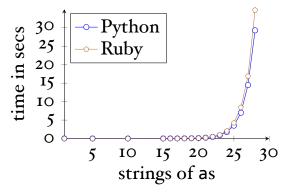
POSIX Lexing with Derivatives of Regular Expressions Or, How to Find Bugs with the Isabelle Theorem Prover

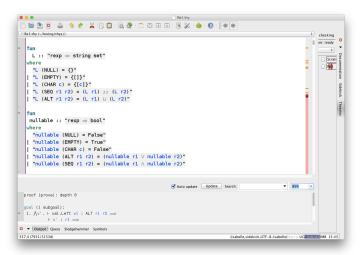
Christian Urban

joint work with Fahad Ausaf and Roy Dyckhoff

• Surely regular expressions must have been studied and implemented to death by now, no?

- Surely regular expressions must have been studied and implemented to death by now, no?
- ...well, take for example the "evil" regular expression (a?)ⁿ · aⁿ to match strings a . . . a





- Isabelle interactive theorem prover; some proofs are automatic most however need help
- the learning curve is steep; you often have to fight the theorem prover...no different in other ITPs

Isabelle Theorem Prover

- started to use Isabelle after my PhD (in 2000)
- the thesis included a rather complicated "pencil-and-paper" proof for a termination argument (SN for a sort of λ-calculus)
- me, my supervisor, the examiners did not find any problems

Henk Barendregt Andrew Pitts

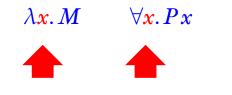
people were building their work on my result

Nominal Isabelle

• implemented a package for the Isabelle prover in order to reason conveniently about binders

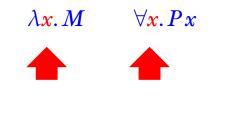
Nominal Isabelle

• implemented a package for the Isabelle prover in order to reason conveniently about binders



Nominal Isabelle

• implemented a package for the Isabelle prover in order to reason conveniently about binders



 when finally being able to formalise the proof from my PhD, I found that the main result (termination) is correct, but a central lemma needed to be generalised

Variable Convention

Variable Convention:

If M_1, \ldots, M_n occur in a certain mathematical context (e.g. definition, proof), then in these terms all bound variables are chosen to be different from the free variables.

Barendregt in "The Lambda-Calculus: Its Syntax and Semantics"

- instead of proving a property for **all** bound variables, you prove it only for **some**...?
- this is mostly OK, but in some corner-cases you can use it to prove **false**...we fixed this!

Bob Harper

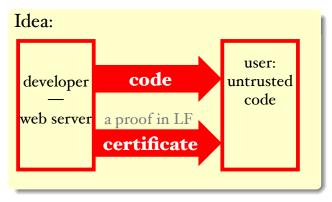
Frank Pfenning

published a proof on LF in ACM Transactions on Computational Logic, 2005, ~31pp

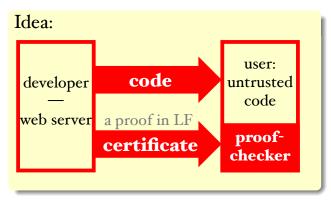
Andrew Appel

relied on their proof in a **security** critical application

Proof-Carrying Code



Proof-Carrying Code



- Appel's checker is ~2700 lines of code (1865 loc of LF definitions; 803 loc in C including 2 library functions)
- 167 loc in C implement a type-checker (proved correct by Harper and Pfenning)

Spec Proof Alg

Spec Proof Alg

$$Ist$$
 Spec^{+ex} Proof Alg

Spec Proof Alg

$$solution$$
 Spec ex Proof Alg
 and Alg
 and Spec ex Proof Alg
 and Alg
Alg
Alg
Alg
Alg

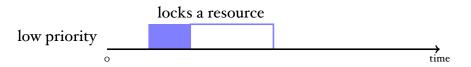
Each time one needs to check \sim_{31} pp of informal paper proofs—impossible without tool support. You have to be able to keep definitions and proofs consistent.

