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The lexical-analysis (or scanning) phase of a compiler attempts to partition an input string
into a sequence of tokens. The convention in most languages is that the input is scanned left to
right, and each token identified is a “maximal munch” of the remaining input—the longest
prefix of the remaining input that is a token of the language. Although most of the standard
compiler textbooks present a way to perform maximal-munch tokenization, the algorithm they
describe is one that, for certain sets of token definitions, can cause the scanner to exhibit
quadratic behavior in the worst case. In this article, we show that maximal-munch tokeniza-
tion can always be performed in time linear in the size of the input.
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1. INTRODUCTION

The lexical-analysis (or scanning) phase of a compiler attempts to partition
an input string into a sequence of tokens. The convention in most lan-
guages is that the input is scanned left to right, and each token identified is
a “maximal munch” of the remaining input—the longest prefix of the
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remaining input that is a token of the language. For example, the string
“12”1 should be tokenized as a single integer token “12,” rather than as the
juxtaposition of two integer tokens “1” and “2.” Similarly, “123.456e210”
should be recognized as one floating-point numeral rather than, say, the
juxtaposition of the four tokens “123,” “.456,” “e,” and “210.” (Usually,
there is also a rule that when two token definitions match the same string,
the earliest token definition takes precedence. However, this rule is in-
voked only if there is a tie over the longest match.)

Most textbooks on compiling have extensive discussions of lexical analy-
sis in terms of finite-state automata and regular expressions: token classes
are defined by a set of regular expressions Ri, 1 # i # k, and the lexical
analyzer is based on some form of finite-state automaton for recognizing
the language L(R1 1 R2 1 . . . 1 Rk). However, the treatment is
unsatisfactory in one respect: the theory of finite-state automata assumes
that the end of the input string—i.e., the right-hand-side boundary of the
candidate for recognition—is known a priori, whereas a scanner must
identify the next token without knowing a definite bound on the extent of
the token.

Most of the standard compiler textbooks discuss this issue briefly.2 For
example, Aho and Ullman’s 1977 book discusses the issue in the context of
a lexical analyzer based on deterministic finite-state automata (DFAs) [Aho
and Ullman 1977, pp. 109–110]:

There are several nuances in this procedure of which the reader should be
aware. First, there are in the combined NFA several different “accepting
states”. That is, the accepting state of each Ni indicates that its own token,
Pi, has been found. When we convert to a DFA, the subsets we construct
may include several different final states. Moreover, the final states lose
some of their significance, since we are looking for the longest prefix of the
input which matches some pattern. After reaching a final state, the lexical
analyzer must continue to simulate the DFA until it reaches a state with no
next state for the current input symbol. Let us say we reach termination
when we meet an input symbol from which the DFA cannot proceed. We
must presume that the programming language is designed so that a valid
program cannot entirely fill the input buffer. . .without reaching termina-
tion. . .

Upon reaching termination, it is necessary to review the states of the
DFA which we have entered while processing the input. Each such state
represents a subset of the NFA’s states, and we look for the last DFA state
which includes a final state for one of the pattern-recognizing NFA’s Ni.
That final state indicates which token we have found. If none of the states
which the DFA has entered includes any final states of the NFA, then we
have an error condition. If the last DFA state to include a final NFA state
in fact includes more than one final state, then the final state for the
pattern listed first has priority.

1Unless otherwise stated, throughout this article the open and closing quotation marks here
should not be considered part of the string being referred to.
2Such as Aho and Ullman [1977], Waite and Goos [1983], Aho et al. [1986], Fischer and
LeBlanc [1988], and Wilhelm and Maurer [1995].
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The discussion of the problem in the 1986 book by Aho, Sethi, and Ullman
is similar, except that they assume that lexical analysis is performed by
simulating an NFA, rather than first converting an NFA to a DFA [Aho et
al. 1986, p. 104]. Other similar discussions are given by Waite and Goos
[1983], Fischer and LeBlanc [1988], and Wilhelm and Maurer [1995].

