
On the Semantics of Regular Expression Parsing
In the Wild

Martin Berglund1, and Brink van der Merwe2

1 Ume̊a University, Sweden. mbe@cs.umu.se
2 University of Stellenbosch, South Africa. abvdm@cs.sun.ac.za

Abstract. We introduce prioritized transducers to formalize capturing
groups in regular expression matching in a way that permits straight-
forward modelling of and comparison with real-world regular expression
matching library behaviors. The broader questions of parsing seman-
tics and performance are discussed, and also the complexity of deciding
equivalence of regular expressions with capturing groups.

1 Introduction

Few formal language research results have greater practical reach than regular
expressions. As a result the practical implementations [5] have in many ways
surged ahead of research, with new features which require underpinnings differ-
ent from the original theory. Practical implementations perform matching as a
form of parsing, using capturing groups, outputting what subexpression matched
which substring. A popular implementation strategy, still very common [2], is
a worst-case EXPTIME depth-first search for such parses. A more formal ap-
proach suggests using finite transducers, outputting annotations on the string
to signify the nature of the match [9]. This is complicated by the matching
semantics dictating a single output string for each input string, using rules to
determine a “highest priority” match among the potentially exponentially many
possible ones (for contrast e.g. [3] discusses non-deterministic capturing groups).

The pNFA (prioritized non-deterministic finite automaton) model of [2] (sim-
ilar results were also published mere weeks later in [7]) provides the right level of
abstraction to model the matching time behavior of regular expression matchers.
However, for matchers based on an input directed depth first search, it does not
provide an understanding of why practical regular expression matchers often (in-
directly) use the pNFA model, and in particular, there is no notion of when one
pNFA is equivalent to another. By adding output to pNFA to obtain pTr (pri-
oritized transducers), we obtain a better understanding of the usefulness of the
prioritized automata/transducer model, and we also have the notion of equiva-
lence of pTr, which is defined in terms of equality of the underlying functions
represented by the pTr. A regular expression to transducer construction is done
in [9], but it is remarked that translating regular expression matching directly
into transducers is highly non-trivial. In Section 3, where we discuss conversion
from regular expression to pTr, it will become clear that pTr are a perfect fit

when converting regular expressions to transducers. We also discuss a linear-
time matching algorithm for pTr (i.e. determining the image of input strings),
generalizing e.g. [6] which operates directly on expressions, and mirroring work
by Russ Cox [4] which is to a great extent not formally published.

The outline of the paper is as follows. In the next section, we define priori-
tized automata and transducers. After that, we show how to adapt the standard
Thompson construction, from [10], for converting regular expressions to non-
deterministic finite automata, to the more general setting of converting regular
expressions to prioritized transducers. This is followed by a normal form for pri-
oritized transducers, so called flattened prioritized transducers, that simplifies
the following discussions on deciding equivalence of and parsing with pTr.

2 Definitions

Let dom(f) and range(f) denote the domain and range of a function f respec-
tively. When unambiguous let a function f with dom(f) = S generalize to S∗

and P(S) element-wise. By P(S), we denote the power set of a set S. The car-
dinality of a (finite) set S is denoted by |S|. We denote by N the set of natural
numbers, i.e. the set {1, 2, 3, . . .}. The empty string is denoted ε. An alphabet Σ
is a finite set of symbols with ε /∈ Σ. We denote Σ∪{ε} by Σε. For any string w
let πS(w) be the maximal subsequence of w containing only symbols from S (e.g.
π{a,b}(abcdab) = abab). For sequences s = (z1,1, . . . , z1,n) . . . (zm,1, . . . , zm,n) ∈
(Z1 × . . .× Zn)∗, we denote by σi(s) the subsequence of tuples obtained from s
by deleting duplicates of tuples in s and only keeping the first occurrence of each
tuple, where equality of tuples are based only on the value of the ith component
of a tuple (e.g. σ1((1, a)(2, a)(1, b)(3, b)(2, c)) = (1, a)(2, a)(3, b)). For each k > 1,
we denote by Bk the alphabet of k types of brackets, which will be represented
as {[1,]1, [2,]2, . . . [k,]k}. The Dyck language Dk over the alphabet Bk is the set
of strings representing well balanced sequences of brackets over Bk.

As usual, a regular expression over an alphabet Σ (where ε, ∅ /∈ Σ) is either
an element of Σ∪{ε, ∅} or an expression of one of the forms (E |E′), (E ·E′), or
(E∗), where E and E′ are regular expressions. Some parentheses can be dropped
with the rule that ∗ (Kleene closure) takes precedence over · (concatenation),
which takes precedence over | (union). Further, outermost parentheses can be
dropped, and E ·E′ can be written as EE′. The language of a regular expression
E, denoted L(E), is obtained by evaluating E as usual, where ∅ stands for
the empty language and a ∈ Σ ∪ {ε} for {a}. The size of E, denoted |E|, is
the number of symbols appearing in E. A capturing group is any parenthesized
subexpression, e.g. (E). The matching procedure will also produce information
about which substring(s) are matched by each capturing group. Thus brackets in
regular expressions are used both for precedence and capturing, and in Java3 a
non-capturing subexpression E is indicated by (?:E). The precise matching and
capturing semantics follow from Section 3. When we say that E matches a string

3 Java is a registered trademark of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

w we mean that all of w is read by E, as opposed to vwv′ ∈ L(E), for v, v′ ∈ Σ∗,
as some implementations do. This substring matching can be simulated in our
model with the expression .∗?(R).∗, where E∗? and E∗ denotes respectively the
lazy and greedy (both to be defined in Section 3) Kleene closure of E.

