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Algorithms for Finding Patterns in Strings

Alfred V. AHO

AT & T Bell Laboratories, Murray Hill, NJ 07974, USA

Contents

1. Introduction .

2. Notations for patterns

3. Matching keywords

4. Matching sets of keywords

5. Matching regular expressions

6. Related problems

7. Concluding remarks
Acknowledgment
References

HANDBOOK OF THEORETICAL COMPUTER SCIENCE
Edited by J. van Leeuwen
© Elsevier Science Publishers BV, 1990

257
258
262
273
282
288
295
295
295




ALGORITHMS FOR FINDING PATTERNS IN STRINGS 257

1. Introduction

String pattern matching is an important problem that occurs in many areas of
science and information processing. In computing, it occurs naturally as part of data
processing, text editing, term rewriting, lexical analysis, and information retrieval.
Many text editors and programming languages have facilities for matching strings. In
biology, string-matching problems arise in the analysis of nucleic acids and protein
sequences, and in the investigation of molecular phylogeny. String matching is also one
of the central and most widely studied problems in theoretical computer science.

The simplest form of the problem is to locate an occurrence of a keyword as
a substring in a sequence of characters, which we will call the input string. For example,
the input string queueing contains the “keyword” ueuei as a substring. Even for this
problem, several innovative, theoretically interesting algorithms have been devised
that run significantly faster than the obvious brute-force method. The problem
becomes richer as we enlarge the class of patterns to include sets of keywords and
regular expressions. This article examines the time-space trade-offs inherent in
searching for occurrences of such patterns in text strings.

pattern

p

pattern-

matcher

generator

input string pattern yes

s ‘ matcher no

Fig. 1. Model for pattern-matching problems.

We will treat pattern-matching problems in the general setting shown in Fig. 1. The
input consists of a pair (p, s) where p s the pattern and s is the input string. The pattern is
transformed by the pattern-matcher generator into a pattern matcher, which is used to
look for an occurrence of the pattern in the input string. The pattern matcher reports
“yes” if s contains a substring matched by p, “no” otherwise.

The actual output of a pattern-matching algorithm depends on the application. In
information retrieval, the input string is often a file consisting of lines of text (such as
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a dictionaty, a program listing, or 2 manuscript), and we are interested in all lines
matched by the pattern. For example, we might be interested in searching a dictionary
for all words that contain the five vowels in order. In programming language
compilation, the input string would be the sequence of characters making up the source
program and we would be interested in partitioning the input into a sequence of lexical
tokens such as comments, identifiers, operators, and so on, where the structure of the
tokens is specified by the pattern. In text editing, we might want to identify the longest
nonoverlapping substrings of the input string denoted by the pattern; for example, in
a manuscript we might want to change all occurrences of color into colour. In this paper,
we will simply consider the output of the pattern matcher to be “yes” if the input string
contains a substring matched by the pattern, “no” otherwise.

We will measure the overall performance of a pattern-matching algorithm by the
time and space taken to answer yes or no measured as a function of the lengths of p and
s using the random-access machine (RAM) as the model of computation [6]. We will
assume the pattern is given before the text string. In this way an algorithm can
preprocess the pattern, constructing from it whatever kind of pattern-matching
machine it needs before scanning any of the input string. In the setting of Fig. 1, we will
analyze the time and space taken by the pattern-matcher generator as well as the
pattern matcher itself.

In practice, a number of issues need to be resolved in the design ofa patternmatching
program. Decisions need to be made on what class of patterns to use, what notation to
describe the patterns, and what distribution to expect on patterns and text strings. In
some applications it may not be possible to store all of the input string in memory, SO
there may be a limit on how much backtracking over the input is possible. For
applications such as text editing it is desirable to be able to construct the recognizer
quickly since the input strings are likely to be short. For applications such as textual
search we may be willing to spend more time constructing the recognizer if it can be
made to run faster on long text files. In many applications the pattern-matching process
is 1/O bound, so it is important to be able to read the input string as quickly as possible.
In the 1980s the performance of many pattern-matching programs improved by an
order of magnitude or more due to algorithmic improvements of the kind discussed in

this chapter [73].

2. Notations for patterns

In our pattern-matching model, the pattern matcher reports “yes” if the input string
contains a substring matched by the pattern, “no” otherwise. In effect, the pattern is
a notation for describing a set of substrings. The simplest patterns are single keywords
that match themselves. For example, if we specified dous as a pattern, then we would
report success on input strings such as hazardous and horrendously. A somewhat
broader class of patterns would be sets of keywords. Since many text-processing
systems use variants of regular expressions to describe patterns, we will use regular
expressions as they are defined in language theory as our third notation for specifying
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patterns. We will also discuss the effect of some of he emb that h b
t . ’ 3 v
¢ mbellishments tha ave been
added to regular expressions to make them more descr iptive for pr acticat] use
.

2.1. Regular expressions

g T ’ g > 8

automata and formal langua
‘ ge theory. As we shall see i
a study of string pattern-matching algorithms. fhese conceptsatealso centralin

Derinrrion. We define r ;
. egular expres ; .
follows: pressions and the strings they match recursively as

(1) The following characters are metacharacters: |( ) *

2) A - i
8 " for; Iige:ac:?racterla 1s a regular expression that matches the string a
1 2 are regular expressions, then (r,]r,) i fon
mzz;c):hle; any string matched by either 7, or r, (alra)is & regular expression that
ry and r, are regular expression : i
s, then (r{)(r,) is a regul i
' ar e (
me(igc):hffs any string of the form xy, where r; matches x and r, grnatche);pressmn that
st Ofrt 11136 ?Ozen%l_ga; expressmn,othen (r)* is a regular expression that rfl'atches any
1X2...X,, n20, where r matches x; for 1 <i i
ma(lghle}s the empty string, which we denote by ¢ orsisn dn partcular, (7
r is a regular expression, then (r) i . i
tins o , (r) is a regular expression that matches the sami¢
Man i expressi
o they Igf::nth]eses in regular expressions can be avoided by adopting the conventio
VN blilg acr;sgrc o;ierator * has the highest precedence, then concatenation theE
. perators, concatenation and |, are leff ’ iati ’
Lohe two : ) eft-associative. Under th
s the regular expressions (a|((b)*)(c)) and a|b*c are equivalent, in the se:::z

that they match the sam i
€ strings, na
followed by a c. g mely, an a, or a sequence of zero or more b’s

2.1. ExampLE. The regular expression
(hot|cold) (apple[bhgeberry}cherry) (pie|tart)

matches any of the twelve delicaci i
es .
regular expression ranging from hot apple pie to cold cherry tart. The

the (very, Y*very hot cherry pie

matches the strings the ver ]
y hot cherry pie; the very, very h ie;
very hot cherry pie; and so on. The regular expre;);iony o cherry pies the very very,

(aa|bb)* ((ab|ba)(aa|bb)* (ablba)(aa|bby*)*

matches all strings of a’s and b’ i
s havi ’
of ba. ng both an even number of @’s and an even number
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A regular set is a set of strings matched by a regular expression. (Some autho‘r(s) ;JS)C 1‘522
terms rational set and rational expression for regular set and regular gipre;sl dévised
origins of regular sets go back to the work of McCulloch and Pitts [ ]fw 01.Sm <d
finite-state automata as a model for the beha}wor of neural nets. As 1a (t)l:m?hlat o

specifying strings, regular expressions and finite autorpata are equivalent in ha arise};
both describe the same sets of strings [110]. The notation of regular expresillfe s arises
naturally from the mathematical result of Klf:ene [79]‘ that cha.racterlzesf e ! Sgand
sets as the smallest class of sets of strings which contains a}ll finite Sfts of str 1 g e”
which is closed under the operations of union, concatenation, and Klieene closure™.

2.2 Extensions to the regular expression notation

Many text-editing and searching programs add abk?revigtions and .IPGW ?er;:olflsetrc;
the basic regular expression notation above to make it easier to specily pa er £Chin
we mention some of the extensions used by the popular® regular‘ expressmnomz:3 - f]
programs awk [7], egrep [96],and lex [84] on the UNIX operating systeml; ;11 s
extension is the quoting metacharacter, \, that permits metacharacters to.de e tc.)
In the definition above, the symbols |, (, ), and * are metgcharacters consi ;rf nsow'311
be part of the alphabet of input characters. With \, we can mcilude thes}i iyl:n é) SS:L MY
as \ itself, as targets for matches, by writing \| to match |, \* to match 7, ;
ma\f\(f:: Zsfté'n want to match substrings at the beginning or end otj the input st;mg.dT(? dh(;
this, awk adds the metacharacters ~and $ to match 'the null string at th.e l.e tta‘g1 Eght
ends of an input line. Thus dous$ matches the substring dous only when it is at the ng

input line. ' \
en(lj\r?ittl?:r 1cI:)};lvenience is a succinct way to specify a ma‘t.ch for any characterina s}el‘t okf
characters. In awk, the symbol . is used to match any single c}}aracter. We calm t gl t
of . as a “wild card” or “don’t care” symbol. The notation [abc] is a character class that
matches an a, b, or ¢, and the notation [labc] is a complemented character c@ass tha
matches any single character that is not an a, b, or c. Thus the awk expression

. s . PA ik
[ aeioul*a [ aeioul*e [ aeiou]*i [ aeiou]*o [~ aeiou]*u[: aeiou]*$

will match an input line in which the five vowels agpear n lexwograptlluc ortder, I—Srlll:h l2)12
a line consisting of the word abstemious or facetious. A range of charac elt"shes yan
specified with an abbreviated character class; for example, [a-z] macd [A049§
lower-case letter, [A-Za-z] matches any upper- OT lower-case lettm}*; aél : "
matches any non-digit. None of these extensions, however, extends the descrip

power of regular expressions beyond regular sets.