Lessons Learned

- by using a theorem prover we were able to keep a large proof consistent with changes in the first definitions
- it took us appr. 10 days to get to the error...probably the same time Harper and Pfenning needed to LATEX their paper
- once there, we ran circles around them

high priority

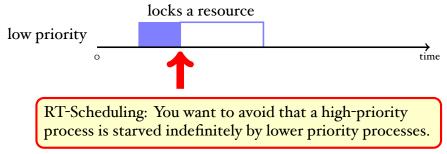
high priority

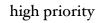


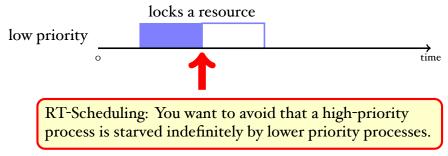
high priority

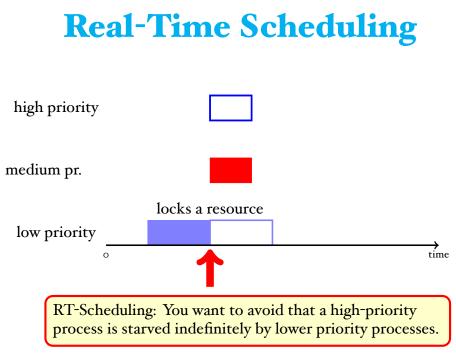
RT-Scheduling: You want to avoid that a high-priority process is starved indefinitely by lower priority processes.

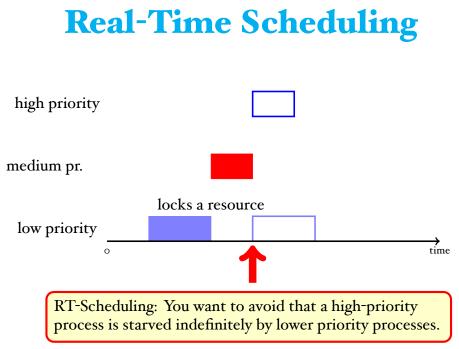
high priority

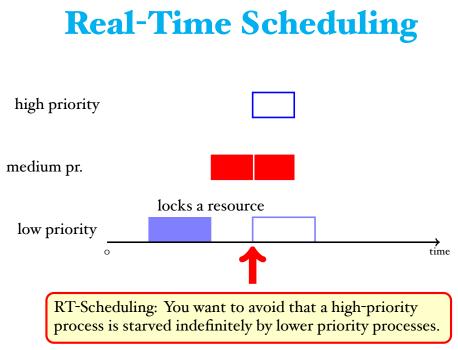


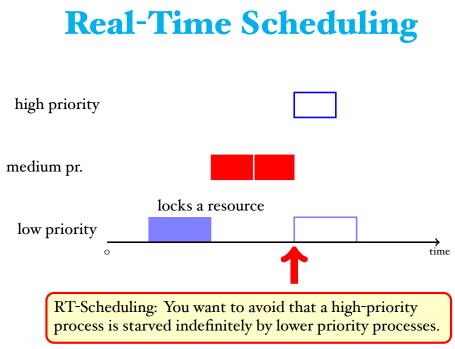


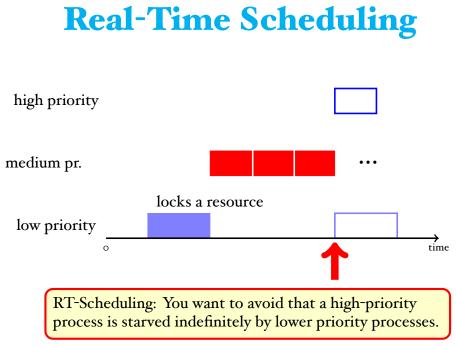






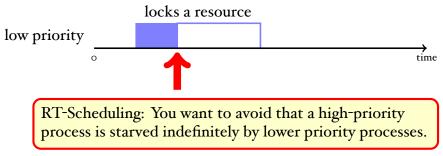


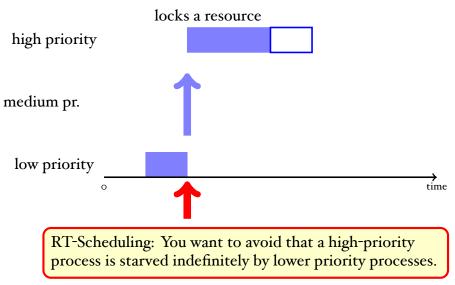


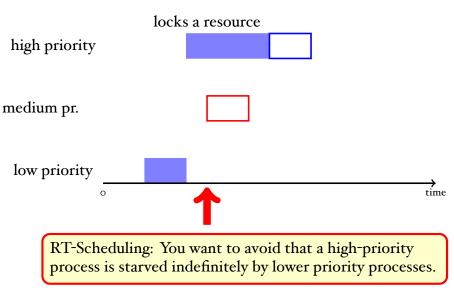


high priority

medium pr.







