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Abstract 

We introduce a notion of partial derivative of a regular expression and apply it to finite 
automaton constructions. The notion is a generalization of the known notion of word derivative 
due to Brzozowski: partial derivatives are related to non-deterministic finite automata (NFA’s) 
in the same natural way as derivatives are related to deterministic ones (DFA’s). We give 
a constructive definition of partial derivatives and prove several facts, in particular: (1) any 
derivative of a regular expression r can be represented by a finite set of partial derivatives of r; 
(2) the set of all partial derivatives of r is finite and its cardinality is less than or equal to one 
plus the number of occurrences of letters from d appearing in r; (3) any partial derivative of 
r is either a regular unit, or a subterm of r, or a concatenation of several such subterms. These 
theoretical results lead us to a new algorithm for turning regular expressions into relatively small 
NFA’s and allow us to provide certain improvements to Brzozowski’s algorithm for constructing 
DFA’s. We also report on a prototype implementation of OUT NFA construction and present 
several examples. 

0. Introduction 

In 1964 Janusz Brzozowski introduced word derivatives of regular expressions and 

suggested an elegant algorithm for turning a regular expression r into a deterministic 

finite automaton (DFA) whose states are represented by derivatives of r [8]. 

Since then, derivatives of regular expressions have been recognized as a useful and 

productive concept. Conway [l l] uses derivatives to develop various computational 
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procedures in the algebra of regular expressions and to investigate logical properties 

of this algebra. Krob [19] extends this differential calculus to a more general algebra 

of K-rational expressions. Brzozowski and Leiss [9] employ the idea of derivatives 

(in a slightly different form of left quotients of language equations) to describe re- 

lations between regular languages, boolean automata, and sequential networks. Using 

derivatives of a particular kind, so-called continuations, Berry and Sethi [5] provide 

a solid theoretical background for the McNaughton and Yamada algorithm [22] (a 

similar algorithm is due to Glushkov [14]) which turns a regular expression into a 

non-deterministic finite automaton (NFA). Ginzburg [ 131 uses derivatives to develop a 

procedure for proving equivalence of regular expressions; further development of this 

procedure is provided by Mizoguchi et al. [23]. Yet another procedure for proving 

equivalence of extended regular expressions is suggested by this author and Mosses 

[3] and is also based on some constructions closely related to derivatives. 

In the present paper we come up with a new notion of partial derivative which is, 

in a sense, a “non-deterministic generalization” of that of a derivative: we demonstrate 

that partial derivatives are related to NFA’s in the same natural way as derivatives are 

related to DFA’s. 

In Section 2 we introduce partial derivatives which are regular expressions appearing 

as components of so-called non-deterministic linear forms. We give a set of recursive 

equations to compute linear forms and partial derivatives of a given regular expression. 

Then some basic properties of partial derivatives are established; in particular, we prove 

that any derivative of r can be represented by a finite set of some partial derivatives 

of r. 
In Section 3 we study further properties of partial derivatives and prove two theorems 

which are the main theoretical results of this paper. The first theorem demonstrates that 

the set of all (syntactically distinct) partial derivatives of any regular expression r is 

finite2 and its cardinality is quite small - less than or equal to one plus the number of 

occurrences of alphabet letters appearing in r. The second theorem clarifies the internal 

structure of partial derivatives. It turns out that any partial derivative of r is either a 

regular unit, or a subterm of r, or a concatenation of several such subterms. We also 

discuss some direct consequences of these two theorems. 

In Section 4 we apply the above theoretical results to a classical problem of turning 

regular expressions into finite automata. It should be noted that there exist several 

classical algorithms performing this task [8,22, 14,311. Nevertheless, new algorithms, 

aimed at reducing sizes of resulting automata, improving their performance, etc., keep 

appearing [5,7, 10, 171 (cf. also [32] for a survey). 

We present two new finite automaton constructions based on partial derivatives. The 

main point of the first one is that it turns a regular expression r into an NFA whose 

states are represented by partial derivatives of r. This implies that the above upper 

bound on the cardinal@ of the set of partial derivatives holds as an upper bound on 

the number of states of our NFA’s. Note that this upper bound is exactly the number 

’ Note that derivatives do not enjoy this property. 
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of states of NFA’s produced by a classical algorithm by McNaughton and Yamada 

[22] and Glushkov [14], as well as by its improvements due to Berry and Sethi [5] 

and Briiggemann-Klein [7]. In many cases our NFA’s have actually fewer (in some 

cases, much fewer) states than this upper bound. Moreover, there are examples when 

our NFA’s turn out to be smaller than those produced by a tricky Chang and Paige’s 

algorithm [lo] which uses a non-trivial representation of NFA’s and involves several 

optimizations. 

The second construction presented in Section 4 is a modification of Brzozowski’s 

one [8]: it turns a regular expression Y into a DFA whose states are represented by 

finite sets of partial derivatives. We discuss the advantages which are due to the use 

of partial derivatives (rather than derivatives) in this construction. 

We have implemented our algorithm for turning regular expressions into NFA as an 

algebraic program in 0BJ3 (cf. [16] for the description of the language). In Section 5 

we briefly describe this implementation and present and discuss several examples. 

Finally, in Section 6 we discuss the results of the present work and point out some 

directions for further research on partial derivatives. 

To make the paper self-contained, we start with basic notions and notation. We 

assume the reader to be familiar with basic notions of universal algebra such as sig- 

natures, homomorphisms, congruences, and quotients. 

1. Preliminaries 

The purpose of this section is to recall some definitions and facts concerning regular 

languages, finite automata, regular expressions, and derivatives. 

1.1. Semilattices, monoids, and semirings 

Given a set X, we denote its cardinality by IX], its power-set (the set of all subsets 

of X) by 9(X), and the set of all finite subsets of X by Set[X]. 
An upper semilattice is an algebra with a binary operation +, called join, which 

is associative, commutative, and idempotent, i.e. satisfies the following set of axioms, 

which will be called ACI-axioms: 

a+(b+c)=(a+b)+c 

a+b=b+a 

(1) 

(2) 

a+a=a. (3) 

We denote by &‘(ACZ) the least congruence generated by these equations (on some 

algebra having join in its signature) and call it an AU-congruence. If the join has 

a neutral element 0 (which we call zero), one obtains an upper semilattice with the 
bottom satisfying an additional Z-axiom: 

a+O=a. (4) 
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We shall refer to the set of equations (l)-(4) as to ACZZ-axioms; a corresponding 

least congruence S(ACZZ) (on an algebra with an appropriate signature) is called an 

ACZZ-congruence. Note that the set Set[X] forms an upper semilattice with the union 

_ U _ as the join and the empty set 0 as the bottom. 

Let JX? be a finite alphabet (a set of letters). Then xZ* denotes the set of all finite 

words over d and also the free monoid over ~2 with concatenation of words _ . _ 

as multiplication, and the empty word 1 as the neutral element. Like any monoid, it 

satisfies the following axioms: 

(a.b).c=a.(b.c) (5) 

a.A=l.a=a (6) 

An idempotent semiring is an algebra with constants 0, R and two binary operations 

+ and - such that it is simultaneously an upper semilattice (w.r.t. 0 and +) and a 

monoid (w.r.t. 2 and _. _) and, in addition, satisfies the following equational axioms: 3 

a~o=o~a=o, (7) 

a.(b+c)=a.b+a.c (8) 

(a+b).c=a.c+b.c (9) 

We shall refer to the set of all the Eqs. (l)-(9) as to SR-axioms; the least con- 

gruence generated by these (on an algebra with an appropriate signature) is called 

SR-congruence and denoted by b(SR). 

