websites reject
headers longer than 25,000 characters and 3% even reject
headers longer than 500 characters. However, limiting the
header size alone is insufficient to defend against ReDoS
because even millisecond-level matching times can be used to
severely degrade the performance of a website, and because
there are other ways to transport payloads.

Ojamaa and Düüna [24] were the first to identify ReDoS
as a threat for the Node.js platform. Davis et al. [11] confirm
that such problems exist in popular modules and report that
5% of the security vulnerabilities identified in Node.js libraries
are ReDoS. No prior work has studied the impact of ReDoS
on real-world web sites. Existing work on detecting ReDoS
vulnerabilities mostly targets languages other than JavaScript.
For example, Wüstholz et al. [39] propose a static analysis
of ReDoS vulnerabilities in Java. The only available tool
for JavaScript that we are aware of is a small utility called
safe-regex2, which checks for simple AST-level patterns
known to cause ReDoS. However, this approach is notoriously
prone to both false positives and false negatives, since it
reasons neither about the context in which these patterns
appear nor about the actual performance of regular expression
matching. Our work shows the urgent need for effective tools
and techniques that detect and prevent ReDoS vulnerabilities
in JavaScript.

In summary, this paper contributes the following:

2https://www.npmjs.com/package/safe-regex

• A novel methodology for analyzing the exploitability of
deployed servers. The key ideas are (i) to hypothesize
how server implementations may use libraries that have
previously unknown vulnerabilities and (ii) to assess
whether an attack is feasible without actually attacking
the servers.

• The first comprehensive study of ReDoS vulnerabilities in
JavaScript-based web servers. Out of thousands of studied
websites, we find over 10% to be vulnerable, including
many popular sites that are vulnerable to a very serious
form of ReDoS.

• Empirical evidence that ReDoS is a real and widespread
threat. Our work calls for novel tools and techniques that
detect and prevent ReDoS vulnerabilities.

• A benchmark of previously unreported ReDoS vulnerabil-
ities and ready-to-use exploits, which we make available
for future research on finding, fixing, and mitigating
ReDoS vulnerabilities:

https://github.com/sola-da/ReDoS-vulnerabilities

II. BACKGROUND

A. Regular Expression Matching

Regular expressions are a popular way to specify patterns
of characters. The main operation is to check whether a given
sequence of characters matches a specified pattern. There
are multiple ways to approach this problem; we here focus
on the most popular one, which is used in most modern
programming languages. Given a regular expression, the first
step is to convert it into a finite automaton. The automaton
consists of a starting state, one or more accepting states, set
of intermediate states, and a set of transitions. Each transition
can either consume one character from the input or not (ε
transition). Given an automaton, the problem of matching a
regular expression against a string is equivalent to finding a
sequence of transitions from the initial state to an accepting
state that consumes all the characters in the string.

For example, consider the regular expression /ˆ(a+b)?$/
and its equivalent automaton in Figure 1. One way to obtain
such an automaton is Thompson’s construction [34]. Given
the string “aab”, the automaton starts from state s and has
two available transitions, to states 1 and 3. It first takes the
transition to state 1 from where the only available transition is
into state 2. From there on, it transitions to the accepting state
a. Since the input string was not consumed and there are no
available transitions, the algorithm backtracks to a state with
not yet explored alternatives, in our case, to state s. From
state s, it will transition to state 3 than 4 and so on. After
multiple explorations the algorithm identifies the sequence of
transitions s → 3 → 4 → 5 → 4 → 5 → 6 → 7 → a, which
reaches the accepting state and consumes all characters of the
input string.

B. Regular Expression Denial of Service (ReDoS)

The backtracking style algorithm is not the most efficient
approach to regular expression matching, but it is the most

2
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Fig. 1: Automaton for the regular expression /ˆ(a+b)?$/.
s is the starting state and a is the accepting state.
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Fig. 2: Automaton for the regular expression /ˆa*a*b$/.
s is the starting state and a is the accepting state.

used one due its ease of implementation and the expres-
sive power it offers. The downside is that for some regular
expressions and inputs, the algorithm needs to backtrack a
possibly large number of times. ReDoS attacks exploit these
pathological cases.

For example, consider the regular expression /ˆa*a*b$/,
its automaton in Figure 2, and the input string “aaa”. Each
character “a” can be matched using two transitions, 4 → 5
and 8→ 9. At each step, the algorithm needs to decide which
of these two transitions to take. Eventually, since there is no
character “b” in the input string, the algorithm will always
fail when reaching state 11. However, before concluding that
the input string does not match the pattern, the algorithm
tries all possible ways of matching the “a” characters, i.e., it
backtracks three times. The example is a regular expression of
super-linear complexity [39], since the number of transitions
during matching is quadratic in the input size. Other regular
expression even have exponential complexity, e.g., because of
nested repetitions, such as in /ˆ(a*)*b$/. In our study, we
identify ReDoS vulnerabilities of both these types and show
that both are of importance for server-side JavaScript.

C. Server-side JavaScript

JavaScript has become one of the most popular program-
ming languages, but it was traditionally used for client-side
tasks only. Recently, the idea of using JavaScript on the server-
side gained traction with the wide adoption of Node.js, a
single-threaded, event-based platform that uses asynchronous
I/O calls. In Node.js, the main thread of execution runs an
event loop, called the main loop that handles events as they
are dispatched by network requests, I/O operations, timers, etc.
The overall performance of the system is highly dependent
on the amount of computation done in the main thread.
Specifically, a slow computation triggered in the main loop
by a request, slows down all the other incoming requests.
For example, matching a string against a regular expression

npm modules ReDoS analysis
of libraries

Exploits creation

List of websites
using Node.js

Usage scenarios

ReDoS analysis
of websites

List of vulnerable
websites

Module level
vulnerabilities

Exploits using
HTTP requestsLocal machines

Live websites

Fig. 3: Overview of the methodology.

with quadratic or exponential complexity slows down all other
requests.

