
ar
X

iv
:1

70
8.

07
36

6v
1

 [
cs

.F
L

]
 2

4
A

ug
 2

01
7

A Computational Interpretation of Context-Free

Expressions

Martin Sulzmann1 and Peter Thiemann2

1 Faculty of Computer Science and Business Information Systems
Karlsruhe University of Applied Sciences

Moltkestrasse 30, 76133 Karlsruhe, Germany
martin.sulzmann@hs-karlsruhe.de

2 Faculty of Engineering, University of Freiburg
Georges-Köhler-Allee 079, 79110 Freiburg, Germany

thiemann@acm.org

Abstract. We phrase parsing with context-free expressions as a type
inhabitation problem where values are parse trees and types are context-
free expressions. We first show how containment among context-free
and regular expressions can be reduced to a reachability problem by
using a canonical representation of states. The proofs-as-programs prin-
ciple yields a computational interpretation of the reachability problem in
terms of a coercion that transforms the parse tree for a context-free ex-
pression into a parse tree for a regular expression. It also yields a partial
coercion from regular parse trees to context-free ones. The partial coer-
cion from the trivial language of all words to a context-free expression
corresponds to a predictive parser for the expression.

1 Introduction

In the context of regular expressions, there have been a number of works which
give a computational interpretation of regular expressions. For example, Frisch
and Cardelli [4] show how to phrase the regular expression parsing problem as a
type inhabitation problem. Parsing usually means that for an input string that
matches a regular expression we obtain a parse tree which gives a precise expla-
nation which parts of the regular expression have been matched. By interpreting
parse trees as values and regular expressions as types, parsing can be rephrased
as type inhabitation as shown by Frisch and Cardelli. Henglein and Nielsen [6]
as well Lu and Sulzmann [8, 12], formulate containment of regular expressions
as a type conversion problem. From a containment proof, they derive a transfor-
mation (a type coercion) from parse trees of one regular expression into parse
trees of the other regular expression.

This paper extends these ideas to the setting of context-free expressions.
Context-free expressions extend regular expressions with a least fixed point oper-
ator, so they are effectively equivalent to context-free grammars. An essential new
idea is to phrase the containment problem among context-free expressions and
regular expressions as a reachability problem [11], where states are represented

http://arxiv.org/abs/1708.07366v1

by regular expressions and reachable states are Brzozowski-style derivatives [3].
By characterizing the reachability problem in terms of a natural-deduction style
proof system, we can apply the proofs-are-programs principle to extract the
coercions that implement the desired transformation between parse trees.

In summary, our contributions are:

– an interpretation of context-free expressions as types which are inhabited by
valid parse trees (Section 3);

– a reduction of containment among context-free expressions and regular ex-
pressions to a reachability problem (Section 4);

– a formal derivation of coercions between context-free and regular parse trees
extracted from a natural-deduction style proof of context-free reachability
(Section 5).

The optional appendix contains further details such as proofs etc.

2 Preliminaries

This section introduces some basic notations including the languages of regular
and context-free expressions and restates some known results for Brzozowski
style derivatives.

Let Σ be a finite set of symbols with x, y, and z ranging over Σ. We write
Σ∗ for the set of finite words over Σ, ε for the empty word, and v · w for the
concatenation of words v and w. A language is a subset of Σ∗.

Definition 1 (Regular Expressions). The set RE of regular expressions is
defined inductively by

r, s ::= φ | ε | x ∈ Σ | (r + s) | (r · s) | (r∗)

We omit parentheses by assuming that ∗ binds tighter than · and · binds tighter
than +.

Definition 2 (Regular Languages). The meaning function L maps a regular
expression to a language. It is defined inductively as follows:
L(φ) = {}. L(ε) = {ε}. L(x) = {x}. L(r + s) = L(r) ∪ L(s). L(r · s) = {v · w |
v ∈ L(r)∧w ∈ L(s)}. L(r∗) = {w1 · . . . ·wn | n ≥ 0∧∀i ∈ {1, . . . , n}. wi ∈ L(r)}.

We say that regular expressions r and s are equivalent, r ≡ s, if L(r) = L(s).

Definition 3 (Nullability). A regular expression r is nullable if ε ∈ L(r).

The derivative of a regular expression r with respect to some symbol x,
written dx(r), is a regular expression for the left quotient of L(r) with respect
to x. That is, L(dx(r)) = {w ∈ Σ∗ | x · w ∈ L(r)}. A derivative dx(r) can be
computed by recursion over the structure of the regular expression r.

2

Definition 4 (Brzozowski Derivatives [3]).

dx(φ) = φ dx(ε) = φ

dx(y) =

{

ε if x = y
φ otherwise

dx(r + s) = dx(r) + dx(s)

dx(r · s) =

{

dx(r) · s if ε 6∈ L(r)
dx(r) · s+ dx(s) otherwise

dx(r
∗) = dx(r) · r∗

Example 1. The derivative of (x+y)∗ with respect to symbol x is (ε+φ)·(x+y)∗.
The calculation steps are as follows:

dx((x+ y)∗) = dx(x+ y) · (x+ y)∗ = (dx(x)+ dx(y)) · (x+ y)∗ = (ε+φ) · (x+ y)∗

Theorem 1 (Expansion [3]). Every regular expression r can be represented
as the sum of its derivatives with respect to all symbols. If Σ = {x1, . . . , xn},
then

r ≡ x1 · dx1
(r) + . . .+ xn · dxn

(r) (+ε if r nullable)

Definition 5 (Descendants and Similarity). A descendant of r is either
r itself or the derivative of a descendant. We say r and s are similar, written
r ∼ s, if one can be transformed into the other by finitely many applications
of the rewrite rules (Idempotency) r + r ∼ r, (Commutativity) r + s ∼ s + r,
(Associativity) r + (s + t) ∼ (r + s) + t, (Elim1) ε · r ∼ r, (Elim2) φ · r ∼ φ,
(Elim3) φ+ r ∼ r, and (Elim4) r + φ ∼ r.

Lemma 1. Similarity is an equivalence relation that respects regular expression
equivalence: r ∼ s implies r ≡ s.

Theorem 2 (Finiteness [3]). The elements of the set of descendants of a
regular expression belong to finitely many similarity equivalence classes.

Similarity rules (Idempotency), (Commutativity), and (Associativity) suffice to
achieve finiteness. Elimination rules are added to obtain a compact canonical
representative for equivalence class of similar regular expressions. The canonical
form is obtained by systematic application of the similarity rules in Definition 5.
We enforce right-associativity of concatenated expressions, sort alternative ex-
pressions according to their size and their first symbol, and concatenations lexi-
cographically, assuming an arbitrary total order on Σ. We further remove dupli-
cates and apply elimination rules exhaustively (the details are standard [5]).

Definition 6 (Canonical Representatives). For a regular expression r, we
write cnf (r) to denote the canonical representative among all expressions similar
to r. We write D(r) for the set of canonical representatives of the finitely many
dissimilar descendants of r.

Example 2. We find that cnf ((ε + φ) · (x + y)∗) = (x + y)∗ where we assume
x < y.

3

Context-free expressions [13] extend regular expressions with a least fixed
point operator µ. Our definition elides the Kleene star operator because it can
be defined with the fixed point operator: e∗ = µα.e · α+ ε.

Definition 7 (Context-Free Expressions). Let A be a denumerable set of
placeholders disjoint from Σ. The set CFE of context-free expressions is defined
inductively by

e, f ::= φ | ε | x ∈ Σ | α ∈ A | e+ f | e · f | µα.e

We only consider closed context-free expressions where (A) all placeholders are
bound by some enclosing µ-operator and (B) the placeholder introduced by a
µ-operator must be distinct from all enclosing bindings µα. Requirement (A)
guarantees that reduction of a context-free expression does not get stuck whereas
requirement (B) ensures that there are no name clashes when manipulating a
context-free expression.

While Winter et al [13] define the semantics of a context-free expression by
coalgebraic means, we define its meaning with a natural-deduction style big-step
semantics.

Definition 8 (Big-Step Semantics). The reduction relation ⇒ ⊆ CFE×Σ∗

is defined inductively by the following inference rules.

ε⇒ ε x⇒ x
e⇒ w

e+ f ⇒ w

f ⇒ w

e+ f ⇒ w

e⇒ v f ⇒ w

e · f ⇒ v · w

[α 7→ µα.e](e) ⇒ w

µα.e⇒ w

In the last rule, we write [α 7→ µα.e](e) to denote the expression obtained by
replacing all occurrences of placeholder α in e by µα.e. If µα.e is closed, then
requirement (B) ensures that there is no inadvertent capture of placeholders.

We further define L(e) = {w ∈ Σ∗ | e⇒ w}.

As an immediate consequence of the last rule, we see that unfolding does not
affect the language.

Lemma 2. L(µα.e) = L([α 7→ µα.e](e)).

Definition 9 (Containment). Let e be a context-free expression or regular
expression and let r be a regular expression. We define e ≤ r iff L(e) ⊆ L(r).

We express partial functions as total functions composed with lifting as fol-
lows. Let A and B be sets. The set Maybe B consists of elements which are
either Nothing or of the form Just b, for b ∈ B. Thus a total function f ′ of type
A → Maybe B corresponds uniquely to a partial function f from A to B: for
a ∈ A, if f(a) is not defined, then f ′(a) = Nothing; if f(a) = b is defined, then
f ′(a) = Just b; and vice versa.

4

3 Parsing as Type Inhabitation

Parsing for regular expressions has been phrased as a type inhabitation prob-
lem [4]. We follow suit and generalize this approach to parsing for context-free
expressions. For our purposes, parse trees are generated by the following gram-
mar.

Definition 10 (Parse Trees for context-free expressions).

p, q ::= Eps | Sym x | Inl p | Inr q | Seq p q | Fold p

Like a derivation tree for a context-free grammar, a parse tree is a structured
representation of the derivation of a word from some context-free expression.
The actual word can be obtained by flattening the parse tree.

Definition 11 (Flattening).

flatten(Eps) = ε flatten(Sym x) = x

flatten(Inl p) = flatten(p) flatten(Inr q) = flatten(q)

flatten(Seq p q) = flatten(p) · flatten(q) flatten(Fold p) = flatten(p)

Compared to derivation trees whose signatures depend on the underlying
grammar, parse trees are generic, but their validity depends on the particular
context-free expression. The connection between parse trees and context-free
expressions is made via the following typing relation where we interpret context-
free expressions as types and parse trees as values.

Definition 12 (Valid Parse Trees, ⊢ p : e).

⊢ Eps : ε ⊢ Sym x : x
⊢ p : e ⊢ q : f

⊢ Seq p q : e · f

⊢ p : e

⊢ Inl p : e+ f

⊢ p : f

⊢ Inr p : e+ f

⊢ p : [α 7→ µα.e](e)

⊢ Fold p : µα.e

We consider ε as a singleton type with value Eps as its only inhabitant. The
concatenation operator · effectively corresponds to a pair where pair values are
formed via the binary constructor Seq. We treat + as a disjoint sum with the
respective injection constructors Inl and Inr. Recursive µ-expressions represent
iso-recursive types with Fold denoting the isomorphism between the unrolling
of a recursive type and the recursive type itself.

The following results establish that parse trees obtained via the typing rela-
tion can be related to words derivable in the language of context-free expression
and vice versa.

5

Lemma 3. Let e be a context-free expression and w be a word. If e ⇒ w, then
there exists a parse tree p such that ⊢ p : e where flatten(p) = w.

Lemma 4. Let e be a context-free expression and p a parse tree. If ⊢ p : e, then
e⇒ flatten(p).

