
Extending Finite Automata to Efficiently Match
 Perl-Compatible Regular Expressions

Michela Becchi

Washington University
Computer Science and Engineering

St. Louis, MO 63130-4899

mbecchi@cse.wustl.edu

Patrick Crowley

Washington University
Computer Science and Engineering

St. Louis, MO 63130-4899

pcrowley@wustl.edu

ABSTRACT
Regular expression matching is a crucial task in several

networking applications. Current implementations are based on

one of two types of finite state machines. Non-deterministic finite

automata (NFAs) have minimal storage demand but have high

memory bandwidth requirements. Deterministic finite automata

(DFAs) exhibit low and deterministic memory bandwidth

requirements at the cost of increased memory space. It has

already been shown how the presence of wildcards and

repetitions of large character classes can render DFAs and NFAs

impractical. Additionally, recent security-oriented rule-sets

include patterns with advanced features, namely back-references,

which add to the expressive power of traditional regular

expressions and cannot therefore be supported through classical

finite automata.

In this work, we propose and evaluate an extended finite

automaton designed to address these shortcomings. First, the

automaton provides an alternative approach to handle character

repetitions that limits memory space and bandwidth requirements.

Second, it supports back-references without the need for back-

tracking in the input string. In our discussion of this proposal, we

address practical implementation issues and evaluate the

automaton on real-world rule-sets. To our knowledge, this is the

first high-speed automaton that can accommodate all the Perl-

compatible regular expressions present in the Snort network

intrusion and detection system.

1. INTRODUCTION
Finding patterns of interest within large datasets is a central

task in many applications and has been a well-studied area

of research for many years. However, there exist contexts

where the design of high-performance pattern matching

sub-systems is still challenging. In particular, this is the

case with the networking domain, which includes several

applications where packet payloads must be inspected at

line rates (up to several gigabits per second) against large

data-sets, sometimes consisting of thousands of patterns.

Examples include network intrusion detection and

prevention systems (e.g., Snort [6][7], Bro [8], Cisco

Security Appliance [10], Citrix Application Firewall [11]),

email scanning systems (ClamAV [9]), application-level

filtering and content-based routing [12].

 While a substantial amount of work has focused on

exact-match string search, research interest has recently

moved toward designing data structures, algorithms and

architectures to support regular expressions, which are more

expressive than exact-match strings and therefore able to

describe a wider variety of pattern signatures [13][14]. The

basic challenge with high-speed regular expression

evaluation is to minimize both memory space and memory

bandwidth.

Finite automata (FA) are typically used to represent

regular expressions [2]. Two classic automata are used for

this purpose, and each has its strengths and weaknesses.

Non-deterministic finite automata (NFAs) have the benefit

of a limited memory space requirement, which is dependent

only on the number of characters present in the set of

regular expressions. However, in the worst case, the

matching operation requires up to NNFA state traversals per

input character processed, where NNFA is the number of

states in the NFA. Assuming at least one memory access per

state traversal, this may require an unacceptable amount of

memory bandwidth in high-speed contexts. On the other

hand, deterministic finite automata (DFAs) offer the

advantage of a limited memory bandwidth requirement. In

particular, they require only a single state traversal for each

input character processed, independent of the number of

regular expressions in the data-set. However, the memory

space required to encode a DFA representing a set of

regular expressions can increase exponentially as compared

with an NFA representation, a fact that often renders DFAs

infeasible for practical rule-sets [16][20].

Practical rule-sets often include three categories of

patterns that make FA implementations problematic. The

first are unbounded repetitions of sub-patterns, particularly

those involving wildcards and character ranges. These “dot-

star terms” have a less dramatic effect and can be handled

through proper regular expression clustering [16] (an

approach that has severe scalability limits). The second are

bounded repetitions, or “counting constraints,” in which a

pattern is repeated a specific number of times; these are

more troublesome and can render DFA and NFA solutions

impractical, as we will see, due to their unsustainable

memory storage and bandwidth requirements [20].

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

CoNEXT 2008, December 9-12, 2008, Madrid, Spain

Copyright 2008 ACM 978-1-60558-210-8/08/0012 ...$5.00.

The final problematic type of pattern found in practical

rule-sets is the back-reference, in which a matching

substring in the prefix is matched again later in the input

string. Back-references add to the expressive power of

regular expressions, because regular languages cannot

evoke this capability and cannot therefore be handled

through the classic finite state machines. Therefore,

implementations based on pure NFAs or DFAs fail to

support back-references altogether.

To be concrete, let us consider the rule-set

characteristics from the popular Snort network intrusion

and detection system (NIDS) [7]. As of November 2007,

5,549 of the 8,536 Snort rules contain at least one Perl-

Compatible Regular Expression (PCRE). Among these, 905

(16.3%) and 2,445 (44%) contain unbounded and bounded

repetitions of large character classes, respectively, and 338

(6%) include back-references.

The practical implications of these observations are

dramatic. First, none of the existing DFA-based proposals

for high-speed network regular expression evaluation can

handle the 44% of the Snort PCREs containing large

counting constraints (even a single rule with a large

counting constraint renders these infeasible). Second, DFA-

based designs need to partition the 16.3% of regular

expressions containing dot-star terms in order to compile

them into feasible data structures. Note that this is

independent of the use of efficient DFA compression

techniques [17][19]. Rule partitioning implies that several

DFA instances must be created and operated in parallel,

which requires an increase in memory bandwidth linear in

the number of DFAs. Therefore, 60.3% of Snort regular

expressions are not handled in a practical manner with

DFA-based solutions. As we will see, this has led various

groups to propose NFA-based architectures. Finally, none

of the existing solutions based on finite automata, either

DFAs or NFAs, can handle the 6% of Snort rules

containing back-references.

The problem of unconstrained repetitions of large

character classes has recently been addressed in [20] and

[21]. However, as we discuss in Section 2, neither of these

proposals treat counting constraints in an exhaustive way.

Finally, back-references have been fully omitted from

previous work.

In this paper, we propose an extended automaton to

efficiently handle counting constraints and back-references.

This allows us to cover all the patterns in the Snort rule-set,

which is to our knowledge the most popular and expressive

publicly available NIDS. We focus on a solution that can be

implemented using a restricted amount of storage and that

requires as little memory bandwidth as possible.

Specifically, our contributions are both theoretical and

practical, and can be summarized as follows:

• We design a counting-FA that is functionally

equivalent to a pure finite automaton, requiring a limited

amount of storage and a finite and deterministic number of

memory accesses per character processed. The automaton

is proposed in both deterministic and non-deterministic

form.

• We design an extended-automaton that handles back-

references with an NFA-like operation.

• We describe a practical state representation that is

compatible with the compression and encoding techniques

used on standard finite automata.

• We propose suitable system architecture.

For large rule-sets, we show how the proposed extended

automaton can be integrated with the hybrid-FA described

in [20] and, in fact, how our proposal can be viewed as a

natural extension of it. Also, our extended deterministic

finite automata can be used to generalize existing

techniques based on multiple DFAs [25] in order to handle

regular expressions with counting constraints.