Since in JavaScript-based servers, regular expressions are
matched in the main loop, a ReDoS-based attack can be
much more harmful than in multi-threaded web servers, such
as Apache. For example, consider a regular expression that
takes more than an hour to match. As we will show in the
evaluation, such expressions exist in widely used JavaScript
software. To completely block an Apache web server, we need
to send hundreds of such requests, each blocking one thread.
Depending on the number of available parallel processing
units, the operating system, and the thread pool size, new
requests can still be handled even with hundred of busy threads
running. In contrast, in Node.js one such request is enough
to completely block the server for an hour. To make matters
worse, even less severe ReDoS payloads can significantly
degrade the availability of a Node.js server, as we show in
Section IV-C.

III. METHODOLOGY

This section presents our methodology for studying Re-
DoS vulnerabilities in real websites. The overall goals of
the methodology are to understand (i) how widespread such
vulnerabilities are, (ii) whether an attacker could exploit them
to affect the availability of live websites, and (iii) to what
extent existing defense mechanisms address the problem. To
answer these questions, our methodology must address two
major challenges. The first challenge is a technical problem:
Since the server-side source code of most websites is not
available, how to know what vulnerabilities a website may
suffer from? The second challenge is an ethical concern:
How to study the potential impact of attacks on live websites
without actually causing noticeable harm to these websites?

Figure 3 shows a high-level overview of the methodology.
We address the two challenges through experiments performed
on machines under our control and on live websites. A
main insight to address the first challenge is to search for
vulnerabilities in popular JavaScript libraries and to speculate
how servers may use these libraries. More precisely, we
analyze third-party libraries, called node package manager
modules (npm packages or npm modules for short), to find
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vulnerabilities that may be exploitable via HTTP requests. We
then hypothesize how the server implementation may use these
packages and create exploits for these scenarios.

To address the second challenge, we present a technique that
tests whether a site is vulnerable but that avoids blocking the
site for a noticeable amount of time. The basic idea is to start
with very small payloads that do not require more computation
time than normal web requests, and to then slowly increase
the payload – just long enough to claim with confidence that
the site could be exploited if an attacker used larger payloads.
To decide on the size of payloads sent to live websites, we
run initial experiments on locally installed web servers that
use the vulnerable packages.

A. Identifying Websites with Server-side JavaScript

We consider the most popular one million websites aggre-
gated by Alexa3 as candidate targets for our study. Many of
these websites do not use JavaScript on the server-side and
analyzing all the websites against our exploits is prohibitive.
Instead, we select sites that run a JavaScript-based web server,
more precisely the popular Express framework.4 Express is
the most popular server-side JavaScript framework and our
methodology can be easily applied to other frameworks.

To identify websites running Express, we make a request
to each of the one million websites and check whether the
header X-Powered-By is “Express”. The framework sets
this value by default on a fresh installation. In total, 2,846
sites set this header which account for a market share of around
0.3%, consistent with current estimates by others.5 In Figure 4,
we show the number of Express-based websites in a batch of
100,000 sites, ordered by popularity. We observe that Express
tends to be used by the more popular websites, confirming
the importance of studying the security of JavaScript-based
servers.

The scope of our study is likely to underapproximate the
set of JavaScript-based sites due to multiple reasons. First,
headers may be filtered to prevent attackers from performing
targeted attacks, such as ours. Second, there are frameworks
other than Express for server-side JavaScript. Given this un-
derapproximation, our work provides a lower bound for the
impact that ReDoS vulnerabilities have in practice.

B. Finding ReDoS Vulnerabilities in Libraries

Similar to previous work [39], we consider a regular ex-
pression to be vulnerable if we can construct inputs of linearly
increasing size that cause the matching time of the expression
to increase super-linearly. One may argue that such a loose
definition for a vulnerability produces a lot of false positives
that are harmless from a security point of view. As we will
show in our evaluation, this is not the case, because even an
only quadratic input dependency can be used to block the main
loop for multiple seconds.

3http://www.alexa.com/
4https://expressjs.com/
5https://w3techs.com/technologies/details/ws-nodejs/all/all
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Fig. 4: Number of server-side JavaScript websites within a
given popularity range. Each bar shows the number of websites
using the Express framework in a range of 100,000 websites.

Our methodology relies on knowing previously unknown,
or at least not yet fixed, ReDoS vulnerabilities in popular
npm modules. We use a combination of automated and manual
analysis to identify exploitable ReDoS vulnerabilities, similar
to what a potential attacker might do. At first, we download
the most popular modules and extract their regular expressions
using a traversal of the abstract syntax trees (ASTs) of the
JavaScript code. Next, we perform different queries on the
database of extracted expressions to find specific patterns
that are known to be vulnerable. For example, we search for
expressions containing repetitions of a negated group followed
by a character. An output of this query is the second regular
expression in Figure 8, which contains the subexpression
[ˆ=]=. A regular expression that is not anchored with a start
anchor and contains this pattern is likely to be vulnerable. The
reason is that the repetition group is generic enough to contain
most of the possible prefixes and the = character guarantees
that there exists a failing suffix. For example, the regular
expression /ab[ˆ=]=/ can be exploited using a long string
"abababab..".

Given a set of regular expression that match our queries, we
manually inspect the context in which the regular expressions
are used. The goal is to find matching operations on data
that may be delivered through an HTTP request to a web
server. To this end, we focus on (i) modules included in the
Express framework, (ii) middleware modules that extend this
framework, and (iii) modules that manipulate HTTP request
components, such as the body or a specific header. For regular
expressions in these modules, we keep only those where a data
flow from the package interface or from an HTTP header to
the regular expression is possible.

To illustrate the size of the search space, consider the
number and nature of regular expressions in the most popular
10,000 npm modules. We extract a total of 324,791 regular
expressions, with a mean of 63.67, a median of 5.00 and
a maximum of 19,791 per module. After removing regular
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Fig. 5: Complexity of regular expressions that have at least
one repetition.

expressions that contain no repetitions, and hence are immune
to algorithmic complexity attacks, we obtain a total of 138,123
expressions, with mean 37.93 and median 4.00 per module.
To assess the complexity of regular expressions, we parse
them into an AST6 and count the number of AST nodes,
shown in Figure 5. More than half of the regular expressions
have at least 20 AST nodes, out of which at least one is a
repetition. We conclude that the majority of npm packages
contains multiple non-trivial regular expressions.