Example 3. Let p = Fold (Inl (Seq (Sym x) (Seq (Inr Eps) (Sym x)))) be
a parse tree and consider the expression e = µα.x · α + ε. We find that ⊢ p : e
and flatten(p) = x · x.

Instead of tackling the parsing problem, we solve the more general problem
of coercing parse trees of context-free expressions into parse trees of regular
expressions and vice versa.

4 Containment via Reachability

In this section, we consider the problem of determining containment (e ≤ r)?
between a context-free language represented by some expression e and a regular
language represented by regular expression r. This problem is decidable. The
standard algorithm constructs a context-free grammar for the intersection L(e)∩
L(r) and tests it for emptiness.

We proceed differently to obtain some computational content from the proof
of containment. We first rephrase the containment problem (e ≤ r)? as a reacha-
bility problem. Then, in Section 5, we extract computational content by deriving
suitable coercions as mappings between the respective parse trees of e and r.

There are coercions in both directions:

1. a total coercion from L(e) to L(r) as a mapping of type e→ r and
2. a partial coercion from L(r) to L(e) as a mapping of type r → Maybe e,

The partial coercion under 2 can be considered as a parser specialized to
words from L(r). Thus, the partial coercion from Σ∗ → Maybe e is a general
parser for L(e).

We say that a regular expression r′ is reachable from e ∈ CFE and r if there
is some word w ∈ L(e) such that L(r′) = w/L(r) = {v ∈ Σ∗ | w · v ∈ L(r)}.
To obtain a finite representation, we define reachability in terms of canonical
representatives of derivatives.

Definition 13 (Reachability). Let e be a context-free expression and r a reg-
ular expression. We define the set of reachable expressions as reach(e, r) =
{cnf (dw(r)) | w ∈ Σ∗, e⇒ w}.

Theorem 3. Let e be a context-free expression and r be a regular expression.
Then e ≤ r iff each expression in reach(e, r) is nullable.

By finiteness of dissimilar descendants the set reach(e, r) is finite and can be
computed effectively via a least fixed point construction. Thus, we obtain a new
algorithm for containment by reduction to decidable reachability and nullability.

6

Γ ⊢ r
e
 S

(Eps) Γ ⊢ r
ε
 {cnf (r)} (Phi) Γ ⊢ r

φ
 {} (Sym) Γ ⊢ r

x
 {cnf (dx(r))}

(Alt)
Γ ⊢ r

e
 S1 Γ ⊢ r

f
 S2

Γ ⊢ r
e+f
 S1 ∪ S2

(Seq)
Γ ⊢ r

e
 {r1, . . . , rn} Γ ⊢ ri

f
 Si for i = 1, . . . , n

Γ ⊢ r
e·f
 S1 ∪ . . . ∪ Sn

(Rec)
Γ ∪ {r

µα.f
 S} ⊢ r

[α7→µα.f](f)
 S

Γ ⊢ r
µα.f
 S

(Hyp)
r

µα.f
 S ∈ Γ

Γ ⊢ r
µα.f
 S

Fig. 1. Reachability proof system

Instead of showing the least fixed point construction, we give a characteri-
zation of the set of reachable expressions in terms of a natural-deduction style
proof system. The least fixed point construction follows from the proof rules.

The system in Figure 1 defines the judgment r
e
 S where e ∈ CFE, r a

regular expression, and S is a set of regular expressions in canonical form. It
makes use of a set Γ of hypothetical proof judgments of the same form. The
meaning of a judgment is that S (over)approximates reach(e, r) (see upcoming
Lemmas 5 and 6).

The interesting rules are (Rec) and (Hyp). In rule (Hyp), we look up a proof
judgment for a context-free expression with topmost operator µ from the as-
sumption set Γ . Such proof judgments are added to Γ in rule (Rec). Hence, we
can make use of to be verified proof judgments in subsequent proof steps. Hence,
the above proof system is defined coinductively. Soundness of the proof system
is guaranteed by the fact that we unfold the fixpoint operator µ in rule (Rec).
We can indeed show soundness and completeness: the set reach(e, r) is derivable
and any derivable set S is a superset of reach(e, r).

Lemma 5. Let e be a context-free expression and r be a regular expression.
Then, ⊢ r

e
 reach(e, r) is derivable.

Lemma 6. Let e be a context-free expression, r be a regular expression and S
be a set of expressions such that ⊢ r

e
 S. Then, we find that S ⊇ reach(e, r).

7

Example 4. Consider e = µα.x · (α · y) + ε and r = x∗ · y∗. It is easy to see that

reach(e, r) = {r, y∗}. Indeed, we can verify that {} ⊢ r
e
 {r, y∗} is derivable.

(Rec)

(Alt)

(Seq)

(Seq)

(Hyp) {r
e
 {r, y∗}} ⊢ r

e
 {r, y∗}X

(Sym) {r
e
 {r, y∗}} ⊢ r

y
 {y∗}X

(Sym) {r
e
 {r, y∗}} ⊢ y∗

y
 {y∗}X

{r
e
 {r, y∗}} ⊢ r

e·y
 {y∗}

(Sym) {r
e
 {r, y∗}} ⊢ r

x
 {r}X

{r
e
 {r, y∗}} ⊢ r

x·(e·y)
 {y∗}

(Eps) {r
e
 {r, y∗}} ⊢ r

ε
 {r}X

{r
e
 {r, y∗}} ⊢ r

x·(e·y)+ε
 {r, y∗}

{} ⊢ r
e
 {r, y∗}

We first apply rule (Rec) followed by (Alt). One of the premises of (Alt) can be
verified immediately via (Eps) as indicated by X. For space reasons, we write
premises on top of each other. Next, we apply (Seq) where one of the premises
can be verified immediately again. Finally, we find another application of (Seq).

{r
e
 {r, y∗}} ⊢ r

e
 {r, y∗} holds due to (Hyp). Because the reachable set

contains two elements, r and y∗, we find two applications of (Sym) and we are
done.

Example 5. As a special case, consider e = µα.α where reach(e, r) = {} for
any regular expression r. The reachability proof system over-approximates and

indeed we find that ⊢ r
µα.α
 S for any S as shown by the following derivation

(Rec)
(Hyp) {r

µα.α
 S} ⊢ r

µα.α
 S

⊢ r
µα.α
 S

5 Coercions

Our proof system for the reachability judgment r
e
 S in Figure 1 provides a

coinductive characterization of the set of reachable expressions. Now we apply
the proofs-are-programs principle to derive coercions from derivation trees for
reachability. As the proof system is coinductive, we obtain recursive coercions
from applications of the rules (Rec) and (Hyp).

Our first step is to define a term language for coercions, which are functions on
parse trees. This language turns out to be a lambda calculus (lambda abstraction,
function application, variables) with recursion and pattern matching on parse
trees.

Definition 14 (Coercion Terms). Coercion terms c and patterns pat are in-
ductively defined by

c ::= v | k | λv.c | c c | rec x.c | case c of [pat1 ⇒ c1, . . . , patn ⇒ cn]
pat ::= v | k pat1 ...patarity(k)

8

where v range overs a denumerable set of variables disjoint from Σ and construc-
tors k are taken from the set K = {Eps,Seq, Inl, Inr,Fold, Just,Nothing, (,)}.
Constructors Eps, . . . ,Fold are employed in the formation of parse trees. Con-
structors Just and Nothing belong to the Maybe type that arises in the construc-
tion of partial coercions. The binary constructor (,) builds a pair. The func-
tion arity(k) defines the arity of constructor k. Patterns are linear (i.e., all pat-
tern variables are distinct) and we write λpat.c as a shorthand for λv.case v of [pat⇒
c].

We give meaning to coercions in terms of a standard denotational semantics
where values are elements of a complete partial order formed over the set of parse
trees and function space. We write η to denote the mapping from variables to
values and [[c]]η to denote the meaning of coercions where η defines the meaning
of free variables in c. In case c is closed, we simply write [[c]].

Earlier work shows how to construct coercions that demonstrate containment
among regular expressions [8, 12]. These works use a specialized representation
for Kleene star which would require to extend Definitions 10 and 12. We avoid
any special treatment of the Kleene star by considering r∗ an abbreviation for
µα.r · α + ε. The representations suggested here is isomorphic to the one used
in previous work [8, 12]. We summarize their main results. We adopt the con-
vention that t refers to parse trees of regular expressions, b refers to coercions
manipulating regular parse trees. We write b : r → s to denote a coercion of
type r → s, and we use ⊢r t : r for the regular typing judgment.

Definition 15 (Parse Trees for Regular Expressions).

t ::= Eps | Sym x | Inl t | Inr t | Seq t t | Fold t

Definition 16 (Valid Regular Parse Trees, ⊢r t : r).

⊢r Eps : ε ⊢r Sym x : x
⊢r t1 : r ⊢r t2 : s

⊢r Seq t1 t2 : r · s

⊢r t : r

⊢r Inl t : r + s

⊢r t : s

⊢r Inr t : r + s
⊢r Fold (Inr Eps) : r∗

⊢r t1 : r ⊢r t2 : r∗

⊢r Fold (Inl (Seq t1 t2)) : r
∗

Lemma 7 (Regular Coercions [8, 12]). Let r and s be regular expressions
such that r ≤ s. There is an algorithm to obtain coercions b1 : r → s and
b2 : s → Maybe r such that (1) for any ⊢r t : r we have that ⊢r b1 (t) : s,
[[b1 (t)]] = t′ for some t′ and flatten(t) = flatten(t′), and (2) for any ⊢r t : s
where flatten(t) ∈ L(r) we have that [[b2 (t)]] = Just t′ for some t′ where ⊢r t′ : r
and flatten(t) = flatten(t′), and (3) for any ⊢r t : s where flatten(t) 6∈ L(r),
b2 (t) = Nothing.

9

∆ ⊢ ⇑ c : U(e, r)

(Eps)u
cnf (r) ≤b r c = λ(Eps, t).b (t)

∆ ⊢ ⇑ c : U(ε, r)

(Sym)u
x · cnf (dx(r)) ≤

b r c = λ(v, t).b (Seq v t)

∆ ⊢ ⇑ c : U(x, r)

(Alt)u

∆ ⊢ ⇑ c1 : U(e, r) ∆ ⊢ ⇑ c2 : U(f, r)

+reach(e, r) ≤b1 +reach(e+ f, r) + reach(f, r) ≤b2 +reach(e+ f, r)

c = λ(p, t). case p of [

Inl p1 ⇒ case (b1 (t)) of [Just t1 ⇒ c1 (p1, t1)],

Inr p2 ⇒ case (b2 (t)) of [Just t2 ⇒ c2 (p2, t2)]]

∆ ⊢ ⇑ c : U(e+ f, r)

(Seq)u

∆ ⊢ ⇑ c1 : U(e, r) ∆ ⊢ ⇑ c2 : U(f,+reach(e, r))

c = λ(Seq p1 p2, t).c1 (p1, c2 (p2, t))

∆ ⊢ ⇑ c : U(e · f, r)

(Rec)u

vα.e,r 6∈ ∆ ∆ ∪ {vα.e,r : U(µα.e, r)} ⊢ ⇑ c′ : U([α 7→ µα.e](e), r)

c = rec vα.e,r.λ(Fold p, t).c′ (p, t)

∆ ⊢ ⇑ c : U(µα.e, r)

(Hyp)u
(vα.e,r : U(µα.e, r)) ∈ ∆

∆ ⊢ ⇑ vα.e,r : U(µα.e, r)

Fig. 2. Reachability upcast coercions

We refer to b1 as the upcast coercion and to b2 as the downcast coercion,
indicated by r ≤b1 s and r ≤b2 s, respectively. Upcasting means that any parse
tree for the smaller language can be coerced into a parse tree for the larger
language. On the other hand, a parse tree can only be downcast if the underlying
word belongs to the smaller language.