Priority Inheritance Scheduling

- Idea: Let a low priority process *L* temporarily inherit the high priority of *H* until *L* leaves the critical section unlocking the resource.
- Once the resource is unlocked, *L* "returns to its original priority level."

L. Sha, R. Rajkumar, and J. P. Lehoczky. *Priority Inheritance Protocols: An Approach to Real-Time Synchronization*. IEEE Transactions on Computers, 39(9):1175–1185, 1990

Priority Inheritance Scheduling

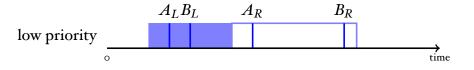
- Idea: Let a low priority process *L* temporarily inherit the high priority of *H* until *L* leaves the critical section unlocking the resource.
- Once the resource is unlocked, *L* "returns to its original priority level."

L. Sha, R. Rajkumar, and J. P. Lehoczky. *Priority Inheritance Protocols: An Approach to Real-Time Synchronization*. IEEE Transactions on Computers, 39(9):1175–1185, 1990

• classic, proved correct, reviewed in a respectable journal....what could possibly be wrong?

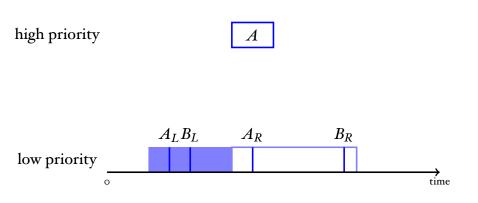
RT-Scheduling: You want to avoid that a high-priority process is starved indefinitely by lower priority processes.

high priority

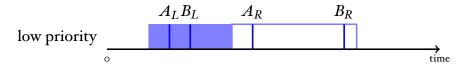


RT-Scheduling: You want to avoid that a high-priority process is starved indefinitely by lower priority processes.

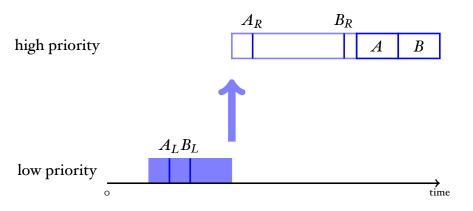
SMAL, 23.3.2016 - p. 13/39

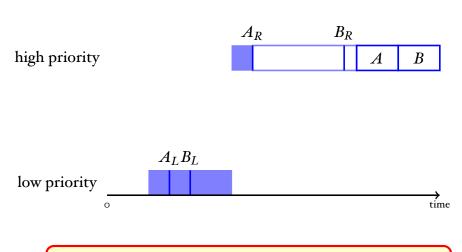


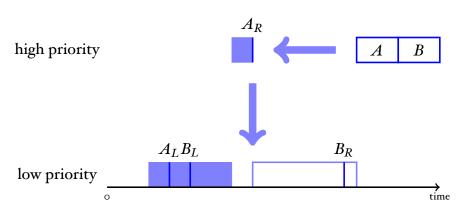
SMAL, 23.3.2016 - p. 13/39

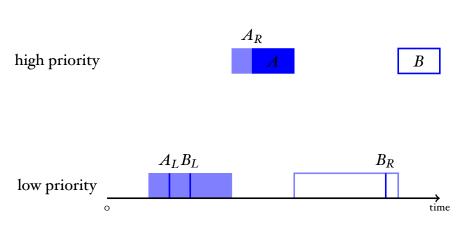


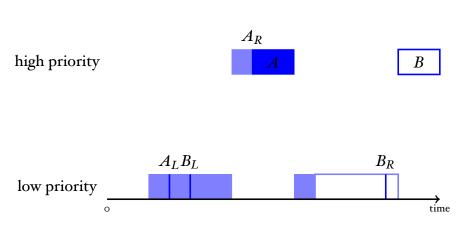
SMAL, 23.3.2016 - p. 13/39

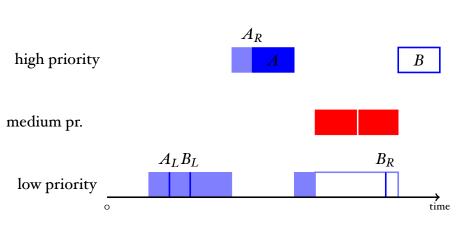


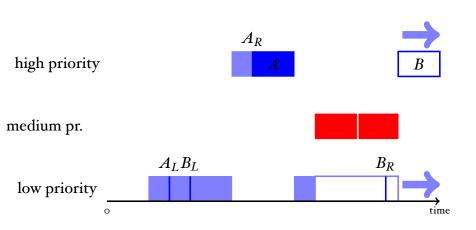












Priority Inheritance Scheduling

- Idea: Let a low priority process *L* temporarily inherit the high priority of *H* until *L* leaves the critical section unlocking the resource.
- Once the resource is unlocked, *L* returns to its original priority level. **BOGUS**