Many pattern-matching tools allow Boolean cor.nbinations'of p.'flttterns. tSi;r;ce ;Illlg
class of regular sets is closed under the operations of unlon,d in erse; Cr,i nd
complement, the Boolean operations or, qnd, and not do not aFi motrf ess bﬁt e
power to regular expressions as a notation for desgrlblng string pa egn ,ractice
practice, they offer considerable convenience and, in both theory and p :
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succinctness to the specification of patterns. For example, try writing a regular
expression pattern for all words with no repeated letter (such as ambidextrously or
dermatoglyphics). The general question concerning the relative succinctness of different
notations for regular sets has been of considerable theoretical interest [65,99].

2.3. Regular expressions with back referencing

In some applications it is desirable to be able to specify repeating structures in
matches. For example, we might be interested in words of the form xx, that is, words
consisting of a repeated substring such as killeekillee or tangantangan. Patterns such as
these are sometimes called squares and they cannot be specified by regular expressions.
An assignment operator called back referencing can be added to regular expressions to
allow repeating patterns to be specified. Back referencing appeared in the first version
of the SNOBOL programming language [48] and has been implemented in several
commands on the UNIX system, notably the text editor ed and the pattern-matching
program grep [96].

DerinitioN. The following rules define regular expressions with back referencing
(rewbrs for short) and the strings they match. In these rules we assume the alphabet of
characters is distinct from {v;,v,, ...}, the set of variable names. In a rewbr, a variable
defines a string whose initial value is undefined.

(1) The following characters are metacharacters: | ( ) * %

(2) Each non-metacharacter a is a rewbr that matches the string a.

(3) Each variable v; is a rewbr that matches the string defined by v;.

(4) Ifr, and r, are rewbrs, then (r,]r,) is a rewbr that matches any string matched by
either ry or r;.

(5) Ifr, and r, are rewbrs, then (r, )(r,) is a rewbr that matches any string of the form
xy, where ry matches x and r, matches y.

(6) Ifris a rewbr, then (r)* is a rewbr that matches any string of the form x,x, ... x,,
n>=0, where r matches x; for 1 <i<n.

(7) Ifris arewbr that matches a string x, then (r)%uv; is a rewbr that matches x and v;
is assigned the value x.

(8) If r is a rewbr, then (r) is a rewbr that matches the same strings as r.
Rule (7) defines the back-referencing operator %. Its properties are similar to those of
the conditional value assignment operator in SNOBOL4 [60]. As before, redundant
parentheses can be avoided using the same precedences and associativities as in regular

expressions. The back-referencing operator is left-associative and has the highest
precedence.

2.2. ExampLE. A few examples should clarify this definition.

(1) The rewbr (alb|c)* (alb|c)%v, (alb|c)*v, (alb|c)* matches any string of a’s, b’s or
c’s with at least one repeated character. To see this, note that (a|b|c)* matches any string
of characters and that (a]b|c)}%v, will match any single character and assign o v, the
value of that character. The second v, in the rewbr will match a second occurrence of
that character in the input string.
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(2) The rewbr (alblc)*%v, vy matches any string of the form xx where x 1s any string
’s, b’s or C’S. . .
Of(C;)S,Thse rewbr (((alb|c)*%v,)v,)* matches any string of the form Xx;X;X3Xz ..« XnXn
where each x; is a string of a’s, b’s or c’s.

iti nbe

These examples illustrate some of the definitional power of rewbrs. Il’att:Irlltl é })pc;attem

denoted by a somewhat longer ordinary regular exprzssllon. Thetct:o?lzn (:Eﬁoned atior

i ificati -repeated-letter patter .

ests a concise specification for the no-repe :

(Ii;:tt%rgl (2), however, does not denote a regular set or even context-frec; (l)ang;ztiier 3(23)

cannot be éenoted by any regular expression or cqntext-free grammar [70]. » Pattem;

likewise, cannot be expressed by a regular expression or context—freq g:,?m::;mé atterns
denoted’ by regular expressions with back ref_erencmg, only one variable ,

alternation have been studied by Angluin [11].

3. Matching keywords

We are now ready to consider the first of our pattern-matching problems.

isti i i ring s,

3.1. ProLEm. Given a pattern p consisting of a S}ngle keyword and an 211:1\111‘21 s)t] rin fo”
answer “yes” if p occurs as a substring of s, that is, if s=xpy, (gosr sc;n;e ! w}iere )
i i i =p\ps.. Pmand s=s152...5, Where p;
otherwise. For convenience, we will assume p=p1Pz - Sn WIS D
represents the ith character of the pattern and s; the jth character of the inpu g

s for this task. It is straightfor-

: : res four algorithm 3 X
This section presents and compa g ences of the pattern in the input

ward to generalize these algorithms to locate all occurr
string.

3.1. The brute-force algorithm

Our initial algorithm is the obvious one. F_irst, the pattern-match:agtzlﬁga::; dr:%:ﬁ:
and stores the pattern; this is its only function. Then, the p_a;tternrtial e e
input string using a buffer, since it may have to backtrapl;llha pa_lchamcter g
looks for a match by comparing the patt;:r: g ; izf.r.o. Iflmlv&;lé nt‘emm“_ o s the

valu .
f(kes k;vi)rd\f/’;:ﬁnt—};: i?;rt):fgsgsgf tclfes Si:;ut from left to right un‘til iteither n'latches all of the
kezword or finds that p;#s;, for some 1<i<m and k< j<k+m—1:

|
py...Pi-ePm
Syp... Sk e Sje Skam=1++5n
J
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begin
i=1 /= pointer into the pattern keyword p=p,p,...p, */
Jji=1 /» pointer into the input string s=s,s,...s, */
while
i<mandj<n do
if p;=s; then
begin i:=i+1; j:=j+1 end
else
begin i:==1; j:=j—i+2 end
if i>m then return “yes” else return “no”
end

Fig. 2. The brute-force algorithm for matching a single keyword.

At this point it “slides” the pattern one character to the right and starts looking for
a match by comparing p; with s, ;. The pseudo-code in Fig. 2 details this behavior.

3.2. THEOREM. The brute-force algorithm solves Problem 3.1 in O(mn) time and O(m)
space.

Proor. The algorithm may take the maximum O(mn) time. For example, when
p=a""'band x =a", the algorithm makes mn—m?+m— 1 character comparisons. The

algorithm requires a buffer of size O(m) to hold the pattern and the m-character
substring of the input. []

In practical situations the expected performance of the brute-force algorithm is

usually O(m + n), but a precise characterization depends on the statistical properties of
the pattern and text string.

3.2. The Karp—Rabin algorithm

The brute-force algorithm looks for a match by comparing the pattern with the
m-character substring S+ ...Sc+m—1 for each successive value of k from 1 to
n—m+1. Karp and Rabin [78] suggested that we use a judiciously designed hash

function h, which they call a fingerprint, to lower the cost of comparing the pattern with
each successive m-character substring.

Let h be a hash function that maps each m-character string to an integer. If
h(ips ... pm)#h(SkSk+1 ... Sk4m—1), then we know p;p, ... p,, cannot possibly match
SkSk+1 - Skam—1- I, however, h(p;py ... pp)=h(s;Sx+1...Skem—1), then we must still

COMPAIE P1P; ... P With SSp 41 ... 834 - character by character to make sure we do
not have a false match.

The hash function reduces m character comparisons into a single integer com-
parison. But we have not gained very much if it takes a long time to compute the hash
value or if we get a lot of false matches. Karp and Rabin have suggested using the hash
function h(x)=x mod g where q is an appropriately large prime. We can transform the
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i i i er
m-character string SpSg+1 - - - Sk+m—1 1080 the integ

xkzskbm-1+sk+1bm—2+"'+Sk+m—1

‘ i iate radix.
by treating each character s; as an integer and choosing bto bfe aI'l appropriate
The value of x;+ can be simply computed from the value of Xy

xk+1=(xk_skbm—l)b+sk+m~

. . ok
Figure 3 contains the details of the Karp—Rabin algorithm as presented by Sedgewic

[120].

begin

di=b""1mod g

hyi=(py#b™ 14 po*b™ It D) mod g

hyi=(sy%b™ 45, #b™ 24 +5,) mod g

for k:=1ton—m+1do

begin
if h,=h,and pypz... Pm="5kSk+1- -
h ==F(h +b*q——lsk*d) mod g /+ the additive factor
hs’=(hs*b+sk+m)m0dq

. Si.—, then return “yes” -
ditive bxq is to keep the rhs positive */

k=k+1
end
return “no”
end

Fig. 3. The Karp-Rabin algorithm for matching a single keyword.

i i ic operation
Since the mod function is associative, we can app.lyi1 it ;fter eac;l;::lrll':l;;ri;t; gg raion
ill still end up with the same
to keep the numbers small and we wil ' e
perforlt)ned all of the operations first and then.apphed the rlnod fu:)ccl:;clct)lrllat s in
In the worst case, at each iteration we might get a false ma

p 1 k ES SO +m-1 h C,
p p2 p

time.

p—Rabin algorithm solves Problem 3.1 in O(mn) time in the worst

3.3. TueoreM. The Kar O(m) space.

case and in O(m-+n) time in the expected case. It requires
. . . . do
One other advantage of the Karp-Rabin algorithm is that it can be used to
two-dimensional pattern matching [78].

3.3. The Knuth-Morris—Pratt algorithm |
r in the brute-force algorithm, we

i ith input characte ( ;
When a mismatch occurs at the jth inpu e O the provious I— 1

do not need to reset the input pointer to position j
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input characters are already known-—they are the first i— 1 characters of the pattern.
Taking advantage of this observation, Knuth, Morris, and Pratt [80] published an
elegant nonbacktracking algorithm that requires only O(m + n) time in the worst case
to determine whether p is a substring of s. The algorithm first reads the pattern and in
O(m) time constructs a table A, called the next function, that determines how many
characters to slide the pattern to the right in case of a mismatch during the pattern-
matching process. The pattern matcher then processes the input string. Since no
backtracking is required, the input can be read one character at a time. The pattern
matcher uses the table h in the way shown in Fig. 4 to locate a match.

begin
i:=1 [ pointer into the pattern p=p,p,...p,, */
J:=1 /x pointer into the input string s=5,5,...s, */
while i<m and j<n do

begin
while i>0 cand p;#s; do i==h;
it 1y je=j+ 1
end
if i>m then return “yes” else return “no”
end

Fig. 4. The Knuth-Morris-Pratt algorithm for matching a single keyword.