Considering the huge number of potentially vulnerable
regular expressions and the manual nature of our analysis,
our findings are likely to hugely underapproximate the degree
of vulnerability of real-world websites. Overall, it took one of
the authors only a couple of days to find 25 vulnerabilities in
widely used npm modules, showing that a skilled individual
can attack real-world websites with moderate effort. A more
powerful attacker could easily detect a larger number of
vulnerabilities and perform a larger-scale attack. Future work
on automated tools for detecting ReDoS vulnerabilities will
further ease this process.

C. Creating Exploits

Based on the ReDoS vulnerabilities in npm modules, we
create exploits targeted at web servers that use these modules.
The main idea is to hypothesize how a server-side web
application might use a module. To this end, we set up a
fresh Express installation and implement an example web
application that uses the module. For example, for a package
that parses the user agent, we build an application that parses
the user agent of every HTTP request for the main page, which
might be used to track the visitors of the website. Next, we try
to create an HTTP request where user-controlled data reaches
the vulnerable regular expression, and craft input values that
trigger an unusually long matching time. For crafting the input,
we try to confuse the regular expression engine by forcing it
to backtrack because the input can be matched in multiple
ways [18], [39]. While creating exploits, we assume that the

6ASTs of regular expression, as provided by regulex npm module.

maximum header size is 81,750 characters, which is the default
in Express.js. If we succeed in crafting an input that takes more
than five seconds, we consider the vulnerability as exploitable
and consider it for the remainder of the study.

The careful reader may notice that our approach does not
guarantee that the regular expression has super-linear matching
time. However, from a security point of view, having a server
that replies to only one request in five seconds is a serious
threat to availability.

To further assess the impact of the exploits, we measure
how much longer it takes to process a crafted input compared
to a random string of the same length. We use two ways of
measuring the time. First, we measure at the module boundary,
called matching time. We measure at module level and not at
regular expression level, because this measure may include
the effect of multiple regular expressions used in the same
module or of other time consuming activities. Second, we
measure the time of an entire HTTP request, called response
time. The response time may include various other components
such as: HTTP parsing and serialization, DNS resolving,
routing time for the package, HTTP retransmissions, package
fragmentation, etc. To measure the response time of a site,
we request its main page. For complex sites, this measure
underapproximates the time a human user needs to wait for the
page to load, because complex sites require separate requests
for images etc.

D. ReDoS Analysis of Websites

Given a set of exploits, the next step is to measure how
many websites are vulnerable to a ReDoS based on one
of the exploits. The main challenge is to draw meaningful
conclusions about the harm that an attacker could cause,
without actually attacking live websites in a way that causes
harm. During our initial experiments we sent one, not very
large request with a crafted header and it appeared to make
the analyzed website unresponsive for almost a minute. The
goal of our methodology is to avoid this type of mistake.

We address this challenge by triggering requests with in-
creasing input sizes, using both malicious and random inputs,
while measuring the response times. Based on locally per-
formed experiments, we choose input sizes that are unlikely to
block the server for more than a small, configurable amount of
time (we use two seconds in our experiments). If the response
time for crafted input grows faster than with random inputs,
then we successfully influenced the CPU time consumed on
the server and classify the website as exploitable.

The effectiveness of our exploitability test relies on how to
measure response time in a reliable way. This is a non-trivial
task because of DNS resolving, network caching, delays,
retransmissions, and other influencing factors. Another issue
is how to determine whether one response time is larger
than another in a statistically reliable way. We address these
issues (i) by repeating a request three times to “warm up” the
connection (e.g., to fill network caches), (ii) by then repeating
the request another five times while recording the response
times, and (iii) by finally comparing response times from

5



random and crafted inputs with tests for statistical significance.
If and only if the random and crafted response times have a
statistically significant difference and this difference increases
when the input size increases, then we classify the site as
exploitable.

More formally, suppose we consider k input sizes that each
yield two sets Trandom and Tattack of time measurements. For
each input size, we compare the confidence intervals of the
values in Trandom and Tattack and conclude that the response
times differ if the intervals do not overlap. If the response
times differ for all input sizes, we quantify the difference for
an input size as the difference between T random and T attack,
where T is the average of the times in T . For k input sizes,
this comparison gives a sequence of differences d1, .., dk. We
finally consider a site to be exploitable if d1 < d2 < .. < dk.

To obtain time measurements for a site that may suffer from
a vulnerability, we need to pick a sequence of input sizes. The
challenge is to measure a difference when there is one without
repeatedly causing the server to block for longer than a few
seconds. We address this challenge through experiments on a
locally installed version of the vulnerable package. We craft
input sizes that take approximately 100ms, 200ms, 500ms, 1s
and 2s to respond to. Considering that we run each payload
eight times (three for warmup and five for measuring), this
setup blocks the main thread of a vulnerable site for a total
of about 30 seconds. We believe this is an acceptable value,
since most of the websites have some type of redundancy and
blocking one server instance does not block the whole website.
However, if the payloads are sent by an attacker in a larger
number, they can cause real and severe harm to vulnerable
sites, as we show in Section IV-C.

E. Analysis of Mitigation Techniques

Some sites reject requests with large headers and instead
return a “400 Bad Request” error. This mitigation can limit the
damage of ReDoS attacks. To measure whether a site uses this
mitigation technique, we create benign requests of different
sizes and measure how often a site reject the request.

IV. RESULTS

This section presents the results of applying the methodol-
ogy described in Section III to live, real websites. We perform
our measurements using three different machines depending
on the experiments: a ThinkPad 440s laptop with four Intel
i7 CPUs and 12GB memory (Section IV-A), a third party
commercial web server with 512MB memory (Section IV-C
and IV-D) and a server with 48 Intel Xeon CPUs and 64GB
memory (from Section IV-F on).