Priority Inheritance Scheduling

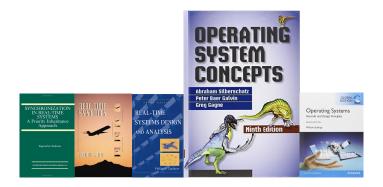
- Idea: Let a low priority process *L* temporarily inherit the high priority of *H* until *L* leaves the critical section unlocking the resource.
- Once the resource is unlocked, *L* returns to its original priority level. **BOGUS**
- ...*L* needs to switch to the highest **remaining** priority of the threads that it blocks.

this error is already known since around 1999

- by Rajkumar, 1991
- "it resumes the priority it had at the point of entry into the critical section"

- by Jane Liu, 2000
- "The job J₁ executes at its inherited priority until it releases R; at that time, the priority of J₁ returns to its priority at the time when it acquires the resource R."
- gives pseudo code and uses pretty bogus data structures
- the interesting part is "left as an exercise"

- by Laplante and Ovaska, 2011 (\$113.76)
- "when [the task] exits the critical section that caused the block, it reverts to the priority it had when it entered that section"



- by Silberschatz, Galvin and Gagne (9th edition, 2013)
- "Upon releasing the lock, the [low-priority] thread will revert to its original priority."

Operating Systems Internals and Design Principles

EIGHTH EDITION

William Stallings

- by Stallings (8th edition, 2014)
- "This priority change takes place as soon as the higher-priority task blocks on the resource; it should end when the resource is released by the lower-priority task."

Priority Scheduling

- a scheduling algorithm that is widely used in real-time operating systems
- has been "proved" correct by hand in a paper in 1990
- but this algorithm turned out to be incorrect, despite its "proof"

Priority Scheduling

- a scheduling algorithm that is widely used in real-time operating systems
- has been "proved" correct by hand in a paper in 1990
- but this algorithm turned out to be incorrect, despite its "proof"
- we (generalised) the algorithm and then **really** proved that it is correct
- we implemented this algorithm in a small OS called PINTOS (used for teaching at Stanford)
- our implementation was faster than their reference implementation

Lessons Learned

- our proof-technique is adapted from security protocols
- we solved the single-processor case; the multi-processor case: no idea!

Regular Expressions

<i>r</i> :::	$= \emptyset$	null
	ϵ	empty string
	C	character
	$r_{\rm I}\cdot r_2$	sequence
	$r_{\mathrm{I}}+r_{\mathrm{2}}$	alternative / choice
	r *	star (zero or more)

The Derivative of a Rexp

If *r* matches the string *c*::*s*, what is a regular expression that matches just *s*?

der c r gives the answer, Brzozowski (1964), Owens (2005) "...have been lost in the sands of time..."

...whether a regular expression can match the empty string:

 $nullable(\emptyset)$ $nullable(\epsilon) \stackrel{\text{def}}{=} true$ nullable(c) *nullable*(*r*^{*})

 $\stackrel{\text{def}}{=}$ false $\stackrel{\mathrm{\tiny def}}{=}$ false $nullable(r_1 + r_2) \stackrel{\text{def}}{=} nullable(r_1) \lor nullable(r_2)$ $nullable(r_{I} \cdot r_{2}) \stackrel{\text{def}}{=} nullable(r_{I}) \wedge nullable(r_{2})$ $\stackrel{\text{def}}{=}$ *true*

The Derivative of a Rexp

 $\stackrel{\text{def}}{=} \emptyset$ der $c(\emptyset)$ $\stackrel{\text{def}}{=} \emptyset$ der $c(\epsilon)$ $\stackrel{\text{def}}{=}$ if c = d then ϵ else \emptyset derc(d) $der c (r_1 + r_2) \stackrel{\text{def}}{=} der c r_1 + der c r_2$ der $c(r_1 \cdot r_2) \stackrel{\text{def}}{=} \text{if } nullable(r_1)$ then $(der c r_1) \cdot r_2 + der c r_2$ else $(der c r_1) \cdot r_2$ $\stackrel{\text{def}}{=} (der c r) \cdot (r^*)$ der $c(r^*)$