The cand in the inner loop is a “conditional and” that compares p: and s; only if i>0.
The key idea is that if we have successfully matched the prefix p,p,... pi—1 of the
keyword with the substrings; ;1 ;s;_;45...5 j—1 of the input string and p; #s;, then we
do not need to reprocess any of s j—i+18j-i+2- .- Sj—1 since we know this portion of the
text string is the prefix of the keyword that we have just matched.

Instead, each iteration of the inner while-loop slides the pattern a certain number of
characters to the right as determined by the next table k. In particular, the pattern is
shifted i —h; positions to the right and i is set to h;. The algorithm repeats this step until
i becomes zero (in which case none of the pattern matches any of substring of the input
string ending at character s;) or until pi=s; (in which case p;...p;_,p; matches
Sj—i+1---8j-15;for the new value of i). The outer while-loop increments the pointers to
the pattern and the input string.

The essence of the algorithm is the next function that is stored in the table h. To
make the algorithm run correctly and in linear time it has the property that h; is
the largest k less than i such that p,p,...p,_; is a suffix of PiP2...pi-q (ie,
Pi---Px-1=Di-k+1 .- Pi-1)and p;# p. If there is no such k, then h;=0. One easy way
to compute h is by the program in Fig. 5 that is virtually identical to the matching
program itself.

The assignment statement j:=h; in the inner loop (the second while-statement in Fig.
5)is never executed more often than the statement =i + 1 in the outer loop. Therefore,
the computation of h is done in O(m) time. Similarly, the assignment i==h, in the inner
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begin
i==1; j:==0; hy=0
while i<m do
begin
while j>0 cand p;5p; do j=h;
i=i+ 1 je=j+1
if p;=p; then h;=h; else hi==j
end
end

Fig. 5. Algorithm to compute the next function h for pattern p=p;pz2...Pm-

loop of Fig. 4 is never executed more often than the statement ji=j+ 1 in the f)uter loop.
What this means is that the pattern is shifted to the right a total of at most n times by the
inner loop. Therefore, the pattern matcher runs in O(n) time. Consequently, we have the

following theorem.

3.4. THEOREM. The Knuth—Morris—Pratt algorithm takes O(m + n) time and O(m) space
to solve Problem 3.1.

Note that the running time of the Knuth-Morris-Pratt algorithn} is indepcr‘ldent of
the size of alphabet. As another measure of performance, l'et us briefly examine hqw
many times the inner loop of the Knuth—Morris—Pratt algorithm can be executed while

scanning the same input character.
DerinTioN. The Fibonacci strings are defined as follows:
F1=b, F2=a, and Fn=F,,_1F,|_2 for n>2.

3.5. ExampLE. Consider the Fibonacci string F; = gbaababaabaab. The algorithm in
Fig. 5 produces the following next function for F;:

i {23 456 7 89 10 11 12 13
pi a b aab ab aa b a a b
h; 010210402 1 0 7 1

Let us apply the Knuth-Morris—Pratt algorithm to look for the pattern Fin the input
string abaababaabacabaababaabaab. After matching the first 11 cl‘laractters. suf;cessfully,
the algorithm finds a mismatch at the input character c. At this point i=j= 12:

i

abaababaabaabd
abaababaabacabaababaabaab

T

J
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The first iteration of the inner loop of Fig. 4 sets i = h, , = 7. This has the effect of shifting

the pattern 5 characters to the right, so position 7 of the pattern is now aligned above
position 12 of the input string;

i

abaababaabaab
abaababaabacabaababaabaab

:

J

At this point, p; still does not match s;, so i is set to h, =4. Mismatches continue for
i=4,2,1,0. At this point the inner loop is exhausted without finding a match and the
outer loop then sets i to 1 and j to 13:

i

abaababaabaab
abaababaabacabaababaabaab

1

i

From this point, the algorithm finds a successful match.
Matching a Fibonacci string of length m presents a worst case for the Knuth—
Morris-Pratt algorithm. In one execution of the inner loop of Fig. 4 the pattern may be

shifted log,m times, where @ =3(1 + \/5), the golden ratio. This is the maximum that is
possible [80].

3.6. TueoreM. The maximum number of times the inner loop of the Knuth—Morris—

Pratt algorithm can shift the pattern right while scanning the same input character is at
most 1+log,m.

Note, however, that the total number of shifts of the pattern made by the algorithm in
processing the complete input string is at most n— 1.

3.4. The Boyer—Moore algorithm

The Boyer—Moore [32] algorithm for string matching is the fastest-known
single-keyword pattern-matching algorithm in both theory and practice. It achieves its
great speed by skipping over portions of the input string that cannot possibly
contribute to a match. When the alphabet size is large, the algorithm determines
whether a match occurs comparing only about n/m input string characters on the
average.

The basicidea of the algorithm is to superpose the keyword on top of the input string
and to look for a match by comparing characters in the keyword from right to left
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against the input string. Consequently, like the brut.e-.force algorithm, 1t nee.c:ls'l z; btii;f:r
in which to store the current portion of the input. Initially, we compare py, w1b ,.,‘.nin,,,
occurs nowhere in the keyword, then there cannot be a match for the pg:iterﬁ ign:,\, i g
at any of the first m characters of the input. W§: can therefore gafely sli elt e e;;ssar

m characters to the right and try matching p,, With s2m, thus avoiding m— 1 unnec y

character comparisons. _ .
Consider the general case. We have just shifted the pattern to the right and are about

to compare p,, with s

P <+« DPm

Stee Sk—m+1---Sk++-Sn

(1) We discover that p, and s, do not match. If the rightmqst occurrence of s 1ndthe
keyword is p,,—,, we can shift the pattern g positions to the right to align p,,—, and sy,
and then resume matching by comparing p, with s+

P e Dm=g--DPm
S1.0 - Sk—m+g+1---5k ...%k.*.g...s,,
J

As a special case, if s, did not occur in the keyword, we would shift the pattern

iti i i i with S+ m-
m positions to the right and resume matching by comparing p, Wi B
(%) Suppose the last m—i characters of the keyword agree with the last m—i

characters of input string ending at position k; that is,

Pi+1Di+2-- Pm=Sk—m+i+1Sk—m+i+2- - Sk:

If i =0, we have found a match. On the other hand, suppose i>0 and p; # Sg—m+i- Two
cases now arise. _ .

(a) If the rightmost occurrence of the character Sk=m+i in the keyword is p;—,, then aj
in Case 1 we can simply shift the keyword g positions to the right so that p;—, an

S.—m<; are aligned and resume matching by comparing p, with sy,

D «e-Pi-g  ---Pm
Sl'--Sk—m+g+1'~-Sk—m+i'--~%k+g---sn
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If p;4is to the right of p;, i.e., g <0, then we would instead shift the pattern one position
to the right and resume matching by comparing p,, with s, ;.

(b) Alonger shift than that obtained in Case 2(a) may be possible. Suppose the suffix
Pi+1Di+2- .. Pm reoccurs as the substring p;y_,pi+2—4...Ppm—, in the keyword and
Pi#pi-,- (If there is more than one such reoccurrence, take the rightmost one.) Then we
may get more of a shift than in Case 2(a) by aligning p;+, _,p;+,- g+ -Pm—-g above
Sk—m+i+15k—m+i+2--- S and recommencing the search by comparing p,, with Sk4gt

!
D1 < Pit1-g - -Pm-g Dm
Sl"'sk-m+g+1"'Sk—m+i+1"'sk ....%H.g...s,,
J
The details of this process are given in Fig. 6.
begin
j::m
while j<n do
begin
ir=m
while i>0 cand p,=s; do
begin i:=i—1; ji=j—1 end

if i=0 then return “yes”
else j:=j+ max(d, [s;], d,[i])
end
returk “no”
end

Fig. 6. The Boyer-Moore algorithm for matching a single keyword.

This algorithm uses two tables d; and d, to determine how far to slide the keyword to
the right when p;#s;. The first table is indexed by characters. For every character
c,dy[c] is the largest i such that ¢=p;, or c=m if the character ¢ does not occur in the
keyword. Table d, covers Cases 1 and 2(a) in the discussion above.

Case 2(b) is handled by the second table, which is indexed by positions in the
keyword. For every 1 <i<m, d,[i] gives the minimum shift g such that when we align
Pm above sy, the substring piyy—yPisa—y...pm-, of the pattern agrees with the

SUDSLIINg Sk —m+i+1Sk-m+i+2 - S Of input string, assuming p; did not match Sk—m+i-
Formally,

d,[{]=min{g+m—i|g>1 and (g=i or p,_,#p;)
and ((g=k or p_,=p,) for i<k<m)}.

This table can be computed using the algorithm in Fig. 7.
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begin
for i:=1 to m do d,[i]:==2+m—i
ji=m; ke=m+1
while j>0 do
begin
fli=k
while k<m cand p;#p, do
begin
4, k)= min(d; [K],m )
ki=fTK]
end
ji=j—1; ke=k—1
end
for i+=1 to k do d,[i]=min(d,[i},m+k—1i)
j=flk]
while k<m do
begin
while k< do
begin
d,[k}:=min(d,[k], j—k-+m)
ki=k+1
end
i=f1
end
end

Fig. 7. Algorithm to compute shift table d,.