For later constructions we require a few different kinds of automata and trans-
ducers. First (non-)deterministic finite automata (and runs for them), followed
by the prioritized finite automata from [2], which are used to model the regular
expression matching behaviors exhibited by typical software implementations.

Definition 1. A non-deterministic finite automaton (NFA) is a tuple A =
(Q,Σ, q0, δ, F) where: (i) Q is a finite set of states; (ii) Σ is the input al-
phabet; (iii) q0 ∈ Q is the initial state; (iv) δ : Q×Σε → P(Q) is the transition
function; and (v) F ⊆ Q is the set of final states.

A is ε-free if δ(q, ε) = ∅ for all q. A is deterministic if it is ε-free and
|δ(q, α)| ≤ 1 for all q and α. The state size of A is denoted by |A|Q, and defined
to be |Q|.

Definition 2. For a NFA A = (Q,Σ, q0, δ, F) and w ∈ Σ∗, a run for w is a
string r = s0α1s1 · · · sn−1αnsn ∈ (Q ∪ Σ)∗, with s0 = q0, si ∈ Q and αi ∈ Σε

such that si+1 ∈ δ(si, αi+1) for 0 ≤ i < n, and πΣ(r) = w. A run is accepting
if sn ∈ F . The language accepted by A, denoted by L(A), is the subset {πΣ(r) |
r is an accepting run in A} of Σ∗.

Now for the prioritized NFA variant, as defined in [2].

Definition 3. A prioritized non-deterministic finite automaton (pNFA) is a
tuple A = (Q1, Q2, Σ, q0, δ1, δ2, F), where if Q := Q1 ∪Q2, we have: (i) Q1 and
Q2 are disjoint finite sets of states; (ii) Σ is the input alphabet; (iii) q0 ∈ Q is
the initial state; (iv) δ1 : Q1 × Σ → Q is the deterministic, but not necessarily
total, transition function; (v) δ2 : Q2 → Q∗ is the non-deterministic prioritized
transition function; and (vi) F ⊆ Q1 are the final states.

Remark 4. For a pNFA A = (Q1, Q2, Σ, q0, δ1, δ2, F) the corresponding finite
automaton nfa(A) is given by nfa(A) = (Q1 ∪ Q2, Σ, q0, δ̄, F), where δ̄(q, α) =
{δ1(q, α)} if q ∈ Q1, and δ̄(q, ε) = {q1, . . . , qn} if q ∈ Q2 with δ2(q) = q1 . . . qn.

Next we define runs for pNFA. An accepting run for a string w in a pNFA A,
is defined to be the highest priority accepting run of w in nfa(A), not repeating
the same ε-transition in a subsequence of consecutive ε-transitions. Prioritized
NFA are thus on a conceptual level closely related to unambiguous NFA, since
in an pNFA there is at most one accepting run for an input string. The repeated
ε-transition restriction is made to ensure that we consider only finitely many
of the runs in nfa(A) for a given input string w, when determining the highest
priority path (referred to as a run in A) for w, and also to ensure that regular
expression matchers based on pNFA/pTr do not end up in an infinite loop during
(attempted) matching.

Definition 5. For a pNFA A = (Q1, Q2, Σ, q0, δ1, δ2, F), a path of w ∈ Σ∗

in A, is a run s0α1s1 · · · sn−1αnsn of w in nfa(A), such that if αi = αi+1 =

. . . = αj−1 = αj = ε, with i ≤ j, then (sk−1, sk) = (sl−1, sl), with i ≤ k, l ≤
j, implies k = l – i.e. a path is not allowed to repeat the same transition in
a sequence of ε-transitions. For two paths p = s0α1s1 · · · sn−1αnsn and p′ =
s′0α
′
1s
′
1 · · · s′m−1α′ms′m we say that p is of higher priority than p′, p > p′, if

p 6= p′, πΣ(p) = πΣ(p′) and either p′ is a proper prefix of p, or if j is the first
index such that sj 6= s′j, then δ2(sj−1) = · · · sj · · · s′j · · · . An accepting run for
A on w is the highest-priority path p = s0α1s1 · · ·αnsn such that πΣ(p) = w
and sn ∈ F . The language accepted by A, denoted by L(A), is the subset of Σ∗

defined by {πΣ(r) | r is an accepting run in A}. Note that L(A) = L(nfa(A)).