1.2. Regular languages and finite automata 

A language L over an alphabet & is a subset of d*. The set Reg[d] of all 

regular (also called rational) languages over d is the least subset of the powerset 

P(&*) which includes the empty set 0, the singletons {A} and {a} for all a E & 

and is closed under standard regular (rational) operations on languages - concatenation 

Li . Lz, union Li U Lz, and iteration (Kleene star) L* - all defined in the usual way. 

The set Reg[d], together with the regular operations, forms an algebra of regular 

languages (or a regular algebra, for short). Let Regl[d] be a subset of Reg[d] 
consisting of all the regular languages containing the empty word 2. The complement 

of this subset is denoted by RegO[d] and consists of regular languages that are subsets 

of the set df = d . d* of all non-empty words over ~2 

Given a language L, a left quotient of L w.r. 1. a word w, written w-‘L, is the 

language {u E d* ) w . u E L}. It follows, for any words w, u E &*, that membership 

w E L is equivalent to 1 E w-‘L and that the left quotient (w f u)-‘L is equal to 

u-‘(w-‘L). Any 1 fi e quotient of a regular language L is a regular language too and 

the set {w-‘L ) w E d*} of all the let? 

finite. 

3 Concatenation has higher priority than join. When 

expressions. 

quotients of L w.r.t. the words over JX? is 

appropriate, we omit the concatenation symbol from 
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We consider a (non-deterministic) finite automaton M over an alphabet d as a 
quadruple M = (44, z, po, F) where M is a set of states, z : M x d -+ Set[M] is 
a transition function, (which can also be represented as a relation r C M x d x M), 
~0 E M is an initial state, and F E M is a set of fmal (terminal) states.4 The 
automaton is called deterministic if IQ, x)1 < 1 for all p E M, x E d; in this case 
the transition function is represented as a partial one, z : M x &GM, returning a 
state or nothing. The function can always be completed to a total one by adding one 
“sink” state 0 to M such that ~(0, x) = 0 for all x E d. In any of the above cases, 
the extension r(p, w) of the transition function to the words w E JCP is defined in 
the usual way (by recursion on w). A word w E d* is said to be accepted by a state 
p E M if T(/.L, w) n F # 0. The set of all words accepted by a state p is denoted by 
Y.&L); then the language ZM(~O) is said to be recognized by M. 

Given a deterministic automaton M, the following important equation holds: 

YM(0, w)) = w +%4(P) (10) 

for all states p E M and words w E d*. In particular, the set of words L?M(~) 
accepted by a state p = z(~o, w) is exactly the left quotient w-‘Z&e) of the 
language recognized by M. 

This leads to the following abstract construction of a DFA recognizing a given 
regular language L: take the set of states M to be the set of left quotients {w-‘L ) 

w E d’ } with the initial state ~0 = i-‘.l = L and the set of final states F = {p E M 1 

I E p}; then define the transition function by r(p, x) = x-‘p. This construction comes 
from the well-known Myhill - Nerode theorem [24,25,27] (cf. also [26, p. 93). 

1.3. Regular expressions 

Regular (also called rational) expressions are terms on the signature of the regular 
algebra Reg[d]. Actually, there exist different ways of choosing the signature and of 
formalizing the algebra. In this paper we follow the idea of [3] that Reg[d] should 
be regarded as an order-sorted algebra [15] having a sort d for an alphabet which 
is a subsort of a sort Reg for all the regular expressions. Here we also introduce two 
subsorts of Reg, namely RegO and Regl, to distinguish regular expressions denoting 
elements of RegO[d] and Regl[d], respectively. 

To sum up, the order-sorted signature REG over the alphabet d = {xi, x2,. . . ,Xk} is 
presented in Table 1. (The argument places of operations are indicated by the underbar 
character “_“. Kleene star has the highest priority among all the operations on regular 
expressions.) 

Sets of ground terms on the signature REG of the sorts Reg, RegO, and Regl are 
defined in the usual way and denoted by Y_R=~, Y_R~~o, and FRegi respectively. Note 
that T&S is a disjoint union of F_R@ and y&?gi. In what follows we Call the CleInCntS 

of FReg regular terms. 

4 This is not the most general definition, since it does not allow I-transitions; but in this paper we need only 

this particular kind of NFAs. 
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Table 1 

Signature REG 

sorts d, Reg, RegO, Regl. 

SUbSOtiS d < RegO < Reg, Regl <Reg. 

Constants 0 : RegO; i : RegI; XI, ~2,. ., .xk : a’. 

Operations _ + _ : Reg Reg -+ Reg _ _ : Reg Reg + Reg 

_ + _ : Regl Reg + Regl _ _ : RegO Reg + RegO 

_ + _ : Reg Regl + Regl _. _ : Reg RegO + RegO 

_ + _ : RegO RegO 3 RegO _. _ : Regl Regl + Regl 

_* : Reg -+ Regl. 

A regular term t denotes a regular language Z(t) and this interpretation is determined 
by the following homomorphism B(_) from the absolutely free algebra of regular terms 
FRET to Reg[d]: 

9(O) = 0, Y(A) = {A), JYaJ = {a), _Y(r . t) = 5?(r). P(t), 

_Y(v + t) = Y(u) u Z(t), T(t*) = 9(t)* 

for all a E d, r, t E FRET. It can be checked that the homomorphism maps ~~~~~ and 
F,+gl to RegO[A] and Regl[A], respectively - as expected according to the order- 
sorted structure of the algebra. Let b(Reg) be the kernel of this homomorphism, i.e. 
the congruence on ~~~~ consisting of all the pairs (tl, t2) such that P’(tt ) = 9’(t2) 

(this congruence can also be considered as a set of all ground equations tl = t2 valid 
in Reg[d]). 

Recall that Reg[d] is an idempotent semiring, i.e. satisfies all the SR-axioms (l)- 
(9). There are further axioms involving Kleene star, e.g. 

A+a*+a=/I+a.a* =a*, (11) 

(a + A)* = a*, (12) 

and many others. (It is known that the whole set of equational properties of Kleene 
star cannot be captured by a finite set of equational axioms - the ground equational 
theory of Reg[d] is not finitely based [28, 11,291. But for the purposes of this paper 
we shall need only SR-axioms and the simplest properties of the star.) 

Thus, we have the following chain of congruences 

ra c &(A CZ) c &(A CZZ) c b(M) c 6(Reg) (13) 

and the corresponding chain of quotients of FRET related by sutjective homomorphisms: 

FReg + rReg/8(ACI) -+ ~Reg/B(ACIZ) -+ FReg/d(SR) -+ rReg/&Reg) (14) 

where the last quotient is isomorphic to Reg[d]. 

I. 4. Derivatives 

The constant part (also called the output, cf. [ 111) of a regular term t, written o(t), 
is defined as follows: 
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(15) o(t) = if A E S(t) then 1 else 0 fi. 

Note that O(Q) = 0 for all a0 E Y_R~~o and ~(a’) = ,I for all a’ E Yseg’. 