The Derivative of a Rexp

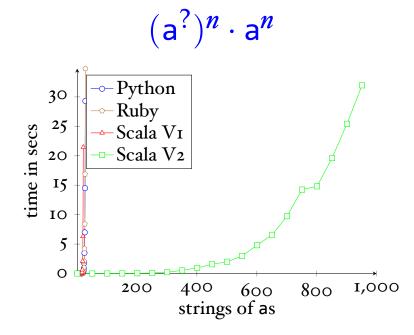
 $\stackrel{\text{def}}{=} \emptyset$ der $c(\emptyset)$ $\stackrel{\text{def}}{\equiv} \emptyset$ der $c(\epsilon)$ $\stackrel{\text{def}}{=}$ if c = d then ϵ else \varnothing der c(d) $der c (r_1 + r_2) \stackrel{\text{def}}{=} der c r_1 + der c r_2$ der $c(r_1 \cdot r_2) \stackrel{\text{def}}{=} \text{if } nullable(r_1)$ then $(der c r_1) \cdot r_2 + der c r_2$ else $(der c r_1) \cdot r_2$ $\stackrel{\text{def}}{=} (der c r) \cdot (r^*)$ der c (r^*) $\stackrel{\text{def}}{=} r$ ders [] r ders (c::s) $r \stackrel{\text{def}}{=} ders s (der c r)$

It is a relative easy exercise in a theorem prover:

matches(r,s) if and only if $s \in L(r)$

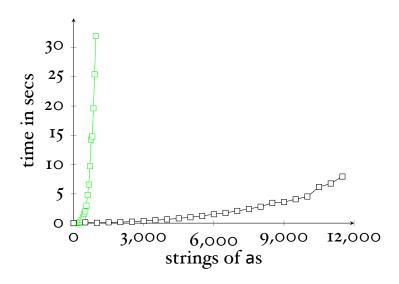
where *matches*(r, s) $\stackrel{\text{def}}{=}$ *nullable*(*ders*(r, s))

SMAL, 23.3.2016 - p. 22/39



SMAL, 23.3.2016 - p. 23/39

(a?) $^{n} \cdot a^{n}$



POSIX Regex Matching Two rules:

• Longest match rule ("maximal munch rule"): The longest initial substring matched by any regular expression is taken as the next token.

iffoo_lbla

• Rule priority: For a particular longest initial substring, the first regular expression that can match determines the token.

i f _ b l a

POSIX Regex Matching Two rules:

• Longest match rule ("maximal munch rule"): The longest initial substring matched by any regular expression is taken as the next token.

iffoo_lbla

• Rule priority: For a particular longest initial substring, the first regular expression that can match determines the token.

if_bla

Kuklewicz: most POSIX matchers are buggy http://www.haskell.org/haskellwiki/Regex_Posix

POSIX Regex Matching

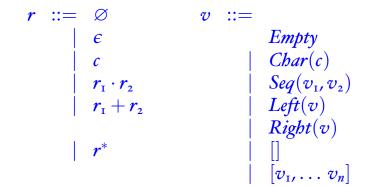
 Sulzmann & Lu came up with a beautiful idea for how to extend the simple regular expression matcher to POSIX matching/lexing (FLOPS 2014)

Martin Sulzmann

• the idea: define an inverse operation to the derivatives

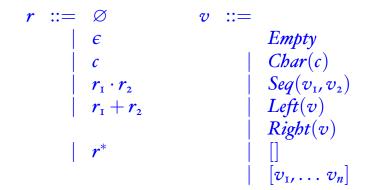
Regexes and Values

Regular expressions and their corresponding values (for *how* a regular expression matched a string):



Regexes and Values

Regular expressions and their corresponding values (for *how* a regular expression matched a string):



There is also a notion of a string behind a value: |v|

Sulzmann & Lu Matcher

We want to match the string *abc* using r_1 :

Sulzmann & Lu Matcher

We want to match the string *abc* using r_{I} :

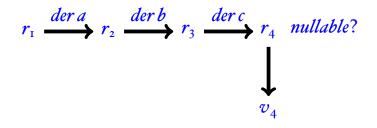
$$r_{1} \xrightarrow{der a} r_{2} \xrightarrow{der b} r_{3}$$