Our definition of pNFA, compared to the one in [2], is slightly less general,
since we assume that F ⊆ Q1, instead of F ⊆ Q. This restriction was introduced
to simplify our definitions, and the more general pNFA can be converted to
pNFA with F ⊆ Q1, by introducing one new state qF ∈ Q1 and δ2 transitions
from the old accepting states q ∈ Q2 to qF , where we give the new δ2 transitions
for example the highest priority of all δ2 transitions at q. In [7], an ordered NFA,
very similar to our definition of pNFA, is defined, with a single set of states Q
and a transition function δ : Q×Σ → Q∗. We can simulate this with our pNFA,
by decomposing q 7→ δ(q, a) into q 7→δ1(,a) qa 7→δ2() δ(q, a), where q ∈ Q1

and qa ∈ Q2. Note that we introduced pNFA (and runs in pNFA in Definition 5)
mainly as an aid in defining runs in prioritized transducers in Definition 9 below.

Example 6. In Figure 1(a), a Java based pNFA A for the regular expression
(a∗)∗, constructed as described in [2], is given. The accepting run for the string
an, in A, is q0q1(q2aq1)nq0q3. Since there are for the input strings an, n ≥ 0,
exponentially many paths in A, a regular expression matcher using an input
directed depth first search (without memoization as in Perl), such as the Java
implementation, will take exponential time to attempt to match the strings anx,
for n ≥ 0.

(a)

q0 q1 q2

q3

a

(b)

q0 q1 q2 q3

q4

q5

q6

q7

[1

]1

a

Fig. 1. (a) Java based pNFA for the regular expression (a∗)∗, i.e., the pNFA A =
({q2, q3}, {q0, q1}, {a}, q0, {(q2, a, q1)}, {[q0, (q1, q3)], [q1, (q2, q0)]}, q3). (b) Java based
pTr with Σ1 = {a} and Σ2 = {[1,]1}, for (a∗)∗. Lower priority transitions are in-
dicated by dashed edges.

Recall that a transducer T (see for example [11], Definition 3.1) is a tuple
(Q,Σ1, Σ2, q0, δ, F), where Q is a finite set of states, Σ1 and Σ2 the input and
output alphabets respectively, δ ⊆ Q × Σε

1 × Σ∗2 × Q the set of transitions, q0
the initial state and F the set of final states. Accepting runs are defined as for

NFA, but in a run when moving from state q to q′ while reading input x and
using the transition (q, x, y, q′), the string y is also produced as output. The
state size of T , denote by |T |Q, is the number of states in T , the transition size,
|T |δ, is the sum of (1 + |y|) over all transitions (q, x, y, q′), and the size of T ,
denoted by |T |, is |T |Q+|T |δ. A transducer T defines a relationR(T) ⊆ Σ∗1×Σ∗2 ,
containing all pairs (v, w) for which there is an accepting run reading input v and
producing w as output while moving from the first to last state in the accepting
run (i.e. v and w are the concatenation of the input symbols and output strings
respectively, of all the transitions taken in the accepting run). As usual, we
denote by dom(T) the set {v ∈ Σ∗1 | (v, w) ∈ R(T)}, and by range(T) the set
{w ∈ Σ∗2 | (v, w) ∈ R(T)}. For functional transducers (see [8], Chapter 5), the
relation R(T) is a function, and we write T (v) = w if (v, w) ∈ R(T). Prioritized
string transducers, defined next, also define relations, in this case contained in
Σ∗1 × (Σ1 ∪Σ2)∗, which are in fact functions, and the notation R(T), dom(T),
range(T), and T (v) = w if (v, w) ∈ R(T), will thus also be used.

Definition 7. A prioritized non-deterministic finite transducer (pTr) is a tuple
T = (Q1, Q2, Σ1, Σ2, q0, δ1, δ2, F), where if Q := Q1 ∪ Q2, we have: (i) Q1 and
Q2 are disjoint finite sets of states; (ii) Σ1 is the input alphabet; (iii) Σ2,
disjoint from Σ1, is the group identifier or output alphabet; (iv) q0 ∈ Q is the
initial state; (v) δ1 : Q1×Σ1 → Q is the deterministic, but not necessarily total,
transition function; (vi) δ2 : Q2 → (Σ∗2×Q)∗ is the non-deterministic prioritized
transition and output function; and (vii) F ⊆ Q1 are the final states.

The state size of T is |T |Q := |Q1| + |Q2|, the δ1 transitions size |T |δ1 :=∑
q∈Q1,a∈Σ1

|δ1(q, a)| where |δ1(q, a)| = 1 if δ1(q, a) is defined and 0 otherwise,
the δ2 transitions size |T |δ2 :=

∑
q∈Q2

|δ2(q)| where |δ2(q)| equals
∑
i(1 + |wi|)

if δ2(q) = (w1, q1) . . . (wn, qn) (and |δ2(q)| = 0 if δ2(q) = ε), the transitions size
|T |δ := |T |δ1 |+ |T |δ2 , and finally, the size of T is |T | := |T |Q + |T |δ.

Remark 8. It is only in Section 3, when we construct pTr from regular expres-
sions, where the assumption Σ1 ∩Σ2 = ∅ is required.

Going forward, when discussing a pTr T without being specific on the tuple, we
assume that T = (Q1, Q2, Σ1, Σ2, q0, δ1, δ2, F).