Definition 1.1 (Derivatives [8]). For any letter x E ~4 and word w E ._&‘*, the functions 

x-l(_) and w-l(_) on ~~~~ computing (word) derivatives of regular terms (w.r.t. x 

and w, respectively) are defined recursively by the following equations: 5 

x-‘o=o, 

x-‘L=O, 

x-‘y=if x=y then Ielse Ofi, 

x-‘(Y + t) =x-‘Y +x-It, 

x-l@-*) = (x-5). r*, 

x-‘(r .t)=if O(Y) = 0 then (x-‘Y). t else (x-‘Y). t +x-‘t fi, 

Pi=Y, 

(w . x)-s- =x-yw-‘r). 

for all y E &, r, t E ~~~~~ 

(lo) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

All the equations in Definition 1.1 are stable w.r.t. congruences on ,Y_R~~ mentioned in 

(13), therefore the functions x-l(_) and w-l(_) are correctly defined on corresponding 

quotients of 5~~~. 

It is not difficult to check that the equation Y(w-‘v) = w-‘Y(r) holds for any 

regular term r and word w E d*, i.e., any derivative of r denotes a corresponding left 

quotient of P’(Y). Hence the membership w E Y(r) is equivalent to o(w-‘Y) = A. 

This correspondence between derivatives (considered as terms) and left quotients 

is not one-to-one: given two different words w’, ~2, the two regular terms w1 -’ r 

and w2-’ r may be syntactically distinct, but denote the same language w’-‘Y(r) = 

w2 -‘9(r). Moreover, for some regular terms, Definition 1.1 gives an infinite set of 

(syntactically distinct) word derivatives denoting the same language. Therefore, in or- 

der to use derivatives as states of a DFA, one has to consider them modulo some 

equivalence relation on YReg. For this purpose, the notion of similarity of derivatives 

was introduced in [8]. We slightly generalize this notion below. 

Given a set E of equations on the signature REG, two derivatives are said to be 

E-similar if they are equivalent modulo E (i.e. modulo the least congruence d(E) 
generated by E on 5,~~). Then the set $@E(r) of all E-dissimilar derivatives of a 

regular term r is defined to be a set of representatives of the equivalence classes 

modulo E of the terms w-‘r for all w E d*. 

‘There is a slight deviation in one of these equations from the original one in [8]; the reason for this is 

explained in a remark below. Note also that our notation for derivatives differs from [8], but is compatible 

with [26]. 
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Suppose we have some E such that the set am is finite for any r. Then the fol- 
lowing proposition, which presents Brzozowski’s method for constructing DFA, holds: 

Proposition 1.2. Given a regular term t, consider a deterministic finite automaton 

M which has the set of states M = 9,57(t), the initial state po = t, the transition 

function defined by z(r, x) = x-‘r for all x E d, r E M, and the set of final states 

F = { r E A4 1 O(Y) = 1 }. Then M recognizes the language A?(t). 

Provided the equivalence modulo E is decidable, the proposition gives an elegant and 
conceptually simple algorithm which is a constructive version of the above-mentioned 
abstract DFA-construction based on the Myhill-Nerode theorem. An important question 
is how to choose the set E in order to provide finiteness of gE(r) for any r. 

It is known that the set of all &leg)-dissimilar derivatives of any regular term r is 
finite6 (cf. [8, Theorem 4.31). However, it is not easy to check (non)equivalence of 
regular terms modulo b(Reg), so a finer congruence on Yseg is needed to make the 
construction more practical. 

Several candidates for such a congruence have been proposed in the literature. In 
[ 11,261 derivatives are considered modulo all SR-axioms and it is proved that the set 
BsR(r) is finite. A slightly finer congruence d(E), where E is the set of SR-axioms 
without distributivity laws (8) (9), is used in [6,5]. But the finest solution is due to 
Brzozowski: he has proved that the set of all ACI-dissimilar word derivatives of any 
regular term is finite [8, Theorem 5.21. 

Remark 1.3. We note that the original definition of derivatives in [8] uses the equation 

x-l(r . t) = (x-lr) . t + o(r). x-‘t (24) 

instead of (21). However, computing with this equation the derivatives of the expression 
(x + r)* w.r.t. the words x, xx, xxx, etc., we obtain an infinite sequence of regular 
terms non-equivalent modulo b(ACZ). Therefore, to save the nice result on finiteness 
of the set of ACI-dissimilar derivatives, we have changed Eq. (24) to (21). One can 
check that with this modification the original proof of the result becomes correct, cf. 
[8, p. 4931. 

Of course, it is much easier to check equivalence of regular terms modulo b(ACZ), 
than modulo b(Reg). However, even with this possibility, the Brzozowski construction 
has been considered not sufficiently efficient to use in practice. Indeed, derivatives are 
regular terms which may have relatively big size, so it may take much time to compute 
and much space to represent the set 9&r). One of the applications of the technique 
which we develop in this paper will be a much more economical representation of 
derivatives; this will help us to improve the efficiency of this construction to some 
extent. 

6Actually, this set is in one-to-one correspondence to the set of all left quotients of Y(r). 
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2. Introducing partial derivatives 

Our definition of partial derivatives involves some auxiliary technical constructions 
and hence, we prefer to outline first basic ideas that lead to this notion. 

2.1. Basic ideas 

It is a folk knowledge that any regular expression r over an alphabet ~4 = {xl,. . . ,xk} 

can be represented in the following form: 

(25) 

where all the ri are some regular expressions (see, e.g., [8,11,29]). In particular, one 
can take each ri to be the derivative xi-‘r. 

This representation is closely related to a Brzozowski’s DFA for r: each summand 
xj.ri corresponds to the transition from the state r to the state ri on the letter xi. For this 
reason, the right-hand side of (25) can be called a deterministic linear factorization 
of r. What makes it deterministic, is the following two requirements: 
l each letter xi E d occurs as the head of a summand xi . ri; 
l the heads of different summands are different letters. 

Now the idea is to define a more general kind of non-deterministic linear factor- 
izations (n.l.f., for short) by dropping these requirements. For example, the regular 
expression x*xy over the alphabet d = {x, y} can be factorized as follows: 

x*xy=x.x*xy+x.y. (26) 

There are two technical problems here. The first one comes from the fact that a 
regular expression may have several essentially different n.1.f. For instance, one can 
check that the equation 

x*xy = x. (xx)*xy +x . x(xx)'xy +x . y (27) 

is valid in Reg[d] and therefore provides yet another n.1.f. for x*xy. This means that 
we have to be more specific and define a particular n.1.f. for each regular term. 

Our intention to make such a definition computationally efficient raises the second 
problem. In order to achieve this goal, we would like to treat regular expressions as 
free terms, i.e. elements of YR~~. On the other hand, we do have to consider regular 
expressions modulo some equivalence relation: e.g. the term x.y+x.x*xy is syntactically 
different from the right-hand side of (26), but represents virtually the same n.1.f. 

To cope with this problem, we are going to work with finite sets of regular terms. 
The corresponding algebraic constructions are introduced in the next subsection. They 
will provide us with an appropriate equivalence relation on ~~~~ and allow to give 
computationally efficient definitions. 
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2.2. Set representation andjne similarity of regular terms 

Let SetReg be the upper semilattice Set[TR,\{O}] of finite sets of non-zero regular 
terms. The interpretation function 5?’ : 5,~~ + Reg[d] extends to SetReg as follows: 

S(R) = u Z(t) 
tER 

for all R E SetReg. 

Definition 2.1. Let a function p : yj?eg + SetReg satisfy the equations 

P(0) = 0, (28) 

p(t1 + h) = P(h) u p(tz 1 (29) 

for all t], t2 E F&g and map any other regular term t into the singleton {t}. Two 
regular terms tl, t2 are said to be jnely similar if p(tl) = p(t2). We denote this 
equivalence relation (which is a kernel of p) by wP. 