We wish to extend these results to the containment e ≤ r where e is a
context-free expression and r is a regular expression. In the first step, we build
a (reachability upcast) coercion c which takes as inputs a parse tree of e and a
proof that e is contained in r. The latter comes in the form of the reachability
set reach(e, r), which we canonicalize to +reach(e, r) as follows: For a set R =
{r1, . . . , rn} of canonical regular expressions, we define +R = cnf (r1 + . . .+ rn)
where we set +{} = φ.

10

Reachability coercions are derived via the judgment ∆ ⊢ ⇑ c : U(e, r), which
states that under environment ∆ an upcast coercion c of type U(e, r) can be
constructed. Environments∆ are defined by ∆ ::= {} | {v : U(e, r)} | ∆∪∆ and
record coercion assumptions, which are needed to construct recursive coercions.
We interpret U(e, r) as the type (e × +reach(e, r)) → r. Figure 2 contains the
proof rules which are derived from Figure 1 by decorating each rule with an
appropriate coercion term. If ∆ is empty, we write ⊢ ⇑ c : U(e, r) for short.

The proof rules in Figure 2 are decidable in the sense that it is decidable
if ∆ ⊢ ⇑ c : U(e, r) can be derived. This property holds because proof rules
are syntax-directed and reach(e, r) is decidable. We can also attempt to infer c
where we either fail or succeed in a finite number of derivation steps.

Lemma 8 (Upcast Soundness). Let e be a context-free expression and r be
a regular expression such that ⊢ ⇑ c : U(e, r) for some coercion c. Let p and
t be parse trees such that ⊢ p : e and ⊢r t : +reach(e, r) where flatten(t) ∈
L(dflatten(p)(r)). Then, we find that [[c ((p, t))]] = t′ for some t′ where ⊢ t′ : r
and flatten(p) = flatten(t′).

The assumption flatten(t) ∈ L(dflatten(p)(r)) guarantees that e’s parse tree p in
combination with +reach(e, r)’s parse tree t allows us to build a parse tree for
r.

For example, consider rule (Alt)u. Suppose e+ f parses some input word w
because e parses the word w. That is, w’s parse tree has the form p = Inl p1. As
we have proofs that e ≤ r and f ≤ r, the downcast b1 (t) cannot fail and yields
Just t1. Formally, we have ⊢ p1 : e and conclude that flatten(p) = flatten(p1) ∈
L(e). By Lemma 4, e ⇒ flatten(p1) and therefore we find that dflatten(p1)(r)
is similar to an element of reach(e, r). Because flatten(t) ∈ L(dflatten(p)(r)) we
conclude that flatten(t) ∈ L(+reach(e, r)). By Lemma 7, it must be that b1 (t) =
Just t1 for some t1 where ⊢ t1 : +reach(e, r). By induction the result holds for
c1 and hence we can establish the result for c.

In rule (Seq)u, we exploit the fact that +reach(e·f, r) = +reach(f,+reach(e, r)).
So, we use coercion c2 to build a parse tree of +reach(e, r) given parse trees of
f and +reach(e · f, r). Then, we build a parse tree of r by applying c1 to parse
trees of e and +reach(e, r).

Due to the coinductive nature of the coercion proof system, coercion terms
may be recursive as evidenced by rule (Rec)u. Soundness is guaranteed by the
assumption that the set of reachable states is non-empty. As we find a parse
tree of that type, progress is made when building the coercion for the unfolded
µ-expression. Unfolding must terminate because there are only finitely many
combinations of unfolded subterms of the form µα.e and regular expressions r.
The latter are drawn from the finitely many dissimilar descendant of some r.
Hence, resulting coercions must be well-defined as stated in the above result.

Example 6. We show how to derive ⊢ ⇑ c0 : U(e, r) where e = µα.x · (α · y) + ε,
r = x∗ ·y∗ and reach(e, r) = {r, y∗}. The shape of the derivation tree corresponds

11

to the derivation we have seen in Example 4.

(Rec)u

(Alt)u

(Seq)u

(Seq)u

(Hyp)u ∆ ⊢ ⇑ c7 : U(e, r)X

(Sym)u ∆ ⊢ ⇑ c6 : U(y, r + y∗)X

∆ ⊢ ⇑ c5 : U(e · y, r)
(Sym)u ∆ ⊢ ⇑ c4 : U(x, r)X

∆ ⊢ ⇑ c3 : U(x · (e · y), r) (Eps)u ∆ ⊢ ⇑ c2 : U(ε, r)X

∆ ⊢ ⇑ c1 : U(x · (e · y) + ε, r)

⊢ ⇑ c0 : U(e, r)

We fill in the details by following the derivation tree from bottom to top.
We set ∆ = {vα.e,r : U(e, r)}. From the first (Rec)u step we conclude c0 =
rec vα.e,r.λ(Fold p, t).c1 (p, t). Next, we find (Alt)u which yields

c1 = λ(p, t). case p of [
Inl p1 ⇒ case (b1 (t)) of [Just t1 ⇒ c3 (p1, t1)],
Inr p2 ⇒ case (b2 (t)) of [Just t2 ⇒ c2 (p2, t2)]]

We consider the definition of the auxiliary regular (downcast) coercions b1
and b2. We have that +reach(x · (e · y) + ε, r) = r + y∗, +reach(ε, r) = r and
+reach(x ·(e ·y), r) = y∗. Hence, we need to derive y∗ ≤b1 r+y

∗ and r ≤b2 r+y
∗.

Recall the requirement (2) for downcast coercions. See Lemma 7. We first
consider y∗ ≤b1 r+y

∗. The right component of the sum can be straightforwardly
coerced into a parse tree of y∗. For the left component we need to check that
the leading part is effectively empty. Recall that Kleene star is represented in
terms of µ-expressions. Following Definition 16, an empty parse tree for Kleene
star equals Fold (Inr Eps). Thus, we arrive at the following definition for b1.

b1 = λt. case t of [

Inl (Seq (Fold Inr Eps) v) ⇒ Just v,

Inl v ⇒ Nothing,

Inr v ⇒ Just v]

y∗ ≤b1 r + y∗

The derivation of r ≤b2 r+ y∗ follows a similar pattern. As both expressions
r and r + y∗ are equal, the downcast never fails here.

b2 = λt. case t of [

Inl v ⇒ Just v,

Inr v ⇒ Just (Seq (Fold Inr Eps) v)]

r ≤b2 r + y∗

Next, consider the premises of the (Alt)u rule. For ∆ ⊢ ⇑ c2 : U(ε, r) by defi-
nition c2 = λ(Eps, t).b3 (t) where r ≤b3 r which can be satisfied by b3 = λv.v. For
∆ ⊢ ⇑ c3 : U(x·(e·y), r) we find by definition c3 = λ(Seq p1 p2, t).c4 (p1, c5 (p2, t)).

12

It follows some (Seq)u step where we first consider ∆ ⊢ ⇑ c4 : U(x, r). By
definition of (Sym)u and cnf (dr(x)) = r we have that c4 = λ(v, t).b4 (Seq v t)
where x · r ≤b4 r. Recall r = x∗ · y∗. So, upcast b4 injects x into x∗’s parse tree.
Recall the representation of parse trees for Kleene star in Definition 16.

b4 = λ(Seq v (Seq t1 t2).Seq (Fold (Inl (Seq v t1))) t2

Next, we consider ∆ ⊢ ⇑ c5 : U(e · y, r) where we find another (Seq)u step.
Hence, c5 = λ(Seq p1 p2, t).c7 (p1, c6 (p2, t)). By (Hyp)u, we have that c7 =
vα.e,r. To obtain ∆ ⊢ ⇑ c6 : U(y, r + y∗) we apply another (Sym)u step and
therefore c6 = λ(v, t).b5 (Seq v t). The regular (upcast) coercion b5 is derived
from y · y∗ ≤b5 r + y∗ because cnf (dy(r + y∗)) = y∗. Its definition is as follows.

b5 = λ(Seq v t).Inr (Fold (Inl (Seq v t)))

This completes the example.

Remark 1 (Ambiguities). Example 6 shows that coercions may be ambiguous in
the sense that there are several choices for the resulting parse trees. For example,
in the construction of the regular (upcast) coercion y · y∗ ≤b5 x∗ · y∗ + y∗ we
choose to inject y into the right component of the sum. The alternative is to
inject y into the left component by making the x∗ part empty.

b′5 = λ(Seq v t).Inl (Seq (Fold (Inr Eps)) (Fold (Inl (Seq v t))))

Both are valid choices. To obtain deterministic behavior of coercions we can
apply a disambiguation strategy (e.g., favoring left-most alternatives). A detailed
investigation of this topic is beyond the scope of the present work.

Based on Lemma 8 we easily obtain an upcast coercion to transform e’s parse
tree into a parse tree of r. As e ≤ r if all elements in reach(e, r) are nullable,
we simply need to provide an empty parse tree for +reach(e, r). The upcoming
definition of mkE () supplies such parse trees. It requires to check for nullability
of context-free expression. This check is decidable as shown by the following
definition.

Definition 17 (CFE Nullability).

N (φ) = N (x) = False N (e + f) = N (e) ∨ N (f)

N (ε) = True N (e · f) = N (e) ∧ N (f)

N (α) = False N (µα.e) = N (e)

Lemma 9. Let e be a context-free expression. Then, we have that N (e) holds
iff ε ∈ L(e).

Based on the nullability check, we can derive empty parse trees (if they exist).

13

Definition 18 (Empty Parse Tree).

mkE (ε) = Eps mkE (e+ f) =

{

Inl mkE (e) if N (e)
Inr mkE (f) otherwise

mkE (µα.e) = Fold mkE (e) mkE (e · f) = Seq mkE (e) mkE (f)

Lemma 10. Let e be a context-free expression such that N (e). Then, we find
that ⊢ mkE (e) : e and flatten(mkE (e)) = ε.

We summarize the construction of upcast coercions for context-free and reg-
ular expressions in containment relation.

Theorem 4 (Upcast Coercions). Let e be a context-free expression and r be
a regular expression such that e ≤ r and ⊢ ⇑ c′ : U(e, r) for some coercion c′. Let
c = λx.c′ (x,mkE (+reach(e, r))). Then, we find that c is well-typed with type
e → r where for any ⊢ p : e we have that [[c (p)]] = t′ for some t′ where and
⊢ t′ : r and flatten(p) = flatten(t′).

In analogy to the construction of upcast coercions, we can build a proof
system for the construction of downcast coercions. Each such downcast coercion
c has type D(e, r) where D(e, r) corresponds to r → Maybe (e × +reach(e, r)).
That is, a parse tree of r can possibly be coerced into a parse tree of e and some
residue which is a parse tree of +reach(e, r). See Figure 3.

Rule (Eps)d performs a change in representation. The downcast will always
succeed. Rule (Sym)d applies the regular downcast b to split r’s parse tree into
x and the parse tree of the (canonical) derivative. The resulting downcast will
not succeed if there is no leading x.

In case of a sum, rule (Alt)d first tests if we can downcast r’s parse tree
into a parse tree of the left component e and +reach(e, r). If yes, we upcast
+reach(e, r)’s parse tree into a parse tree of +reach(e + f, r). Otherwise, we
check if a downcast into f and +reach(f, r) is possible.