Next we define the semantics of pTr, which make them define partial functions
from Σ∗1 to (Σ1 ∪ Σ2)∗. The pTr are viewed as devices which consume strings
in their domain, which is a subset of Σ∗1 , to produce output by decorating the
input string with symbols from Σ2. For a pTr T = (Q1, Q2, Σ1, Σ2, q0, δ1, δ2, F),
pnfa(T) is the pNFA (Q1, Q2, Σ1, q0, δ1, δ

′
2, F) obtained from T with δ′2(q) =

q1 . . . qn if δ2(q) = (w1, q1) . . . (wn, qn) for some wi ∈ Σ∗2 . For a pTr T , the runs
in pnfa(T) determine the decorated output string, in (Σ1∪Σ2)∗, produced from
a given input string in Σ∗1 . When applying the function δ1 on (q, α), T produces
α as output, where when using δ2 on q with δ2(q) = (w1, q1) . . . (wn, qn), one of
the wi’s is produced as output.

Definition 9. Let T = (Q1, Q2, Σ1, Σ2, q0, δ1, δ2, F) be a pTr, and let Q denote
Q1 ∪ Q2 and Σ the set Σ1 ∪ Σ2. An accepting run for v ∈ Σ∗1 in T is a string

r = s0α1s1 · · · sn−1αnsn ∈ (Q ∪ Σε)∗, si ∈ Q and αi ∈ (Σ1 ∪ Σ2)∗, such that
πQ∪Σ1

(r) is an accepting run of v in pnfa(T), and if si ∈ Q2, with i < n, then
the sequence of tuples defined by δ2(si) contains (αi+1, si+1) (and not necessarily
at position (i + 1) of δ2(si)). The pTr T defines a partial function from Σ∗1 to
Σ∗ by T (v) = w, if there is an accepting run r for v in T with πΣ(r) = w.

Remark 10. Note that for pTr we may assume that δ2(q) = (w1, q1) . . . (wn, qn)
implies that the states q1, . . . , qn are pairwise distinct, since if qi = qj with i < j,
then if the remainder of the input is not accepted from qi, it will also not be
accepted from qj , and thus (wj , qj) may be removed from δ2(q).

Example 11. In Figure 1(b), a pTr T for the regular expressions (a∗)∗, con-
structed by the procedure described in the next section, is given. In this case,
only the substrings matched by the subexpression a∗, are captured, and the
captured substrings are enclosed by the pair of brackets in B1 = {[1,]1}. Also,
dom(T) is a∗, and T (an) = [1a

n]1 for n ≥ 0. It should be pointed out that the
Java regular expression matcher in fact only prohibits duplicates of the ε tran-
sitions q1 → q2 and q3 → q4 (in Figure 1(b)) in a sequence of ε transitions, and
thus in the Java case we have T (an) = [1a

n]1[1]1 for n ≥ 1. In general, the Java
matcher only prohibits duplicates of the ε transitions f1 → q1 in the lazy and
greedy Kleene closure in Figures 2(c) and (d) in the next section. For the regu-
lar expressions R = (a)(a∗) and R′ = (a∗)(a), we have L(R) = L(R′), but the
corresponding pTr T and T ′ are not equivalent, since T (an) = [1a]1[2a

n−1]2 6=
[1a

n−1]1[2a]2 = T ′(an), for n = 1, or n ≥ 3. Note that the same subexpression
in a regular expression may capture more than one substring, for example, if T ′′

is a pTr for (a∗| b)∗, then T ′′(apbqar) = [1a
p]1[1b]1 . . . [1b]1[1a

r]1, for p, q, r > 0.

3 Converting regular expressions into pTr

Next we give a Java based construction to turn a regular expression E into an
equivalent pTr J̄p(E) (refer to Figure 2 for reference). If for a pTr T , we de-
note by u(T) the string transducer obtained by ignoring the priorities in T , then
for w ∈ L(E), u(J̄p(E))(w) gives all possible ways in which E can match w
with capturing information indicated, while J̄p(E)(w) selects the highest priority

(a)

[F1] F2]]

(b)

[

F1

F2

]

(c)

f0 f1 q1

f0

[

F1

]
(d)

f0 f1 q1

f0

[

F1

]

Fig. 2. Java based regular expression to pTr constructions for (a) (F1F2) (b) (F1 |F2)
(c) (F ∗1) and (d) (F ∗?1). Lower priority transitions are indicated by dashed edges. The
pair of brackets [,] are used to indicate the substring or substrings captured by each
of F1F2, F1 |F2, F ∗1 , and F ∗?1 respectively.

match from u(J̄p(E)(w)). Due to space limitations, it is not possible to describe
the matching semantics of regular expression with capturing groups in terms of
a non-deterministic parser or other means, and show that the constructed pTr
produces equivalent output, but we hope that it will at least be intuitively clear
that this can be done. See also [2] for a thorough argument for the pNFA case,
which may be extended to pTr with some effort. As indicated in Example 11,
we opt to deviate from the Java matching semantics (and follow RE2 matching
semantics [4]) in cases where the Java matcher follows a non-empty capture of a
subexpression F (with F being part of a larger subexpression F ∗), by an empty
capture with F . Our construction is similar to the Java based regular expression
to pNFA constructions given in [2] (and the classical Thompson construction
[10]), with the additional detail of adding a group opening symbol on the tran-
sition leaving the initial state, and a group closing symbol on the transition
incoming to the final state, for the pTr constructed for each subexpression of E.
Where required, a new initial state and/or final state is added to the construc-
tions from [2], so that there is only a single δ2 transition from the initial state,
and similarly, only a single incoming δ2 transition to the final state of a pTr.