A. Vulnerabilities and Exploits

Figure 6 shows the modules for which we found at least one
vulnerable regular expression that can be exploited through
the module’s interface. Each vulnerability is working on the
latest available version of the package which we show in
the second column. The packages vary in the number of
dependencies and downloads, but we can safely conclude that

Module Version Number of Downloads
dependencies in July 2017

debug 2.6.8 16,055 54,885,335
lodash 4.17.4 49,305 44,147,504
mime 1.3.6 2,798 22,314,018
ajv 5.2.2 758 17,542,357
tough-cookie 2.3.2 302 15,981,922
fresh 0.5.0 197 14,151,270
moment 2.18.1 14,421 10,102,601
forwarded 0.1.0 31 9,883,630
underscore.string 3.3.4 2,486 7,277,966
ua-parser-js 0.7.14 225 5,332,979
parsejson 0.0.3 19 4,897,928
useragent 2.2.1 191 3,515,292
no-case 2.3.1 18 3,321,043
marked 0.3.6 2,624 3,012,792
content-type-parser 1.0.1 8 2,337,147
platform 1.3.4 128 757,174
timespan 2.3.0 34 523,290
string 3.3.3 911 421,700
content 3.0.5 9 316,083
slug 0.9.1 499 151,004
htmlparser 1.7.7 178 138,563
charset 1.0.0 36 112,001
mobile-detect 1.3.6 101 107,672
ismobilejs 0.4.1 50 44,246
dns-sync 0.1.3 7 10,599

Fig. 6: Modules with at least one previously unknown vul-
nerability. The emphasized modules are used to analyze real
websites because we found an exploit.

ReDoS vulnerabilities are present even in the most popular
packages.

Given the amount of possible damage entailed by the
vulnerabilities, we have invested significant efforts to disclose
them in a responsible way. For each vulnerability, we have
contacted the developers either directly or through the Node
Security Platform7, and gave them several months to fix the
problem before making it public. 14 of the 25 have been fixed
by now and are listed as advisories on the Node Security
Platform. For the others, the developers are either still in the
process of fixing or decided to leave the task of fixing to the
community. The complete list of vulnerabilities, along with
details on their current status is available for the reviewers.8

For some of the vulnerable packages, there exist reports
of ReDoS vulnerabilities detected by others that are fixed
by now. Interestingly, we report in this section more ReDoS
vulnerabilities than the whole community did in the past:
Between March 2013 and August 2017, there were 22 ReDoS
vulnerabilities among a total of 363 vulnerabilities. We started
to report our 25 vulnerabilities in August 2017.

As explained in Section III-C, we try to create exploits for
the vulnerabilities by hypothesizing how web server imple-
mentations may use the vulnerable modules. Figure 7 shows
the modules and usage scenarios for which we could create

7https://nodesecurity.io/advisories
8https://docs.google.com/spreadsheets/d/17uTZ0dhBavwu

F6khLwEBDktmRbQIATqnd3tDxLIIbI/edit?usp=sharing
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ID Module Header Usage scenario JavaScript example

1 charset Content-Type The website uses this package to parse
the content type of every request.

require("charset")(req.headers);

2 content Content-Type The website uses this package to parse
the content type of every request.

var content = require("content");
content.type(req.headers["content-type"]);

3 fresh If-None-Match The website uses express, which by
default uses this package to check the
freshness of every request.

var fresh = require("fresh");
fresh(req.headers);

4 forwarded X-Forwarded-For The website uses express and the
“trust proxy” option is set. This pack-
age is then used to check which proxies
a request came through.

var forwarded = require("forwarded");
var addrs = forwarded(req);

5 mobile-detect User-Agent The website uses this package to get
information about the requester.

var MobileDetect = require("mobile-detect");
var md = new MobileDetect(req.headers["user-agent"]);
md.phone();

6 platform User-Agent The website uses this package to get
information about the requester.

var platform = require("platform");
var agent = platform.parse(req.headers["user-agent"]);

7 ua-parser-js User-Agent The website uses this package to get
information about the requester.

var useragent = require("ua-parser-js");
var agent = useragent.parse(req.headers["user-agent"]);

8 useragent User-Agent The website uses this package to get
information about the requester.

var useragent = require("useragent");
var agent = useragent.parse(req.headers["user-agent"]);

Fig. 7: Usage scenarios for vulnerable modules and the headers we hypothesize the modules to process.

an exploit. For all the scenarios we assume the payload is
sent using a specific HTTP header. We believe that HTTP
bodies, UDP packages or WebSocket messages can also be
used for the same purpose. The last column of Figure 7 shows
the JavaScript implementation of the usage scenario. We run
these implementation on our local server to experiment with
the exploit.

Most of the scenarios and their implementations are rel-
atively simple. This simplicity shows that an attacker that
follows a methodology similar to ours could create exploits
that might work for a wide range of websites with relatively
little effort. For an attack targeted at a specific website, we
believe that more complex scenarios could be build, e.g.,
involving multiple HTTP requests and domain knowledge.
For example, the marked package provides a parser for the
markdown format. By crafting a specific markdown document,
an attacker can block the main loop for hours. However, to
deploy the exploit, complex interactions with the server are
needed. That is, the attacker needs to figure out which part of
the website may use a markdown parser and how to provide
a document that will be processed by the parser. We believe
that such a scenario is realistic, but it requires an in-depth
analysis of each website. We leave for future work to test this
hypothesis. In this work, our goal is to assess the effect of
exploits that can be deployed at a large scale. Therefore, we
only consider very simple usage scenarios that can be triggered
with a single HTTP request made to the main page.

To better understand the vulnerabilities, Figure 8 shows for
each vulnerable module the vulnerable regular expressions.
Some of the expressions are non-trivial, making it hard for
developers to focus on possible ReDoS attacks in addition to
the correctness of the regular expression. Four of these regular

ID Vulnerable regular expression

1 /(?:charset|encoding)\s*=\s*[’"]? *([\w\-]+)/i

2
/ˆ([ˆ\/]+\/[ˆ\s;]+)(?:(?:\s*;\s*boundary=
(?:"([ˆ"]+)"|([ˆ;"]+)))|(?:\s*;\s*[ˆ=]+=
(?:(?:"(?:[ˆ"]+)")|(?:[ˆ;"]+))))*$/i

3 / *, */

4 / *, */

5
new RegExp("Dell.*Streak|Dell.*Aero|Dell.*Venue
|DELL.*Venue Pro|Dell Flash|Dell Smoke|Dell Mini
3iX|XCD28|XCD35|\\b001DL\\b|\\b101DL\\b|\\bGS01\\b")