The remainder of this paper is organized as follows: In

Section 2, we provide additional background and describe

our contributions in the context of previous work. In

Section 3, we present the counting automaton with a

motivating example. In Section 4, we discuss the back-

reference problem and describe our solution to it. In Section

5, we discuss a specific and practical encoding and

compression technique that can be used to store the

automaton. In Section 6, we extend the scheme to encode

multiple regular expressions. In Section 7, we propose a

system architecture that can use the automaton to

implement high-speed regular expression evaluation. In

Section 8, we provide experimental evaluations on real

data-sets. We conclude in Section 9.

2. BACKGROUND
The prior work in the area of regular expression matching at

line rate can be categorized by distinct implementation

targets: FPGA-based implementations [22][23][24]

[25][26] and approaches suitable for deployment on a

general-purpose processor or on ASIC hardware

[15][16][17][18][19][20][21]. The extended automaton

proposed in this paper can be applied to all these

implementation scenarios. However, we reserve the

evaluation on FPGAs for future work.

The two main advantages of FPGAs reside in their

intrinsic reconfiguration capability and parallelism. The

first aspect is less significant for the problem at hand

because, currently, the update frequency in practical rule-

sets is relatively low. Parallelism can be (and is) exploited

to run several regular expression engines—either in the

DFA or in the NFA form—at the same time. FPGA-specific

solutions have the following main disadvantages. First, they

operate at a lower clock frequency compared with general-

purpose processors and ASIC solutions; and, second, they

lack in scalability because the number of supportable rules

is a function of FPGA resources rather than external

memory.

a * b c**… …

n

0 1 2 n+1 n+2 n+3

*

Figure 1: NFA accepting RegEx .*a.{n}bc

a0 0,1

a

a

a

b

c

a

...

^a

^a

0,1
2

0,1
2,3

0 …
n+1

^a
0,2

^a b c… 0
n+1

^a 0
n+2

0
n+3

0,2…
n+2

0,3, …,
n+1,n+3

0,2
3

0,2
3,4

0,3
4

0,3
4,5

^a

^a

0,3

…

…

a

a

b0, n
n+1

0, n+1
n+2

^a

^a

^a

^a

a a
… …

…

…

…

…

aa

a a

c

…

Figure 2: Sketch of DFA accepting RegEx .*a.{n}bc

An interesting NFA implementation for FPGAs is

described by Sidhu and Prasanna [22]. The main idea is to

encode each state in a flip-flop to allow each character to be

processed in constant time. However, Franklin et al. [23]

show how, in practice, the performance of FPGA-based

NFA designs can decrease rapidly as the character density

increases. A recent design proposed by Mitra et al. [26]

shows that up to 250 PCREs from Snort can be

accommodated on a single FPGA. Clearly, this may make

the deployment of the whole Snort rule-set costly and

cumbersome.

The main advantages of algorithmic approaches

suitable for implementation on general-purpose processors

and ASIC hardware are generality, versatility and

availability of higher clock frequencies. In this context,

memory storage and bandwidth requirements represent the

main issues.

A substantial body of research work has focused on

compression techniques aimed at reducing the amount of

memory needed to represent DFAs. In particular, Kumar et

al. [17] proposed an algorithm to compress a DFA through

the introduction of default transitions, a generalization of

the failure pointer concept presented in the classical Aho-

Corasick algorithm for string-matching [1]. Their work is

based on the idea of trading of memory storage requirement

with processing time. A more general and less complex

algorithm to achieve the same goal was recently proposed

by Becchi et al. [19]. By restricting default transitions to be

backward directed, they can achieve a better worst case

bound on the processing time, while offering the same

compression degree of [17]. Unfortunately, as mentioned in

the introduction and as detailed in [16][20], pure DFA-

based approaches cannot deal with the complexity of

regular expressions present in practical rule-sets. In fact, the

presence of large character class repetitions may make it

impossible to practically compute a DFA. While the

problem can be limited in the case of unconstrained

repetitions through regular expression partitioning [16][25]

(by sustaining greater memory bandwidth), counting

constraints still remain an open issue. To get a concrete

sense of this issue, it can be observed that the above

compression algorithms have been tested on very limited

rule-sets: either on large sets of simple patterns or on sets

containing fewer than ten-to-twenty complex regular

expressions.

Two recent works [20][21] aim at overcoming the

limitations of pure DFA- and NFA-based solutions in the

context of traditional regular expressions.

In particular, in [20] Becchi and Crowley propose a

hybrid-FA with a memory storage requirement comparable

to that of an NFA and a memory bandwidth requirement

dependent on the number of regular expressions presenting

large character class repetitions. The basic idea is to

perform partial NFA-to-DFA conversion, thus preventing

state explosion from happening. The outcome is a hybrid

automaton consisting of a head-DFA (on which the

compression techniques discussed above can be applied)

and several tail-automata, either in NFA or in DFA form.

The work presented in [20], however, does not fully

elaborate the problem of counting constraints; in this paper

we show how the proposed extended-automaton can be

combined with the hybrid-FA proposed in [20].

In [21] Kumar et al. propose HFA, a history-based

automaton. Specifically, the proposal uses conditional

transitions and a “history” data structure to limit the size of

the underlying state machine. In fact, by these means an

HFA avoids the duplication of entire groups of DFA states

that would result from the presence of large character class

repetitions in the regular expression set. Counters on states

with auto-transitions are introduced to support counting

constraints within the HFA. However, because HFAs use a

single counter instance for each constrained repetition, they

are not functionally equivalent to the original NFA. In other

words, HFA may fail to recognize some match situations

(see Section 3 for more details). Additionally the successful

application of HFA is subject to constraints on the

underlying regular expressions. Finally, the need for

querying and updating the history data structure may affect

the performance, especially if HFAs are used in the fast

path.

To our knowledge, our work is the first to propose an

automaton addressing the problem of back-references. To

this end, it is worth mentioning how the problem is faced

within the string-processing arena, that is, within tools like

grep, awk, Perl and so on.

As explained in [3], string-processing tools are based

on either a text-directed or a regex-directed engine. In

either case, the regular expression under consideration is

a *, cnt b | cnt=n c

| cnt≠≠≠≠n*

0 1 2
cnt++ 3 4

*

Figure 3: Counting-NFA accepting RegEx .*a.{n}bc

represented with a tree-like data structure. Text-directed

engines have basically an NFA-like operation: they process

each input character only once, traverse the tree-like data

structure in breadth-first fashion and keep all ongoing

matches active. Regex-directed engines, on the other hand,

perform a depth-first traversal of the tree-like data structure

and back-track in the input text when the end of a branch is

reached without detecting a match. The way back-tracking

is performed depends on the engine and on the way the

regular expression is written. Because a character may be

processed an undefined number of times, the performance

of regex-directed engines are non-deterministic. Extensions

to the regular expression language (lazy and greedy

quantifiers, atomic groups, positive and negative look-

around, and others) are introduced to speed up the matching

operation of regex-directed engines.