We denote the set of subexpressions of E by SUB(E). Assume F1, . . . , Fk are
the subexpressions in SUB(E), with the order obtained from a preorder traversal
of the parse tree of E, or equivalently, ordered from left to right, based on the
starting position of each subexpression in the overall regular expression. Note if
the same subexpression appears more than once in E, we regard these occur-
rences as distinct elements in SUB(E). Also, let t : SUB(E)→ N be defined by
t(Fi) = i. To simplify our exposition of the regular expression to pTr construc-
tion procedure, we assume that matches by all subexpressions are captured, and
that the pair of brackets [i,]i ∈ Bk indicates matches by the i-th subexpression.
The more general case of placing brackets only around the substrings matched
by subexpressions that is marked as capturing subexpressions, is obtained by
replacing some of the pairs of brackets by ε (in our pTr constructions) and
renumbering the remaining brackets appropriately.

For a regular expression E we define a prioritized transducer T := J̄p(E)
such that dom(T) = L(E), and range(T) is contained in the shuffle of dom(T)
and the Dyck language Dk. In fact, taking some F which is a subexpression of
E, and v ∈ dom(T), if T (v) contains the substring [t(F)w]t(F), where [t(F) and
]t(F) are matching brackets, then πΣ1

(w) ∈ L(F) (recall that πΣ1
(w) is obtained

from w by deleting all brackets). Also, all output symbols from Σ1 in T (v), are
between matching brackets.

The classical Thompson construction converts the parse tree T of a regular
expression E into an NFA, which we denote by Th(E), by doing a postorder
traversal on T . An NFA is constructed for each subtree T ′ of T , equivalent to
the regular expression represented by T ′. In [2] it was shown how to modify this
construction to obtain a Java based pNFA denoted by Jp(E), instead of the NFA
Th(E), from E. Here we take it one step further, and modify the construction
of Jp(E) to return a pTr, denoted by J̄p(E), from E. Just as in the case of the
constructions for Th(E) and Jp(E), we define J̄p(E) recursively on the parse

tree for E. For each subexpression F of E, J̄p(F) has a single initial state
with no incoming transitions and a single outgoing δ2 transition, and a single
final state with a single incoming δ2 transition and no outgoing transitions. The
constructions of J̄p(∅), J̄p(ε), J̄p(a), and J̄p(F1 · F2), given that J̄p(F1) and
J̄p(F2) are already constructed, are defined as for Th(E), splitting the state set
into Q1 and Q2 in the obvious way. We also place the symbol [t(F)∈ Σ2 on the δ2
transition leaving the initial state of J̄p(F) and]t(F) on the transition incoming
to the final state of J̄p(F) (adding a new initial and/or final state if required).

When we construct J̄p(F1|F2) from J̄p(F1) and J̄p(F2), and J̄p(F ∗1) from
J̄p(F1), the priorities of newly introduced δ2-transitions require attention. We
also consider the lazy Kleene closure F ∗?1 . In the constructions (i) and (ii) be-
low, we assume J̄p(Fi) (i ∈ {1, 2}) has initial state qi and the final state fi.
Furthermore, δ2 denotes the prioritized transition function in the newly con-
structed pTr J̄p(F). All non-final states in J̄p(F) that are in J̄p(Fi) inherit
their outgoing transitions from J̄p(Fi). (i) If F = F1|F2 then J̄p(F) is con-
structed by introducing new initial and final states q0 ∈ Q2 and f0 ∈ Q1, an
additional new state q′ ∈ Q2, merging the states f1, f2 ∈ Q1 into a state de-
noted by f ∈ Q2, and defining δ2(q0) = ([t(F), q

′), δ2(q′) = (ε, q1)(ε, q2) and
δ2(f) = (]t(F), f0). (ii) If F = F ∗1 then we add new initial and final states
q0 ∈ Q2 and f0 to Q1, and change f1 from being a state in Q1, to be in Q2.
We define δ2(q0) = ([t(F), f1) and δ2(f1) = (ε, q1)(]t(F), f0). The case F = F ∗?1 is
the same, except that δ2(f1) = (]t(F), f0)(ε, q1). Thus J̄p(F ∗) tries F as often as

possible whereas J̄p(F ∗?) does the opposite.

Example 12. In Figure 3(a), a pTr T for the regular expression (ε | b)∗(b∗) is
given. This regular expression has a subexpression F ∗, such that F matches ε.
This is the so called problematic case in regular expressions matching, briefly
discussed in [9]. In this example, the subexpression (ε | b)∗ will first match only ε,
and will attempt to match more of the input string only if an overall match can
not be achieved. Thus for the given pTr T , we have that T (b) = [1]1[2b]2. Regular
expression matchers, such as RE2 [4], uses different matching semantics in the
problematic case. The problematic case is also present in regular expressions
with no explicit ε symbols, such as (a∗ | b)∗(b∗). In Figure 3(c) a pTr is given
again for (ε | b)∗(b∗), but this time obtained by using the modified greedy Kleene
closure construction in Figure 3(b). Note that T ′(b) = [1b]1[2]2, corresponding
to how RE2 only matches non-empty words with F in a subexpression F ∗.