Observe that this construction allows us to take into account the ACE-properties 
of only some of the occurrences of _ + _ in a regular term r, namely of those which 
appear at the very upper level of r. For example, the term a + (b + c)* + a + 0 is 
finely similar to (b+c)* +a, but not to a+(c+b)*. Note that the equivalence relation 
wP on 5,&g is finer than S(KZZ); and it is also finer than b(ACZ) on the subset of 
regular terms without occurrences of 0. 

Let F,Q~/_~ denote the factor set of y&e by the equivalence relation -P. 7 The 
next definition relates elements of SetReg to regular terms modulo fine similarity. 

Definition 2.2. Let the function z_ : SetReg -+ ~,@gfNp be defined as follows: it 
maps any non-empty set {tl, . . . , tk} to the equivalence class of the term tl + . . . + tk 

and the empty set 91 to (the equivalence class of) 0. Any term from an equivalence 
class ZR denotes the same regular language Y(R), so we write 8(ZR) and o(ZR) 
without ambiguity. We often say “the term” ZR when it makes no difference which of 
the representatives of this equivalence class is considered. 

We shall also need an extension of the concatenation operation, 

_ . _ : SetReg x 9~~~ --f SetReg, 

defined recursively by the following equations 

R-O=@, 

R. A=R, 

{r}.t=if r=l then telse r-t fi, 

(30) 

(31) 

(32) 

’ Note that wP is not a congruence on y&g. E.g., (a + 6) -P (b + a), but (a + b)* is not finely similar to 

(b + a)*. 
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(RuR’).t=R.tuR’.t (33) 

for all R,R’ E SetReg, r E y&g \ {0}, t E y_Reg \ (0, A}. Note that _Y(R . t) = 

Z(R). T(t) = Y((Z;R) t) and that (R . t( < IR(. 

2.3. Linear forms and partial derivatives of regular terms 

Definition 2.3. Given a letter x E d and a term t E y&g, we call the pair (x, t) a 
monomial with the head x and the tail t; then let Moa = d x y&s denote the set 
of all monomials (over a given alphabet JzI). A (non-deterministic) linear form is a 
finite subset of Mon. Let Lin = Set[Mon] be the set (and the upper semilattice) of 
linear forms. 

Let us regard a monomial (x, t) as representing a regular term x . t. Then Mon 
is isomorphic to a subalgebra of y&g and Lin is isomorphic to a sub-semilattice of 
SetReg. This allows us to write 

Y((x, t)) = _Y(x . t) = {x} . 9(t) 

for the language denoted by a monomial (x, t) E Mon, as well as 

(34) 

Y(l) = u 9((x, t>) = u ix). at) (35) 
G, t)E[ (X> l)E[ 

for the language denoted by a linear form 1 E Lin. Furthermore, we can use the 
function Z- to translate any linear form I = {(xl, q), . . . , (xk, rk)} into a regular term 
modulo fine similarity: 

zl=Xr.rl+...+Xk.rk (36) 

Note that ;1 # Y(1) for any 1. 
Our next goal is to set up a correspondence between regular terms and linear forms 

such that a linear form lt, corresponding to a term t, would satisfy the equation 

t = o(t) + Zl, (37) 

providing a non-deterministic linear factorization for t. This is implemented in the next 
definition. 

Definition 2.4. The binary operation 

_ @ _ : Lin x y&g --$ Lin 

is an extension of concatenation to linear forms and is defined recursively by the 
following equations: 

100=0 (38) 

1@1=1 (39) 



302 V. Antimirovl Theoretical Computer Science 155 (1996) 291-319 

0at=0 (40) 

{lx, O)lOt={(x, 0)) (41) 

{lx, n)}ot={(X, t)} (42) 

{(x7 p)l@t={(x, p.t)l (43) 

(I u I’) 0 t = (I @ t) u (I’ @ t) (44) 

for all I, I’ E Lin, t E ~~~~ \ (0, A}, p E fkg \ (0, A}. The function 

If(-) : FReg --+ Lin, 

returning a linear form of its argument, is defined recursively by the following equa- 
tions: 

g-(O) = 0 (45) 

If(l) = 0 (46) 

If(x) = {lx, 1)) (47) 

If(r + t) = g-(r) u If(t) (48) 

If@*) = If(r) 0 r* (49) 

If@0 . t) = Zf(ro) 0 t (50) 

If(r1 . t) = rf(r,) 0 t u If(t) (51) 

It is easy to check that the language .Y(I 0 t) is equal to S?(I) . 9(t); hence the 
equation Z(1 o t) = (Zl) + t holds in Reg[d]. 

The following proposition ensures correctness of the definition of If(_). 

Proposition 2.5. For any term t E ._T,Q~ the following equation holds in the algebra 

Reg[d] : 

t = o(t) + ZZf(t). (52) 

Proof. We have to show that both sides in (52) denote the same language, that is to 
prove the equation Z(t) = .Y(o(t)) U Y(lf(t)). S ince I $! bip(lf(t)), this is equivalent 
to the equation 

=wfw> = -w) \ {Al. (53) 

We prove the latter by induction on the structure of t. 
The base cases, when t is 0, or 1, or a letter x E d, are obvious. Assuming that 

(53) is valid for a, b E YR+,, direct computations show that it holds valid for t = a+b, 

t = a*, and t = a . b. For instance, for t = a* the computations go as follows: 
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Tz(lf(a*)) = Lqlf(a) 0 a’)) = _Y(lf(a)) . Y(a*) = (L?(a) \ {A}). Y(u)* 

= (Z(a) \ {nl>. (aa) \ In)>* =(9(a) \ {nl>* \ {Al 

= Y(a)* \ (11 = Z(a’> \ {A), 

since (L\(I))* = L’ f or any L E Reg[d] and La .Li = L; \{ A} for any LO E RegO[d]. 
The other cases are treated in a similar way. 0 

Example 2.6. Let us calculate a linear form of the following regular term 

t = x*(xX + y)* 

on the alphabet {x, Y} ( we omit the concatenation symbol). Using the equations of 
Definition 2.4, we obtain: 

Y(t) = If(X’(Xx + y)“) = Y(x’) 0 (xx + y)’ u If((xx + y)“) 

= If(x) 0 x* 0 (Xx + y)* u If((xx + y)) 0 (xx + Y)* 

= {(x, A)} 0 x* 0 (xx + y)* u (@(XX) u If(Y)) 0 (xx + y)* 

= ((x9 X*(xX + Y)*)) u (If(x)Ox u {(Y, A)])@ (=+y) 

={(x, X*(XX+y)*)} u {(x, ~)}oxo(xx+y)* u {(y, n)}o(xx+y)* 

= {lx, x*(xX + Y)*), (XT x(= + Y)‘), (YT (= + Y)“)]. 

This gives the following non-deterministic linear factorization of the term t: 

t=o(r)+Z;lf(t)=n.+x~X*(XX+y)*+x-x(xX+y)*+y~(xx+y)*. q 

Remark 2.7. It is worth noting several technical tricks in the definition of the function 
,f(-). Let us consider the set of equations (38)-(51) as a term-rewriting system (t.r.s.) 
[ 121 defined over the extension of the signature REG by 
l new sorts - Man for monomials, and Lin for linear forms (i.e., finite sets of mono- 

mials); 
l new function symbols If( _), _ o_, and constructors of finite sets 0, { _}, and _ U _ (as 

usual, the set union _U_ is to be considered as an associative-commutative operation 
and two rewrite rules 1 U 1 -+ 1, 1 U 0 + 1 are to be added to the t.r.s. to take into 
account its further properties). 