6 /ˆ +| +$/g

7 /ip[honead]+(?:.*os\s([\w]+)*\slike\smac|;\sopera)/

8
/((?:[A-z0-9]+|[A-z\-]+ ?)?(?: the)?
(?:[Ss][Pp][Ii][Dd][Ee][Rr]|[Ss]crape|[A-Za-z0-9-]*
(?:[ˆC][ˆUu])[Bb]ot|[Cc][Rr][Aa][Ww][Ll])[A-z0-9]*)
(?:(?:[ \/]| v)(\d+)(?:\.(\d+)(?:\.(\d+))?)?)?/

Fig. 8: Vulnerable regular expressions.

expressions can be successfully identified by a recent approach
proposed by Wüstholz et al. [39], which targets Java applica-
tions, though. The remaining four regular express, i.e., IDs 3,
4, 5, and 6, belong to a class of ReDoS-vulnerable regular
expressions neglected that, to the best of our knowledge, has
so far been neglected in the literature. Instead of having two
repetitions that confuse each other, they have only one explicit
repetition. For instance, in /ˆ +| +$/, the second repetition
is implied by the fact that the regular expression is used in
a subgroup matching fashion. More precisely a long string
of spaces followed by a non-space character will make the
algorithm attempt to match the string starting from position
1, 2, etc. until the end, when the non-space character causes
the matching to fail. This type of vulnerability is also special
in the sense that it does not require a backtracking step at the
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Fig. 9: Matching time of the payloads for different input sizes.

state machine level. However, as we show later in this section,
they also cause super-linear complexity and make websites
vulnerable to ReDoS.

B. Matching Time

We use the exploits to measure the influence of the size of
the input to the matching time of the vulnerable expression.
Our exploits are not necessary optimal for a given regular
expression, nor are they the only ones that can be created. We
took a pragmatic approach, as described in Section III, and
consider everything that blocks the main thread for multiple
seconds on our machine an exploit. Figure 9 shows the match-
ing time as a function of the input size. The measurements
use three warm up runs and five actual measurement runs,
to account for JIT optimizations and other JavaScript engine-
level effects. We then average the results across the five
measurement runs to obtain a point on the graph. For most
of the exploits, the input dependency seem to be quadratic,
reaching one second of matching time within 20,000 to 40,000
characters. For two exploits, however, the input dependency
is presumably exponential, reaching 1 second matching time
with less than 1,000 characters. We consider any of these
eight exploits to be potentially harmful. See Section V-A for a
discussion on how non-exponential ReDoS vulnerabilities may
aid an attacker in mounting DoS attacks and Section IV-C on
what is their actual impact on availability.

To further illustrate the effectiveness of inputs crafted for a
specific regular expression, we measure the matching time for
each vulnerable module with randomly created inputs. It turns
out that random string inputs of the same size as our crafted
exploits cause much lower matching times. The maximum
matching time across the eight attacks is 20 milliseconds

for inputs with 100,000 characters. We conclude that crafting
inputs for vulnerable regular expressions is significantly more
effective, from an attacker’s perspective, than launching a
brute-force DoS attack with randomly created inputs.

C. Availability
We now show that the matching time of a regular expression

has a direct impact on the availability of a web server. To show
the threat to availability posed by ReDoS exploits, we create a
simple Express application with two features: it replies with a
”hello world” message when called at the ”/echo” path, and it
calls the forwarded module with the request headers when
called at the ”/redos” path. We choose this module because
it appears in Figure 9 to be the least harmful in our set
of exploits, i.e., we are underestimating the negative impact
on availability. We then upload this simple application on a
machine running Node.js, provided by a commercial cloud
platform9.

We set up two other machines to concurrently send request.
One machine, called the victim, measures the time it takes
to trigger 100 requests of the ”hello world” message. This
victim machine triggers the next request once the previous
request has been responses to. At the same time, the other
machine, called the attacker, delivers 1,000 ReDoS payloads,
by triggering all 1,000 requests at once. The victim machine
starts its requests immediately after the victim machine has
triggered its requests.

We vary the payload size from 0 characters to 8,000
characters in increments of 1,000 characters. A zero-sized
payload is a request with an empty header instead of one that
exploits the ReDoS vulnerability. We consider the zero-sized
payload to check whether a Node.js server can be blocked
using a brute-force strategy. We chose the upper limit for the
payload size because, by default, the web server provider limits
the size of the header fields to 8,500 characters. Other hosting
providers allow significantly larger headers, as we report later
in this section.

Figure 10 shows the response times measured at the victim
machine for the first 25 ”/echo” requests. Payloads smaller
than 4,000 characters have no significant effect on the response
time of the server. In contract, payloads larger than this value
delay as many as eight requests with a maximum delay of
20 seconds. By increasing the size of payloads, an attacker
can control both the number of requests we delay and their
duration. For the largest payloads we use, we even experienced
dropping of requests.

This result is particularly remarkable because an individual
payload of size 4,000 does not require an immense about of
time to respond to. We separately measured the CPU time
required to respond to one such request and find it to take
only 5.73 milliseconds, on average. However, several requests
together can delay the victim’s request by up to 20 seconds.
This finding shows that the ReDoS payloads have a cumulative
effect and even a small delay in the main loop can cause
significant harm for availability.

9http://heroku.com
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We remind the reader that the above experiment uses the
smallest payload in our data set, forwarded. Therefore, if
we show that even this exploit poses a threat to availability,
we can conclude that the rest of the exploits also do. For
more severe ReDoS vulnerabilities, e.g. in ua-parser-js,
there is even no need to evaluate the impact on availability.
As described in the Section II, one single such payload is
enough to completely block the server for as long as the
matching takes. Considering that with 50–60 characters we
predict a CPU computation time in the order of years, such
vulnerabilities are a very serious threat to availability.