Regardless of whether the tokenization process is based on DFAs or
NFAs, the recommended technique of backtracking to the most recent final
state and restarting is not entirely satisfactory: it has the drawback that,
for certain sets of token definitions, it can cause the scanner to exhibit
quadratic behavior in the worst case.3 For example, suppose that our
language has just two classes of tokens, defined by the regular expressions
“abc” and “(abc)*d,” and suppose further that the input string is a string of
m repetitions of the string abc (i.e., (abc)m).4 To divide this string into
tokens, the scanner will advance to the end of the input, looking for—and
failing to find—an instance of the token “(abc)*d.” It will then back up
3(m 2 1) 1 1 characters to the end of the first instance of abc, which is
reported as the first token. A similar pattern of action is repeated to
identify the second instance of abc as the second token: the scanner will
advance to the end of the input, looking for—and failing to find—an
instance of the token “(abc)*d”; it will then back up 3(m 2 2) 1 1
characters to the end of the second instance of abc. Essentially the same
pattern of action is repeated for the remaining m 2 2 tokens, and thus this
method performs Q(m2) steps to tokenize inputs of the form (abc)m.

This drawback serves to blemish the otherwise elegant treatment of
lexical analysis in terms of finite-state automata and regular expressions.

The possibility of quadratic behavior is particularly unsettling because
the separation of syntax analysis into separate phases of lexical analysis
and parsing is typically justified on the grounds of simplicity. For instance,
Aho, Sethi, and Ullman say

The separation of lexical analysis from [parsing] often allows us to simplify
one or the other of these phases. . .Compiler efficiency is improved. . .[and]
compiler portability is enhanced [Aho et al. 1986, pp. 84–85].

Because a program’s syntax is typically defined with an LL, LALR, or LR
grammar, the parsing phase can always be carried out in linear time. It is a
peculiar state of affairs when the recommended technique for the suppos-
edly simpler phase of lexical analysis could use more than linear time.

Note that the division of syntax analysis into separate phases of lexical
analysis and parsing is not the source of our difficulties: even if the token
classes were specified with, say, an LR grammar, we would still have the
problem of designing an efficient automaton that identifies the longest
prefix of the remaining input that is a token of the language.

3None of the above-mentioned books explicitly point out that quadratic behavior is possible.
4The simplest example that exhibits quadratic behavior involves the token classes a and a*b,
with an input string of the form am. However, in this case, each individual character of the
input string represents a separate token. Therefore, we use an example that does not exhibit
this degeneracy.
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In this article, we show that, given a DFA that recognizes the tokens of a
language, maximal-munch tokenization can always be performed in time
linear in the size of the input. We present two linear-time algorithms for
the tokenization problem:

(1) In Section 2, we give a program that uses tabulation (or “memoization”)
to avoid repeating fruitless searches of the input string. The principle
underlying the program is quite simple:
—Whenever a scanner processes a character at some position in the

input string, it is in some state of the DFA. In the course of
tokenizing the input, a conventional scanner may pass over the same
character position several times (because of backtracking), moving to
the right in each case; all passes except the last lead to failure.
Because processing is deterministic, there is never a need to repeat a
transition that is doomed to failure. Therefore, to avoid repeating a
search that cannot possibly bear fruit, the tabulating scanner keeps
track of the pairs of states and index positions encountered that have
failed to lead to the identification of a longer token.

Because the number of states is a constant, there is a constant upper
bound on the number of times the tabulating scanner makes a transi-
tion at each character position, and thus it performs maximal-munch
tokenization in linear time.

(2) Section 3 discusses ways to reduce the amount of storage used by the
scanner presented in Section 2. The technique described in Section 3
also provides a way to detect many of the cases in which an unbounded
amount of lookahead beyond final states is never necessary.

Section 4 presents a few concluding remarks.
The remainder of the article relies on the following assumptions and

notational conventions:

—We assume that none of the regular expressions Ri that define the
language’s tokens admit l, the empty string, i.e., for all i, l [/ L (Ri).

—We assume that whitespace is treated as just another lexeme to be
identified in the input stream (using a maximal munch). (The next higher
level of the compiler is assumed to filter out the whitespace tokens. The
latter phase is sometimes called screening [DeRemer 1974; Wilhelm and
Maurer 1995]).

—The symbol n is used to denote the length of the input string.
—All issues related to buffering the input are ignored.
—Suppose that the language’s tokens are defined by the regular expres-

sions R1, R2, . . . , Rk. We assume that we are given a deterministic
finite-state automaton (DFA) M such that L (M) 5 L (R1 1 R2 1 . . . 1
Rk).

—Standard notation for DFAs is used (e.g., see [Hopcroft and Ullman
1979]), i.e., a DFA M is a five-tuple ^Q, S, d, q0, F&, where
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(1) Q is a finite nonempty set of states.
(2) S is a finite nonempty set of input symbols.
(3) d, the transition function, is a partial function from Q 3 S to Q.
(4) q0 [ Q is the initial state.
(5) F # Q is the set of final states.