Boyer and Moore originally had a different way of computing the. secopd shift t:able
d,. The technique given above is due to Knuth [80] with a modlﬁcathn pr9v1d§d
by Mehlhorn [124]. The intermediate function f computed l?{y the .alg‘or'lth.m in Fig.
7 has the property that f[m]=m+1 and for 1<j<m, f[]]=mm{1|]<l<m and

Di+1Pi+2+--Pm=Dj+ 1pj+2~-'pm+j4i}-

3.7. ExampLe. The algorithm in Fig. 7 produces the following values for d, and f for
the pattern abaababaabaab:

i { 2 3 4 5 6 7 8 9 10 11 12 13
Di a b a a b a b a a b a a b
d,[i] 20 19 18 17 16 15 14 8 15 14 8 14 1
fLi] 9 10 11 12 8 9 10 11 12 13 13 13 14

The minimum number of character comparisons needed to determine all oceur-
rences of a keyword of length min an input string of length nis an interesting theoretlcgl
question that has been considered by Knuth [807, Guibas and Odlyzko [61!, and Qal1l
[53]. The most recent work by Apostolico and Giancarlo [18] has resulted in a variant
of the Boyer—Moore algorithm in which the number of character comparisons 1s
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at most 2n, regardless of the number of occurrences of the pattern in the input string.
The following theorem summarizes the worst-case behavior of the Boyer-Moore
algorithm.

3.8. TueoreM. The Boyer—Moore algorithm solves Problem 3.1 in O(m+ n) time and
O(m) space.

Rivest [114] has shown that any algorithm for finding a keyword in an input string
must examine at least n—m+ 1 of the characters in the input string in the worst case.
This result implies that there do not exist pattern-matching algorithms whose
worst-case behavior is sublinear in n, providing a sharp contrast with the sublinear
average behavior of the Boyer—-Moore algorithm. Yao [139] has shown that the
minimum average number of characters that need to be examined in looking for
a pattern in a random text string is Q(n[log m1/m) for n>2m, where A is the alphabet
size.

3.5. Expected performance

Problem 3.1 has been one of the most intensely studied string-matching questions in
both theory and practice. The quintessential question is how well does an algorithm
solve Problem 3.1 in practice. Several authors have conducted experiments evaluating
the relative performance of the four algorithms presented in this section [44, 71, 124].
The primary conclusion is that the Boyer—-Moore algorithm is noticeably faster for
longer patterns especially in text-processing applications. Horspool observed that for
pattern lengths of six or more the Boyer—Moore algorithm even outperformed a naive
algorithm that was implemented using a special-purpose machine instruction to scan
the input string for the character with the lowest frequency in the pattern [71]. He also
noted that the performance of the simplified form of the algorithm in Fig. 8 with a single
shift table indexed by characters is comparable to the original formulation. The
comparison of §;_ 4+ 1Sj—m+2-..5; With pyp, ... p, is done from right to left.

Several authors have used Markov-chain theory to derive analytical results on the

f

begin )
for each character c in the input alphabet de d[c]:=m
for j:=1to m—1do d[p;]:==m—j
j=m
while j<n do
begin
if 5;=p,, then
if S;-m+15j-m+2---S;=P1Pz ... D then return “yes”

ji=j+dls;]
end
return “no”

end

Fig. 8. Horspool’s simplified Boyer—Moore algorithm.
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expected number of character comparisons made by these algorithms on random
strings [21,23]. Baeza-Yates [21] and Schaback [119] hgve analyzed the expected
performance of some variants of the Boyer—Moore algorithm.

3.6. Theoretical considerations

In 1971, Cook [38] published the following surprising result that has had
a significant influence on the theory of string pattern matching.

3.9. TueoreM. Every two-way deterministic pushdown automaton (2DPDA) language can
be recognized in linear time on a random-access machine.

This result states that there exists a linear-time pattern-matching algorithm for any
set of strings that can be recognized by a 2DPDA, even though the 2DPD{\ may spend
more than linear time recognizing the set of strings. For example, the existence of an
O(m + n) keyword-matching algorithm follows directly from Cook’s result because the
set of strings

{(p#s|s=xpy for some x and y}

can be recognized by a 2DPDA, and hence can be recogl}i.zz?d in linear time on
a random-access machine [6,98]. The string-matching capabilities of othgr clgsses of
automata, especially k-head finite automata, have also been of theoretical interest
58,85]. _ ’
D?&i%th, Mgrris, and Pratt give a fascinating account about the .1gﬂuenc§ of Cook. s
theoretical result on their algorithm [80]. Knuth traced out th_e 31mulat.10n used in
Cook’s constructive proof to derive a linear-time patterp-matchmg al.gqnthrr} for.the
keyword-recognition problem. Pratt modified this algonth;n to make its running time
independent of the input alphabet size. The resulting algonthm was one which Morrts
had discovered and implemented independently, without the benefit of Cook’s
theorem. . . .
The string-matching problem has added new vigor to .the study of pepods an
overlaps in strings and to the study of the combinatorics of patterns in strings
[24,43,46,62,63,80]. We say that an integer k is a period pf S=5,53. .. S, 1f $;=5;1 for
1 <i<n—k. The following two statements are equivalent:

(1) k is a period of s if and only if s=(uv)'u for some j>0, where luv|=k and v is -

nonempty (|x| denotes the length of a string x). '

(2) k is a period of s if and only if st=rs for some equal-lgngth strings r anc} .

When there is a mismatch in the Knuth-Morris—Pratt algorithm at symbol p; in the
pattern, the length of the ensuing shift is a period of py. - Pi-1- In general, h;=i— }ic,
where k is the smallest period of p, . .. p;—1 thatisnota period of-pl ... Di N'ote.the}t the
Knuth—Morris—Pratt algorithm can be used to compute the period of a string in linear
time' . . . . . . d f d

An important mathematical property of periods is that if i and j are periods of s, an
i+j<|s|+ged(, j), then the ged(i, j) is also a period of s [88].
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Galil and Seiferas [58] and Crochemore and Perrin [43] have developed keyword-
matching algorithms that use only a constant amount of additional space and are

intermediate in performance between the Knuth-Morris—Pratt and Boyer—Moore
algorithms.

4. Matching sets of keywords

We now generalize the single-keyword pattern-matching problem to sets of
keywords:

4.1. ProBLEM. Given a pattern p consisting of a set of keywords {w,w,,...,w,} and
aninput string s=s,5, ... s,, answer “yes” if some keyword w; occurs as a substring of s;
“no” otherwise. We assume the sum of the lengths of the keywords is m.

In this section we describe two algorithms to solve this problem. The first constructs
an automaton from the keywords to look for the matches in parallel rather than one at
a time. The second adds Boyer—Moore-like techniques to the first algorithm. Both
algorithms can also be used to locate all occurrences of the keywords in the input string.

4.1. The Aho—Corasick algorithm

The straightforward way to look for multiple keywords in an input string is to apply
the fastest single-keyword pattern-matching algorithm once for each keyword. This
would give a solution whose running time is O(m + kn). In this section we describe an
algorithm due to Aho and Corasick [3] that solves this problem in O(m + n) time, which
yields a significant improvement when the number of keywords is large.

As for a single keyword, the existence of an O(m+n) time algorithm for the

multiple-keyword pattern-matching problem is evident from Cook’s Theorem. The
language

L={wy #w,#...#w##s|s=xw,;y for some x and y, and 1<i<k}

can be recognized by a 2DPDA, and consequently Cook’s result implies that there is an
O(m+n) algorithm to do the matching.

The Aho-Corasick algorithm generalizes the Knuth—-Morris—Pratt algorithm to
multiple-keyword patterns. It first constructs from the set of keywords a pattern-
matching automaton in O(m) time; the automaton then reads the input and looks for all
the keywords simultaneously in O(n) time. The pattern-matching automaton is like
a deterministic finite automaton except that it has two transition functions, a forward
transition function and a failure transition function. The failure transition function is
used only when the forward transition fails.

DeriniTioN. An Aho-Corasick pattern-matching automaton consists of the following
components: -




274 AV. AHO

(1) Q, a finite set of states,

(2) Z, a finite input alphabet, .

(3) g: Q0 x Z—>Qu{ fail}, a forward transition function,

(4) h:Q—Q, a failure transition function,

(5) qo, an initial state, and

(6) F, a set of accepting states. ' ' .
Figure 9 shows how this automaton is used to determine whether an input string
§=5,S,...5, contains a keyword from the pattern set.

begin
q:=4qo
for j:=1to n do
begin
while g[g,s;]1= fail do g-=hlq]
g:=9la.s;]
if g is in F then return “yes”
end
return “no”
end

Fig. 9. The Aho-Corasick algorithm for matching multiple keywords.

Initially, the pattern-matching automaton is in state go scanniqg s, the first
character of s. It then executes a sequence of moves. During a move on input symbol s;
the automaton makes zero or more failure transitions untikit reaches a state g fo.r ?vhich
glg,s;]1+# fail. To complete the move, the automaton makes one forwacl"d tl;ansmon to
state g[g, s;]. If this state is an accepting state, the automaton returns “yes and halts;
otherwise, the automaton makes a move on the next input character s ;. .

The forward and failure transition functions of the pattern-matching automaton will
have the following two properties:

1 ,a]# fail for all @ in X,

8 gI]f[ Z%q]]z q{ then the depth of ¢ is less than the depth of g, where the. c?epth of
a state is the length of the shortest sequence of forward transitions from the initial state
to that state. o

The first property makes sure no failure transitions occur m the initial state. The
second property ensures that the total number of failure trans1t10n'sineede(li to process
an input string will be less than the total number of forward transitions. Smcef §xactly
one forward transition is made on each input character, fewer than 2n transitions of
both kinds will be made in processing an input string of length n. Thus, an
Aho-Corasick pattern-matching automaton runs in O(n) time.

We now show how to construct the automaton from the set of keywords
p={Wy, Wy, .., W} o .