Back-references are the only feature that extends the

expressive power of regular expressions, and are not simply

introduced to speed up regex-directed engines. Handling

back-references implies remembering already processed

portions of the input text. Therefore, back-references cannot

be directly supported through finite automata, which are

intrinsically memory-less. As a consequence, back-

references currently are not supported through any text-

directed engine. The implications of this fact are the

following: First, within string-processing tools, back-

references are always handled by back-tracking in the input

text. Second, since regex-directed engines are meant to

process a single regular expression at a time, if several

regular expressions must be matched, the input text will be

reprocessed for each pattern under consideration.

3. HANDLING COUNTING
CONSTRAINTS
In this section, we present the extension to finite automata

introduced to handle constrained repetitions in an effective

way.

As a motivating example, let us consider the regular

expression .*a.{n}bc. The initial .* sub-pattern tells us that

pattern a.{n}bc can occur at any position of the input text.

Thus, the input text will be inspected for the occurrence of

character a followed by n characters and by the bc

substring. There are no restrictions on the characters

separating a from bc, provided that they be exactly n.

In this section, we first show the NFA and the DFA

that accept the considered regular expression, and discuss

their benefits and limitations. Second, we propose the

counting counterparts, focusing on the need for maintaining

functional equivalence. In other words, the proposed

counting automata must accept all the input strings accepted

by traditional solutions and no others.

The NFA accepting .*a.{n}bc is represented in Figure

1. As can be seen, when the cardinality of the counting

constraint n is large, the size of the NFA (in terms of

number of states) is linear in n. The basic problem of an

NFA representation resides in the fact that, during

operation, many states can be active in parallel, leading to a

high memory bandwidth requirement and/or processing

time. In fact, the behavior of NFAs representing regular

expressions with counting constraints may approach the

worst-case complexity O(n) per input character, a worst-

case bound never achieved otherwise.

As an example, let us assume to process an input string

of the form aaaaaaaaaaaa...aaaabc. Because state 0 is

always active, transition 0→1 is triggered upon receiving

symbol a, and all transitions up to state n+1 happen on any

character, so eventually all states from 0 to n+1 will be

active in parallel. In the general case, the number of parallel

activations can approach the ratio between the number of

NFA states and the length of the prefix preceding the

counting constraint. This may result in unacceptable

memory bandwidth requirements and processing time.

As is well-known from theory [2], a DFA

representation can be used to keep the processing time

complexity down to one state traversal per input character.

A DFA can be built from an NFA through the subset

construction operation, which associates a DFA state to

each set of NFA states reached in parallel upon processing

a given character. Because there can be 2N distinct subsets

for a set of N elements, there may be exponential state

blowup when transforming an NFA into the corresponding

DFA. In practice, this does happen only in some situations,

most notably with counting constraints.

Figure 2, showing part of the DFA for regular expression

.*a.{n}bc, exemplifies this fact. State numbering reflects

subset construction on the NFA in Figure 1. As should be

evident, state explosion is due to the need for representing

all possible occurrences of the prefix (in this case pattern a)

at any position of the counting constraint. Notice that a

similar blowup would have occurred even if the counting

constraint was on a range of characters including a, such as

[a-z]{n}. Conversely, this problem does not occur when the

repetition does not involve characters in the prefix. The

situation becomes more complicated when different regular

expressions are compiled into a single DFA. In this case,

explosion is also due to accounting for occurrences of the

remaining regular expressions within the counting

constraint.

As a result, the memory storage requirement can become a

bottleneck when representing regular expressions with

counting constraints in DFA form. For high numbers of

repetitions of n, DFAs may even be an infeasible solution.

To solve the issues described above, we now introduce the

concept of the counting automaton. Specifically, we first

create a counting-NFA and then show how to extend the

subset construction operation to build the corresponding

Table 1: Example of counting-NFA/DFA traversal.

Char Active states Counter instances Condition (n=3)

a 0,1

x 0,2 cnt1=1 cnt ≠ n

a 0,1,2 cnt1=2 cnt ≠ n

y 0,2 cnt1=3, cnt2=1 cnt = ⊥

b 0,2,3 cnt2=2 cnt ≠ n

z 0,2 cnt2=3 cnt = n

b 0,3

c 0,4

a

a

b| cnt=n

a
 |
 c
n
t ≠≠ ≠≠
n
, ⊥⊥ ⊥⊥

[^ab] | cnt≠≠≠≠n, ⊥⊥⊥⊥
b | cnt≠≠≠≠n

a

c

a| cnt≠≠≠≠n,⊥⊥⊥⊥

0 0,1

0,2 0,3 0,4

0,1
2

0,2
3

0,2
4

b
|c
n
t=
n
, [
^
a
b
]|
c
n
t
≠≠ ≠≠
n
, ⊥⊥ ⊥⊥

c| cnt≠≠≠≠n,⊥⊥⊥⊥

b | cnt=n,⊥⊥⊥⊥

b
| c
n
t ≠≠ ≠≠
n
,[^

a
b
]

b|cnt=⊥⊥⊥⊥

b
|c
n
t=
n

a

a| cnt≠≠≠≠n,⊥⊥⊥⊥

b|cnt=⊥⊥⊥⊥

Figure 4: Counting-DFA accepting RegEx .*a{n}bc. Dashed

states contain the cnt++ action; dashed transitions trigger a

counter instantiation; transitions not shown lead to state 0.

counting-DFA. The basic idea is to replace the chain of

counting states (states from 2 to n+1 in Figure 1) with a

single state incrementing a counter, and make the

transitions out of this state conditional on the value of the

counter.

This basic concept is complicated by observing that, to

preserve functional equivalence between the original and

the counting-NFA, one instance of the counter is not

enough. To understand this fact, let us consider the above

regular expression with n=3, and assume to process the

input text axaybzbc. As can be observed, this string matches

the given regular expression starting from the second

occurrence of character a. If we assume a single counter

instance, it will be set to 1 after processing x, to 2 after the

second occurrence of a, and to 3 after considering character

y. The match operation will proceed on b but fail on z.

Finally, characters b and c will leave the automaton on state

0, incorrectly reporting a mismatch.

The above behavior can be avoided by allowing

multiple instances of the same counter. To this end, beside

the increment operation, we need an allocation and a de-

allocation action. While the increment operation acts in

parallel on all active instances of the counter, allocation and

de-allocation are instance-specific actions.

The resulting counting-NFA is represented in Figure 3.

The dashed (red) transition 1→2 represents the allocation

operation (which sets the value of the newly created

instance of cnt to 0). The dashed (red) state is the counting

state: its increment action is performed on all active counter

instances when the state is entered. The conditions

following “|” make the corresponding transition conditional.

In this example, we assume that de-allocation happens when

the corresponding instance assumes value n (this aspect can

be generalized). Hence, the instance with value n will be

de-allocated after traversing transition 2→3.

The demonstration of the counting-NFA traversal with

the above input text is represented in Table 1 (columns 1-

3). Counter instances are numbered in order of creation. As

can be observed, a second instance is initiated upon

processing character y. The next b will trigger transition

2→3 because on the condition of instance cnt1, as well as

2→2 because cnt2 is not equal to n. The presence of cnt2

leads to correct operation (a match is eventually reported as

accepting state 4 is entered).