D. Response Time vs. Matching Time

Our methodology relies on the assumption that small
changes in the server computation time have an effect

Module P1: P2: P3: P4: P5:
100ms 200ms 500ms 1s 2s

fresh 12,000 17,000 27,000 37,500 53,500
forwarded 12,000 17,000 26,500 38,000 53,500
useragent 500 650 925 1,150 1,450
ua-parser-js 38 39 40 41 42
mobile-detect 10,500 15,500 25,000 36,500 50,500
platform 7,500 11,000 17,500 25,000 34,500
charset 10,500 15,500 24,000 34,000 48,000
content 8,000 11,000 18,000 25,500 35,500

Fig. 12: The number of characters in each payload needed to
achieve a specific delay in a vulnerable module.

on clients. To validate this assumption we again use the
forwarded package and the commercial web server setup
from the previous section. We use 1,000 payloads smaller than
8,000 characters. The largest one of these payloads produces
a matching time smaller than 100 milliseconds on our local
machine. We measure the time spent by the server in the
forwarded package and the time it takes for a request to be
served at the client level. We then plot the relation between
these two time measurements in Figure 11. The correlation
between both measurements is 0.99, i.e., very strong. The
strong correlation shows that the delays introduced by the
network layer are relatively constant over time and that the
server computation time is the dominant component in the
response time measured at the client-side. Of course, the
observed value depends on the chosen web server provider
and the current server load, but we can safely conclude that
measuring time at the client level is a good enough estimation
of the server-side computation time.

E. Dimensioning Exploits

Choosing an appropriate size for the payload is a crucial
part in our methodology and distinguishes our study from a
real DoS attack on websites. The goal of this step is to find a
payload size that is large enough to check whether a website
is vulnerable to a specific attack, but small enough to only
block the website for a negligible amount of time. To this
end, we locally run each exploit five times with a payload of
increasing size and stop the process when the matching time
exceeds two seconds. We consider five target matching times,
100ms, 200ms, 500ms, 1s and 2s, and choose the payload size
that produces the closest matching time to the target time.

Figure 12 shows the values for each target time and vulnera-
ble module. For example, we estimate that for the platform
vulnerability, we obtain a matching time of 200ms with a
payload of 11,000 characters. It is worth highlighting the
useragent and ua-parser-js packages, whose match-
ing times grow at a much faster rate, requiring less than 1,500
characters to cause a delay of 2s.
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Fig. 13: Effect of increasing payload sizes on the response
time of two websites.

F. Vulnerable Sites

The goal of the next step is to assess to what extent
real websites suffer from ReDoS vulnerabilities. Based on
the five payload sizes for each exploit, we create attack
payloads and random payloads for each exploit and payload
size. We send these payloads to the 2,846 real websites that are
running an Express webserver (Section III-A). We warm up the
connection three times and then measure five response times
for both random and malicious inputs. Using the methodology
described in Section III-D, we then decide based on the
measured response times whether a site is vulnerable. If for
some reason, we could not send three or more out of the five
payloads to a specific website, we consider that website to be
non-vulnerable.

Overall, we observe that 339 sites suffer from at least
one of the eight vulnerabilities. 66 sites actually suffer from
two vulnerabilities and six sites even from three. This result
shows that ReDoS attacks are a widespread problem that
affects a large number of real-world websites. Given that
our methodology is designed to underestimate the number of
affected sites, e.g., because we consider only eight exploits,
the actual number of ReDoS-vulnerable sites is likely to be
even higher. Moreover, we expect the growing popularity of
JavaScript on the server side to further increase the problem
in the future.

To illustrate our methodology for deciding whether a site is

Exploit Affect sites

fresh 241
forwarded 99
ua-parser-js 41
useragent 16
mobile-detect 9
platform 8
charset 3
content 0

Fig. 14: Number of websites affected by specific vulnerabili-
ties.

vulnerable, consider two example websites. In Figure 13, we
plot for each of the five payload sizes the response time for
malicious and random inputs. The figure shows the mean and
the confidence intervals for a vulnerable site in Figure 13a
and for a non-vulnerable site in Figure 13b. The response
time grows significantly faster for the malicious payloads in
the vulnerable site, reaching slightly more than two seconds
for the fifth payload. In contrast, for the non-vulnerable site,
the response time for both malicious and random payloads
seems to grow linearly. Since the confidence interval for the
response times in Figure 13b overlap, we classify this website
as non-vulnerable. By inspecting other websites classified as
vulnerable by our methodology, we observe patterns similar
to Figure 13a. Therefore, we conclude that our criteria for
deciding if a website is vulnerable are valid.

G. Prevalence of Specific Vulnerabilities

Figure 14 shows the number of websites affected by each
vulnerability. Perhaps unsurprisingly, the vulnerabilities in
fresh and forwarded have most impact, since these two
modules are part of the Express framework. One of them
needs to be activated using a configuration option, while
the other module is enabled by default. One may ask why
not all Express analyzed websites suffer from this problem.
The reason is the way we dimension our payloads: Many
Express instances limit the header size, and hence we cannot
send large enough payloads to confirm that the sites are
vulnerable. The other six vulnerabilities affect websites with
a frequency that is roughly proportional to the popularity
of the respective modules. For example, the vulnerability
in the popular useragent affects more websites than the
vulnerability in the less used charset module. To our initial
surprise, we cannot confirm any site vulnerable due to the
content module. After more careful consideration, we real-
ized that there are two more popular alternatives for parsing
the Content-Header and the content package seems to
be more popular among users of the hampi framework, which
is a competitor of Express.

From an attacker’s perspective, the distribution of vulner-
abilities is great news, because exploits are portable across
websites and knowing a vulnerabilities is sufficient to attack
various websites. Likewise, the distribution is also good news
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for the community, showing that one can lower the risk of
ReDoS in multiple websites by fixing a relatively small set of
popular packages.

H. Influence of Popularity

Are ReDoS vulnerabilities a problem of less popular sites?
In Figure 15, we show how the vulnerable sites are distributed
across the Alexa top one million sites. For each point p on
the horizontal axis, the vertical axis shows the number of
exploitable sites with popularity rank ≤ p. For example, there
are 61 vulnerable sites in the top 100,000 websites. As can be
observed from the distribution, the vulnerabilities are roughly
equally distributed among the top one million sites. There is
even a slight tendency toward more vulnerabilities among the
more popular websites. This tendency can be explained by
the trend we have seen in Figure 4, that server-side JavaScript
tends to be more popular among popular websites. Overall, we
can conclude that ReDoS vulnerabilities are a general problem
that affects sites independent of their popularity ranking.