Then one can see the following points. 
1. The t.r.s. essentially relies on the order-sortness - see rules (50), (51). 
2. The resulting linear form represents a regular term modulo fine similarity which 

partially captures ACIZ-properties of the regular union _ + _. Moreover, some other 
equational properties of the regular algebra are captured by this t.r.s. - cf. the rules 
(38)-(42). 

3. Further rules can be added to the t.r.s. to capture more equational properties and 
to make the resulting linear forms more compact; Proposition. 2.5 is a correctness 
criterion for such an extension. E.g., the following rules 
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&la* f a) = If(a) 0 a*, (54) 

lf(al .a;>= If(al)Oa;, (55) 

which are specializations of (51), can be added to the t.r.s. due to Kleene star proper- 
ties. Unlike (51), the right-hand sides of these rules do not contain an application of 
rf(_) to the second component of concatenation in the argument; hence the resulting 
linear form contains fewer monomials (this point is important for reducing the size of 
NFA constructed by our algorithm presented in Section 4). However, these rules would 
increase the computational complexity of the function lf(_) (because the arguments of 
these rules are non-linear patterns) and for this reason we donot include them in the 
definition. 

4. The t.r.s. involves one associative-commutative operation, _ U _. It does not occur 
in the patterns of the rules defining If(-), but appears in one pattern in the definition 
of -0 -, as well as in the extra rules I U I -+ I, I U 0 -+ 1. This does not mean, 
however, that one has to involve AC-matching8 when computing If’(t) for a ground 
t. One should rather take an appropriate representation of finite sets and employ the 
following functional definition: 

10 t = if t = 0 then PI 

else if t = 1 then I 

which is a logical consequence of (38H44). This allows us to compute ,f(_) in time 
O(n*); the exact complexity depends on the representation of the data involved. 

Now we come to the central definition of this paper. 

Definition 2.8. [Partial derivatives] 
Given a regular term t and a letter x E d, a regular term p is called a partial 

derivative oft w.r. t. x if the linear form If(t) contains a monomial (x, p). We define a 
function 13, : 5~~~ --f SetReg, which returns a set of all (non-zero) partial derivatives 
of its argument w.r.t. x, as follows: 

d,(t) = {P E F-Reg \ 101 I (4 P) E rf(t>l (56) 

The following equations extend this function allowing any word w E &* and set of 
words W c &‘* at the place of x and any set of regular terms R G F,Q~ at the place 
of t: 

d,(t) = it), 

L(t) = &(&v(t)), 

a,(R) = U L(r), 
6R 

(57) 

(58) 

(59) 

* Which is NP-complete [4]. 



Each element of the set a,(~) is called a partial derivative of t W.I. t. w. A proper 
partial derivative of t is one w.r.t. a non-emp~ word. 

Note that the lotion a,(_) is monotone on .9(5~~~) w.r.t. set inclusion. 

Example 2.9. Let us compute partial derivatives of the term t = X*+X + y)* from 
Example 2.6. For the sake of clarity, we use the sho~h~d r = (xx + y)*_ Then 
t = x* . r and the linear form of t, computed in Example 2.6, can be written down as 
follows: 

Hence we have (according to definition 2.8): 

&(t) = {t, x * ?-} = (X’(J= + u)‘, X(xX + u)*}, 

a,(t) = (r} = ((xx + y)*}. 

Thus, there are two partial derivatives of a w.r.t. x and one w.r.t. y. To compute further 
partial de~vatives of t, we need linear forms of the obtained partial derivatives. One 
can check that these are as follows: 

hence 

and so on. 

The following facts explain the semantics of partiaf derivatives and relate them to 
derivatives. 

Pro~sition 2.10. For any term t E T.Q~ and word w E .I&‘*, the elbowing voids: 

5?(&(t)) = w”“$4(t). (61) 

(1~ part~~~~ar, any partway der~uat~v~ p E ~~(2) denotes a goblet of the left quotient 
w -‘s(t).) 

Proof. We proceed by induction on w. The case w = I is obvious. Let w be a letter 
x E d. The equation 
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follows directly from Proposition. 2.5; hence we have: 

(62) 

The general case follows from (58) and (63) by the inductive argument: assuming 

(61) holds for a given W, we obtain: 

(WX)-‘Z(t) =.X-$V’ 9(t)) =x-9(&(t)) = x-‘( u Y(p)) 
pEa,(t) 

= u x-1 
FE&(r) 

~(P)u,,y(d,(P)) = ~(pEJ$X(P)) 

= =W&(&(l))) = -&Mt)). 

W 

(64) 

(here we have used known properties of left quotients). 0 

Corollary 2.11. For any t E Y,+g, w E d* the following equation holds in the 

algebra Reg[d] : 

w-‘t = 22,(t). (65) 

Proof. Both sides denote the left quotient w-‘-Y(t). 0 

Thus, the elements of the set d,(t) are, in a sense, “parts” of the derivative w-‘t, 

hence their name. 

Example 2.12. Let us take again the term t = x*(n + y)* used in the previous ex- 

amples. According to Definition 1.1, we obtain the following derivative of t w.r.t. x 

computed modulo ACI-axioms: 

x-‘t =X8X*(Xx + y)’ = (x-lx*). (xx + y)* +x-*(xX + y)* 

=(x-1x).x*+c+y)*+x-‘(xx+y).(xx+y)* 

= A. x*(xX + y)* + (x-‘(n) + x-‘y) . (xx + y)* 

= 1. x*(xX + y)* + ((x-lx). x + 0). (xx + y)* 

=1~x*(xx+y)* +(n.x+o).(xx+y)*. 

Using further SR-axioms (4)-(7), the result can be simplified to the expression 

x*(xX + y)* +x(xX + y)* 

which is obviously equivalent to .?Yd,(t). In the same manner, one can compute y-It 

and check that it is equivalent to Zd,(t). Note that Definition 1 .l suggests that the 
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derivatives ~-‘t, y-‘t are to be computed separately, while the terms &Y,(t) and 
EC?,(~) can be obtained simultaneously through the linear form If(t) (cf. Examples 2.6 
and 2.9). 

Remark 2.13. To make the relation between partial derivatives and derivatives precise, 
it is worth noting that, in general, the terms w-l t and Z&,(t) may be different even 
modulo the axioms (l)-(7). For example, consider the derivative 

x-‘(xy +x>* = (y + A)(xy +x)*, 

computed modulo these axioms, and compare it with 

m*((x_Y +x1*) = ‘q y(xy +x)*, (xy +x)’ } = y(xy +x)* + (xy +x)*. 

To obtain the latter from the former, one has to use additionally the distributivity axiom 

(9). 

Now we turn to the study of further properties of partial derivatives and of sets of 
partial derivatives. 

3. Properties of partial derivatives 

First we present a set of equations characterizing the function a,(_). 

Proposition 3.1. For any regular terms a, b E T_R~~, a0 E T_R~~o, al E T_R~~I and 
letters x, y E d the following equations hold: 

a,(o) = 0 

&(A) = 0 

d,(y) =if x = y then {A} else P) fi 

&(a + b) = &(a) U a,(b) 

&(a”) = &(a). u* 

&(a0 . b) = &(ao) . b 

&(a1 . b) = &(a,). b u ax(b). 