In the case of a counting constraint of cardinality n, up

to n counter instances may be active in parallel. This could

potentially affect the memory bandwidth

requirement/processing time, again leading to an

unacceptable worst case behavior. However, we observe

that the number of memory operations to be performed

upon processing a character can be made independent of

the number of active counter instances. Specifically: i)

using a differential representation, each counter update

may effectively involve just two instances (the oldest and

the new one); ii) the evaluation of the condition can be

performed using at most two instance values. Let us

describe these two points in detail.

i) Differential representation - Since the increment

operation acts in parallel on all the counter instances, the

difference between them will remain constant over

execution. At each step, it will be sufficient to store the

value of the largest instance (the oldest one), whereas the

others can be recorded as a delta between their value and

the one of the previously created instance. When a counter

instance gets de-allocated, the value of the one which

follows can be restored from the delta information.

ii) Condition evaluation – It is known that the oldest

instance (say cnt’) is the largest, and that all instances differ

in value. Therefore, if cnt’ differs from n, then all instances

are different from n and cnt≠n is verified. If cnt’ is equal to

n, then cnt=n is true. If, in the latter case, (at least) an

additional instance of the counter exists, then it is

necessarily different from n, and the condition cnt≠n is also

verified. Therefore, knowing the value of cnt’ and whether

it is single instance is enough to evaluate the conditions and

determine the transitions to be taken.

By generalizing the subset construction operation it is

possible to derive the counting-DFA represented in Figure

4 from the counting-NFA shown in Figure 3. For

readability, counter instantiation and increment are just

represented by dashing (and red coloring) the transitions

and states where these actions take place.

 It can be noted that, in both cases, the number of states

is independent of n. This makes counting automata

0 1 2 3 4 5

*
a [a-z] \1|s=ε

\1|s≠ε

y

[a-z]

a

Figure 6: Extended-FA for RegEx .*a([a-z]+)a\1y

Figure 5: Extended-FA for RegEx .*(abc|bcd).\1y

attractive particularly for high values of n, for which a pure

DFA would not be a feasible solution.

Subset construction is generalized as follows: First, if

an NFA state S triggers an action act (in the example, state

2 triggers action cnt++), then all DFA states whose subset

contains S are assigned act. Second, if a counter is

instantiated upon NFA transition S1→S2 (1→2 in the

example), the same happens for all DFA transitions

connecting a state containing S1 to a state containing S2 in

their subset. Finally, transitions can possibly be conditional

upon the value of the counters.

Being deterministic, the automaton must be built to

trigger one and only one transition for each (state,

character) pair. To this end, three conditions on the counter

will be considered: i) cnt ≠n, ii) cnt=n and iii) cnt=⊥. The

first means that the oldest (active) instance cnt’ is different

from n, the second that cnt’ is single instance equal to n,

and the third that cnt’ is equal to n but at least a second

instance of the counter exists. In other words, cnt=⊥

whenever both cnt=n and cnt ≠n hold at the same time in

the corresponding counting-NFA. The condition is

represented in the last column in Table 1; notice that the

represented traversal holds also for the counting-DFA.

The concepts above can be easily generalized to

character range repetitions, sub-expression repetitions and

{n,m}, {n,+}-like counting constraint.

4. HANDLING BACK-REFERENCES
In this section we introduce back-references and show how

to extend an NFA to handle them. We intend to modify the

NFA operation as little as possible.

A back-reference in a regular expression refers to some

sub-expression enclosed within capturing parentheses, and

indicates that the referred sub-expression can be matched

later within the regular expression itself. By convention,

capturing parentheses are numbered by numbering their

open parentheses from left to right. The back-reference to

the j-th captured sub-expression is indicated by a back-slash

(\) follow by j (\j). Back-references add expressive power to

regular expressions when the referred sub-expressions are

not exact match strings.

As an example, let us consider the extended regular

expression a(bc|d)e([a-z])\1([1-9])f (from now on, let us

imply the initial .* sub-pattern).

() () () fzaedbca
4342143421321

3\2\1\

]91[1\][| +−−

As shown above, the order of the capturing parentheses

implies the sub-expression numbering, which is then used to

perform back-references. It can be observed that each sub-

expression contains an alternative. Moreover, the length of

the substring matching the captured sub-expression is not

necessarily fixed or known a priori (see sub-expressions 1

and 3).

Once encountered, the back-reference refers to the

specific substring in the input text which first matched the

given sub-expression. As an example, the above regular

expression will match text abceabc123f, but won’t match

abcead123f. In fact, in the second case, when the back-

reference \1 is encountered the current input (d) does not

match the input text captured when the referenced sub-

expression was first matched (bc).

From this example it should be clear that a machine

processing back-references needs to record matched

portions of the input string. This cannot be performed

through a finite state machine, which is intrinsically

memory-less.

One could consider augmenting a NFA with tags

capturing the beginning (and the end) of a match as

proposed by Laurikari [5] to solve the problem of

determining the position of a match or of a sub-match in

linear time. However, the problem is more complicated. In

fact, there exist situations where the start and the end of a

sub-match are not unequivocally defined: for example, a

captured sub-expression may have a variable length or may

overlap with the preceding/following characters in the

pattern.

As an example, let us consider the two following

regular expressions with back-references: (1) (abc|bcd).\1y

and (2) a([a-z]+)a\1y. Pattern (1) matches either abc or bcd

followed by any character, followed by the previously

matched sub-pattern, followed by character y. Pattern (2)

matches a, followed by a substring of any length composed

by [a-z] characters, followed by a, followed by the

previously matched sub-string and finally by character y. In

the first case, the complexity arises by two facts: first, the

two alternatives in the referenced sub-expression (abc and

bcd) overlap; second, the captured sub-expression overlaps

with the following character, which is a wildcard. In the

second case, the complexity is due to the overlapping of the

back-referenced sub-expression with both the preceding and

the following characters (a), and by the fact that its length is

variable.

The text abcdabcdy matches regular expression (1)

starting from the second character, and not from the first. In

fact, even if abc is matched and correctly back-referenced,

its second occurrence is not followed by y. The text

babacabacy matches regular expression 2 from the second

character, and the matched sub-text contains one a.

Our solution aims at preserving the NFA operational

model. In other words: (i) both finding all possible

subsequent matches as well as stopping at the first match

should be allowed; (ii) each input character should be

processed only once (possibly against a set of active states);

and (iii) the parallel processing of different regular

expressions should be permitted.

To this end, we extend the NFA as follows:

• Each back-reference in the regular expression set is

associated with a unique identifier. Thus, it is irrelevant

whether two back-references belong to the same or to

different patterns.

• The transitions implementing back-referenced sub-

expressions are augmented with a tag indicating that, during

traversal, the input text must be recorded. Each tag is

associated with the corresponding back-reference identifier.

• Each active state can be associated with a set of

matched substrings MSk for each back-reference \k. This is

performed as follows. (i) When a transition Sx → Sy is

taken, the set MSk associated to Sx gets moved to Sy. (ii) If

the taken transition is tagged k, the current input character

is appended to the strings in MSk.

• If a back-reference \k originates from state Sj, Sj is

consuming: when active, all the strings in its MSk are

processed and shortened (one character at a time)

• Two special conditional transitions representing the

back-reference are created. If the input character matches

some string in MSk then: (i) transition Sj → Sj+1 is taken if

the corresponding string is consumed completely; (ii)

transition Sj → Sj is taken otherwise.