In rule (Seq)d, we first check if we can obtain parse trees for e and residue
+reach(e, r). Otherwise, we immediately reach failure. From +reach(e, r)’s parse
tree we then attempt to extract f ’s parse tree and residue +reach(f,+reach(e, r))
which we know is equivalent to +reach(e · f, r). Hence, we combine the parse
trees of e and f via Seq and only need to pass through the residue.

As in case of upcast coercions, downcast coercions may be recursive. See
rules (Rec)d and (Hyp)d. In case the downcast yields the parse tree p′ of the
unfolding, we apply Fold. The residue t′ can be passed through as we find that
+reach(µα.e, r) = +reach([α 7→ µα.e](e), r).

Lemma 11 (Downcast Soundness). Let e be a context-free expression and r
be a regular expression such that ∆ ⊢ ⇓ c : D(e, r) for some coercion c. Let t be
such that ⊢ t : r and [[c (t)]] = Just (p, t′) for some p and t′. Then, we have that
⊢ p : e, ⊢ t′ : +reach(e, r) and flatten(t) = flatten(p).

14

∆ ⊢ ⇓ c : D(e, r)

(Eps)d
r ≤b cnf (r) c = λt.Just (Eps, b (t))

∆ ⊢ ⇓ c : D(ε, r)

(Sym)d

x · cnf (dx(r)) ≤b r

c = λt.case (b (t)) of [Nothing ⇒ Nothing, Just (Seq x′ t′) ⇒ Just (x′, t′)]

∆ ⊢ ⇓ c : D(x, r)

(Alt)d

∆ ⊢ ⇓ c1 : D(e, r) ∆ ⊢ ⇓ c2 : D(f, r)

+reach(e, r) ≤b1 +reach(e+ f, r) + reach(f, r) ≤b2 +reach(e+ f, r)

c = λt. case (c1 (t)) of

[Nothing ⇒ case (c2 (t)) of

[Nothing ⇒ Nothing,

Just (p2, t2) ⇒ Just (Inr p2, b2 (t2))],

Just (p1, t1) ⇒ Just (Inl p1, b1 (t1))]

∆ ⊢ ⇓ c : D(e+ f, r)

(Seq)d

∆ ⊢ ⇓ c1 : D(e, r) ∆ ⊢ ⇓ c2 : D(f,+reach(e, r))

c = λt. case (c1 (t)) of

[Nothing ⇒ Nothing,

Just (p1, t1) ⇒ case (c2 (t1)) of

[Nothing ⇒ Nothing,

Just (p2, t2) ⇒ Just (Seq p1 p2, t2)]]

∆ ⊢ ⇓ c : D(e · f, r)

(Rec)d

vα.e,r 6∈ ∆ ∆ ∪ {(vα.e,r : D(µα.e, r))} ⊢ ⇓ c
′ : D([α 7→ µα.e](e), r)

c = rec vα.e,r .λt. case (c′ (t)) of

[Nothing ⇒ Nothing,

Just (p′, t′) ⇒ Just (Fold p′, t′)]

∆ ⊢ ⇓ c : D(µα.e, r)

(Hyp)d
(vα.e,r : D(µα.e, r)) ∈ ∆

∆ ⊢ ⇓ vα.e,r : D(µα.e, r)

Fig. 3. Reachability downcast coercions

15

Example 7. We consider the derivation of ⊢ ⇓ c0 : D(e, r) where e = µα.x·(α·y)+
ε, r = x∗ · y∗ and reach(e, r) = {r, y∗}. The downcast coercion attempts to turn
a parse of r into a parse tree of e and some residual parse tree of +reach(e, r).
The construction is similar to Example 6. We consider the downcast coercions
resulting from (Rec)d and (Alt)d.

c0 : D(e, r) = rec vα.e,r.λt. case (c1 (t)) of
[Nothing ⇒ Nothing,
Just (p′, t′) ⇒ Just (Fold p′, t′)]

c1 : D(x · (e · y) + ε, r) = λt. case (c2 (t)) of
[Nothing ⇒ case (c3 (t)) of

[Nothing ⇒ Nothing,
Just (p2, t2) ⇒ Just (Inr p2, b2 (t2))],

Just (p1, t1) ⇒ Just (Inl p1, b1 (t1))]
where r ≤b1 r + y∗ r ≤b2 r + y∗ b1 = Inr b2 = Inl

The auxiliary coercion c2 greedily checks for a leading symbol x. Otherwise,
we pick the base case (Eps)d where the entire input becomes the residue. This
is dealt with by coercion c3.

c3 : D(ε, r) = λt.Just (Eps, b3 (t))
where cnf (r) = r b3 = λx.x r ≤b3 cnf (r))

Coercion c2 first checks for x, then recursively calls (in essence) c0, followed
by a check for y. Here are the details.

c2 : D(x · (e · y), r) = λt. case (c4 (t)) of
[Nothing ⇒ Nothing,
Just (p1, t1) ⇒ case (c5 (t1)) of

[Nothing ⇒ Nothing,
Just (p2, t2) ⇒ Just (Seq p1 p2, t2)]]

Auxiliary coercion c4 checks for x and any residue is passed on to coercion c5.

c4 : D(x, r) = λt.case (b4 (t)) of [Nothing ⇒ Nothing, Just (Seq x′ t′) ⇒ Just (x′, t′)]
where cnf (dx(r)) = r x · r ≤b4 r

b4 = λSeq t1 t2. case t1 of [
Fold Inr Eps ⇒ Nothing,
Fold Inl (Seq t3 t4) ⇒ Just (Seq t3 (Seq t4 t3))]

In coercion c5, we check for e which then leads to the recursive call.

c5 : D(e · y, r) = λt. case (c7 (t)) of
[Nothing ⇒ Nothing,
Just (p1, t1) ⇒ case (c6 (t1)) of

[Nothing ⇒ Nothing,
Just (p2, t2) ⇒ Just (Seq p1 p2, t2)]]

c7 : D(e, r) = vα.e,r

16

Finally, coercion c6 checks for y

c6 : D(y, r + y∗) = λt. case (b6 (t)) of [
Nothing ⇒ Nothing,
Just (Seq x′ t′) ⇒ Just (x′, t′)]

where cnf (dy(r + y∗)) = y∗ y · y∗ ≤b6 r + y∗

b6 = λt. case t of [
Inl Seq t1 t2 ⇒ b′6 (t2),
Inr t⇒ b′6 (t)]

y · y∗ ≤b′
6
y∗

b′6 = λt. case t of [
Fold Inr Eps ⇒ Nothing,
Fold Inl (Seq t1 t2) ⇒ Just (Seq t1 t2)]

Consider input t = Seq t1 t2 where t1 = Fold (Inl Seq x (Fold (Inr Eps))),
t2 = Fold (Inl Seq y (Fold (Inr Eps))), ⊢ t : r and flatten(t) = x · y. Then
[[c0 (t)]] = Just (p, t′) where p = Fold (Inl Seq x (Seq (Fold (Inr Eps)) y))
and ⊢ p : e and flatten(p) = x · y. For residue t′ we find flatten(t′) = ε. This
completes the example.

Any context-free expression e is contained in the regular language Σ∗. We
wish to derive a downcast coercion for this containment which effectively rep-
resents a parser for L(e). That is, the parser maps a parse tree for w ∈ Σ∗

(which is isomorphic to w) to a parse tree ⊢ p : e with w = flatten(p) if
w ∈ L(e). However, our parser, like any predictive parser, is sensitive to the
shape of context-free expressions. So, we need to syntactically restrict the class
of context-free expressions on which our parser can be applied.

Definition 19 (Guarded Context-Free Expressions). A context-free ex-
pression is guarded if the expression is of the following shape:

e, f ::= φ | ε | x ∈ Σ | α ∈ A | e+ f | e · f | µα.g
g ::= x · e | ε | x · e+ g

where for each symbol x there exists at most one guard x · e in g.

For any context-free expression we find an equivalent guarded variant. This
follows from the fact that guarded expressions effectively correspond to context-
free grammars in Greibach Normal Form. We additionally impose the conditions
that guards x are unique and ε appears last. This ensures that the parser leaves
no residue behind.

Theorem 5 (Predictive Guarded Parser). Let e be a guarded context-free
expression and r be a regular expression such that e ≤ r and ∆ ⊢ ⇓ c

′ : D(e, r) for
some coercion c′. Let c = λx.case (c′ (x)) of [Nothing ⇒ Nothing, Just (p, t′) ⇒
Just p] Then, we find that c is well-typed with type r → Maybe e and terminates
for any input t ⊢ t : r If [[c (t)]] = Just p for some p, then we have that ⊢ p : e
and flatten(t) = flatten(p).

17

Guardedness is essential as shown by the following examples. Consider e′ =
µα.ε + x · (α · y), r = x∗ · y∗. The difference to e from Example 7 is that
subexpression ε appears in leading position. Hence, the guardedness condition
is violated. The downcast coercion for this example (after some simplifications)
has the form c0 = λt.(Fold (Inl Eps), t). As we can see no input is consumed at
all. We return the trivial parse term and the residue t contains the unconsumed
input. As an example for a non-terminating parser consider e′ = µα.α ·x+ε and
r = (x+ y)∗. Again the guardedness condition is violated because subexpression
α is not guarded. The coercion resulting from ⊢ ⇓ c′0 : D(e′, r) has (after some
simplifications) the following form c′0 = rec v.λt.case v (t) of Clearly, this
parser is non-terminating which is no surprise as the context-free expression is
left-recursive.

6 Related Work and Conclusion

Our work builds upon prior work in the setting of regular expressions by Frisch
and Cardelli [4], Henglein and Nielsen [6] and Lu and Sulzmann [8, 12], as well
as Brandt and Henglein’s coinductive characterization of recursive type equality
and subtyping [2]. We extend these ideas to the case of context-free expressions
and their parse trees.

There are simple standard methods to construct predictive parsers (e.g., re-
cursive descent etc) contained in any textbook on compiler construction [1]. But
the standard methods are tied to parse from a single regular input language,
Σ∗, whereas our approach provides specialized parsers from an arbitrary regu-
lar language. These parsers will generally be more deterministic, fail earlier, etc.
because they are exploiting knowledge about the input.

Based on our results we obtain a predictive parser for guarded context-free
expressions. Earlier works in this area extend Brzozowski-style derivatives [3] to
the context-free setting while we use plain regular expression derivatives in com-
bination with reachability. See the works by Krishnaswami [7], Might, Darais and
Spiewak [10] and Winter, Bonsangue, and Rutten [13]. Krishnaswami [7] shows
how to elaborate general context-free expressions into some equivalent guarded
form and how to transform guarded parse trees into their original representa-
tion. We could integrate this elaboration/transformation step into our approach
to obtain a geneneral, predictive parser for context-free expressions.

Marriott, Stuckey, and Sulzmann [9] show how containment among context-
free languages and regular languages can be reduced to a reachability prob-
lem [11]. While they represent languages as context-free grammars and DFAs,
we rely on context-free expressions, regular expressions, and specify reachable
states in terms of Brzozowski-style derivatives [3]. This step is essential to obtain
a characterization of the reachability problem in terms of a natural-deduction
style proof system. By applying the proofs-are-programs principle we derive up-
cast and downcast coercions to transform parse trees of context-free and regular
expressions. These connections are not explored in any prior work.

18

Acknowledgments

We thank the APLAS’17 reviewers for their constructive feedback.