(66) 

(67) 

(68) 

(69) 

(70) 

(71) 

(72) 

Proof. Just apply a,(_) to both sides of the corresponding equations of Definition 2.4. 
0 

Remark 3.2. Equations (66)-(72) form a complete recursive definition of the function 
a,(_) which is an alternative to Definition 2.8. In practice, however, it is better to 
compute partial derivatives through the function If(_) which allows one to get the 
whole set c?,(t) in one pass over t. 
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In the following lemma, we present several key facts about the function a,(_). Here 

we use an auxiliary notation for the set of all non-empty suffixes of a word w: 

&f(w) = (0 E d+ ) 3u E d’ : 24. u = w} (73) 

Note that Suf(wx) = &f(w) .x U {x}. 

Lemma 3.3. For any regular terms a, b and word w E _eY+ the following equation 
and inclusions hold: 

&(a + b) = &(a) U t%(b) 

&(a . b) C &(a) . b U U d,(b) 
U&%&W) 

a,(a*)c u a”(a) *a*. 
U~SU~(W) 

(74) 

(75) 

(76) 

Proof. 1. Eq. (74) follows directly from (69) by induction on w using the following 

obvious property of a,(_): 

WI u R2 I= &(Rl) u UR2) 

for all RI, R2 E SetReg. 

(77) 

2. To prove (75), first observe the following inclusion which follows from (71) and 

(72): 

&(R . b) C d,(R). b U k?,(b) (78) 

for all b E T,Q~, R E SetReg. 
Now we prove the inclusion (75) by induction on w. The base case, when w E d, 

follows from (78). Assuming that the inclusion holds for some w E d+, we prove it 

for w’ = w. x (where x E .&‘): 

&&a. b) = &(&(a. 6)) C &(&4a). b U U h(b)) 
VESUf-(w) 

= &(&(a). 6) U U &d&(b)) 
VESUf(W) 

G &(&(a))~ b U 60) U U &(b) 
VESUf(W) 

= &.,(a). b u U 8,(b). 
UESUf(WX) 

(79) 

This proves (75). 

3. We prove the inclusion (76) by induction on w E &. The base case follows 

from (70). Assuming that the inclusion holds for some w E df, we consider it for 

w’=w*x: 

&x(u*) = &(4&* 1) c a u a”(a) . a* > 
UESUf(W) 
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= u &(&(a) . a*) 
VESUf(W) 

(we have used (78) on the way). This proves (76) and the lemma. q 

This lemma leads to important consequences presented in the following two theo- 

rems. For a regular term t, (jt(( denotes the number of all occurrences of letters from 

the alphabet ~4 appearing in t (we call IJtl( the alphabetic width of t). Let 99(t) 

stand for the set ad* (t> of all (syntactically different) partial derivatives of t. The first 

theorem says that this set is finite and provides a nice upper bound on its cardinal&y. 

Theorem 3.4. For any t E T,Q~ the following inequalities hold: 

PJ4+(t)l Q II4 
vwt)l G Ml + 1. 

(81) 
(82) 

Proof. Since KS(t) = 82(t) U c?,+(t), the first inequality implies the second one, so 

it suffices to prove (81). We proceed by induction on the structure of t. 

Base cases, when t is 0, A, or a letter from ~4, are obvious. Now let us assume that 

(8 1) holds for some a, b E ~~~~ and consider three subcases. 

Case 1: t=u+b.Thenwehave 

a,+(~ + b) = U &,,(a + b) = IJ (L(u) U &v(b)) = a,+(u) U a,+(b), 
%&.Zl+ WE&+ 

hence 

(a,+<~ + b)( = la,+(a) u d,+(b)1 <(a,+(a)1 + P,+(b)1 

G II4 + Ilbll = lb + 41. 

Case 2: t = a s b. Then we have 

a,+(~ .b)= U &(a. b)C U (&v(a). b u U 4,(b)) 
WEd+ WE&d+ GSUf(W) 

=( IJ &(a)>.bU U U d,(b) = a,+(u). b U a,+(b), 
WEd+ WE&#+ vESuf(w) 

hence 

la,+(u . b)l < la,+(u). b u a,+(b)! G 18,+(a). bl+ la,+(b)l 

< la,+(a)1 + (~,+@)I G Il4l + llbll = lb . bll. 
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Case 3: t = a*. Then we have 

~d+ta*> = u &v(a*)c u IJ d,(a) . a* = a,&+(a) . a*, 
WE&l+ WEd’ oGsuffw) 

hence 

lad+(a*)l f l&4+w~*l = l&&+(a>l % II4 = Ila*ll. 

This ends the proof of (8 I) and of the theorem. Cl 

Corotiary 3.5. For any set of words W 2 JP, the set &(t> is finite and the following 
~nequu/~ty hoMk 

Pw(t)l < Iltll + 1. 03) 

Proof. Immediate, since WC&* implies a,(t)G ad.(t). U 

Remark 3.6. Recall that a left quotient of a language L C d* w.r.t. a language WC&!*, 
written W-l& is defined as a union u wEW~-lL. It is known that if L is a regular 
language, such a quotient is a regular language too (for any W). 

Conway Cl 1, p. 431 introduced a corresponding generalization of derivatives, called 
an evenf derivative oft w.r. t. W, and proved that the set of all event derivatives of t 
(w.r.t. all possible W) is finite [I 1, p. 43, Theorem 31 - this implies one direction of 
Kleene’s main theorem (that any regular language is recognizable). 

Now we note that the regular term Z&(t) is equivalent (in Regl&‘J) to an event 
derivative oft w.r.t. W; thus Conway’s theorem is a consequence of our Theorem 3.4. 
Moreover, we obtain the upper bound 211tll+’ on the cardinality of the set of all event 
derivatives of 1, that improves the upper bound given in [l 1, Theorem 4, p. 431. q 

Example 3.7, Using the notation of Example 2.9, we have /It// = 4 and 

L%@(t) = {t, x . r, Y)’ 

At the same time, it can be shown that there are five SR-dissimiIar word derivatives 
of t and that the set of ail syntacticaliy distinct word derivatives of t, computed by 
Definition 1.1, is infinite. Cl 

Our second theorem clarifies the internal structure of partial derivatives. 

Theorem 3.8. Given a regular term t E ..41-~@~, any partial derivative oft is either 1, 
or a subterm af t, or a concatenation to - tl . 1. . . tn of several such subterms where 
n is not greater thatz the number of occurrences of &oncatenation and Kfeene star 
appear&g in t. 

Proof. The proof is by induction on t and has the same st~~ture as in the previous 
theorem. The base cases, when t is 0, 2, or y E ,r&l, are obvious. Assuming that the 
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statement of the theorem is valid for regular terms a and b, the equation and inclusions 

proved in Lemma 3.3 imply that it is valid for t = a + b, t = a . b, and t = a*. Also, 

the inclusions (75) and (76) imply that each occurrence of concatenation or Kleene 

star in t gives rise to at most one extra concatenation in partial derivatives of t - this 

proves the upper bound formulated in the second statement of the theorem. 0 

It follows from the two theorems above that the set 99(t) can be represented by a 

data structure of a relatively small size: each partial derivative of t is just a (possibly 

empty) list of references to subterms of t and the number of lists is bounded by (It )I + 1. 

In the next section, it will be shown that this data structure is virtually a set of states 

of an NFA recognizing the language Y(t). 

4. Finite automaton constructions using partial derivatives 

4.1. From regular expressions to small NFA’s 

Here we present a new algorithm turning a regular term t into an NFA having at 

most (It JI + 1 states. The following theorem describes our construction. 