To clearly understand, let us consider the described

scheme in practice. For the sake of example, Figure 5 and

Figure 6 show the extended-FA corresponding to the

regular expressions considered above. Tagged transitions as

well as consuming states are dashed (and red); transitions

on back-references are represented (in blue) along with the

corresponding condition.

Let us first assume to traverse the extended-FA in

Figure 5 with the input text abcdabcdy. The corresponding

sequence of {state(MS1)} activations is the following:
a: 0 – 1(a)

b: 0 – 3(b) – 2 (ab)

c: 0 – 4(bc) – 5 (abc)

d: 0 – 5 (bcd) – 6(abc)

a: 0 – 1(a) – 6 (bcd,bc)

b: 0 - 3(b) – 2(ab) – 6(cd, c)

c: 0 – 4(bc) – 5(abc) – 6(d) - 7

d: 0 – 5(bcd) – 6(abc) - 7

y: 0 – 6(bcd) – 8

Similarly, traversing the extended-FA in Figure 6 with the

input text babacabacy will lead to the following operation:
b: 0

a: 0 - 1

b: 0 – 2(b)

a: 0 – 1 – 2(ba) – 3(b)

c: 0 – 2(c, bac)

a: 0 – 1 – 2(ca,baca) – 3(c,bac)

b: 0 – 2(b, cab, bacab) – 3(ac)

a: 0 – 1 – 2(ba, caba, bacaba) – 3(b, c, cab, bacab)

c: 0 – 2(c,bac,cabac, bacabac) – 3(ab) – 4

y: 0 – 2(cy, bacy, cabacy, bacabacy) - 5

As can be observed, the scheme ensures correct operation.

This is essentially due to the correct and full propagation of

the partial match information among states.

Note that storing all the matched substrings as shown in

the example leads to conspicuous information replication.

In practice, the MSk contains a set of pairs (starting

position, ending position) pointing to the matched

substrings in the input text. Even so, the worst-case bound

in the number of pointers needed for each back-reference is

O(m2
NNFA), where m is the length of the input text. It must

be mentioned that this worst-case bound applies when the

referenced substring has variable length (as in the second

example). Similar patterns must be advised against since

they may open the way to algorithmic attacks also if back-

tracking (i.e., a regex-directed engine) is used.

A way to control the size of the MSk (and thus, to keep

the memory required to store partial matching information

under a given bound) can be derived from the following

observation. The active states of an NFA can in principle be

processed independently and at different times. Therefore,

the processing of particular NFA state activations can be

deferred, while waiting for other activations to terminate

and free memory. Let us consider processing the 7th input

character (that is, the third b) in the second example. It is

possible to postpone the consideration of states 0 and 1 and

to evaluate only the activations in states 2 and 3. States 0

and 1 can be processed on the 7th character of the input text

at a later time (that is, when the other activations die or

enough memory is released). Note that this corresponds to

combining a breadth-first with a depth-first NFA traversal,

effectively introducing some back-tracking. A full depth-

first traversal would correspond to a pure back-tracking

approach.

Finally, it is worth highlighting the similarities in our

handling of counting constraints and back-references. In

both cases, the NFA has been augmented with some state

information. The basic semantics of the NFA operation is

unmodified. Transitions activating counters are

conceptually equivalent to tagged transitions recording text:

they trigger an action on a particular counter/back-reference

(typically leading to the storing of state information).

Conditional transitions are also semantically equivalent in

the two scenarios: they depend on whether the stored data

(a counter or a matched substring) have been “consumed.”

Counting states are similar to consuming states, in that both

modify the state information associated to them. The

procedure to transform an extended NFA with back-

references into its deterministic counterpart is equivalent to

that seen for counting constraints. More important, the two

mechanisms can be combined and unified into a single

extended-FA having: (i) tagged transitions on counters and

back-references, (ii) conditional transitions on counters and

back-references, (iii) counting and consuming states.

*

a c1 2 3 4db
0

*

a c
0,1 0,2

0,2
3

db0
0,2
4

a [^c] c

[^cd]

[^c]

c

.*ab .*cd
Figure 7: NFA and DFA for RegEx .*ab.*cd

5. COMPACTING AN EXTENDED-FA
The methodology presented above allows limiting the

number of states necessary to represent regular expressions

containing counting constraints and handling back-

references. However, this comes at the cost of the

introduction of conditional transitions, which must be

represented in an efficient way. In particular, we aim at an

encoding scheme that allows applying compression

techniques proposed in the context of pure DFAs, naming

default transitions [17][19] and character classes [19].

A simple technique to represent conditional transitions

consists of using a character translation unit, which

operates as follows: (i) every character c never appearing in

a conditional transition is associated a single symbol, (ii)

every character appearing in a conditional transition is

associated multiple symbols, one for each possible

condition of the counter. Notice that, in case of a single

counting constraint, this corresponds to expanding the

alphabet ∑ of cardinality |∑| to an alphabet ∑’ of cardinality

k|∑|, k being equal to 3 or 5 depending on the nature of the

counting constraint ({n} versus {n,m}).

Once this preliminary character translation has been

performed, the resulting DFA can be compressed by

standard techniques. In particular, character classes can be

used to reduce the size of the alphabet. Specifically, a set of

symbols c1, c2,…, ck can be merged into a single class if, for

any state s, they lead to the same next state, that is, δ (s,

c1)= δ (s, c2)=…= δ (s, ck), δ(state,char) being the state

transition function. Notice that the next state can vary

across the different s in the DFA. At the end of this

operation, each character class will be represented by a

single symbol in a new, reduced alphabet ∑’’. This

technique is especially effective in compressing sets of

characters that do not appear in the compiled regular

expressions or that are treated in homogeneous ways across

the DFA (e.g., case insensitive regular expressions). In [19]

an algorithm to perform character class translation in O(n
2
)

time, n being the number of states in the DFA, is presented.

A second technique proposed in [17] and refined in

[19] consists of using default transitions to eliminate the

transition redundancy typically present in DFAs.

Specifically, if two states sx and sy have k outgoing

transitions in common (that is, δ(sx, ci)= δ(sy, ci) for k

different characters ci), then those k transitions can be

removed from one of the two states, say sy, by introducing a

default transition from sy to sx. After performing this

compression, only |∑|-k labeled and a default (unlabeled)

transition will be needed to fully specify the behavior of the

automaton in state sy. When processing an input text, the

default transition will be taken if the current state does not

contain a labeled transition on the input character.

Moreover, the traversal of a default transition won’t cause

input character consumption. Clearly, this technique can be

applied to an extended-DFA after the described character

translation (possibly incorporating character classes) has

been performed.

Two observations—one about character translation and

the other about default transitions—suggest how the two

above techniques can be particularly suitable to extended-

DFAs.

First, as can be observed in Figure 4, extended-DFAs

consist of two categories of states: standard and

counting/consuming states. The former do not have the

NFA counting/consuming-state (state 2 in the example of

Figure 3) in their subset; the latter do. As a consequence,

standard states do not present any conditional transitions.