I. Use of Mitigation Techniques

As mentioned before, some websites refuse to process a
request whose header size exceeds a certain size. In Figure 16
we plot for each exploit how many websites accept a payload
of a given size. As can be observed, most websites accept
headers that are smaller than 10,000 characters, but only
few websites accept headers that are, for instance, 40,000
characters long. As we have shown in Section IV-C, 10,000
characters are enough to do harm even with the least serious
vulnerability. Therefore, the current limits that the websites
apply on the header size are insufficient and they do not
provide adequate protection against DoS.

Another interesting trend to observe in Figure 16 is that
even for the most harmful exploit, useragent, for which
we require payloads between 38 and 42 characters only, the
number of websites that accept larger payloads decreases
over time. This is surprising since for other exploits like
mobile-detect there seem to be more websites to accept
10,000 characters long headers. We believe this observation to
be due to the fact that some websites refuse to process many
requests from the same user in a short period of time. For
instance, our largest payload is sent after approximately 50
other requests of smaller size and the site refuses to serve it.
This is a well known network-level protection against DoS,
but there seem to be only around 200 websites to implement
it. However, limiting the number of requests is no silver bullet
against denial of service attacks, especially when the attacker
has the resources to deploy a distributed denial of service
attack.

J. Threats to Validity

One threat to validity for our study is that we rely on time
measurements performed over the network to estimate the
likelihood of a ReDoS vulnerability. One may argue that these
measurements should not be trusted and that pure chance made
us observe some larger slowdowns for malicious payloads. We
address this threat in multiple ways: we show that for commer-
cial web hosting servers there is a high correlation between
response time and server CPU time, we repeat measurements
multiple times, and we draw conclusions only from statistically
significant differences.

Another potential concern is that the exploits we created are
too generic and happen to cause slowdown in another regular
expression than the one we created them for. We believe that
this situation would only impact our ability to tell which
module is used on the server-side and not the impact of a
ReDoS attack. Moreover, five of our exploits rely on a specific
sequence of characters in the payload to the effective. These
sequences of highly contextual characters need to be present
in the beginning or at the end of the exploit. Removing any of
them would make the exploit unusable. Therefore, we believe
that at least for these vulnerabilities it is very likely that our
exploits indeed trigger the intended regular expression.
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V. DISCUSSION

In this section, we discuss the potential of a large-scale DoS
attack on Node.js websites and some defenses we recommend
to minimize the impact of such an event. Finally, we describe
an unexpected implication of our study: that algorithmic
complexity attacks can be used for software fingerprinting.

A. Impact of a Large-scale Attack

Compared to a regular DoS attack, a ReDoS vulnerability
enables an attacker to launch an attack with fewer resources.
As shown in Section IV-C, even the least harmful vulnerabil-
ities we identify can be a lethal weapon when used as part of
a large-scale DoS attack. More precisely, instead of hanging
the event loop for few milliseconds with a benign request, the
attacker can send payloads that hang the loop for hundreds
of milliseconds, several seconds, or even more, depending on
the vulnerability. We remind the reader that with just eight
standard attack vectors we could affect hundreds of websites.

It is worth emphasizing once again that this issue would
not be as serious in a traditional thread-based web server,
such as Apache. This is because the matching would be done
in a thread serving the individual client. In contract, in an
event-based system, the matching is done in the main loop
and spending a few seconds matching a regular expression is
equivalent to completely blocking the server for this amount
of time.

A large-scale ReDoS attack against Node.js-based sites is a
bleak scenario for which, as we have shown, many websites
are not prepared. To limit this risk, we have been working with
the maintainers of vulnerable modules to fix vulnerabilities. In
addition, we urgently call for the adoption of multiple layers
of defense, as outlined in the following.

B. Defenses

First of all, to limit the effect of a payload delivered through
an HTTP header, the size of the header should be limited. For
more than 15% sites, we could successfully deliver headers
longer than 25,000 characters. We are not aware of any benign
use cases for such large HTTP headers. Therefore, a best
practice in Node.js applications should be to limit the size of
request headers. This kind of defense would mitigate the ef-
fects of some potential attacks, but is limited to vulnerabilities
related to HTTP headers. In contrast, vulnerabilities related to
other inputs received from the network, e.g., the body of an
HTTP request, would remain exploitable.

Another defense mechanism could be to use a more so-
phisticated regular expression engine that guarantees linear
matching time. The problem is that these engines do not
support advanced regular expression features, such as look-
ahead or back-references. Davis et al. [11] advocate for a
hybrid solution that only calls the backtracking engine when
such advanced features are used, and to use a linear time
algorithm in all other cases. This is an elegant solution that
is already adopted by languages like Rust10. However, it

10https://github.com/rust-lang/regex

would not completely solve the problem, since some regular
expressions with advanced features may still contain ReDoS
vulnerabilities. For instance, during our vulnerability study, we
found the following regular expression:
/(?=.*\bAndroid\b)(?=.*\bMobile\b)/i

This expression from the ismobilejs module contains both
lookahead and has super-linear complexity in a backtracking
engine.

We also recommend that Node.js augments its regular ex-
pression APIs with an additional, optional timeout parameter.
Node.js will stop any matching of regular expressions that
takes longer than the specified timeout. This solution is far
from perfect, but it is relatively easy to implement and adopt,
and it has been successfully deployed in other programming
languages [22].

Additionally, we advocate that our work should be used
as a roadmap for penetration testing sessions performed on
Node.js websites. First, the tester audits the list of package
dependencies, identifies any known ReDoS vulnerability in
these packages or analyzes all the contained regular expres-
sions. Second, the tester creates payloads for all the vulnerable
regular expressions identified in the first step. Third, the tester
tries to deliver these payloads using standard HTTP requests.

Finally, better tools and techniques should be created to help
developers reason about ReDoS vulnerabilities in server-side
JavaScript. Both static and dynamic analysis tools can aid in
understanding the complexity of regular expressions and their
performance. A good starting point could be porting existing
solutions that were created for other languages, e.g. [39].