Sulzmann & Lu Matcher

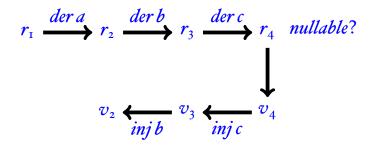
We want to match the string *abc* using r_{I} :

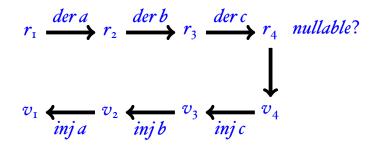
$$r_1 \xrightarrow{der a} r_2 \xrightarrow{der b} r_3 \xrightarrow{der c} r_4$$

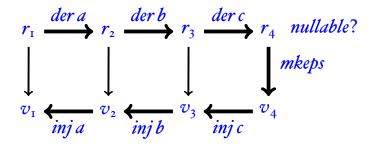
$$r_1 \xrightarrow{der a} r_2 \xrightarrow{der b} r_3 \xrightarrow{der c} r_4$$
 nullable?



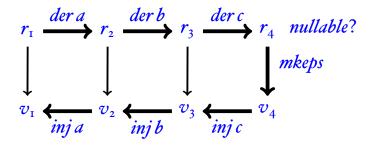








We want to match the string *abc* using r_{I} :



The original ideas of Sulzmann and Lu are the *mkeps* and *inj* functions (ommitted here).

Sulzmann & Lu Paper

• I have no doubt the algorithm is correct — the problem is I do not believe their proof.

"How could I miss this? Well, I was rather careless when stating this Lemma :) Great example how formal machine checked proofs (and proof assistants) can help to spot flawed reasoning steps."

Sulzmann & Lu Paper

• I have no doubt the algorithm is correct — the problem is I do not believe their proof.

"How could I miss this? Well, I was rather careless when stating this Lemma :) Great example how formal machine checked proofs (and proof assistants) can help to spot flawed reasoning steps."

"Well, I don't think there's any flaw. The issue is how to come up with a mechanical proof. In my world mathematical proof = mechanical proof doesn't necessarily hold."

Sulzmann & Lu Paper

• I have no doubt the algorithm is correct — the problem is I do not believe their proof.

"How could I miss this? Well, I was rather careless

Lemma 3 (Projection and Injection). Let r be a regular expression, l a letter and v a parse tree.

1. If
$$\vdash v : r$$
 and $|v| = lw$ for some word w, then $\vdash proj_{(r,l)} v : r \setminus l$.

- 2. If $\vdash v : r \setminus l$ then $(proj_{(r,l)} \circ inj_{r \setminus l}) v = v$.
- 3. If $\vdash v : r$ and |v| = lw for some word w, then $(inj_{r \setminus l} \circ proj_{(r,l)}) v = v$.

MS:BUG[Come accross this issue when going back to our constructive reg-ex work] Consider $\vdash [Right (), Left a] : (a + \epsilon)^*$. However, $proj_{((a+\epsilon)^*,a)}$ [Right (), Left a] fails! The point is that proj only works correctly if applied on POSIX parse trees.

MS:Possible fixes We only ever apply proj on Posix parse trees.

For convenience, we write " $\vdash v : r$ is POSIX" where we mean that $\vdash v : r$ holds and v is the POSIX parse tree of r for word |v|.

Lemma 2 follows from the following statement.

necessarily nord

The Proof Idea by Sulzmann & Lu

- introduce an inductively defined ordering relation
 v ≻_r v' which captures the idea of POSIX
 matching
- the algorithm returns the maximum of all possible values that are possible for a regular expression.

The Proof Idea by Sulzmann & Lu

- introduce an inductively defined ordering relation
 v ≻_r v' which captures the idea of POSIX
 matching
- the algorithm returns the maximum of all possible values that are possible for a regular expression.
- the idea is from a paper by Cardelli & Frisch about GREEDY matching (GREEDY = preferring instant gratification to delayed repletion):
- e.g. given $(a + (b + ab))^*$ and string ab