Theorem 4.1. Given a regular term t over an alphabet d, let an automaton M over 
d have the set of states M = 99(t), the inital state ~0 = t, the transition function 
z is dejned by 

T(P? xl = UP) (84) 

for all p E 59(t), x E d, and the set of jinal states 

F = {p E &3(t) I o(p) = 1). 

Then M recognizes the language Y(t). 

Proof. First we notice that (84) implies the equation 

T(PY w) = L(P) (85) 

for any state p E M and word w E d* (proof by straightforward induction on w). 

Now we prove that for any p E M the language 3~(p) accepted by the state p is 

equal to the language denoted by the partial derivative p, i.e. 

w E Y(P) * w E Y.&P) (86) 

for any word w E &*. Indeed, w E Y(p) is equivalent to o(w-1 p) = I, and hence (by 

Prop. 2.10) to o(Z&(p)) = ;1. The latter means there is at least one partial derivative 

in a,(p) with non-empty constant part, i.e. 

&(P) I--I F # 0. (87) 
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On the other hand, w E 2?~(p) is by definition equivalent to z( p, w) f~ F # 0 and 

hence to (87); this proves (86). In particular, the language 2,+&o) recognized by M 
is equal to Y(t). q 

Let us consider how to compute the set &2(t) and the transition function T (the 

set F can be obtained in an obvious way). A possible way to do this is to use of the 

following iterative procedure: 

(-0, A09 70) := ( {t}, {t}, 0), 

Ti+1 := TI u {(P? x3 4) I p E 4 A (4 4) E If(P)), 

Ai+l := U (4 I 62 4) E If(P) A 4 6 ggil, 
PEA, 

BQi+l I= Bgi U Ai+l 

(88) 

(89) 

(90) 

(91) 

for i = 0 1 , ).... Here r is represented as a finite subset of M x d x M (i.e., a transition 

relation). The set Ai+1 consists of new partial derivatives, i.e., of those appearing at 

the step i + 1, but not at any of the previous steps. After at most I(tJI iterations, the 

set Ai+l becomes empty - then 9GSi and r,+r contain the needed results. 

Remark 4.2. This gives a constructive solution, but its efficiency suffers from the ne- 

cessity of testing the (negation of the) membership q E g$Si which requires checking 

syntactic equality of partial derivatives. In the worst case, a partial derivative of a 

regular term t of the size n may have a size up to 0(n2) (recall Theorem 3.8), there 

are up to ((t(l elements in PCSi, and the membership test has to be performed up to I(t(( 

times. This leads to the 0( 11 t II2 . n2) worst-case time complexity of the algorithm. It is 

a topic for further research to find a more efficient implementation of the construction 

presented in Theorem 4.1. 

4.2. From regular expressions to DFA’s: improvements to Brzozowski’s algorithm 

The NFA-construction presented above can be easily transformed into a procedure 

constructing DFA’s. To see the idea of this transformation, note that Eq. (85) implies 

that the set d,(p) represents a “deterministic state” corresponding to the result of all 

possible transitions from the state p on the word w. Substituting p in (84) by such a 

deterministic state, we derive the equation 

~(&(P), xl = &(UP)) = &x(P) 

which defines the corresponding “deterministic transitions”. 

Thus, the set 

99(t) = {a,(t) 1 w E d’} (92) 

has to be taken as the set of states of the DFA, the initial state is the singleton {t}, 

the transition function is defined by 

r(P, x) = &C(P) (93) 
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for all P E &.3J(t),x E d, and the set of final states is 

F = {P E E2(t) / o(ZP) = A}. (94) 

Proposition 4.3. The automaton (am, z, {t}, F) p resented above recognizes Y(t). 

Proof. This follows easily from the fact that each deterministic state P = a,(t) repre- 
sents a left quotient w- ‘9(t) (recall Proposition. 2.10). q 

The relation between partial derivatives and derivatives, given in Corollary 2.11, 
readily demonstrates that this construction is just a modification of the one of Brzo- 
zowski where each derivative w-‘t is replaced by a corresponding set a,(t) of partial 
derivatives. Note, however, that this leads to several practical advantages: 

1. One does not have to compute and to keep in memory the whole set SE(~) of 
E-dissimilar derivatives. More precisely, one can use 9%3(t) as a basis for the set 
99(t): each dete~inistic state a,(f) should be represented as a set of references to 
corresponding elements in .99(t). 

2. Computing the set &3(t) represented as suggested above, one compares its ele- 
ments just as sets of references, rather than checks equivalence of derivatives modulo 
d(ACZ) or any other non-trivial congruence; clearly, the former test requires much less 
time than the latter. 

3. The components s(P, x) of the transition unction should be computed through 
the function rf(_) which gives a ~hule tuple of ~ansitions {{n, d,(P)) 1 x E d} in one 
pass over P. This is more efficient than to compute separately each derivative w.r.t. 
x E d that requires one pass over P for each x. The bigger the alphabet, the more 
one gains from this optimization. 

Therefore, our modification can be implemented much more efficiently than the orig- 
inal Brzozowski construction. ’ 

Our DFA-construction is also interesting from the theoretical point of view, because 
it demons~tes that the relation between partial derivatives and derivatives is quite 
similar to the well known relation between NFA’s and DFA’s provided by the classical 
subset construction [2’7]. To see this, suppose that a regular term t is turned into an 
NFA as described in Theorem 4.1. This NFA can be transformed into an equivalent 
DFA by the subset construction; the states of the DFA will be represented by sets of 
states of the original NFA, i.e. by subsets of 99(t). On the other hand, the same 
DFA - with the set of states 9@(t) - can be obtained directly from t as described in 
Proposition. 4.3. 

9 Of course, one should bear in mind that either of these constructions may produce an output of an expo- 

nential size. 
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5. Implementation and examples 

We have used the algebraic programming language 0BJ3 [ 161 to develop a prototype 

implementation of our algorithms for computing partial derivatives and constructing 

NFA’s. 

Recall that a finite automaton M = (M, 7, ~0, F) can be represented by a finite 

system of state equations of the form 

~:=o(~)+xt’~t +“‘+Xk’/& (95) 

for each state p E M where xi E d and ,Ui E r(p,xi), i = 1. . . k (see, e.g., [9]). Here 

o(p) is the output of the state p equal to 1 if p E F, or to 0 otherwise - in the 

latter case it is omitted from the sum. The components xi .O are also omitted from 

the right-hand sides of state equations (thus, the resulting set of equations represents 

in general an incomplete NFA). 

Our OBJ3-program consists of several order-sorted term-rewriting systems (“objects” 

in terms of OBJ3), some of them modulo associativity and commutativity of the set 

union U. Some of the objects represent the term algebra ~~~~ and the algebras SetReg 
and Lin as abstract data types; the others implement Definition 2.4 and the Eqs. (88E 

(91). The main function of the program takes a regular term as input and returns a 

set of state equations, representing a resulting NFA, and a set of partial derivatives 

corresponding to the states of the automaton. 

Below we present and discuss several examples of NFA’s constructed by this pro- 

gram. The main goal is to compare our NFA’s with those obtained by some known 

algorithms from [5, 10, 14,22,3 11, Let us recall some characteristics of the latters. 

Given a regular term r of size n, the algorithm by Thomson [31] (cf. also [17, 181) 

produces an NFA with O(n) states and edges; this NFA may have A-transitions. The 

algorithms by McNaughton and Yamada [22], Glushkov [14], and Berry and Sethi [5] 

produce an NFA (without a-transitions) whose non-initial states correspond to the 

occurences of letters in the input regular expression, i.e., the number of states is ][r]] + 1 

(that can be arbitrarily smaller than n). As for the number of edges, it may be quadratic 

in n. 