References

1. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and

Tools. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1986.
2. M. Brandt and F. Henglein. Coinductive axiomatization of recursive type equality

and subtyping. Fundam. Inf., 33(4):309–338, Apr. 1998.
3. J. A. Brzozowski. Derivatives of regular expressions. J. ACM, 11(4):481–494, 1964.
4. A. Frisch and L. Cardelli. Greedy regular expression matching. In Proc. of

ICALP’04, pages 618– 629. Spinger-Verlag, 2004.
5. C. Grabmayer. Using proofs by coinduction to find ”traditional” proofs. In Proc.

of CALCO’05, pages 175–193. Springer-Verlag, 2005.
6. F. Henglein and L. Nielsen. Regular expression containment: Coinductive axiom-

atization and computational interpretation. In Proc. of POPL’11, pages 385–398.
ACM, 2011.

7. N. R. Krishnaswami. A typed, algebraic approach to parsing,.
https://www.cl.cam.ac.uk/~nk480/parsing.pdf, 2017.

8. K. Z. M. Lu and M. Sulzmann. An implementation of subtyping among regular
expression types. In Proc. of APLAS’04, volume 3302 of LNCS, pages 57–73.
Springer, 2004.

9. K. Marriott, P. J. Stuckey, and M. Sulzmann. Resource usage verification. In Proc.

of APLAS’03, volume 2895 of LNCS, pages 212–229. Springer, 2003.
10. M. Might, D. Darais, and D. Spiewak. Parsing with derivatives: a functional pearl.

In Proc. of ICFP’11, pages 189–195. ACM, 2011.
11. T. Reps. Program analysis via graph reachability. In Proc. of ILPS’97, pages 5–19,

Cambridge, MA, USA, 1997. MIT Press.
12. M. Sulzmann and K. Z. M. Lu. A type-safe embedding of XDuce into ML. Electron.

Notes Theor. Comput. Sci., 148(2):239–264, 2006.
13. J. Winter, M. M. Bonsangue, and J. J. M. M. Rutten. Coalgebraic characterizations

of context-free languages. Logical Methods in Computer Science, 9(3), 2013.

19

Appendix

A Notation

Definition 20 (Substitution). We write [α1 7→ e1, . . . , αn 7→ en] to denote a
substitution mapping variables αi to expressions ei. We maintain the invariant
that the free variables (if any) in ei are disjoint from αi. That is, the substitutions
we consider here are idempotent.

Let ψ = [α1 7→ e1, . . . , αn 7→ en]. Then, we define ψ(α) = e if there exists i
such that αi = α and ei = e. This extends to expressions in the natural way.

Let ψ = [α1 7→ e1, . . . , αn 7→ en]. Then, we define ψ\α1
= [α2 7→ e2, . . . , αn 7→

en].

We write id to denote the empty substitution []. Let ψ1 = [α1 7→ e1, . . . , αn 7→
en] and ψ2 = [β1 7→ f1, . . . , βm 7→ fm] be two substitutions where αi and βj are
distinct and the free variables in ei and fj are disjoint from αi and βj. Then, we
define ψ1 ⊔ ψ2 = [α1 7→ e1, . . . , αn 7→ en, β1 7→ f1, . . . , βm 7→ fm].

B Coercion Semantics

Values are elements of a complete partial order V which is defined as the least
solution of the following domain equation, where “+” and “Σ” stand for the
lifted sum of of domains. The distinguished element W (wrong) will be used to
indicate errors. The resulting domain yields a non-strict interpretation.

Definition 21 (Values).

V = {W}+ (V → V) +
∑

k∈K({k} × V1 × · · · × Varity(k))

We write a to denote values, i.e. elements in V . We abuse notation by writing

⊥ for the injections into the sum on the left-hand side (the summand is clear
from the argument) and ↓ (drop) for their right-inverses.

To define the meaning of coercions, we first establish a semantic match rela-
tion among values and patterns to obtain the binding of pattern variables. We
write ⊔ for the disjoint union of environments η which map variables to values.

Definition 22 (Pattern Matching, ⊢m a : pat η).

⊢m a : v [v 7→ a]
⊢m ↓ a1 : pat1 η1 . . . ⊢m ↓ an : patn ηn n = arity(k)

⊢m (k, a1, . . . , an) : k pat1 ...patn η1 ⊔ ... ⊔ ηn

Pattern matching may fail, for example, in case of differences in constructors
and number of arguments. We write Just η = match(v, pat) to indicate that
⊢m v : pat η is derivable. Otherwise match(v, pat) = Nothing.

20

Definition 23 (Coercion Semantics, [[c]]η).

[[v]]η = η(v)

[[λv.c]]η = (λy.[[c]](η ⊔ [v 7→ y]))⊥

[[k c1...carity(k)]]η = (k, [[c1]]η, . . . , [[carity(k)]]η)⊥

[[c1 c2]]η = if ↓ [[c1]]η ∈ V → V then ↓ ([[c1]]η) ([[c2]]η) else W⊥

[[case c of [pat1 ⇒ c1, . . . , patn ⇒ cn]]]η =
let y = ↓ [[c]]η in
if Just η1 = match(y, pat1) then [[c1]](η ⊔ η1)
...
else if Just ηn = match(y, patn) then [[c1]](η ⊔ ηn)
else W⊥

C Downcast Example

C.1 ⊢ ⇓ c0 : D(µα.x · α + ε, (x + y)∗)

Consider e = µα.x · α + ε and r = (x + y)∗. We have that reach(e, r) = {r}.
Recall that cnf (dx((x + y)∗)) = (x+ y)∗.

The following derivation tree verifies that {} ⊢ r
e
 {r}.

(Rec)

(Alt)

(Seq)

(Sym) {r
e
 {r}} ⊢ r

x
 {r}X

(Hyp) {r
e
 {r}} ⊢ r

e
 {r}X

{r
e
 {r}} ⊢ r

x·e
 {r}

(Eps) {r
e
 {r}} ⊢ r

ε
 {r}X

{r
e
 {r}} ⊢ r

x·e+ε
 {r}

{} ⊢ r
e
 {r}

The derivation of ⊢ ⇓ c0 : D(e, r) follows the shape of the above derivation
tree. We find the following coercions where for clarity we label them with the
corresponding rule names. Definitions of auxiliary regular coercions are found at
the end.

21

(Rec)d c0 = rec vα.λt. case c1 (t) of
[Nothing ⇒ Nothing,
[Just (p′, t′) ⇒ Just (Fold p′, t′)]

(Alt)d c1 = λt. case c2 (t) of
[Nothing ⇒ case (c3 (t)) of

[Nothing ⇒ Nothing,
Just (p2, t2) ⇒ Just (Inr p2, b2 (t2))],

Just (p1, t1) ⇒ Just (Inl p1, b1 (t1))]

(Seq)d c2 = λt. case (c3 (t)) of
[Nothing ⇒ Nothing,
Just (p1, t1) ⇒ case (c4 (t1)) of

[Nothing ⇒ Nothing,
Just (p2, t2) ⇒ Just (Seq p1 p2, t2)]]

(Sym)d c3 = λt.case (b4 (t)) of [Nothing ⇒ Nothing, Just (Seq x′ t′) ⇒ Just (x′, t′)]

(Hyp)d c4 = vα

(Eps)d c5 = λt.Just (Eps, b3 (t))

reach(e · x, r) = r reach(e · x+ ε, r) = r b1 = λt.t

+reach(e · x, r) ≤b1 +reach(e · x+ ε, r)

reach(ε, r) = r reach(e · x+ ε, r) = r b2 = λt.t

+reach(ε, r) ≤b2 +reach(e · x+ ε, r)

b3 = λt.t cnf (r) = r

r ≤b3 cnf (r)

cons = rec v. λx.λxs. case xs of [
Fold (Inr Eps) ⇒ Fold (Inl (Seq x (Fold (Inr Eps)))),
Fold (Inl (Seq y ys)) ⇒ Fold (Inl (Seq x (Fold (Inl (Seq y ys)))))]

22

b4 = rec v. λt. case t of [

Fold (Inr Eps) ⇒ Nothing,

Fold (Inl (Seq (Inr (Sym y)) t2)) ⇒ Nothing,

Fold (Inl (Seq (Inl (Sym x)) (Fold (Inr Eps)))) ⇒

Just (Seq (Sym x) (Fold (Inr Eps))),

Fold (Inl (Seq (Inl (Sym x)) t2)) ⇒

case (v (t2)) of [

Nothing ⇒ Nothing,

Just (Seq (Sym x2) t3) ⇒ Just (Seq (Sym x) (cons (Sym x2) t3))]]

x · r ≤b4 r

C.2 ⊢ ⇓ c
′
0
: D(µα.ε + x · α, (x + y)∗)

By reusing the above calculations we obtain

(Rec)d c0 = rec vα.λt. case c
′
1 (t) of

[Nothing ⇒ Nothing,
[Just (p′, t′) ⇒ Just (Fold p′, t′)]

(Alt)d c′1 = λt. case c′2 (t) of
[Nothing ⇒ case (c′3 (t)) of

[Nothing ⇒ Nothing,
Just (p2, t2) ⇒ Just (Inr p2, b1 (t2))],

Just (p1, t1) ⇒ Just (Inl p1, b2 (t1))]

(Eps)d c
′
2 = λt.Just (Eps, b3 (t))

. . .

So, by unfolding and removing dead code we find that

c′0 = λt.(Eps, t)

C.3 ⊢ ⇓ c
′′
0
: D(µα.α · x + ε, (x + y)∗)

Via similar reasoning we find that

23

(Rec)d c′′0 = rec vα.λt. case c
′′
1 (t) of

[Nothing ⇒ Nothing,
[Just (p′, t′) ⇒ Just (Fold p′, t′)]

(Alt)d c′′1 = λt. case c′′2 (t) of
[Nothing ⇒ case (c′′3 (t)) of

[Nothing ⇒ Nothing,
Just (p2, t2) ⇒ Just (Inr p2, b1 (t2))],

Just (p1, t1) ⇒ Just (Inl p1, b2 (t1))]

(Hyp)d c
′′
2 = vα

. . .

D Least Fixed Point Construction for reach(e, r)

To compute reach(e, r), we need to compute reach(e′, r′) for all subterms of e
and for certain r. To capture this notion exactly, we define a function to compute
the set of subterms of a context-free expressions.

Definition 24 (Subterms).

T (ε) = {ε} T (φ) = {φ} T (x) = {x}

T (e+ f) = {e+ f} ∪ T (e) ∪ T (f) T (e · f) = {e · f} ∪ T (e) ∪ T (f)

T (α) = {α} T (µα.e) = {µα.e} ∪ T (e)

Lemma 12. For any context-free expression e, the set T (e) is finite.

We write R and S to denote sets of regular expressions. We write E to denote
an equation of the form (e, r) = R. We can view a set E of such equations as a
mapping from pairs (e, r) to R. If (e, r) = R ∈ E then we write E(e, r) to denote
R. If no such equation exists in E , then we set E(e, r) = ∅.

We define Ee,r as the set of equations where the pairs range over subterms of
e and derivatives of r and map to sets of descendants of r.

Ee,r = {(f, s) = S | f ∈ T (e), s ∈ D(r), S ⊆ D(r)}

For two sets of equations E1, E2 ⊆ Ee,r, we define E1 ≤ E2 if for each (f, s) ∈
T (e) × D(r) we have that E1(f, s) ⊆ E2(f, s). This definition makes (Ee,r,≤)
a complete, finite lattice with least element {} and greatest element {(f, s) =
D(r) | (f, s) ∈ T (e)×D(r)}.

Next, we define the reachability step functionR(, ,) which operates on T (e)×
D(r) × ℘Ee,r and yields a subset of D(r).