C. Fingerprinting Web Servers

Part of our methodology could be used to fingerprint web
servers to predict some of the third-party modules used by
a website. This ability can be useful for an attacker in at
least two ways. First, the attacker may try to temper with the
development process of that module by introducing backdoors
that can then be exploited in the live website. Given that npm
modules often depend on several others, the vulnerability can
even be hidden in a dependent module. Second, the attacker
may exploit a more serious vulnerability present in the same
module. To show how this scenario may happen, consider
the dns-sync vulnerability, identified in Section IV-A. The
vulnerable function suffers both from a ReDoS attack and
a command injection attack [33]. An attacker may use the
ReDoS attack as a hard-to-detect way to scan which sites
use the vulnerable module and then attack these sites with
a command injection.

VI. RELATED WORK

a) Server-side JavaScript: Ojamaa and Düüna [24] were
the first to asses the general security of Node.js and iden-
tified algorithmic complexity attacks as one of the main
threats. More recently Davis et al. [11] raise another alarm,
showing that ReDoS vulnerabilities are present in popular
modules. They even go so far as to claim that algorithmic
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complexity attacks are a weakness in the Node.js design and
that the community is not ready to handle them. We take
these observations further and show that indeed ReDoS is a
widespread problem that affects real websites. Other security
related studies on Node.js explore topics like command injec-
tion vulnerabilities [?] and configuration errors [28]. There
are also several techniques proposed for handling Node.js
related issues: static analysis that can handle Node.js specific
events [23], fuzzing that help uncover concurrency related
bugs [12], auto-sanitization that helps protect against injec-
tions [33], understanding the event interactions that happen
between server-side and client-side code [1]. To the best of our
knowledge, our work is the first to analyze Node.js security
related problems in real world websites and to demonstrate
how an attacker may exploit vulnerabilities in npm modules
to attack websites.

b) Analysis of ReDoS Vulnerabilities: There is a lot
of interest in analyzing the worst case matching time of
regular expressions [6], [37], [18], [2]. Most of this work
assumes a backtracking style matching engine and analyzes
individual regular expressions. However, a vulnerable regular
expression is only dangerous when attacker controlled input
flows into it. The only work that we are aware of that takes
this aspect into consideration is proposed by Wüstholz et
al. [39]. They find 41 vulnerabilities in Java software by using
a combination of static analysis and exploit generation in Java
software. Our work is different in multiple ways: (i) it analyzes
JavaScript ReDoS which is more serious than Java ReDoS, (ii)
it detects vulnerabilities in real world websites whose source
code is not available for analysis and (iii) it uncovers ReDoS
vulnerabilities containing advanced features like lookahead,
which are not supported by any of the previous work.

c) Regular Expressions: One important use for regular
expressions in the security domain is the implementation of
sanitizers and XSS filters. Bates et al. [5] show that XSS
filters are often slow or incorrect, and sometimes they even
introduce new vulnerabilities. Hooimeijer et al. [15] formally
analyze real life sanitizers and show that multiple supposedly
equivalent implementations differ on at least some inputs. A
recent study by Chapman et al. [9] show that developers have
difficulties in composing and reading regular expressions. Our
work also shows that developers often get the regular expres-
sions wrong, but we are the first to analyze the impact of this
problem in the case of real world websites. A very promising
direction for avoiding mistakes in regular expressions is to not
write them in the first place, and let a machine synthesize them
instead [3], [4].

d) Algorithmic Complexity Attacks: The difference be-
tween average and worst case performance can be used to
perform a denial of service attack called algorithmic complex-
ity attack. Crosby and Wallach [10] analyze vulnerabilities
that enable attacks due to performance of hash tables and
binary trees, while Dietrich et al. [13] study serialization-
related attacks. Wise [7], SlowFuzz [25], and PerfSyn [35]
automatically generate inputs to trigger unexpectedly high
complexity. Our work analyzes ReDoS which is a particular

class of algorithmic complexity attacks that leverages the lim-
its of the traditional regular expression matching algorithms.

e) Resource Exhaustion Attacks: SAFER [8] statically
detects CPU and stack exhaustion vulnerabilities involving
recursive calls and loops. Huang et al. [16] study blocking
operations in the Android system that can force the OS to
reboot when called multiple times. Shan et al. [31] consider
attacks on n-tier web applications and model them using a
queueing network model. None of these target ReDoS, which
is the focus of this paper.

f) Testing Regular Expressions: The problem of gener-
ating inputs for regular expressions is also investigated from
a software testing perspective [36], [21], [19], [30]. However,
compare to ours, this direction has very different objectives for
inputs generation, i.e. maximizing coverage or finding bugs in
the implementation.

g) Performance of JavaScript: ReDoS vulnerabilities are
a kind of performance problem. Such problems are worth
fixing independent of their exploitability in a denial of service
attack, e.g., to prevent websites from being perceived as
slow and unresponsive. Existing work has studied JavaScript
performance issues [29] and proposed profiling techniques to
identify them [26], [14], [17]. In contrast to that line of work,
this paper addresses a security-related performance problem.
Studying the exploitability of other performance issues beyond
ReDoS is a promising direction for future work.

h) Studies of the Web: Others have also performed
large-scale studies of security issues in the web. Lauinger
et al. [20] study the use of client-side JavaScript libraries
that are outdated and have known vulnerabilities. In contrast
to their setup, we focus on ReDoS issues, on server-side
code, and on code that is vulnerable despite being up-to-date.
Another study looks into attack vectors and defenses related
to the postMessage API in HTML5 [32], showing that
attackers may use it to circumvent the same-origin policy. A
study by Richards et al. [27] analyzes the use of JavaScript’s
eval function, which is prone to code injections. All the
above studies are orthogonal to our work. To the best of our
knowledge, we are the first to focus on server-side JavaScript
and on ReDoS vulnerabilities.

VII. CONCLUSIONS

This paper studies ReDoS vulnerabilities in JavaScript-
based web servers and shows that they are an important
problem that affects various popular websites. We exploit eight
vulnerabilities that affect at least 339 popular websites. We
show that an attacker could block these vulnerable sites for
several seconds and sometimes even much longer. More gen-
erally, our results are a call-to-arms to address the current lack
of tools for analyzing ReDoS vulnerabilities in JavaScript.
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