Example 5.1. This is a running example from [5] - the regular expression 

t = (ab + b)*ba 

on the alphabet & = {a, 6). Our algorithm turns this expression into the following 

NFA with four states and five edges: 
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Berry and Sethi’s algorithm turns this expression into an NFA with six states (since 
JJt(] = 5) and 11 edges, cf. [5, p.1211. Three different states in the latter NFA are 
actually equivalent: the starting state, and two further states corresponding to the first 
and second occurrences of b in t. This equivalence is easily detected by our algorithm, 
for these three states correspond to the same partial derivative 1 = t (actually, to the 
same subterm of t) - this explains why our NFA is smaller. 

Example 5.2. This is a running example from [lo] - the regular expression 

t = (a + b)“abb 

on the alphabet d = {a, b}. Our program turns it into the following NFA with four 
states and five edges: 

In [lo], the expression was first turned into McNaughton and Yamada’s NFA with six 
states and eleven edges, then this NFA was transformed into a so-called compressed 
normalized NFA with five states and six edges through several non-trivial optimiza- 
tions. Our algorithm produces a smaller NFA without any additional optimization. 

Example 5.3. Let us consider a typical example of a regular expression appearing in 
the formal syntax description of programming languages - identifiers: 

t = L.(L+D)* 

where L = A+a+ . . . + Z tz stands for letters and D = 0 + 1 + . . - + 9 stands for digits 
(thus, we use the alphabet. d = {A, a, B, b,. . . ,Z, z, 0, 1, . . . , 9) in this example). 

One can easily see that McNaughton and Yamada’s NFA for this expression would 
have 115 states, since the alphabetic width of the expression is 114; Thompson’s NFA 
would be even larger. In contrast to this, our algorithm turns t into the following NFA 
(actually, a DFA) with only two states, since there are only two syntactically different 
partial derivatives of t: 

State equations Partial derivatives 

1 :=A.2+a.2f...+z.2 1 = L.(L+D)* 
2:=1+,4.2+...+2.2+0.2+...+9.2 2=(L+D)* 

This example demonstrates that in some cases our NFA’s may be arbitrarily smaller 
than those obtained by the classical algorithms. 

Example 5.4. Now we give an example of the opposite kind, when our algorithm does 
not improve the results of classical ones. Consider the following regular expression 
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t = a*b* . ..z* 

Our algorithm turns it into the following NFA with 26 states and 26 . 2712 = 351 
edges: 

~~ 

The size of McNaughton and Yamada’s NFA for t is of the same order of magnitude 
(since IJtJI = 26) and Thompson’s NFA has much fewer edges. The latter is due to 
the presence of I-transitions in Thompson’s NFA’s (cf. [30] for an explanation of this 
effect, and [IO] for further comparisons of Thompson’s and McNaughton and Yamada’s 
NFA’s). 

Example 5.5. To present an example from another area, let us consider the following 
regular expression to which is a typical one appearing in the study of some properties 
of word-rewriting systems with variables [20,21]: 

t = (a + b)*(babab(a + b)*bab + bba(a + b)*bab)(a + b)*. 

Our algorithm turns this expression into the following NFA with 11 states: 

State equations Partial derivatives 

l:=a.l+b.l+b.2+b.3 l=t 
2 :=a.4 
3:=b.5 
4:=b-6 
5:=a.7 
6:=a-8 
7:=a.7+b.7+b.9 
8:=b.7 
9 := a. 10 
10 := b. 11 
11 := I+a. 11 +b. 11 

2 = abab(a + b)*bab(a + b)* 
3 = ba(a + b)*bab(a + b)* 
4 = bab(a + b)*bab(a + b)’ 
5 = a(u + b)*bub(a + b)* 
6 = ab(u + b)*bub(u + b)* 
7 = (a + b)*bab(a + b)* 
8 = b(a + b)*bab(u + b)* 
9 = ab(a + b)* 
10 = b(u + b)” 
11 = (a + b)* 

Note that I(t(( = 22, so McNaughton and Yamada’s NFA for t would have 23 states; 
the size of Thompson’s NFA for t would be even larger. 

6. Concluding remarks 

Since any non-empty word has a head and a tail, any language L over a finite 
alphabet d can be decomposed into a finite union of components of the form {x}. 

lo Suggested by Gregory Kucberov. 
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(x-‘L) for each x E LX!, possibly plus the empty word. In the case when L is regular, 
one can iterate this decomposition for the obtained left quotients x-‘L and in this way 
come, after a finite number of steps, to an “abstract” DFA recognizing the language L. 

As a matter of fact, derivatives of a regular expression r are constructive representa- 
tions of corresponding left quotients of the language Y(r). Therefore, it is quite natural 
that derivatives turned out to be a right tool for an effective representation of the above 
abstract construction - as was invented by Brzozowski. The main problem with this 
approach was the fact that infinitely many different derivatives may represent the same 
left quotient. Brzozowski solved this problem through the notion of similarity: the set 
of AU-dissimilar word derivatives of any regular expression was proved to be finite. 

In the present paper, we have provided an extension of this framework to the non- 
deterministic case through the new notion of partial derivative. The main contribution 
of the present paper is the notion of partial derivative of a regular expression. We have 
given a constructive definition of this notion and proved that it has several interesting 
features: 
l Partial derivatives can be easily computed and efficiently represented. Any partial 

derivative of a regular expression r is either A, or a list (of a bounded length) of 
subterms of r. 

l There is at most llrjj + 1 syntactically distinct partial derivatives of r-. Therefore, 
the set 99(r) provides a relatively small basis for the set of all (dissimilar) word 
derivatives, as well as for the set of all event derivatives of Y: any word (or event) 
derivative can be represented as a finite sum of partial derivatives. The relation 
between 99(r) and the set of word derivatives of r is quite similar to the relation 
between NFA’s and DFA’s determined by the subset construction. 

l A regular expression r can be turned into a relatively small NFA whose states are 
(represented by) partial derivatives of r. This implies that our NFA’s have no more 
states than those produced by several known algorithms (and we have demonstrated 
on examples that in some cases our NFA’s are substantially smaller). 

l Efficiency of Brzozowski algorithm for constructing DFAs can be improved through 
the representation of derivatives by sets of partial derivatives. Using partial deriva- 
tives in this way can be also fruitful in other procedures involving derivatives - e.g. 
in those for checking equivalence of regular expressions [3,23]. 
The tight structural connection between regular expressions and NFAs, provided by 

partial derivatives, seems to be very fruitful. Recall that a similar connection to DFAs, 
provided by derivatives, has been successfully employed in several studies related to the 
algebra of regular events. We envisage a similar application for the partial derivatives. 
(As an example of such an application, let us mention our recent work [l] in which we 
employ partial derivatives to develop a new purely algebraic procedure for checking 
inequalities r < t of regular expressions.) 

Finally, let us mention two possible directions for further research. 
1. It should be investigated whether there is a more efficient implementation of the 

NFA construction presented in Theorem 4.1. To improve its efficiency, one should find 
a way to compute the set 99(r) so as to avoid checking syntactic equality of partial 
derivatives. 
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2. It would be useful to find an appropriate definition of partial derivatives of ex- 
tended regular expressions (with intersection, complementation, and other operations). 
Then, in particular, our NFA construction would directly extend to this class of regular 
expressions. 
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