GREEDY: [Left(a), Right(Left(b)] POSIX: [Right(Right(Seq(a,b))))]

$$\overline{\vdash Empty : e}$$
$$\vdash Cbar(c) : c$$
$$\frac{\vdash v_{1} : r_{1} \quad \vdash v_{2} : r_{2}}{\vdash Seq(v_{1}, v_{2}) : r_{1} \cdot r_{2}}$$
$$\frac{\vdash v : r_{1}}{\vdash Left(v) : r_{1} + r_{2}}$$
$$\frac{\vdash v : r_{2}}{\vdash Rigbt(v) : r_{1} + r_{2}}$$
$$\frac{\vdash v_{1} : r \quad \dots \quad \vdash v_{n} : r}{\vdash [v_{1}, \dots, v_{n}] : r^{*}}$$

SMAL, 23.3.2016 - p. 31/39

SMAL, 23.3.2016 – p. 32/39

• Sulzmann: ...Let's assume v is not a *POSIX* value, then there must be another one ...contradiction.

- Sulzmann: ...Let's assume v is not a *POSIX* value, then there must be another one ...contradiction.
- Exists?

$$L(\mathbf{r}) \neq \varnothing \Rightarrow \exists \mathbf{v}. POSIX(\mathbf{v}, \mathbf{r})$$

- Sulzmann: ...Let's assume v is not a *POSIX* value, then there must be another one ...contradiction.
- Exists?

$$L(\mathbf{r}) \neq \varnothing \Rightarrow \exists \mathbf{v}. POSIX(\mathbf{v}, \mathbf{r})$$

• in the sequence case $Seq(v_1, v_2) \succ_{r_1 \cdot r_2} Seq(v'_1, v'_2)$, the induction hypotheses require $|v_1| = |v'_1|$ and $|v_2| = |v'_2|$, but you only know $|v_1| @ |v_2| = |v'_1| @ |v'_2|$

- Sulzmann: ...Let's assume v is not a *POSIX* value, then there must be another one ...contradiction.
- Exists?

$$L(\mathbf{r}) \neq \varnothing \Rightarrow \exists \mathbf{v}. POSIX(\mathbf{v}, \mathbf{r})$$

- in the sequence case $Seq(v_1, v_2) \succ_{r_1 \cdot r_2} Seq(v'_1, v'_2)$, the induction hypotheses require $|v_1| = |v'_1|$ and $|v_2| = |v'_2|$, but you only know $|v_1| @ |v_2| = |v'_1| @ |v'_2|$
- although one begins with the assumption that the two values have the same flattening, this cannot be maintained as one descends into the induction (alternative, sequence)

Our Solution

• a direct definition of what a POSIX value is, using the relation $s \in r \rightarrow v$ (specification):

It is almost trival to prove:

• Uniqueness If $s \in r \to v_1$ and $s \in r \to v_2$ then $v_1 = v_2$.

Correctness

lexer(r, s) = v if and only if $s \in r \rightarrow v$

It is almost trival to prove:

• Uniqueness If $s \in r \to v_1$ and $s \in r \to v_2$ then $v_1 = v_2$.

Correctness

lexer(r, s) = v if and only if $s \in r \rightarrow v$

You can now start to implement optimisations and derive correctness proofs for them. But we still do not know whether

 $s \in r \rightarrow v$

is a POSIX value according to Sulzmann & Lu's definition (biggest value for s and r)

Pencil-and-Paper Proofs in CS are normally incorrect

• case in point: in one of Roy's proofs he made the incorrect inference

if $\forall s. |v_2| \notin L(\operatorname{der} c r_1) \cdot s$ then $\forall s. c |v_2| \notin L(r_1) \cdot s$

while

if $\forall s. |v_2| \in L(\operatorname{der} c r_1) \cdot s$ then $\forall s. c |v_2| \in L(r_1) \cdot s$

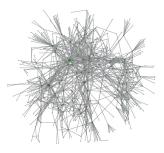
is correct

SMAL, 23.3.2016 - p. 36/39

Proofs in Math vs. in CS My theory on why CS-proofs are often buggy

Math:

in math, "objects" can be "looked" at from all "angles"; non-trivial proofs, but it seems difficult to make mistakes



Code in CS: the call-graph of the seL4 microkernel OS; easy to make mistakes

Conclusion

- we replaced the POSIX definition of Sulzmann & Lu by a new definition (ours is inspired by work of Vansummeren, 2006)
- their proof contained small gaps (acknowledged) but had also fundamental flaws
- now, its a nice exercise for theorem proving
- some optimisations need to be applied to the algorithm in order to become fast enough
- can be used for lexing, is a small beautiful functional program