This fact suggests that compression can be more efficient if

two distinct character translations—one for standard and

one for counting states—are used. To efficiently determine

which translation to perform during operation, the two

groups of states can be laid out in two distinct memory

regions.

Second, let us assume to have a counting constraint

with a limited number of repetitions, such to allow a DFA

of reasonable size. As can be observed in Figure 2, the

counting constraint originates a high number of states with

limited redundancy. In fact, each of them tends to transition

“forward” to a distinct set of states. Conversely, the

corresponding extended-DFA, besides being smaller,

exhibits more redundancy. In fact, the counter eliminates

the need for all the distinct forward transitions present in

the pure DFA counterpart. To get an intuition of this fact,

observe the incoming transitions to the counting states in

Figure 2, and compare them with the DFA states having

NFA-state 2 in their subset in Figure 4.

6. COMPILING SEVERAL REGULAR

EXPRESSIONS INTO AN AUTOMATON
The methodology described above can be applied to any

number of counting constraints/back-references, whether

they appear in a single regular expression or in different

regular expressions compiled into a single automaton.

However, as the number of counting constraints and back-

references increases, two problems arise: first, the induced

alphabet gets larger; second, the size of the DFA (in terms

of number of states) can prohibitively increase. These two

problems are related; we first analyze their cause (Section

6.1) and then propose an algorithmic solution with

important architectural implications (Section 6.2).

RE1

RE1

RE2

RE2

Figure 8: Exemplification of DFA obtained by compiling

RegEx RE1=.*RE1a.*RE1b and RE2=.*RE2a.*RE2b

6.1 The problem
To understand the issues above, let us consider a simpler

problem: the compilation of different regular expressions

containing dot-star conditions (i.e., “.*” sub-patterns) into a

single DFA.

Figure 7 represents the NFA and the DFA accepting

regular expression .*ab.*cd. As can be seen, the DFA can

be divided into two sub-DFAs: the first accepting .*ab and

the second accepting .*cd. The NFA state representing the

second .* sub-pattern (state 2) is transformed into DFA

state 0-2, which represents the match of the first sub-

expression and the beginning of the match of the second

one. No transition from the second sub-DFA falls beyond

state 0-2.

States representing dot-star conditions, which we will

call special states, have an important implication when

compiling multiple regular expressions. Specifically, if a

regular expression RE1 containing a dot-star is compiled

with a regular expression RE2, the sub-DFA representing

the match of RE2 is duplicated: one instance will start at

state 0 and one instance will start at the special state.

If many regular expressions containing dot-star sub-

patterns are compiled, the situation gets more complex. In

Figure 8 we assume to have two regular expressions of this

kind, say RE1 (.*RE1a.* RE1b) and RE2 (.*RE2a.* RE2b).

Special states are represented with (red) shaded filling. As

can be seen, beside the special states representing the match

of .*RE1a and .*RE2a, we will have an additional special

state representing the parallel match of both those sub-

expressions, with a consequent additional complexity in

terms of sub-DFA replication. Clearly, when more regular

expressions containing dot-star conditions are compiled, the

number of possible special state combinations will affect

the complexity and the size of the resulting DFA. Note that

this concept applies also to patterns containing repetitions

of large character ranges, of the form [^c1c2...ck]*.

The same considerations hold for extended automata.

In fact, counting/consuming states behave like special states

(they have an auto-loop on a large character class). This

fact has two implications. First, compiling different regular

expressions with counting constraints/back-references can

lead to sub-DFA replication, with consequent increase in

the extended-DFA size. Second, the combination of

multiple NFA counting/consuming states into a single DFA

state implies outgoing transitions conditional on multiple

distinct counters/back-references. This, in turns, translates

into an added alphabet translation complexity and,

ultimately, into a larger alphabet.

6.2 The solution
One way to avoid this effect is to isolate each counting

constraint/back-reference/dot-star condition from the other.

This can be accomplished by using a hybrid-FA, as

described in [20]. Specifically, the hybrid-FA can be built

as follows. The subset construction operation (that is, NFA

to DFA transformation [2]), started at the entry state s0

should be interrupted on each special state. Second, each

NFA special state should be treated as an entry state to a

separate tail-DFA: that is, a distinct subset construction

operation should be initiated on every special state. The

outcome of this procedure will be: (i) a single head-DFA

not containing any counting operation/back-references,

except for counter instantiation and initialization and

substring recording; (ii) a set of tail-DFAs, one for each

counting constraint/back-reference/dot-star condition.

Notice that dot-star condition expansion is less critical

because it can increase the size of the head-DFA but not the

one of the alphabet. Also, it is possible to keep the tail-

automata in NFA format, and interrupt subset construction

before special states. In this case, tagged transitions can be

also kept entirely in the NFA part.

 Figure 9 represents this operation on a simple example

containing a single counting constraint. In particular, Figure

9(1) shows the counting-NFA, Figure 9(2a) the head-DFA

and Figure 9(2b) the counting tail-DFA for regular

expressions .*ab.{n}cd and .*de. When creating the head-

DFA, subset construction is interrupted upon encountering

the counting state 3. At this point, state 0-3 is created.

However, sub-state 3 is ignored to the end of computing the

outgoing transitions from state 0-3; its label is used only to

distinguish the newly created state from state 0 and to link

the tail-DFA. Separately, subset construction is performed

starting from state 3, thus creating the represented tail-DFA.

When processing the input text, the head-DFA is

always active: each input character will trigger a state

transition on it. The tail-DFA will be activated every time

the head-state 0-3 is traversed. Its deactivation will take

place upon entering state Ø or an accepting state (we

assume that multiple matches of the same regular

expression are not of interest).

The operation of distinct tail-DFA machines is, in

principle, independent. Furthermore, once the head-DFA

has activated a tail-DFA, the two can execute in sequence

or in parallel threads. Whatever execution model is

assumed, the number of parallel activations of a given tail-

DFA needed to ensure correct operation should be kept

minimal to reduce memory bandwidth requirements.

In the case of Figure 9 (2b), a distinct activation of the

tail-DFA is required each time head-state 1-3 is reached.

Therefore, at any given time, the tail-DFA may be active in

parallel on different states, which affects the number of

3 3,4 3,5

Ø

c|cnt ≠≠≠≠ n
^c|cnt≠≠≠≠n,⊥⊥⊥⊥

c|cnt=n,⊥⊥⊥⊥

d

c|cnt ≠≠≠≠ n
^cd|cnt≠≠≠≠n,⊥⊥⊥⊥

c|cnt=n,⊥⊥⊥⊥

Figure 10: Transformed tail-DFA to allow single activation.

*
a *1 2 4 5

db

0

|cnt≠≠≠≠n*

c|cnt=n
3

6 7

, cnt

d

e

0,3a *
b

d

e

a a

a
a

d

d
d

d
0

0,1 0,2

0,6 0,7

c|cnt=n
3 4 5

3,4 3,5

d

Ø
c|cnt ≠≠≠≠ n
^c|cnt≠≠≠≠n,⊥⊥⊥⊥ ^d

d|cnt≠≠≠≠n,⊥⊥⊥⊥

c|cnt=⊥⊥⊥⊥

c
|c
n
t=
n

Figure 9: (1) counting-NFA, (2a) head-DFA, (2b) counting

tail-DFA for regular expressions: (1) .*ab.{n}cd, (2) .*de. In

the tail-NFA state Ø is a dead state. Transitions exiting the

accepting state are omitted.

memory operations needed to process an input character.