(1) From the set of keywords, construct a trie in which each node represent§ a prefix
of some keyword. The trie can be constructed in O(m) time. The nodes of the trie are the
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states of the automaton and the root is the initial state g,, which represents the empty
prefix. Each node corresponding to a complete keyword is an accepting state. The
transition function g is dpﬁned so that g[g, p;]=¢ when g corresponds to the prefix
pi...pi—1 of some keyword and g’ corresponds to p; ...p;—1p;.

(2) For state gy, set g[qo,al=4q, for each character a for which g[q,,a] was not
defined in step (1).

(3) Set glg, a]= fail for all g and a for which g[¢, a] was not defined in steps (1) and
(2).
The three steps above define the forward transition function. Note that state g, has
the property that g[q,,a] # fail for any a in 2.

DeriniTiON. We define a failure function f:Q—Q on the nodes of the trie with the
following property:

if states g, and g, represent the prefixes u and v of some keywords in p,
then f[q,]=gq, if and only if v is the longest proper suffix of u that is
also the prefix of some keyword in p. )

The failure function can be computed in O(m) time by making a traversal over the
trie. We use a breadth-first traversal so that all states of depth d are visited before those
of depth d+ 1. During the traversal, we compute the failure function at each state as
follows:

(1) Set fl[g0]1=4qo and for all states g of depth 1 set f[g]=qo.

(2) Assume that f has been defined for all states of depth less than d >2 and suppose
glg,a]l=q where ¢' is a state of depth d. Set f[q']=g[r,a], where r is the state
determined by the following program:

r=f[q]
while g[r, a] = fail do r« f[r]

Note that since the depth of f[r] is always less than that of r for all states r
except the root, and g[q,, al # fail, the while-loop will always terminate.

4.2, ExampLE. Figure 10 gives the trie for the Fibonacci string abaababa and the values
of the failure function at each state.

The failure function itself can be used as the failure transition function. However, the
failure function may sometimes make more failure transitions than necessary. For
example, if we try to match the input string abaabb with the failure function above, the
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pattern-matching automaton would make the following state transitions:

On each of the first five characters, the automaton makes a single forward transition.
On the last character, the automaton makes a failure transition from state 5 to sta_tc? 2,
and then another failure transition to state 0, before making the final forward transition

to state 0. )
An “optimized” failure transition function h that avoids these unnecessary failure

transitions can be constructed from f as follows:
(1) Let h[go]1=4o-

Fig. 12. Trie for keywords cachaa, ach, aba, acbab, ccbab.

(2) Assume that h has been defined for all states of depth less than d and let q be Table 1 _
a state of depth d. If the set of characters for which there is a forward non-fail transition ' Transition functions for the pattern-matching automaton of Example 4.5
in state f[q] is a subset of the set of characters for which there is a forward non-fail ‘ ]
transition in state g, then set h[q]1=h[f[q]]; otherwise, sc?t th] = fIq]. . 5 A
The function h here is a generalization of the next function 1n the Knuth—Morris— a b c
Pratt algorithm. It can be computed in O(m) time by making another breadth-first 0 ; 5 1 - -
traversal over the trie. 1 ) fail ” ; 0
43. ExampLe. Figure 11 shows the h function for the Fibonacci string abaababa. i fas,z f4-, }rai; 8 1
ai ai 9 0
6 fail fail Jail 7 7
7 fail 10 8 0 0
8 fail 9 fail 1 1
o 12 fail fail 0 0
10 1 fail fail 0 0
1 Jail Jail Jail 7 7
With h as the failure transition function, the automaton would make the following }i j{alé jia;l Jail 10 "
. - ai fail 1 1
moves: 15 16 Jail fail 0 0
16 fail 17 fail 7 7
a b a a b b 17 fail fail fail 10 10
0 1 2 3 4 5 0
0 é To summarize, we can construct the trie, and the forward and failure transition
functions in O(m) time and O(m) space. The pattern-matchin
_ ) . . _ - g automaton processes the
At the last character, this automaton makes one failure transition rather than two. input string with no backtracking, making n forward transitions and ;ﬁ most n—1
! failure transitions on input string of length n. Thus, the patter
i . ) 1 matcher runs
4.4. ExampLe. For a more complete example, let us construct the Aho—Corasick in O(n) time. p
pattern-matching automaton for the set of keywords {cachaa, acb, aba, acbqb, cchab}.
Figure 12 shows the trie. The forward transition function g, thfa fall}lre function f, and ” 45. ThEorew. The Aho-Corasick algorithm solves Problem 4.1 in O(m -+ 1) time and
the failure transition function h for this set of patterns are given in Table 1. ; O(m) space.
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Let us examine the number of failure transitions that can be made while scanning one
input character. If the pattern consists of only one keyword of length m, then the
Aho—Corasick algorithm is essentially the Knuth-Morris—Pratt algorithm, and as we
noted, log,m failure transitions are necessary and sufficient in any one move. If the
pattern is a set of keywords, then O(m) failure transitions may be necessary in a single
move, where m is the sum of the lengths of the keywords. The total number of failure
transitions in processing an input string of length n, however, is at most n—1.

In the early 1970s Aho and Corasick used this algorithm in a bibliographic search
system in which a user could specify documents by prescribing Boolean combinations
of keywords and phrases. When this algorithm was used in place of a straightforward
multiple-keyword algorithm (the analog of the brute-force method for single key-
words), the system typically ran 4 to 12 times faster [3]. Aho also implemented the
original version of the UNIX system keyword-matching program fgrep using this
algorithm.

The Aho—Corasick algorithm can also be used to match subtrees in trees by noting
that if we label the branches of each node with the numbers 1, 2, 3,...,fromleft to right,
then a tree is uniquely characterized by the set of paths from the root to the leaves
[4,69]. Ben-Yehuda and Pinter [25] have extended the Aho—Corasick algorithm to do
two-dimensional pattern matching.

4.2. The Commentz-Walter algorithm

Commentz-Walter has described an approach in which the ideas in the Boyer-
Moore algorithm are combined with the Aho-Corasick algorithm to look for patterns
consisting of sets of keywords [37]. The basic idea is to construct an Aho—Corasick
style pattern-matching automaton, but for the keywords reversed. Let Knpin be the
length of a shortest keyword. Matching begins with the automaton in its initial state
scanning s;, the ith character of the input string, where i =k, We can think of the
automaton being superposed on top of the input string with the start state above the
character s;. The automaton then makes state transitions, reading the input string from
right to left, until it either finds a match for a keyword or enters a state for which there is
no transition on the current input symbol. ,

In the latter case, the automaton has read the input characters s;—;j+18i—j+2---5i
(from right to left), the automaton is in some state g, and there is no transition from state
g on s; ;. At this point, the automaton shifts its start state to a character to the right of s;
and recommences matching from the start state. The amount of the shift is determined
as follows:

(1) Let d,[q] be a minimal shift so that s;—j+1Si-j+2-.-Si will be aligned with
a matching substring of some keyword.

(2) Let d,[q] be a minimal shift so that a suffix of §;— j+1Si—j+2---Si will be aligned
with a prefix of some keyword.

(3) Let ds[s;—;, j] be a minimal shift so that s;_; will be aligned with a matching
character in some keyword.
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The amount of shift at state g on input character s;_; is then given by

Shl'fl[q, S,’—j, ]] - min{max(dl [q]7 d3 [Si—js ]:])7
d[q].

We can visualize each shift as moving the start state of the automaton to the right alon
the input string. :
We will now describe how to construct the Commentz-Walter pattern-matchin
automaton from the set of keywords. We first construct a trie for the set of keyword%
rever.sed. As in the Aho—Corasick automaton, the states are the nodes of the trie, the
rootis the_ start state, and each node corresponding to a complete keyword in rever’se is
an accepting state. Let path(q) be the string spelled out by the characters on the path
from the start state g, to the node g. The transition function g is defined so that
glq, pi1=q where path(q)=p.p, ... pi—. for some reversed keyword p,p,...py, k=>i.

4.6. ExampLE. The Commentz-Walter trie for the set of keywords {cacbaa, aba, acbab
ccbab, acb} is shown in Fig. 13. T ,

Fig. 13. Reversed trie for keywords cacbaa, aba, acbab, ccbab, acb.

We will now compute the two intermediate shift functions d; and d, for each state.
Let d.epth(q) bc? the number of edges along the path from the root to node g. We compute
two intermediate sets for each state other than the start state:

seti(q)={r|path(q) is a proper suffix of path(r)},
sety(q)={r|ris in set,(g) and r is an accepting state}.

From these sets we compute the two shift functions d, and d,. For the start state qq, we
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define d,[go]=1. For all other states g, we define

. (depth(r)—depth(q) where r is in set1(q),
dy[gq]=min

kmin-

The function d,[¢] is the smallest difference in depth between g and any state r for
which path(r) is the string u path(q) for some nonnull u. (d1[q] is in fact the length of' u)
In other words, if some reversed keyword contains another reoccurrence of substring
path(q) at the point at which a mismatch occurs, it is safe to move the start state to the
right by d,[¢] positions. o

The second shift function is defined to align a suffix of s;—j+18i—j+2..-Si (which is
path(q) reversed) with a prefix of some keyword:

dZ [qO:l = kmim
. {depth(r)—depth(q) where r is in set 2(q),
d>[g]=min d,[parent(q)].

The value of d,[¢] is determined by those keywords w such tha}t path(q), ora prefix
thereof, is a suffix of w®, the reversal of w. Table 2 summarizes this information for the

trie above. . . ‘
Matching proceeds somewhat like in the Boyer-Moore algorithm with the trie

playing the role of the single keyword. Define

. (depth(g) where the transition into g is labeled c,
char(c)=min

Kinin + 1.
Table 2
Shift functions for the trie in Fig. 13
node d, d, sety set,
0 1 3
1 1 2 {2,5,8,10,13,16} {8,13,16}
2 3 2 ] ¢
3 3 2 8 ¢
4 3 2 # ]
5 3 2 ) ¢
6 3 2 ] )
7 1 2 (3,11} ¢
8 3 2 ¢ ¢
9 1 3 {3,7,11} i}
10 1 1 {8} {8}
11 3 1 @ ¢
12 3 1 @ ¢
13 3 1 {1 )
14 3 1 ¢ I}
15 2 3 (4,12} ¢
16 2 2 {5,13} {13}
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Finally, let

shift[q, s;- j, j/1=min{max(d, [q], char(s;- ;)—j—1),d,[q]}.