24

Definition 25 (Reachability Step).

R(φ, r, E) = {}
R(ε, r, E) = {cnf (r)}
R(x, r, E) = {cnf (dx(r))}
R(e + f, r, E) = R(e, r, E) ∪R(f, r, E)
R(e · f, r, E) =

⋃

s∈R(e,r,E)R(f, s, E)

R(α, r, E) = E(µα.e, r)
R(µα.e, r, E) = R(e, r, E)

For the second last case, we assume that each variable α can be linked to its
surrounding scope µα.e. This is guaranteed by the fact that we consider a fixed
set of subterms.

We sometimes write R(f,R(e, r, E), E) as a shorthand for
⋃

s∈R(e,r,E) R(f, s, E).

Definition 26 (Reachability Function). Let e be a context-free expression
and r be a regular expression. We define Fe,r : Ee,r → Ee,r as follows:

Fe,r(E) = {(f, s) = E(f, s) ∪R(f, s, E) | (f, s) ∈ T (e)×D(r)}

Lemma 13. Function Fe,r is well-defined and monotonic with respect to the
ordering ≤.

Proof. All calls to Fe,r yield well-defined calls to R(, ,) as elements in Ee,r cover
all cases on which R(, ,). Furthermore, the range of function R(, ,) is the set
D(r). Hence, computation will never get stuck.

For monotonicity, we need to show that if E1 ≤ E2 then Fe,r(E1) ≤ Fe,r(E2),
which holds if R(, ,) is monotonic in the last parameter. The proof for mono-
tonicity of R(, ,) is by easy induction over the first parameter. ⊓⊔

The Knaster-Tarski Theorem guarantees that the least fixpoint of Fe,r exists.
Let Xe,r denote the least fixpoint. That is, Xe,r =

⋃∞
i=0 F

i
e,r(⊥) where ⊥ =

{(f, s) = {} | (f, s) ∈ T (e)×D(r)}. Hence, in the sequence of elementsX0
e,r = ⊥

and Xn+1
e,r = Fe,r(X

n
e,r), we find Xe,r = Xm

e,r for some m ≥ 0 where
Xm

e,r = Xm+k
e,r for all k ≥ 0.

For sets R and S of regular expressions, we define R ∼ S if for each r ∈ R
we find s ∈ S where r ∼ s and vice versa.

For the proof of Xe,r(e, r) ∼ reach(e, r) to go through, we need to include
subterms in T (e). As these subterms contain free variables α, we need to map
these variables to their corresponding definition.

Definition 27 (Binding of µ-Expressions). Let e be a context-free expres-
sion. We build a substitution which maps bound variables α in e to their corre-
sponding definition.

S(ε) = id S(φ) = id S(x) = id S(α) = id

S(e + f) = S(e) ⊔ S(f) S(e · f) = S(e) ⊔ S(f)

S(µα.e) = [α1 7→ ψ(e1), . . . , αn 7→ ψ(en), α 7→ µα.e]
where S(e) = [α1 7→ e1, . . . , αn 7→ en] ψ = [α 7→ µα.e]

25

The substitution T (e) is well-defined as variables α introduced by µα are
distinct by assumption. See the cases for concatenation and alternation. In case
of µα.e, we first build S(e) = [α1 7→ e1, . . . , αn 7→ en] where ei may only refer to
α or other variables but not to αi. Hence, the application of ψ(ei) to maintain
the invariant.

Some helper statements which follow by definition.

Lemma 14. Let e be a context-free expression and µα.f ∈ T (e). Let ψ = S(e).
Then, we have that [α 7→ µα.ψ\α(f)](ψ\α(f)) = ψ(f).

Lemma 15. Let e be a context-free expression and r be a regular expression.
Let (µα.f, s) ∈ T (e) × D(r). Then, we have that Xe,r(µα.f, s) = Xe,r(f, s) =
Xe,r(α, s).

Lemma 16. Let e be a context-free expression and r be a regular expression.
Let (f, s) ∈ T (e)×D(r). Then, we have that R(f, s,Xe,r) = Xe,r(f, s).

The generalized statement.

Lemma 17. Let e be a context-free expression and r be a regular expression.
Let ψ = T (e), w be a word, (f, s) ∈ T (e) × D(r) such that ψ(f) ⇒ w. Then,
there exists t ∈ Xe,r(f, s) such that t ∼ dw(s).

Proof. By induction on the derivation ψ(f) ⇒ w and observing the various
shapes of ψ(f).

Case ψ(µα.f):

By definition ψ(µα.f) = µα.ψ\α(f). Hence, we find that
[α 7→ ψ\α](ψ\α(f)) ⇒ w

µα.ψ\α(f) ⇒ w

By Lemma 14, we find that [α 7→ µα.ψ\α(f)](ψ\α(f)) = ψ(f).
By induction, there exists t ∈ Xe,r(f, s) where t ∼ dw(s). By Lemma 15,

Xe,r(f, s) = Xe,r(µα.f, s) and thus we are done.
Case ψ(α):
There must exist µα.f ∈ T (e). Hence, this case can be reduced to the

one above and we find that t ∈ Xe,r(µα, s) where t ∼ dw(s). By Lemma 15,
Xe,r(µα.f, s) = Xe,r(α, s) and thus we are done again.

Case ψ(f1 + f2):

Suppose
ψ(f1) ⇒ w

ψ(f1) + ψ(f2) ⇒ w
. By induction, there exists t ∈ Xe,r(f1, s) where

t ∼ dw(s). By construction Xe,r(f1 + f2, s) ⊇ Xe,r(f1, s) (recall the definition of

F,). Thus, we are done. Same reasoning applies for the (sub)case
ψ(f2) ⇒ w

ψ(f1) + ψ(f2) ⇒ w
.

Case ψ(f1 · f2):

Consider
ψ(f1) ⇒ w1 ψ(f2) ⇒ w2

ψ(f1) · ψ(f2) ⇒ w1 · w2

. By induction on the case (f1, s), there

exists t1 ∈ Xe,r(f1, s) where t1 ∼ dw1
(s). By induction on the case (f2, t1),

26

there exists t ∈ Xe,r(f2, t1) where t ∼ dw2
(t1) ∼ dw1·w2

(s). We have that t ∈
Xe,r(f1 · f2, s) based on the following reasoning.

Xe,r(f1 · f2, s)
⊇

Ff2,Ff1,sXe,r
Xe,r

⊇
Ff2,t1Xe,r

=
Xe,r(f2, t1) ∋ t2

Thus, we are done for this case.
The remaining cases are straightforward. ⊓⊔

Lemma 18. Let e be a context-free expression and r be a regular expression.
Let ψ = T (e). Let n ≥ 0, (f, s) ∈ T (e) × D(r) and t be a regular expression
such that t ∈ Xn

e,r(f, s). Then, there exists word w such that ψ(f) ⇒ w and
t ∼ dw(s).

Proof. By induction over n.
Case n = 0: Statement holds trivially as X0

e,r(f, s) = {}.
Case n =⇒ n+ 1:
We proceed by induction over the structure of f .
Subcase φ: Trivial.
Subcase x:
Consider t ∈ Xn+1

e,r(x, s) = {cnf (dx(s))}. Take w = x and the statement is
satisfied.

Subcase ε:
Consider t ∈ Xn+1

e,r(x, s) = {cnf (s)}. Take w = ε to satisfy the statement.
Subcase α:
Consider

t ∈ Xn+1
e,r(α, s)

= (Fe,r(X
n
e,r))(f, s)

= Xn
e,r(α, s) ∪R(α, s,Xn

e,r)
= Xn

e,r(α, s) ∪Xn
e,r(µα.f, s)

Suppose t ∈ Xn
e,r(α, s). By induction, there exists w such that ψ(α) ⇒ w and

t ∼ dw(s) and thus we can establish the statement. Otherwise, t ∈ Xn
e,r(µα.f, s).

By induction, there exists w such that ψ(µα.f) ⇒ w and t ∼ dw(s). By construc-
tion of ψ we have that ψ(α) = ψ(µα.f) and we are done again.

Subcase µα.f :
Consider

t ∈ Xn+1
e,r(µα.f, s)

= Xn
e,r(µα.f, s) ∪R(f, s,Xn

e,r)
⊆ Xn

e,r(µα.f, s) ∪Xn+1
e,r(f, s)

Suppose t ∈ Xn
e,r(µα.f, s). By induction, there exists w such that ψ(µα.f) ⇒

w and t ∼ dw(s). Hence, we can establish the statement. Otherwise, t ∈ Xn+1
e,r(f, s).

27

By induction, there exists w such that ψ(f) ⇒ w and t ∼ dw(s). By Lemma 14 we
find that [α 7→ µα.ψ\α(f)](ψ\α(f)) = ψ(f). By definition ψ(µα.f) = µα.ψ\α(f).
Hence, we can conclude that ψ(µα.f) ⇒ w and we are done for this subcase.

Subcase f1 + f2:

Consider

t ∈ Xn+1
e,r(f1 + f2, s)

= (Fe,r(Xn
e,r))(f1 + f2, s)

= Xn
e,r(f1 + f2, s) ∪R(f1, s,X

n
e,r) ∪R(f2, s,X

n
e,r)

Suppose t ∈ Xn
e,r(f1 + f2, s). By induction, there exists w such that ψ(f1 + f2)

and t ∼ dw(s). Hence, the statement holds. Suppose t ∈ R(f1, s,X
n
e,r). By

definition R(f1, s,X
n
e,r) ⊆ Xn+1

e,r(f1, s). By induction, there exists w such
that ψ(f1) ⇒ w and t ∼ dw(s). We can conclude that ψ(f1 + f2) ⇒ w and are
done. Otherwise, t ∈ R(f2, s,X

n
e,r). Similar reasoning applies as in the previous

case.

Subcase f1 · f2:

Consider

t ∈ Xn+1
e,r(f1 · f2, s)

= Xn
e,r(f1 · f2, s) ∪R(f2,R(f1, s,X

n
e,r), X

n
e,r)

Suppose t ∈ Xn
e,r(f1 ·f2, s). By induction there exists w such that ψ(f1 ·f2) and

t ∼ dw(s). Hence, the statement holds. Otherwise, t ∈ R(f2,R(f1, s,X
n
e,r), X

n
e,r).

There exists t1 ∈ R(f1, s,X
n
e,r) such that t ∈ R(f2, t1, X

n
e,r). By induction on

t1 ∈ R(f1, s,X
n
e,r), there exists w1 such that ψ(f1) ⇒ w1 and t1 ∼ dw1

(s).
by induction on t ∈ R(f2, t1, X

n
e,r), there exists w2 where ψ(f2) ⇒ w2 and

t2 ∼ dw2
(t1). We can conclude that ψ(f1 · f2) ⇒ w1 · w2 and t ∼ dw1·w2

(s) and
are thus done. ⊓⊔

Lemma 19. Let e be a context-free expression and r be a regular expression.
Then, we have that Xe,r(e, r) ∼ reach(e, r)

Proof. Follows from Lemmas 17 and 18 and the fact that T (e)(e) = e.

E Proofs

For some proofs we make use of the terminology and results introduced in the
above.

E.1 Proof of Lemma 3

Proof. By induction on the derivation e⇒ w. ⊓⊔

28

E.2 Proof of Lemma 4

Proof. By induction on the derivation ⊢ p : e. For brevity, we consider some
selected cases.

Case µα.e:

By assumption
⊢ p : [α 7→ µα.e](e)

⊢ Fold p : µα.e
. By induction, [α 7→ µα.e](e) ⇒ flatten(p).