4 A normal form for prioritized transducers

To simplify later constructions, we introduce flattening for pTr in this section.
The main simplification obtained by flattening is that δ2 loops such as q1 → q2 →
q3 → q1 in Example 11 are removed, making it unnecessary to require that there
are no repetition of the same δ2 transition in a subsequence of transitions without
δ1 transitions, as in Definition 5. These δ2 loops are found in pTr obtained from
problematic regular expressions, as discussed in Examples 11 and 12.

(a)

[1
J̄p(ε)

J̄p(b)

]1

[2

J̄p(b)

]2

(b)

F

(c)

J̄p((ε|b))

J̄p((b∗))

Fig. 3. (a) Java based pTr for (ε| b)∗(b∗), (b) alternative F ∗ construction, and (c) pTr
for (ε| b)∗(b∗) using alternative F ∗ construction. Lower priority transitions are indicated
by dashed edges.

Definition 13. A pTr T = (Q1, Q2, Σ1, Σ2, q0, δ1, δ2, F) is flattened if δ2(q) ∈
(Σ∗2 ×Q1)∗ for all q ∈ Q2.

We denote by rT (Q2) the subset of Q2 defined by Q2 ∩ ({q0} ∪ {δ(q, α) | q ∈
Q1, α ∈ Σ1}), i.e. all Q2 states reachable from a Q1 state in one transition, and
also the state q0 if it is in Q2. We denote the flattened pTr constructed in the
proof of the next theorem, and equivalent to T , by flat(T).

Theorem 14. flat(T) can be constructed in time O(|Q1||Σ1|+ |rT (Q2)||T |δ2).

Proof. We start with some preliminaries required to define flat(T). For a pTr T ,
a sequence p1 · · · pn is a δ2-path if δ2(pi) = · · · (wi+1, pi+1) · · · for all 1 ≤ i < n
and (pi, pi+1) = (pj , pj+1) only if i = j. The string w2 · · ·wn, obtained from
the definition of a δ2-path, is denoted by oT (p1 · · · pn). Let PT be the set of δ2-
paths. For p1 · · · pn, p′1 · · · p′m ∈ PT having p1 = p′1, we define p1 · · · pn > p′1 · · · p′m
if and only if either (i) p′1 · · · p′m is a proper prefix of p1 · · · pn, or (ii) the least i
such that pi 6= p′i is such that δ2(pi−1) = · · · pi · · · p′i · · · . Note this is similar to
the definition of priorities of paths in Definition 5, but in this case restricted to
δ2-paths, and allowing any starting state in Q2. Let Pq,q′ = max{p1 · · · pn ∈ PT |
p1 = q, pn = q′}, that is, the highest priority δ2-path from q to q′ (if it exists).

We let flat(T) be (Q1, rT (Q2), Σ1, Σ2, q0, δ1, δ
′
2, F), where δ′2 is defined as

follows. For q ∈ Q′2, let Pq,q1 < · · · < Pq,qn be all highest-priority δ2-paths
which end in a state qi ∈ Q1, ordered according to priority. We define δ′2(q) :=
(oT (Pq,q1), q1) · · · (oT (Pq,qn), qn). To compute δ′2, with duplicate tuples removed
as in Remark 10, in time O(|rT (Q2)||T |δ2), repeat the following procedure for
each q ∈ rT (Q2): Determine the highest priority δ2-path starting at q and ending
in a state in Q1. If the ending state is q1 ∈ Q1 (determining Pq,q1), remove q1
and all transitions going to or coming from q1 from T , to obtain the pTr Tq1 .
Repeat the procedure in Tq1 , successively finding all Pq,q′ with q fixed, in order.
Note that computing rT (Q2) takes O(|Q1||Σ1|) time. ut

Example 15. For the pTr T corresponding to the regular expression (a∗)∗ and
discussed in Example 11, the pTr flat(T) is given in Figure 4. Note that the

flattening procedure removed the δ2 loop q1 → q2 → q3 → q1 from T . As noted
in Example 11, Java matchers do not keep track of all δ2 transitions in order to
avoid repeated δ2 transitions. When using this Java way of determining which
paths are legal and which not, the flattened procedure in the proof of Theorem 14
can be modified, and when applied to T , we obtain an almost identical flattened
pTr, but with output]1 [1]1 on the transition from q5 to q7.

Remark 16. Note that |flat(T)|Q ≤ |T |Q, |flat(T)|δ1 = |T |δ1 and |flat(T)|δ2 ≤
|T |δ2 , i.e. flat(T) is of the same size or smaller than T .

Remark 17. All Q2 states, with the exception of q0 when q0 ∈ Q2, can be re-
moved from a flattened pTr. To see this, redefine δ2 to be the identity on Q1 and
let δ = δ2 ◦ δ1. Thus we can redefine a pTr to have a single transition function
δ : Q1 ×Σ1 → (Q1 ×Σ∗2)∗ (except for the transitions from q0 if q0 ∈ Q2), if we
are willing to allow prioritized non-determinism on input from Σ1.