This can be avoided by transforming the tail-DFA as shown

in Figure 10. Namely, the counting sub-state 3 is added to

all states (except Ø) and equivalent states are reduced.

Because a new activation of the tail-DFA always begins

from the counting state 3, this ensures that, if the tail-DFA

is already active, the new activation will be covered by the

current active state. At the same time, the condition on the

counter will prevent invalid transitions from being

performed. This transformation can be applied to any

counting tail-DFA to allow a single activation to preserve

correct operation. Moreover, a similar concept can be

applied to tail-DFAs built on dot-star sub-patterns.

7. MAPPING ON AN ARCHITECTURE
In this section we present a regular expression-matching

architecture suitable for implementing the above scheme. In

particular, we refer to the hybrid extended-FA proposed in

Section 6 to deal with data-sets presenting a high number of

regular expressions containing counting constraints, back-

references and dot-star conditions. As mentioned above, the

head-DFA and the tail-DFAs/NFAs can be processed in

sequence within the same thread of execution or can be

assigned to separate threads. In this architectural proposal

we opt for the second alternative, and we assume to

separate the head-DFA from the tail-DFAs/NFAs

processing. All the active tail-DFAs, however, are handled

by a single thread (even though the architecture can be

easily modified to split them across multiple threads).

Several facts motivate this choice. First, and most

important, the head-DFA engine is supposed to be always

active, whereas the tail-DFAs/NFAs are triggered only upon

traversal of a special state and can be deactivated later on.

As a consequence, regular expressions not containing

counting constraints, back-references and dot-star

conditions will be entirely matched within the head-DFA.

Thus, the head-DFA can be considered the common case to

be implemented on the fast path, whereas the tail-FAs the

exception to be offloaded. To this end, it can be observed

that the head-DFA does not have to deal with counters and

back-references and its tasks are therefore simpler and

faster. Finally, notice that the next state information

concerning head- and tail-FAs can be stored on different

memory regions, and, in general, on different memory

banks. The use of two threads allows greater parallelism in

the memory accesses.

Figure 11 presents the logical view of the proposed

architecture. Three memory banks are used: two for the

head- and the tail-FA next state information, and one for the

counters and the back-reference information. All DFAs are

compressed through the techniques detailed in Section 5

[19] and are encoded using indirect addressing [27]. State

identifiers carry the information about which labeled

outgoing transitions are present, thus allowing one memory

access per state traversal. As we will detail in Section 8, 32-

bit state identifiers can be used, leading to 32-bit wide

memory accesses to determine the next state. Counters

present in common data-sets typically consist of less than

200 and can span till 1,024 repetitions. This suggests that

two counter values can be stored in 20 bits and therefore be

accessed through a single 32-bit wide memory access.

The operation of the head-DFA engine is

straightforward. It translates the current state identifier and

translated input character into a memory address, and

queries the head-DFA memory for the next state. If a

labeled transition (as opposed to the default transition) is

taken, the input character is consumed. If the current state is

accepting, a match is reported. Finally, if a special state is

encountered, an entry is inserted in the activation FIFO,

which represents the interface between the head- and the

tail-engine. This entry carries the information about the

special state and the character position within the input

stream the transition refers to. This information is necessary

because the two engines may proceed out of phase.

The operation of the tail-engine is more complex. All

active tail-DFAs operate in lock-step: for each input

character, the tail-engine must perform one consuming state

transition on each active tail-DFA. To this end, the

following operations must be performed. First, the counter

data are extracted from memory. Such information is sent to

the character translation unit along with the input character

to determine the translated symbol. Second, the current

state identifier, recorded in the active tail-DFAs table

(stored in scratch memory), is decoded and the memory

address of the next state extracted. Finally, this information

is used to query the state memory. Additionally, if the first

Table 2: Characteristics and size of NFA, Extended-NFA and Extended-hybrid-FA for different data-sets. All sizes are

computed using indirect addressing and 32-bit wide state identifiers.

Data-set

Characteristics NFA Extended-NFA Extended-Hybrid-FA

counters

back-ref

states

size

(KB)

states

size

(KB)

tails

head tail

states size (KB) # states size (KB)

bro43 10 0 1,107 635 564 93 23 30,286 2,450 449 65

clamav440 90 0 26,940 9,042 18,281 349 76 20,614 156 4,188 126

snort20 4 0 1,508 1,013 498 82 30 30,438 3,312 491 76

snort76 46 0 54,135 53,303 2,395 2,045 495 30,607 16,268 2,267 1,933

snort676 37 181 62,812 21,684 47,870 7,133 251 32,261 15,917 47,683 6,949

snort702 48 172 65,043 23,406 48,270 7,381 261 33,285 8,551 47,954 7,070

character position stored in the activation FIFO corresponds

to the current one, the corresponding FIFO entry is

processed, the counter table updated and, if necessary, a

new entry is added into the active tail-DFAs table.

The tail- and head-engine use distinct data buffers. To

prevent the tail-engine from running ahead of the head-

engine (which may cause counter inconsistencies),

characters are transferred from the head to the tail data

buffer upon consumption (that is, when a labeled transition

is taken). An empty data buffer will stall the tail-engine.

Additionally, a full activation FIFO will cause a back-

pressure signal to be sent to the head-DFA, making it stall.

Notice that no deadlock can take place in this condition.

Finally, because each tail-DFA can have only a single

activation at any given time, the size of the active tail-DFA

table is bounded to the number of counting constraints/dot-

star conditions/back-references in the rule-set.

8. EXPERIMENTAL EVALUATION
In this section, we briefly present the results of an

experimental evaluation conducted on rule-sets extracted

from Bro v0.9 [8], ClamAV r.0.91 [9] and Snort (snapshot

from November 2007) [7]. Snort rules having common

packet headers have been grouped together. Specifically we

considered headers: (i) tcp $EXTERNAL_NET any

$HOME_NET $HTTP_PORTS/8080/80 (snort20), (ii) tcp

$EXTERNAL_NET any $HOME_NET 7777:7778/

10202:10203/143/any (snort76), (iii) tcp $EXTERNAL_

NET $HTTP_PORTS/8080/80 $HOME_NET any

(snort676), and (iv) tcp $EXTERNAL_NET * $HOME_

NET any (snort702). As far as Bro is concerned, we

considered all payload patterns in the sig-addendum set.

The characteristics of these rule-sets, the size (number

of states) of the corresponding automata, and their memory

footprint are reported in Table 2.

The number of patterns in each set is reported in the

data-set name. Note that these data-sets contain a significant

number of counting constraints. Additionally, snort676 and

snort702 present many back-references. In fact, most of

them are complex (the back-referenced pattern is, for

instance, [a-zA-Z0-9]+) and cannot therefore be resolved

through enumeration.