By definition, flatten(Fold p) = flatten(p). Hence, µα.e⇒ flatten(Fold p).
Case e+ f :
Subcase p = Inl p1:
By induction, e ⇒ flatten(p1). By definition, flatten(Inl p1) = flatten(p1).

Hence, e+ f ⇒ flatten(p).
Subcase p = Inr p2: Similar reasoning as above. ⊓⊔

E.3 Proof of Theorem 3

Proof. By definition e ≤ r iff (∀w ∈ Σ∗, e ⇒ w implies r ⇒ w) iff (∀w ∈ Σ∗,
e⇒ w implies dw(r) ⇒ ε) iff each expression in reach(e, r) is nullable. ⊓⊔

E.4 Proof of Lemma 5

Proof. We generalize the statement as follows. Consider e and r fixed. For f, f ′ ∈
T (e) we write f < f ′ to denote that f is a subexpression in f ′ where f 6= f ′. Let

ψ = S(e). Consider (f, s) ∈ T (e)×D(r). Let Γ = {s
ψ(µα.f ′)
 reach(ψ(µα.f ′), s) |

µα.f ′ ∈ T (e) ∧ f < µα.f ′}. So, the environment Γ consists of all assumptions
which are in the surrounding scope of f .

We claim that Γ ⊢ s
ψ(f)
 reach(ψ(s), s) is derivable. The statement follows

for e and r from the fact that for e the environment Γ is empty and ψ(e) = e.

We verify that Γ ⊢ s
ψ(f)
 reach(ψ(s), s) is derivable by induction on f .

Case µα.f : We observe that ψ(µα.f) = µα.ψ\α(f). Hence, the desired state-
ment

Γ ⊢ s
ψ(µα.f)
 reach(ψ(µα.f), s)

is equal to

Γ ⊢ s
µα.ψ\α(f)
 reach(µα.ψ\α(f), s).

By rule inversion,

Γ ⊢ s
µα.ψ\α(f)
 reach(µα.ψ\α(f), s)

if

Γ∪{s
µα.ψ\α(f)
 reach(µα.ψ\α(f), s)} ⊢ s

[α7→µα.ψ\α(f)](ψ\α(f))
 reach(µα.ψ\α(f), s) (1).

29

By assumption Γ has the proper form for ψ(µα.f). Hence, Γ ∪ {s
ψ(µα.f)

reach(ψ(µα.f), s)} has the proper form for f . By induction,

Γ ∪ {s
ψ(µα.f)
 reach(ψ(µα.f), s)} ⊢ s

ψ(f)
 reach(ψ(f), s) (2).

We observe that ψ(f) = [α 7→ µα.ψ\α(f)](ψ\α(f)) and reach(µα.ψ\α(f), s) =
reach([α 7→ µα.ψ\α(f)](ψ\α(f)), s) = reach(ψ(f), s). Hence, (1) and (2) are equal
and therefore the desired statement can be derived.

Case e+ f : Expressions e and f share the same Γ . By induction, Γ ⊢ s
ψ(e)

reach(ψ(e), s) and Γ ⊢ s
ψ(f)
 reach(ψ(f), s). By rule (Alt), Γ ⊢ s

ψ(e)+ψ(f)

reach(ψ(e), s) ∪ reach(ψ(f), s). We observe that ψ(e + f) = ψ(e) + ψ(f) and
reach(ψ(e+ f), s) = reach(ψ(e), s) ∪ reach(ψ(f), s) and are done for this case.

Case e · f : Expressions e and f share the same Γ . By induction, Γ ⊢

s
ψ(e)
 reach(ψ(e), s). Suppose reach(ψ(e), s) = {}. Then, Γ ⊢ s

ψ(e)·ψ(f)
 {}.

Under the assumption, reach(ψ(e) · ψ(f), s) = {} and we are done. Otherwise,
reach(ψ(e), s) = {s1, ..., sn} for n > 0. By induction, for each combination (f, si),

Γ ⊢ si
ψ(f)
 reach(ψ(f), si). By rule (Seq), Γ ⊢ s

ψ(e)·ψ(f)
 reach(ψ(f), s1)∪ . . .∪

reach(ψ(f), sn). By the fact that reach(ψ(f), reach(ψ(e), s)) = reach(ψ(f), s1)∪
. . . ∪ reach(ψ(f), sn) we reach the desired conclusion.

Cases x, ε, φ: Straightforward. ⊓⊔

E.5 Proof of Lemma 6

The proof requires a couple of technical statements.

Lemma 20 (Strengthening). Let e be a context-free expression, r be a regular
expression, S be a set and Γ ′, Γ be two environments such that Γ ′ ⊇ Γ and
Γ ′ ⊢ r

e
 S where in the derivation tree the extra assumptions Γ ′ − Γ are not

used. Then, we also find that Γ ⊢ r
e
 S.

Proof. By induction on the derivation.

Lemma 21 (Weakening). Let e be a context-free expression, r be a regular
expression, S be a set and Γ ′, Γ be two environments such that Γ ′ ⊇ Γ and
Γ ⊢ r

e
 S. Then, we also find that Γ ′ ⊢ r

e
 S

Proof. By induction on the derivation.

Lemma 22 (Substitution). Let µα.f be a context-free expression, r be a regu-

lar expression and S a set such that ⊢ r
µα.f
 S. Then, we find that ⊢ r

[α7→µα.f](f)

S.

Proof. We generalize the statement and include some environment Γ . We write

D to denote the derivation tree for Γ ⊢ r
µα.f
 S. The shape of D is as follows.

(Rec)

. . .

Γ ∪ {r
µα.f
 S} ⊢ r

[α7→µα.f](f)
 S

Γ ⊢ r
µα.f
 S

30

Suppose, in the upper derivation tree (denoted by . . .), there are no appli-
cations of (Hyp) for µα.f . By Lemma 20, we can immediately conclude that

Γ ⊢ r
[α7→µα.f](f)
 S is derivable as well. Otherwise, we consider all applications

of (Hyp) for µα.f . In the below, we show only one such application.

(Rec)

(Hyp)
Γ ′ ∪ {r

µα.f
 S} ⊢ r

µα.f
 S

. . .

Γ ∪ {r
µα.f
 S} ⊢ r

[α7→µα.f](f)
 S

Γ ⊢ r
µα.f
 S

where by construction Γ ′ ⊇ Γ .
Each such (Hyp) rule application can be replaced by the derivation tree D

where we make use of Γ ′ ∪ {r
µα.f
 S} instead of Γ (justified by Lemma 21). In

fact, we can argue that the extra assumption r
µα.f
 S is no longer required due

to the elimination of rule (Hyp). Hence, we can argue that Γ ⊢ r
[α7→µα.f](f)
 S

is derivable. ⊓⊔

We write ek to denote that all recursive constructs in e have been unfolded
at least k-times.

Lemma 23. Let e be a context-free expression, r be a regular expression. Then,

for any n ≥ 0 there exists a k such that S ⊇ Xn
e,r(e, r) where ⊢ r

ek

 S.

Proof. We define

R′(φ, r) = {}
R′(ε, r) = {cnf (r)}
R′(x, r) = {cnf (dx(r))}
R′(e + f, r) = R′(e, r) ∪R′(f, r)
R′(e · f, r) =

⋃

s∈R′(e,r)R
′(f, s)

R′(α, r) = {}
R′(µα.e, r) = {}

S1: For a fixed e and r, for any (f, s) ∈ T (e)×D(r) and n ≥ 0, there exists
k such that R′((ψ(f))k, s) ⊇ Xn

e,r(f, s). Like the proof of Lemma 18, we verify
the statement by applying induction over n and observing the structure of f .

Case n = 0: Straightforward.
Case n =⇒ n+ 1:
We proceed by induction over the structure of f .
Subcase µα.f . We have thatXn+1

e,r(µα.f, s) ⊆ Xn
e,r(µα.f, s)∪Xn+1

e,r(f, s).
By induction on n, R′((ψ(µα.f))k1 , s) ⊇ Xn

e,r(µα.f, s) for some k1. By in-
duction on f , R′((ψ(f))k2 , s) ⊇ Xn+1

e,r(f, s) for some k2. Recall that [α 7→
µα.ψ\α(f)](ψ\α(f)) = ψ(f) and ψ(µα.f) = µα.ψ\α(f). Hence, (ψ(µα.f))

1 =
ψ(f). Function R′(,) is a monotone function respect to unfoldings. We set

31

k = k1 + k2. Then, R′((ψ(µα.f))k , s) ⊇ Xn+1
e,r(µα.f, s) and we are done for

this case.

S2: For ⊢ r
ek

 S, we have that S ⊇ R′(ek, r). By induction on k and
observing the structure of e.

Desired statement follows from S1 and S2. ⊓⊔

We are in the position to proof Lemma 6. We recall the statement of this
proposition: Let e be a context-free expression, r be a regular expression and S
be a set of expressions such that ⊢ r

e
 S. Then, we find that S ⊇ reach(e, r).

Proof. Assume the contrary. Then, there exists s ∈ S and s 6∈ Xn
e,r(e, r) for

some n ≥ 0. By Lemma 22, we find that ⊢ r
ek

 S for any k. By Lemma 23,
S ⊇ Xn

e,r(e, r) which contradicts the assumption. ⊓⊔

Based on the above, we obtain a greatest fixpoint method to compute reach(e, r).
We consider e and r fixed. For each combination (f, s) ∈ T (e) × D(r), we set
the respective S to D(r). In each greatest fixpoint step, we pick a combination

where we remove one of the elements in S. Check if ⊢ f
s
 S 3 is still derivable.

If yes, continue the process of eliminating elements.

E.6 Proof of Lemma 24

Definition 28 (Well-Behaved Upcast). Let e be a context-free expression, r
be a regular expression, and c be a coercion of type U(e, r), where we write U(e, r)
for the type (e,+reach(e, r)) → r.

We say c is a well-behaved upcast iff for any ⊢ p : e and ⊢r t : +reach(e, r)
we find that ⊢r c (p, t) : r.

We further define environments ∆ by

∆ ::= {} | {v : U(e, r)} | ∆ ∪∆

We say that ∆ is a well-behaved upcast environment iff each (v : U(e, r)) ∈ ∆
is a well-behaved upcast coercion.

Lemma 24 (Soundness). Let ∆ be a well-behaved upcast environment. Let e
be a context-free expression and r be a regular expression such that ∆ ⊢ ⇑ c :
U(e, r) for some coercion c. Let p and t be parse trees such that ⊢ p : e and
⊢r t : +reach(e, r) where flatten(t) ∈ L(dflatten(p)(r)). Then, we find that ∆ ⊢
c ((p, t)) : r.

Proof. By induction on the derivation to construct coercions. For brevity, we
sometimes omit Γ in case it is not relevant.

Case ε: By assumption ⊢ p : ε and ⊢ t : +reach(ε, r).
Thus, p = Eps and t : cnf (r).

3 Need to include the environment, apply ψ, as we already start if with some environ-
ment, can only apply (Hyp) after one application of (Rec) ...