5 Equivalence and Parsing with Prioritized Transducers

Regular expressions R and R′ are equivalent if the pTr J̄p(R) and J̄p(R′) are
equivalent. In general, deciding equivalence of string transducers is undecidable,
but in [8] it is shown that equivalence of functional transducers is decidable, but
PSPACE-complete. In [9], the equivalence of regular expressions through trans-
ducers, is approached by first formulating the semantics of regular expression
matching as a non-deterministic parser, then transforming the parser into first a
transducer with regular lookahead, and then into a functional transducer without
lookahead. For non-problematic regular expressions R, a functional transducer
of size 2O(|R|) is obtained. Thus to decide equivalence of regular expressions with
capturing groups, equivalence is decided on the corresponding functional trans-
ducers. We obtain a similar result for a larger class of regular expressions and
regular expression matching semantics, through equivalence of pTr.

Theorem 18. A pTr T can be converted into an equivalent functional trans-
ducer TF with |TF |Q = |T |Q2|T |Q , and |TF | in O(|T | 2|T |Q).

Proof (Sketch). Let T = (Q1, Q2, Σ1, Σ2, q0, δ1, δ2, F) and A the NFA obtained
from T by ignoring output and priorities of T . Let QA be the states of A, which
is of course just (Q1 ∪Q2). The set of states of TF is (Q1 ∪Q2)× 2QA . On the

q0 q6 q5

q7

[1

a

[1]1]1

Fig. 4. flat(T) for T in Figure 1(b). The dashed edges are lower priority.

(Q1∪Q2) part of the states of TF , TF behaves like T with priorities ignored, and
the subsets of QA, which form the 2nd component of the states of TF , is used to
take priorities of δ2 transitions in T into account. Each time we are at a state
q ∈ Q2 in T with δ2(q) = (w1, q1) · · · (wk, qk), TF chooses non-deterministically
a transition q → qi (with output wi) in the first component of states of TF , and
keep track with subsets from QA, that the input would not have been accepted
if we took q → qj for j < i. Note as we reach the next state on a path taken in
T , we keep on tracking, in the 2nd component of the states of TF , all states of
T that could be reached, on the given input, from higher priority transitions we
did not take at previous Q2 states encountered. The accept states of TF are the
states (q,X) with q ∈ F and X ∩ F = ∅. Note TF is a functional transducer,
since the relation defined by T is a function. ut

Corollary 19. (a) For prioritized transducers T1 and T2, equivalence can be de-
cided in time O((|T1|2|T1|Q +|T2|2|T2|Q)2). (b) Equivalence of regular expressions
R1 and R2 with capturing groups, can be decided in time 2O(|R1|+|R2|).

Proof. (a) For pTr T1 and T2, first check that dom(T1) = dom(T2), which can
obviously be done in the stated time complexity bound. Now convert T1 and T2
into functional transducers TF1

and TF2
, and use Theorem 1.1 in [8] that states

that the complexity of deciding if the transducer T1 ∪ T2 is functional (and thus
that T1 and T2 are equivalent, since dom(T1) = dom(T2)), is quadratic in the
number of transitions in T1 ∪ T2. For (b) use (a) and the fact that for a regular
expression R, |J̄p(R)| ≤ c|R|, for some constant c. ut

Remark 20. Note that deciding equivalence of pTr and regular expressions with
capturing groups is at least PSPACE-hard, since it is PSPACE-complete already
to check if the domains of pTr are equal.

Remark 21. The transducer construction in the proof of Theorem 18 must be
close to ideal, as the worst-case state complexity of a transducer TF equivalent
to a pTr T is bounded from below by 2|T |Q . This is so since one can for any NFA
A, construct a pTr T , with Σ2 = {β, β′}, having T (w) = βw for w ∈ L(A) and
T (w) = β′w for all w /∈ L(A) (a similar example is obtained by constructing
a pTr for the regular expression (R)|(Σ∗1), with R corresponding to A). Simply
let δ2(q0) = (β, qA)(β′, qΣ∗1), with q0 the initial state of T , qA the initial state of
A, and qΣ∗1 a sink accept state. Now consider the class of NFA A, for which the

complement of L(A) can only be recognized by NFA with at least 2|A|Q states.
Then if T ′F is obtained from TF by removing transitions having β as output,
dom(T ′F) will be equal to the complement of L(A). Thus T ′F and also TF , will
require at least 2|A|Q states.

Some specifics of real-world matchers can be generalized away, such as the Σ2

subsequences a real-world pTr outputs always forming a Dyck language (as in
Section 3). One which we need to consider however, as including it saves mem-
ory in the parsing algorithm, is that the strings in range(T) are not output in
practice, but rather matchers will walk through a string w in dom(T), and will

once the string has been accepted, output for each symbol in α ∈ Σ2 in T (w),
the index of the last occurrence of α in T (w). This limits the possible memory
usage, notably it means that the amount of data output by a matching an input
string w with T is bounded by |Σ2| log(|w|).
Definition 22. For a pTr T with w ∈ dom(T), let T (w) = v0α1 · · · vn−1αnvn,
where vi ∈ Σ∗2 and αi ∈ Σ1 for each i. Then the slim parse output of T on w is
a function sT : Σ2 → {⊥, 0, . . . , n} such that for each β ∈ Σ2 we have β ∈ vf(β),
but β /∈ vf(β)+j for any j ∈ N. If β /∈ v1 · · · vn, sT (β) = ⊥.