This function is used if there is a mismatch in state g at input character s;_;. The
char(s;-;)—j—1 term sometimes allows us to shift more than d,[q] positions by
observing that d, is at most ky;, and that the shortest distance from the root to a node
whose incoming edge is labeled by s;_ ; may be greater than this. In this case, it is safe to
advance by char(s;- ;)—j— 1 positions (the term —j— 1 adjusts for the relative position
of the start state).

Note that we use the minimum of d, and the maximum of d, and char in computing
shift. At node 14 in the trie of Fig. 13, for example, d, [14] =3 = k,,;, because set(14) is
empty. When we reach node 14, 5;_ ;4 15i—j+ 2 ... s;=ccbab with the start state over the
rightmost b. It might appear that we could shift the start state 3 positions to the right
once we reach node 14. But d,[14] =1 because of node 10 where we shift by 1 to check
for a match of aba; thus, at any descendant of node 10 we cannot shift by more than 1 in
case we miss this possible match.

In general, a shift to the right by shift[q,s; ;, ] positions is guaranteed not go past an
occurrence of a keyword. The entire algorithm is summarized in Fig. 14.

begin
q:=do
f= kmin
j=0
while i<n do
begin
while j<i cand g[g,s;_;]# fail do
begin
q==g{q, S,'—j]
j=i+1
if g is accepting then return “yes”
end
i=i+shifilg,s;_}, j]
=g
j=0
end
~ return “no”
end

Fig. 14. The Commentz-Walter algorithm for matching multiple keywords.

The Commentz-Walter pattern-matching automaton can be constructed in O(m)
time using techniques similar to those in Section 4.1, but its worst-case running time on
an input string of length n is ®(mn). In practice, with small numbers of keywords, the
Boyer—Moore aspect of the Commentz-Walter algorithm can make it faster than the
Aho-Corasick algorithm, but with larger numbers of keywords the Aho—Corasick
algorithm has a slight edge. It is possible at a greater than linear-time preprocessing
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cost to produce a version of the Commentz-Walter algorithm whose worst-case
behavior is linear in n [37].

5, Matching regular expressions
We now generalize the pattern-matching problem to full regular expressions.

5.1. ProBLEM. Given a pattern consisting of a regular expression r and an input string
S=5,5,...5, answer “yes” if r matches a substring of 5; “no” otherwise. We assume the
length of r is m.

This section describes two algorithms to solve this problem. In the first the
pattern-matcher generator constructs a nondeterministic finite automaton, which is
then used as the matcher to process the input string. In the second the generator
constructs a deterministic finite automaton. Both approaches have been used in
regular-expression pattern-matching programs.

5.1. Nondeterministic recognizers for regular expressions

This section outlines a regular-expression pattern-matching technique originally due
to Thompson [127] that was used in the text editor ged and in a simplified form in the
UNIX system command grep. We will prepend to the given regular expression the
expression (a, |a,|...|a,)* where a, through a, are the symbols of the input alphabet.
This prefix allows matching to begin at any position in the input string. For the
remainder of this section, we will assume r contains this prefix.

We begin by constructing a nondeterministic finite automaton (NDFA) from r. An
NDFA is a directed graph in which the nodes are the states and each edge is labeled by
a single character or the symbol ¢, which stands for the empty string. One state is
designated as an initial state, and some states as accepting states. An NDFA accepts
(matches) a string if there is a path from the start state to an accepting state whose edge
labels spell out the string. :

Once we have constructed an NDFA for r, we run it on the input string s. If the
NDFA enters an accepting state while processing s, we report that r matches s,
otherwise, we report “no”. The NDFA can take the form of an executable program or
a state-transition table that is interpreted.

The recursive procedure below can be used to construct an NDFA for the regular
expression. We first parse the regular expression into its constituent subexpressions
according to the formation rules used to define a regular expression in Section 2.1.
Using rule (1), we construct an NDFA for a non-metacharacter. Rules (2) —(5) show
how to combine the NDFAs constructed from the constituent subexpressions.

(1) For a non-metacharacter c, construct the NDFA in Fig. 15(a) where i is a new
initial state and a a new accepting state. This automaton clearly accepts exactly the
string c.
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Fig. 15(a).

(2) Suppose N,, and N,, are NDFAs for r; and r,. For the regular expression
r=r,|r,, construct the NDFA N in Fig. 15(b) where i is a new initial state and a a new
accepting state. There is an e-transition from i to the start states of N,, and N,,. There is
an e-transition from the accepting states of N,, and N,, to the new accepting state a.
(The initial and accepting states of N,, and N,, are not considered start or accepting
states of N,.) Note that any path from i to a must pass through either N,, or N,,. Thus,
N accepts any string accepted by N,, or N,,.

Fig. 15(b).

(3) Suppose N,, and N,, are NDFAs for r; and r,. For the regular expression
r=r,r,, construct the NDFA N in Fig. 15(c) where the start state of N,, becomes the
start state of N and the accepting state of N,, becomes the accepting state of N. The
accepting state of N,, is merged with the start state of N, ; that is, all transitions from
the start state of N,, become transitions from the accepting state of N,,. The new
merged state loses its status as a start or accepting state in N. A path from i, to a,, must
go first through N,, and then through N,,, so N accepts any string of the form xy where
N,, accepts x and N,, accepts y.

Fig. 15(c).

(4) Suppose N,, is an NDFA for r,. For the regular expression r =r¥, construct the

" NDFA N in Fig. 15(d) where i is a new initial state and a a new accepting state. In N, we

can go from i to a directly, along an edge labeled ¢, representing the fact that s* matches
the empty string, or we can go from i to a passing through N, one or more times. Thus,
N accepts any string matched by r¥.
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Fig. 15(d).

(5) For the regular expression (r) use the NDFA for r.

Figure 16 shows the NDFA that results from this construction for the regular
expression (a|b)*aba. This construction produces an NDFA N for r with the following
properties:

(1) N has at most twice as many states as the length of r, since each step of the
construction creates at most two new states.

(2) N has exactly one start state and one accepting state, and the accepting state has
no outgoing transitions. This property holds for each of the constituent NDFAs as well.

(3) Each state has either one outgoing edge labeled by a character or at most two
outgoing g-edges.

Fig. 16. NDFA for (alb)*aba.

Figure 17 contains an algorithm to determine whether an NDFA N with initial state

i and accepting state a matches a substring of an input string s=s;5;...s, The

algorithm uses the function epsilon(Q) to compute all states that can be reached from

a set of states Q by following only e-edges. After reading each character, the algorithm

determines Q, the current set of states for N. It computes the next set of states from Q in

_ two stages. First, it determines goto(Q, c), all states that can be reached from a state in

Q by a transition on c, the current input character. Then, it computes epsilon(goto(Q, ¢)),

all states that can be reached from goto(Q, c) by following only e-edges. The algorithm

returns “yes” if the accepting state is in the set of current states. If no accepting state is
ever encountered, “no” is returned.
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begin
Q:=epsilon({i})
if Q contains a then return “yes”
for j:=1to n do
begin
Q:=epsilon(goto(Q, s;))
if Q contains a then return “yes”
end
return “no”
end

Fig. 17. Algorithm to simulate an NDFA on an input string s, ... s,.

The NDFA can be simulated in time proportional to |N|x|s|, where |N| is the
number of states in N and |s| is the length of s, by taking advantage of the special
properties of N. The set of states reachable after each input character can be efficiently
computed using two stacks and a bit vector indexed by states. One stack is used to store
0, the current set of states, and the other stack to determine the next set of states. Since
each state has at most two out-transitions, each state on the first stack can add at most
two new states to the second stack. The bit vector is used to quickly determine whether
a state is already on the second stack so that we do not add it twice. Once we have put
the states in gofo(Q, c) onto the second stack, we can use a simple reachability algorithm
to compute epsilon(goto(Q, ¢)). When we have computed all the reachable states on the
second stack, we read the next input character and interchange the roles of the two
stacks.

Since there can be at most |N| states on a stack, the computation of the next set of
states from the current set of states can be done in time proportional to |N|. Thus, the
time needed to run N on input s is proportional to | N| x |s|. Since the number of states
in N is at most twice the length of r, the running time of this algorithm is O(|r| x |s|).
Thus, we have the following theorem.

5.2. THEOREM. Problem 5.1 can be solved with an NDF A in O(mn) time and O(m) space.

Myers [105] has shown how the use of node listings and the “Four Russians” trick
[6] can be applied to this algorithm to derive an O(mn/log n) time and space solution to
Problem 5.1.

5.2. Deterministic recognizers for regular expressions

Although the algorithm in the previous section produces a compact NDFA, its
running time is proportional to the product of the size of the regular expression and the
length of the input. A deterministic finite automaton (DFA) is an NDFA in which there
are no e-transitions and in which every state has at most one transition on any input
character. DFAs are well suited for regular-expression pattern matching because they
are capable of recognizing all regular-expression patterns. Moreover, a DFA can be
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simulated in real time because an input character causes at most one state transition.

This section describes a DF A-based regular-expression pattern-matching algorithm.
The algorithm first constructs a syntax tree for the regular expression, such as the one in
Fig. 18 for the regular expression (alb)*aba#. The symbol # is an endmarker
appended to the expression; its function will be explained shortly. A dot is used to
represent the concatenation operator.