32

Inversion yields a regular coercion c1 : cnf (r) → r.
Hence (λ(Eps, q).c1 (t))(ε, t) = c1 (t) with ⊢ c1 (t) : r.
Case x: By assumption ⊢ p : x and ⊢ t : +reach(x, r).
Thus p = Sym x and ⊢ t : +reach(x, r) where +reach(x, r) = cnf (dx(r)).
Inversion yields a regular coercion c : (x, cnf (dx(r))) → r.
Hence ⊢ c ((p, t)) : r
Case e·f : By assumption ⊢ p : e·f and ⊢ t : +reach(e·f, r) and flatten(t) ∈

L(dflatten(p)(r)).
Inversion for p yields p = Seq p1 p2 such that ⊢ p1 : e and ⊢ p2 : f . It holds

that flatten(p) = flatten(p1) · flatten(p2).
Further,

reach(e · f, r) =
⋃

{reach(f, s) | s ∈ reach(e, r)}

= reach(f,+reach(e, r))

so that ⊢ t : +reach(f,+reach(e, r)).
Now

flatten(t) ∈ L(dflatten(p)(r)) = L(dflatten(p1)·flatten(p2)(r))

⊆ L(dflatten(p2)(+reach(e, r)))

Inversion on the coercion derivation yields

Γ ⊢ ⇑ c1 : U(e, r)

Γ ⊢ ⇑ c2 : U(f,+reach(e, r))

Induction on the derivation of c2 yields ⊢ c2 ((p2, t)) : +reach(e, r).
Induction on the derivation of c2 using p1 for p and c2 ((p2, t)) for t yields

⊢ c1 ((p1, c2 ((p2, t)))) : r as desired.
Case e + f : By assumption ⊢ p : e + f and ⊢ t : +reach(e + f, r) and

flatten(t) ∈ L(dflatten(p)(r)). We distinguish among the following subcases.
Subcase p = Inl p1: At this point, we have ⊢ p1 : e by inversion of the

assumption. We conclude that flatten(p) = flatten(p1) ∈ L(e). By Lemma 4,
e⇒ flatten(p1) and therefore we find that dflatten(p1)(r) is similar to an element
of reach(e, r). Because flatten(t) ∈ L(dflatten(p)(r)) we conclude that flatten(t) ∈
L(+reach(e, r)). By Lemma 7, it must be that b1 (t) = Just t1 for some t1 where
⊢ t1 : +reach(e, r). By induction we find that ⊢ c1 ((p1, t1)) : r. By combining
the above results, we conclude that c ((p, t)) : r, too.

Subcase p = Inr p2: Analogously.
Case µα.e:
By assumption ⊢ p : µα.e and ⊢ t : +reach(µα.e, r) and flatten(t) ∈

L(dflatten(p)(r)).
By inversion of the assumption, p = Fold p′, ⊢ p′ : [α 7→ µα.e](e), and

flatten(p) = flatten(p′).
Further, as reach(µα.e, r) = reach([α 7→ µα.e](e), r) (by Lemma 2), we obtain

⊢ t : +reach([α 7→ µα.e](e), r).

33

Subcase: If (µα.e, r) is not in Γ , then inversion yields some c′ such that

Γ ∪ {v : (µα.e, r)} ⊢ ⇑ c′ : U([α 7→ µα.e](e), r)

Hence, induction is applicable observing ⊢ p′ : [α 7→ µα.e](e), ⊢ t : +reach([α 7→
µα.e](e), r), and that the flattening assumption holds. Thus, ⊢ c′ ((p′, t)) : r and
we need to show that

⊢ (rec v.λ(Fold p′, t).c′ ((p′, t)))(Fold p′, t) : r

⇔ By subject reduction

⊢ (λ(Fold p′, t).c′ ((p′, t))[v 7→ (rec v.λ(Fold p′, t).c′ ((p′, t)))])(Fold p′, t) : r

⇔ By subject reduction

⊢ c′ ((p′, t))[v 7→ (rec v.λ(Fold p′, t).c′ ((p′, t)))] : r

⇔ Substitution lemma backwards

v : (µα.e,+reach(µα.e, r)) → r ⊢ c′ ((p′, t)) : r

The last statement holds and thus awe are done.
Subcase: If v : (µα.e, r) ∈ Γ , then the statement holds immediately. ⊓⊔

E.7 Proof of Lemma 9

Proof. The direction from left to right follows immediately.

Suppose ε ∈ L(e) which implies e⇒ ε. Consider the case
[α 7→ µα.e](e) ⇒ ε

µα.e ⇒ ε
.

We argue that if [α 7→ µα.e](e) ⇒ ε then e ⇒ ε. This can be verified by the
number of unfolding steps applied on µα.e.

Consider [α 7→ µα.e](e) ⇒ ε where no further unfolding steps are executed
on µα.e. Then, by induction on the derivation [α 7→ µα.e](e) ⇒ ε we obtain a

derivation e⇒ ε. For clarity, we write f
6µα
⇒ ε to denote a derivation in which no

unfolding step takes place for µα.e.
Consider the induction step. By induction, if [α 7→ µα.e](e) ⇒ ε then [α 7→

µα.e](e)
6µα
⇒ ε. By induction on the derivation

6µ
⇒ we can argue that we obtain

e
6µα
⇒ ε. Hence, if [α 7→ µα.e](e) ⇒ ε then e

6µα
⇒ ε.

The above reasoning considers the elimination of the unfolding step for a
specific µα.e. By induction, we can argue that any unfolding step can eliminated.

We write
6µ
⇒ to denote the derivation where no unfolding steps occur. Hence, if

e⇒ ε then e
6µ
⇒ ε. By induction on

6µ
⇒ we can argue that N (e) holds. ⊓⊔

E.8 Proof of Lemma 10

Proof. Based on the observations in the proof of Lemma 9, from ε ∈ L(e) we can

conclude e
6µ
⇒ ε. Then, by induction on

6µ
⇒ we can derive the desired statements.

⊓⊔

34

E.9 Proof of Theorem 4

Proof. Follows immediately from Lemmas 24 and 10. Note that all elements in
reach(e, r) are nullable. Hence, flatten(mkE (+reach(e, r))) ∈ dflatten(p)(r).

E.10 Proof of Lemma 25

Definition 29 (Well-Behaved Downcast). Let e be a context-free expres-
sion and r be a regular expression. We write D(e, r) to denote the type r →
Maybe(e,+reach(e, r)). Let c be a coercion of type D(e, r). We say c is a well-
behaved downcast coercion iff (1) for any ⊢r t : r we find that ⊢ c (t) :
Maybe(e,+reach(e, r)). Moreover, (2) if c (t) = Just(p, t′), then flatten(t) =
flatten(p) · flatten(t′). (3) If c (t) = Nothing, then there exist no ⊢ p : e and
⊢r t′ : +reach(e, r) such that flatten(t) = flatten(p) · flatten(t′).

We say that ∆ is a well-behaved downcast environment iff each (v : D(e, r)) ∈
∆ is a well-behaved downcast coercion.

In case (2) holds, we can conclude that flatten(u) ∈ L(dflatten(p)(r)) due to
⊢ t : r and Lemma 4 and the fact that derivatives denote left quotients.

Lemma 25. Let ∆ be a well-behaved downcast environment, e be a context-
free expression, r a regular expression, and c a coercion such that ∆ ⊢ ⇓ c :
D(e, r). (1) For each regular parse tree ⊢r t : r we find that ∆ ⊢ c (t) :
Maybe(e,+reach(e, r)).

Moreover, (2) if c (t) = Just(p, t′), then flatten(t) = flatten(p)·flatten(t′) and
flatten(t′) ∈ dflatten(p)(r). (3) If c (t) = Nothing, then there exist no ⊢ p : e and
⊢r u : +reach(e, r) such that flatten(t) = flatten(p) · flatten(u) and flatten(u) ∈
dflatten(p)(r).

Proof. By induction on the downcast coercion derivation.
Case Eps. (1) follows easily. For (2), we find that flatten(Eps)·flatten(b (t)) =

ε · flatten(t) = flatten(t). Case (3) never arises here.
Case Sym x. (1) is again straightforward. Case (2), suppose c (t) = Just(Sym x, t′),

then flatten(Sym x) · flatten(t′) = x · flatten(t′) = flatten(t). Case (3), suppose
c (t) = Nothing. Then, b (t) = Nothing which implies dx(r) denotes the empty
language and therefore no p, t′ with the desired property can exist.

Case e+f . By induction we obtain c1 such that Γ ⊢ c1 (t) : Maybe(e,+reach(e, r));
if c1 (t) = Just(p1, t1), then flattent = flatten(p1) · flatten(t1). In this case,
c (t) = Just(Inl p1, b1 (t1)). By property of regular coercions (see Lemma 7),
we find that flatten(t) = flatten(p1) · flatten(b1 (t1)) = flatten(p1) · flatten(t1).
If c1 (t) = Nothing, then no such p1 and t1 exist and therefore also no t′1 of the
form ⊢ t′1 : +reach(e+ f, r) exists.

Similar reasoning applies to c2. On the other hand, if c (t) = Just(p1, t
′
1) then

one of the respective cases of either c1 or c2 applies. Similar reasoning applies
in case of c (t) = Nothing as any ⊢ p : e + f has either form Inl p1 or Inr p2,
where neither suitable p1 nor p2 exist, no such p can exist either.

35

Case e·f . By induction, we obtain c1, c2 such that Γ ⊢ c1 (t) : Maybe(e,+reach(e, r))
and Γ ⊢ c2 (t1) : Maybe(f,+reach(f,+reach(e, r))). Hence, Γ ⊢ c (t) : Maybe(e·
f,+reach(e · f, r)).

Suppose c (t) = Just(p, t2). Then, c1 (t) = Just(p1, t1) and c2 (t1) = Just(p2, t2).
By induction, flatten(t) = flatten(p1) · flatten(t1) and flatten(t1) = flatten(p2) ·
flatten(t2). Hence, flatten(t) = flatten(Seq p1 p2) · flatten(t2).

Also, flatten(t1) ∈ dflatten(p1)(r) and flatten(t2) ∈ dflatten(p2)(+reach(e, r)),
by induction, but as flatten(t1) = flatten(p2)·flatten(t2), we know that flatten(t2) ∈
dflatten(p2)(dflatten(p1)(r)) = dflatten(Seq p1 p2)(r).

Suppose c (t) = Nothing. Then, either c1 (t) = Nothing or if c1 (t) =
Just(p1, t1) then c2 (t1) = Nothing.

If c1 (t) = Nothing, then there exist no ⊢ p1 : e and ⊢ t1 : +reach(e, r) such
that flatten(t) = flatten(p1)·flatten(t1). If there was some suitable p = Seq p1 p2
with ⊢ p : e · f , then we can construct suitable t1 for p1. Contradiction.

If c1 (t) = Just(p1, t1) and c2 (t1) = Nothing, then we can derive a similar
contradiction for p2 and t2.

Case µα.e. By induction, Γ∪{v : (µα.e, r)} ⊢ c′ (t) : Maybe([α 7→ µα.e](e),+reach([α 7→
µα.e](e), r)). By subjection reduction, Γ ⊢ c (t) : Maybe(µα.e,+reach(µα.e, r)).

Suppose c (t) = Just(p, t′). We find that p = Fold p′. We have that +reach([α 7→
µα.e](e), r) = +reach(µα.e, r). Hence, ⊢ t′ : +reach(µα.e, r) implies ⊢ t′ :
+reach([α 7→ µα.e](e), r) and vice versa. By induction, flatten(t) = flatten(p′) ·
flatten(t′) and this establishes (2). Suppose c (t) = Nothing. Then, c′ (t) =
Nothing. By induction, no suitable p′ and t′ exists where ⊢ p′ : [α 7→ µα.e](e)
and ⊢ t′ : +reach([α 7→ µα.e](e), r). Hence, there can be no suitable p and t′

either where ⊢ p : µα.e and ⊢ t′ : +reach(µα.e, r) and we are done. ⊓⊔

36

	A Computational Interpretation of Context-Free Expressions