Three kinds of automata are computed: the basic NFA

(columns 4-5), the extended-NFA (columns 6-7) and its

hybrid counterpart (columns 8-12). The rules with back-

references could not be represented in a traditional NFA.

For the sake of comparison, we extended the NFAs

represented in columns 4-5 through our back-reference

mechanism (extended-NFAs in columns 6-7 also use our

counting constraints scheme).

The algorithm for hybrid-FA creation [20] was

modified to move counting and consuming states to the tail-

automata, and configured to keep the head-DFA size on the

order of 30K states. NFAs have been reduced by collapsing

common prefixes and DFAs have been compressed through

the default transition creation algorithm described in [19].

As far as memory encoding is concerned, we used

indirect addressing [27], which, as mentioned, allows one

memory access per state traversal. States with many

outgoing transitions cannot benefit from indirect addressing

and are fully represented. We tested 32-bit and 64-bit wide

state identifiers and obtained better results with the former

(which we report). In NFAs, we split states with multiple

transitions on the same character into multiple states

connected through epsilon transitions as described in [27].

First, it can be observed that we were able to compile a

large number of complex regular expressions, containing

simple and repeated character ranges, disjunctions of sub-

patterns, dot-star terms, counting constraints and back-

references.

Second, using our extended-automata, the size of the

NFA decreases. The effect is remarkable in terms of

memory footprint. In fact, most of the reduced states have

many outgoing transitions and would have therefore needed

s
y
m
b
o
l

xlate state register

decode

head-DFA

memory

head data buffer

m
a
tc
h

c
h
a
r

addr

s
ta
te

<state, char #>

activation FIFO

tail data buffer

active tail-DFAs

<tail-DFA#,state>

tail-DFAs

memory

counter

memorydecode

xlate

head tail

m
a
tc
h

stall

c
h
a
r

addr

state

cnt

cnt

cnt

Figure 11: Logical view of the proposed architecture

a full representation.

Third, converting to a hybrid-FA representation

decreases the memory bandwidth at the cost of an

additional 156KB-16MB needed to hold the head-DFAs.

As detailed in [20] and using default transitions as in [19],

the total number of memory accesses per input character is

2*#head-DFAs in the average case and 2*#head-DFAs +

2*#counters + 2*#tail-DFAs in the worst case. The factor 2

on the DFAs is due to default transitions. These numbers

are by far smaller than their NFA counterpart (number of

NFA states). Note that the limited reported memory

footprints make it possible to deploy the automata with

SRAM in an ASIC implementation, allowing memory

access rates in excess of 500MHz.

Finally, back-references are handled in the automaton

without the need for invoking a PCRE engine on each

partially matched pattern.

9. CONCLUSION
In conclusion, we propose an extended finite automaton

suitable for representing regular expressions containing

counting constraints and back-references.

When addressing counting constraints, the design aims

to minimize memory storage and bandwidth requirements.

Specifically, the size of an extended-FA is independent of

the number of repetitions, and the number of memory

accesses needed for each counter is independent of the

number of active counter instances. When addressing back-

references, the design aims to preserve the original NFA

operating semantics while retaining efficient support for

repeated substrings and counting constraints. Also, we

showed how standard compression techniques can be

applied to an extended-DFA. As a practical consideration,

we analyzed the problem of compiling several regular

expressions with problematic sub-patterns into a single

automaton, and proposed a hybrid, comprehensive solution.

To the best of our knowledge, we have described the

first high-speed automaton that can accommodate all the

Perl-Compatible Regular Expressions present in the Snort

network intrusion and detection system.

ACKNOWLEDGMENTS
The authors wish to thank Chris Clark from Compiler Resources,

Inc. for his useful feedback. This work has been supported by

National Science Foundation grants CCF-0430012 and CCF-

0427794 and by Intel’s gifts.

REFERENCES
[1] A. V. Aho and M. J. Corasick, “Efficient String Matching: An Aid

to Bibliographic Search,” in Communications of the ACM, 1975.

[2] J. E. Hopcroft and J. D. Ullman, “Introduction to Automata Theory,

Languages, and Computation,” Addison Wesley, 1979.

[3] J. E. F. Friedl, “Mastering Regular Expressions,” Third Edition,

O’Reilly, August 2006

[4] Perl Compatible Regular Expressions: http://www.pcre.org/

[5] Ville Laurikari, “NFAs with Tagged Transitions, Their Conversion

to Deterministic Automata and Application to Regular Expressions”,

in SPIRE 2000

[6] M. Roesch, “Snort: Lightweight Intrusion Detection for Networks,”

in 13th System Administration Conf., Nov 1999.

[7] Snort: http://www.Snort.org/

[8] V. Paxson, “Bro: A System for Detecting Network Intruders in Real-

Time”, in Computer Networks, 31(23-24), Dec. 1999

[9] ClamAV: http://www.clamav.net/

[10] Cisco Security Appliance. http://www.cisco.com. 2007.

[11] Citrix Application Firewall. http://www.citrix.com. 2007.

[12] M. Altinel, M.J. Franklin, "Efficient Filtering of XML Documents

for Selective Dissemination of Information", in Proc. VLDB

Conference 2000.

[13] R. Sommer and V. Paxson “Enhancing byte-level network intrusion

detection signatures with context,” in CCS 2003.

[14] J. Newsome et al., “Polygraph: Automatic Signature Generation for

Polymorphic Worms”, in IEEE Security & Privacy Symp., 2005.

[15] L. Tan, and T. Sherwood, “A High Throughput String Matching

Architecture for Intrusion Detection and Prevention,” in ISCA 2005.

[16] F. Yu et al., “Fast and Memory-Efficient Regular Expression

Matching for Deep Packet Inspection”, in ANCS 2006

[17] S. Kumar et al., “Algorithms to Accelerate Multiple Regular

Expressions Matching for Deep Packet Inspection,” in ACM

SIGCOMM, Sept 2006.

[18] S. Kumar et al., “Advanced Algorithms for Fast and Scalable Deep

Packet Inspection”, ANCS 2006

[19] M. Becchi and P. Crowley, “An Improved Algorithm to Accelerate

Regular Expression Evaluation”, in ANCS 2007.

[20] M. Becchi and P. Crowley, “A Hybrid Finite Automaton for

Practical Deep Packet Inspection”, in CoNEXT 2007.

[21] S. Kumar et al. "Curing Regular Expressions Matching Algorithms

from Insomnia, Amnesia, and Acalculia," in ANCS 2007.

[22] R. Sidhu and V. K. Prasanna, "Fast Regular Expression Matching

using FPGAs", in FCCM 2001

[23] R. Franklin et al., “Assisting Network Intrusion Detection with

Reconfigurable Hardware,” FCCM 2002.

[24] C. Clark et al., “Efficient reconfigurable logic circuit for matching

complex network intrusion detection patterns,” in FLP 2003

[25] B. Brodie, et al., “A Scalable Architecture For High-Throughput

Regular-Expression Pattern Matching,” in ISCA 2006.

[26] A. Mitra et al., “Compiling PCRE to FPGA for Accelerating

SNORT IDS”, in ANCS 2007

[27] Becchi et al., “A workload for evaluating deep packet inspection

architectures,” in IISWC 2008