N
NS
wa

WK

Fig. 18. Syntax tree for (a|b)*aba#.

The leaves of the syntax tree are labeled by the non-metacharacters in the regular
expression. Using a technique suggested by McNaughton and Yamada [97] we
associate with each leaf a unique integer called the position of the leaf. Positions are
shown below the leaves in the syntax tree of Fig. 18. =«

The transitions of the DFA are constructed directly from the syntax tree. Each state
of the DFA is the set of positions corresponding to the leaves that are active after
having read some prefix of the input string. Initially, leaves 1, 2, and 3 are active so the
initial state of the DFA is the set {1,2,3}. :

The next state Q' representing the transition from state Q on an input character c is
computed as follows. For each position i in Q whose leaf-symbol matches c, we add
follow(i) to T, where follow(i) is the set of positions that can “follow” the leaf labeled by
i in the syntax tree. These two rules define follow(i):

(1) If left and right are the two children of a node labeled by a concatenation
operator in the syntax tree and i is a position that can last be active in the subtree rooted
at left, then all positions initially active in the subtree rooted at right are in follow(i).

(2) Ifiisa position that can last be active in a subtree rooted at a *-node in the syntax
tree, then all positions initially active in that subtree are in Jollow(i).

Let us compute the state Q representing the transition from the initial state {1,2,3}
on the input symbol a. The leaf corresponding to position 1 matches a, so we add
follow(1)={1,2, 3} to Q. Position 2 does not match g, but position 3 does, so we add
follow(3)={4} to.Q. Thus the transition from state {1, 2,3} on a is to state {1,2,3,4}.

To create the complete DF A, we compute all transitions for each new state. Any state
containing the position corresponding to the endmarker # is made an accepting state.
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b

Fig. 19. DFA for (alb)*aba.

We do not compute transitions for the symbol #. Figure 19 contains the complete
DFA for the regular expression (a|b)*aba.

The transition function of a DFA can be simply represented as a two-dimensional
array. A DFA can then be simulated efficiently by the table look-up program in Fig. 20.

begin
Q:= InitialState
if Q is accepting then return “yes”
for j:=1 to n do
begin
Q:=goto[Q.s,]
if Q is accepting then return “yes”
end
return “no”
end

Fig. 20. Algorithm to simulate a DFA on an input string s;...5,. .

Thus, once a DF A has been constructed from a regular expression, we can determine
whether it matches the input string in O(n) time. Note that neither the size of the input
alphabet nor the length of the regular expression affect the time to simulate the DFA.
Berry and Sethi [26] relate this technique to the derivatives method for constructing
a DFA from a regular expression proposed by Brzozowski [33].

If the transition function is stored as a two-dimensional array, then the storage
requirement for a DFA is the product of the input alphabet size times the number of
states. For some regular expressions even a minimum-state DFA recognizer may have
2" states, where n is the length of the regular expression. In these situations, the
complete DFA is time-consuming to construct, and the transition function requires lots
of storage. Consider, for example, the regular expression

(alb)y*a(alb)(alb).. . (alb)

where there are k copies of (a|b) at the end. This expression denotes all sequences of a’s
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agd b'sin which the (k + 1)st symbol from the end is an a. The smallest DFA recognizing
this expression must have at least 2 states to remember the 2* possible sequences of the
last k characters it has seen. Thus, to summarize, we have the following theorem.

5.3. THEOREM. Problem 5.1 can be solved with a DF A in O(2™ + n) time and O(2™) space.

Several techniques are available to reduce the space requirements of the transition
table [9]. An effective storage-reduction technique that has been used by the author in
the UNIX system command egrep is “lazy transition evaluation.” The transition
function is only computed when the DFA is run. Computed transitions are kept in
a cache. Before a transition is made, the cache is examined. If the required transition is
not in the cache, it is computed and stored for subsequent use. If the cache becomes full,
some or all of the previously computed transitions are removed to make room for the
new transition. This method allows the pattern matcher to use a fixed-size storage area
for the transitions with only a small run-time penalty. The observed performance in
practice of this approach for solving Problem 5.1 is O(m+n) time and O(m) space,
combining the best features of both the nondeterministic and deterministic approaches.
It would be interesting to know whether it is possible to construct a regular-expression
pattern-matching algorithm with this as its worst-case behavior.

The problem of storing a transition table compactly and yet providing constant-time
access to its elements has stimulated recent research in perfect hashing [51,126] and
dynamic perfect hashing [8,45]. Some additional issues in the efficient representation
of transition tables are discussed in [12]. An alternative to creating a transition table is
to generate machine code directly to simulate the automaton [109, 127].

An extended regular expression is one that also has operators for intersection and
complement. Hopcroft and Ullman describe a dynamic programming algorithm to
match extended regular expressions in time O((n+m)*) [70, Exercise 3.23].

6. Related problems

In the three previous sections we presented pattern-matching algorithms for
keywords, sets of keywords, and regular expressions. There are many other string-
matching problems that are of interest in computer science and in this section we will
mention a few that are related to the ones that we have studied.

6.1. Matching regular expressions with back referencing

Let us briefly consider the problem of matching regular expressions with back
referencing because it dramatically brings out the point that as we generalize the class
of patterns, we can make the pattern-matching process much more difficult computa-
tionally.
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6.1. ProBLEM. Given a pattern consisting of a rewbr r and an input string s, answer
“yes” if s contains a substring matched by r; “no” otherwise.

6.2. THEOREM. Problem 6.1 is NP-complete.

Proor. We will use a reduction from the vertex-cover problem. Let E,, E,, ..., E,, be
subsets of cardinality 2 of some finite set of vertices V. The vertex-cover problem is to
determine, given a positive integer k, whether there exists a subset ¥ of V' of cardinality
at most k such that V' contains at least one element in each E;. We can think of the E’s
as being edges of a graph and V" as being a set of vertices such that each edge contains at
least one vertex in V'. The vertex-cover problem is a well-known NP-complete problem

[59].
We can transform this problem into a pattern-matching problem for rewbrs as
follows. Let N be the parenthesized string (ny|n, | ... |n,;) where V={n;,n,,...,n,}. Let

# be a distinct marker symbol. For 1<i<k, let
x;=N*N%v; N*#

where the v/’s are distinct variable names. Likewise, for 1 <i<m, let
y;=N*N%w; N*#

where the w;’s are distinct variable names. For 1<i<m, let
zi=wivivs .. of wi#

Let  be the rewbr X ... Xg V1. YmZ1 -+« Zm-
We shall now construct an input string s such that if the rewbr r matches s, then the

vertex-cover problem has a solution of size k. Let u be the string nyn, ... n, # repeated
k-+m times. Let e; be the string ab# where E;={a, b} for 1 <i<m. Finally, let s be the
input string ue; ... e,.

Now, notice that r matches s if and only if the set of vertices assigned to the variables
vy,. ..,V forms a vertex cover for the set of edges {E{,Es,..., En}. Thus, r matches s if
and only if the vertex-cover problem has a solution of cardinality at most k.

It is easy to match a rewbr in nondeterministic polynomial time. The most
straightforward approach to matching a rewbr pattern r deterministically is to use
backtracking to keep track of the possible substrings of the input string s that can be
assigned to the variablesin r. There are O(n?) possible substrings that can be assigned to
any one variable in , where n is the length of 5. If there are k variables in 7, then there are
O(n?) possible assignments in all. Once an assignment of substrings to variables is
fixed, the problem reduces to ordinary regular expression matching. Thus, rewbr
matching can be done in at worst O(n?*) time. [

This NP-completeness result implies that if P ¢ NP, then there is no polynomial-time
algorithm for matching rewbrs.
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6.2. Finding repeated patterns and palindromes

Rewbrs allow one to find repeated patterns in an input string, but at a considerable
cost. There are much more efficient techniques for finding certain classes of repeated
patterns. Weiner [137] devised an efficient way to construct a compact index to all the
distinct substrings of a set of strings in linear time. Variants of this index are called
position trees [6,91], subword trees [13], complete inverted files [28-31], PATRICIA
trees [103], and suffix trees [41,95,115]. The position tree is useful for solving in linear
time problems such as finding the longest repeated substring of an input string.
Apostolico [13] discusses other innovative uses for this index. Chen and Seiferas [34]
have a particularly clean construction for the index. Crochemore [42] and Perrin [110]
relate the failure function of Section 5.1 to the construction of a minimal suffix
automaton.

A related problem, more of mathematical interest, is to find all the squares in a string,
where a square is a substring of the form xx with x nonempty. For example, the
Fibonacci string F, contains at least (| F,| log |F,|)/12 different squares. Shortly after the
turn of the century, Thue [128, 129] had asked how long a square-free string could be
and showed that with an alphabet of three characters square-free strings of any length
could be constructed. Several authors have devised ®(n log n) algorithms for finding all
squares in a string of length n [20, 40, 89, 90]. One can determine in linear time whether
a string s has a prefix that is a square, that is, whether s = xx y for nonempty x and some
y. It is an open problem as to whether the set of strings of the form xxy (prefixsquares)
can be recognized by a 2DPDA. Rabin [112] gives a simple “fingerprinting” algorithm
similar to the one in Section 3.2 for finding in O(nlog n) expected time the earliest
repetition in a string s, that is, the shortest w and x such that 5=WwxXxy.

Palindromes, strings that read the same forwards and backwards, have provided
amusement for centuries. Strings that begin with an even-length palindrome, that is,
strings of the form xx®y with x nonempty, can be recognized by a 2DPDA, and hence in
linear time ona RAM. (x® is the reversal of x.) Strings of nontrivial palindromes, that is,
strings of the form x, x, ... x,, (palstars), where each x;is a palindrome of length greater
than 1, can be recognized in linear time on a RAM but we do not know whether they
can be recognized by a 2DPDA. See [52, 54, 56-58,92, 121, 123] for more details and
for algorithms that give real-time performance for finding palindromes in strings.