For a pTr T and a string w = α1 · · ·αn ∈ dom(T), we next describe a
linear (in the length of the input string) algorithm to compute the slim parse
output of T , where T is flattened. Let f, f ′, f⊥ : Σ2 → N ∪ {⊥}. For v ∈
Σ∗2 and k ∈ N, define f ′ := U(f, v, k) by letting f ′(β) = k for β ∈ v, and
f ′(β) = f(β) otherwise. Also, f⊥(β) = ⊥ for all β ∈ Σ2. Define ∆(q, f, i) =
(q1, U(f, β1, i)) · · · (qn, U(f, βn, i)) when q ∈ Q2 and δ2(q) = (β1, q1) · · · (βn, qn),
and ∆(q, f, i) = (q, f) for q ∈ Q1. Now for the steps in the algorithm. (i) Let
S0 = ∆(q0, f⊥, 0). (ii) Given Si = (q1, f1) · · · (qm, fm), where i < n, then Si+1 =
σ1(∆(q′1, f1, i) · · ·∆(q′m, fm, i)), where q′j = δ1(qj , αi+1) for each j. (iii) If Sn =

(q1, f1) . . . (qm, fm) and i is the smallest index such that qi ∈ F , then sT (w) = fi.
If no state qi is in F , the string w is rejected.

Theorem 23. The slim parsing algorithm runs in linear time in the length of
the input string, and is correct, i.e. with input a pTr T and w ∈ dom(T), it
returns the slim parse for T on w, and if w 6∈ dom(T), it rejects the input w.

Proof (Sketch). Since highest priority paths in a flattened pTr may be deter-
mined by DFS, a pTr can be translated into a deterministic stack machine with
output. Each Si can be associated with the stack content at a particular stage
of the DFS, with the left-most tuple being the top element of the stack. It fol-
lows from the argument in Remark 10 that duplicates of tuples with the same
state can be removed from the stack. In contrast to a stack machine, the given
algorithm simply processes all stack elements in parallel. Clearly, from the de-
scription of the slim parsing algorithm, it runs in linear time in the length of the
input string. ut

6 Conclusions and Future Work

In this paper we brought together several different angles on regular expressions
into one formal framework. This enables us to talk both about the matching be-
haviors of less than ideal real-world matchers as in [2], while allowing a modelling
of the special features of those matchers without being tied to their algorithmic
choices. Still, there is ample room for continued work. For example, there are a
lot of additional operators in regex libraries that should be analyzed. A special
example is pruning operators, such as atomic subgroups, and the cut operator
of [1], which interact deeply with the matching procedure. From a theoretical
perspective, the next step should be to determine the precise complexity class
for equivalence in Corollary 19.

References

[1] Martin Berglund, Henrik Björklund, Frank Drewes, Brink van der Merwe, and
Bruce Watson. Cuts in regular expressions. In Marie-Pierre Bal and Olivier
Carton, editors, Developments in Language Theory, volume 7907 of Lecture Notes
in Computer Science, pages 70–81. Springer Berlin Heidelberg, 2013.

[2] Martin Berglund, Frank Drewes, and Brink van der Merwe. Analyzing catas-
trophic backtracking behavior in practical regular expression matching. In Zoltán
Ésik and Zoltán Fülöp, editors, Proc. 14th International Conference on Automata
and Formal Languages, pages 109–123, 2014.

[3] Cezar Câmpeanu, Kai Salomaa, and Sheng Yu. A formal study of practical
regular expressions. International Journal of Foundations of Computer Science,
14(6):1007–1018, 2003.

[4] Russ Cox. Implementing regular expressions. http://swtch.com/~rsc/regexp/,
2007. Accessed March 3, 2015.

[5] Jeffrey Friedl. Mastering regular expressions. O’Reilly Media, Inc., Sebastopol,
CA, USA, third edition, 2006.

[6] Alain Frisch and Luca Cardelli. Greedy regular expression matching. In Josep
Daz, Juhani Karhumki, Arto Lepist, and Donald Sannella, editors, ICALP, volume
3142 of Lecture Notes in Computer Science, pages 618–629. Springer, 2004.

[7] Asiri Rathnayake and Hayo Thielecke. Static analysis for regular expression ex-
ponential runtime via substructural logics. CoRR, abs/1405.7058, 2014.

[8] Jacques Sakarovitch. Elements of Automata Theory. Cambridge University Press,
New York, NY, USA, 2009.

[9] Yuto Sakuma, Yasuhiko Minamide, and Andrei Voronkov. Translating regular
expression matching into transducers. J. Applied Logic, 10(1):32–51, 2012.

[10] Ken Thompson. Regular expression search algorithm. Communications of the
ACM, 11(6):419–422, 1968.

[11] Jiacun Wang. Handbook of Finite State Based Models and Applications. Chapman
& Hall/CRC, 1st edition, 2012.