6.3. Approximate string matching

We now consider several important variants of pattern-matching problems that
arise in areas such as file comparison, molecular biology, and speech recognition.
Perhaps the simplest is the file-difference problem: Given two strings x and y,
determine how “close” x is to y. A useful way to compare the two files is to print
aminimal sequence of editing changes that will convert the first file into. the second. Let
us treat the files as two strings of symbols, X=d;...a, and y=b,...b,, where g;
represents the ith line of the first file and b ;represents the jth line of the second. Define
two editing transformations: the insertion of a line and the deletion of a line. The edit
distance between the two files is the smallest number of editing transformations
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required to change the first file into the second. For example, if the first file is
represented by the string abcabba and the second by chabac, the edit distance is 5.

A simple dynamic programming algorithm to compute this edit distance has been
discovered independently by many authors [118]. Let d;; be the edit distance between
the prefix of length i of the first string and the prefix of length Jj of the second string. Let
doo be 0, dig be i for 1<m, and dy; be j for 1 <j<n. Then, for I<i<mand 1gjgn,
compute d;; by taking the minimum of the three quantities:

(1) di—y,;+1, (2 d;j-1+1, (3 di—y - if a;=b;

The first quantity represents the deletion of the jth character from the first string, the
second represents the insertion of a character after the (j— 1)st position in the first
string, and the third says d;;<d;_, j—1 if the ith character in the first string agrees with
the jth character in the second string. After completing this computation, we can easily
show that d,,, gives the minimum number of edit changes required to transform the first
file into the second. From these distance calculations we can construct the correspond-
ing sequence of editing transformations. Figure 21 shows the matrix of edit distances
for the strings abcabba and cbabac.

c 6|6 5 4 3 4 5 6 5
a 5|5 4 3 4 3 4 5 4
b 4|4 3 2 3 4 3 4 5
313 2 3 4 3 4 5 4

b 212 3 2 3 4 3 4 5
c 1{1 2 3 2 3 4 5 6§
00 1 2 3 4 5 6 7

00 1 2 3 4 5 6 7

a® b ¢ a b b a

Fig. 21. Edit distances d.

The running time of this algorithm is always proportional to mn, the product of the
sizes of the two files. In one sense, this algorithm minimizes the number of character
comparisons: with equal-unequal comparisons, Q(mn) character comparisons are
necessary in the worst case [5].

Hunt and Mcllroy [74] implemented Hirschberg’s linear-space version of this
algorithm [66] which worked very well for short inputs, but when it was applied to
longer and longer files its performance became significantly slower. This behavior, of
course, is entirely consistent with the quadratic nature of this algorithm’s time
complexity.

Shortly thereafter, Hunt and Szymanski [75] proposed another approach to the
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file-difference problem. They suggested extracting a longest common subsequence
from the two strings and producing the editing changes from the subsequence.

DEFINITION. A subsequence of a string x is a sequence of characters obtained by deleting
zero or more characters from x. A common subsequence of two strings x and y is a string
that is a subsequence of both x and y, and a longest common subsequence is a common
subsequence that is of greatest length. For example, baba and cbba are both longest
common subsequences of abcabba and cbabac.

The problem of finding a longest common subsequence of two strings is closely
related to the file-difference problem. The following formula shows the relationship
between the edit distance and the length of a longest common subsequence of two
strings of symbols, x=4, ... a, and y=by...b,

EditDistance(x, y)=m+n—2length(lcs(x, )

To solve the longest-common-subsequence problem for x and y, Hunt and Szymanski
constructed a matrix M, where M;; is 1 if a;=b; and 0 otherwise. They produced
a longest common subsequence for x and y by drawing a longest strictly monotonically
increasing line through the points of the M matrix as shown in Fig. 22. If there are
r points, such a line can be found in time proportional to (r + n)log n, assuming n>m. In
the file-difference problem, r is usually on the order of n, so in practice the running time
of the Hunt-Szymanski technique is O(nlog n), significantly faster than the dynamic
programming solution.

Mcllroy put this new algorithm into his program and the inputs that used to take

Fig. 22. A longest monotonically increasing line represents a longest common subsequence.
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many minutes to compare now ran in a few seconds. The i i
had not changed but its average performance had imprcfl\lr{clfitf:t?ig:b?;the prostam
M(?re recentlx, Myers [104] and Ukkonen [131] independently suggésted a third
algorl.thm for this problem: treat the problem as one of constructing a cheapest-clrt
path in a graph. The nodes of the graph consist of the intersection points on -
(m+ 1) x (n+ 1) grid. In addition to the horizontal and vertical edges, there is a diagonaal;
edge from node gi —1,j—1)to(, j)ifa;=b;. Each horizontal and vertical edge has a cost
of 1, and each dlggonal edge a cost of 0. A cheapest path from the origin to node (m, n)
uses as many diagonal edges as possible as illustrated in Fig. 23. The tails of t’h
dlagongl edges.;.on the cheapest path define a longest common subsequence between th:
two strn.lgs. Dijkstra’s algorithm [6] can be used to construct the cheapest path in tim
proportional to dn, where d is the edit distance between the two strings. In situati .
where d is small, this approach is the method of choice. & e

a b c a b b a

.Fig. 23. A cheapest path represents a longest common subsequence.

Myers [193]. desc.ribes a refinement of the algorithm above that runs in
Q(n logn + a*) tlme using suffix trees. Masek and Paterson [93] present an O(n?/log n)
time algorithm using the “Four Russians” trick. So far, no single algorithm is known for
tllle lgtr}llgest—common-subsequence problem that dominates all applications. More
algorithms, programs, and other aspects of the problem are disc i ‘

36, 50, 64, 66, 67, 68, 101, 107, 130, 138]. wesedin IO IR 1513

Many generalizations of the file-difference ise i

ra problem arise in molecular biolo
speech. recognition, and related applications. We can define the approximate strifgy-,
matching problem as follows: Given a pattern p, an input string s, an integer k, and
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i istance
a distance metric d, find all substrings x of s such that d(p, x) <k, that Is, the distan

between the pattern p and the substr?ng x is at most kl.1 been proposed. The two
When p is a single string, several distance measures have been p

most common are the Hamming distance and Le.venshtem dlstanc?. ’I;I;iggsmrrvtgg
distance between two strings of equal length is the . numbelr) c;)wegn o
mismatching characters. For example, th.e Hamming <:}1;t§1:)cein e e distance
cbacbais 4. The approximate string-matching proplem wit ! ek ri e roblem
is called string matching with k mismatches. Algorithms for the k-
" ifef meeri;ZingZ;szghcgeZ%etween two strings of not nece.ssarily equal length 1; ﬂ;ﬁ
'Tlit(:lurflvnumber of character changes, insertions, anfi de}etlons required t(;, t'ra;)rlxjsa c;rn .
glrlle string into the other. For example, the Levenshte}zlln Flls(tia}rltci lg:t:)v:f‘:llecéncg g
i i ing the Levenshtein dista .
qubac . toﬁtzgl?rféglirﬁs[;(l)r 1(:1%1;1111331;t’ 13%4]. The approximate stri.ng-m.atchmg' problerzl
i\tf‘zlrllgcsi alizing the Levensh;ein distance is called string .matchmg M{lltg Ii 3d2ljf;zge5r]tce .
Algorithms for the k-differences problem are described in [81f, 813,0m};ms ;md Y
Galil and Giancarlo [55] present an excellent ‘survey of a_rg;1 i oroblemms
structures that have been devised to solve approx1r1}ate Ztr.mg[ e R, The
efficiently. More general distance measures are cgns1dere 1m ex, re;sio;l 0oL e
approximate string-matching problem whqre p is a regular exp B e 106).
cgﬁsidered by Wagner [133], Wagner and Seiferas [135], and Myers an

ing matching with “don’t cares”
R g e string-matching problem in WhiCl',l there
single character (including a don’t care
.. b, matchiffor l<ism whenevgr a; anfi
matching problem with don’t

We conclude by mentioning a variant of th

is a “don’t care” symbol that matchesd ;;)ny

i .anandb, .

symbol). We say two strings dy - - - am }

b, are not both don’t cares, they are equal. The pattern

cares comes in two flavors:
i ’t cares, and

1) only the pattern p contains don res, . ,

EZ% boti’l the pattern p and the input string s conta.ln dcint i‘;res.to olve the first

Pinter [111] uses an extension of the Aho—Corasick algorithm 0 O e e to

roblem. Fischer and Paterson [49] have shown thgt the secogd proulf:i reduces

?nteger rﬁultiplication. If M(m,n) is the amount of time needed to md vgr:ion e
number by an n-bit number, then the time needed to solve the secon

pattern-matching problem with don’t cares 15

O(M(|pl,Is)) log|p|log 4)

where A is the size of the input alphabet. Using the Schonhage-Strassen integer-

multiplication algorithm [6], the time bound becomes

O(jsllog?|p| log log|p|log A).
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7. Concluding remarks

In this chapter we have discussed algorithms for solving string-matching problems
that have proven useful for text-editing and text-processing applications. As the reader
can see, even in this restricted domain there is a rich literature with interesting ideas and
deep analyses.

We should mention a few important generalizations of string pattern matching that
we have not had the space to consider. There is an abundant literature on
term-rewriting systems [72], and on efficient parsing methods for context-free
grammars [70] and special cases of context-free grammars, such as the LL(k) and LR(k)
grammars [6]. There are also methods for matching patterns in trees, graphs, and
higher-dimensional structures [6, 27, 69, 77, 117].

In this paper, we have restricted ourselves to algorithms for the RAM of
computation. In recent years, there has been accelerating interest in developing
algorithms for various parallel models of computation, but practical experience with
these algorithms has been much more limited than with those for the RAM. In the
coming years, we hope to see for these new models of computation the same interplay

between theory and practice that has enriched the field of pattern-matching algorithms
for the random-access machine. '
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