2. A TABULATING SCANNER

This section presents an algorithm that performs maximal-munch tokeni-
zation in linear time. The easiest way to understand the linear-time
algorithm is to first consider a version of the algorithm that does not run in
linear time, namely the program presented in Figure 1(a).

This program prints out the positions in the input string that are the
final characters of each token. The algorithm can be viewed as a variant of
the standard (quadratic-time) backtracking algorithm [Aho and Ullman

Fig. 1. (a) a tokenization algorithm that employs a stack of ^state, position& pairs to
implement backtracking; backtracking occurs when either (1) DFA M is unable to make a
transition or (2) M is not in a final state when the end of the input is reached; (b) a modified
tokenization algorithm that tabulates which pairs of states and index positions that were
previously encountered failed to lead to the identification of a longer token; this information is
used to avoid repeating fruitless searches of the input text. (Algorithm (b) is obtained by
adding five lines to algorithm (a); these additions are indicated in Helvetica-Bold typeface.)
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1977; Aho et al. 1986; Fischer and LeBlanc 1988; Waite and Goos 1983;
Wilhelm and Maurer 1995] that uses a stack—and explicit pushes, pops,
and a test for whether the popped state is a final state—to implement an
explicit search for the most recent final state.

The version of procedure Tokenize given in Figure 1(a) implements
backtracking by stacking pairs of the form ^state, position&, and, if DFA M
is unable to make a transition, or if M is not in a final state when the end of
the input is reached, Tokenize repeatedly pops elements from the stack into
variables q and i. By this means, it backs up until either a final state is
found or the symbol Bottom is found. The latter condition implies that no
left-to-right maximal-munch tokenization is possible.

On first consideration, the backtracking loop that searches for the most
recent final state in Figure 1(a) (lines [20]–[26]) seems like extra work. A
maximal-munch tokenization algorithm need not use a stack to “review the
states of the DFA which we have entered while processing the input” [Aho
and Ullman 1977]: as the input is scanned, it merely has to maintain a pair
of variables, say last_final_state_position and last_final_state, to record
the position and state, respectively, for the maximum index position at
which M was in a final state. Compared with the latter approach, the use of
a stack and an explicit search for the stack entry for most recent final state
seem to be overkill.5

However, there is method to our madness: the linear-time solution to the
tokenization problem, which is shown in Figure 1(b), is obtained merely by
adding five lines to Figure 1(a). The added code (lines [4]–[6], [14], and [21],
which are indicated in a contrasting typeface in Figure 1(b)) tabulates
which pairs of states and index positions that were previously encountered
failed to lead to the identification of a longer token. This information is
gathered at the time pairs are popped off the stack (line [21]) and is used
during the scanning loop to determine whether the current configuration is
known to be unproductive (line [14]).

More precisely, the algorithm shown in Figure 1(b) carries out the same
process as Figure 1(a), except that it uses a two-dimensional table, failed_
previously[q,i], to tabulate previously encountered pairs of states and index
positions that failed to lead to the identification of a longer token. By
consulting this table on line [14] of the scanning loop (lines [11]–[19]) the
algorithm keeps track of—and avoids repeating—fruitless searches of the
input text. Because the algorithm repeatedly identifies the last character of
the longest prefix of the remaining input that is a token, a pair ^q,i& for
which failed_ previously[q,i] is true on line [14] must represent a failed
previous search that started from position i in state q. Hence, it would be
unproductive to make another search from position i in state q. For this
reason, the algorithm exits the scanning loop and switches to backtracking
mode.

5However, there is no impact from the standpoint of asymptotic worst-case complexity: the
worst-case running time is quadratic no matter which of these two backtracking methods is
used.
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Because scanning proceeds left to right, processing one character at a
time, the scanning loop (lines [11]–[19]) can encounter a given pair ^q,i& at
most PQP times: in the worst case, it can reach ^q,i& exactly once from
each of the configurations ^q9, i 2 1&, q9 [ Q. Because for an input of
length n there are only O(n) pairs of the form ^q,i&, the algorithm’s
running time is O(n) (where the constant of proportionality depends
on PQP).

It is instructive to consider the behavior of Figure 1(b) on the example
given in the Introduction, which caused the standard backtracking algo-
rithm to exhibit quadratic behavior. In particular, let us assume that we
are working with the DFA whose state-transition diagram is shown in
Figure 2. This DFA recognizes the language abc 1 (abc)*d.

Suppose the algorithm is invoked on the input string (abc)4 5 abcab-
cabcabc. The first invocation of the loop on lines [11]–[19] will advance to
the end of the input, looking for—and failing to find—an instance of the
token “(abc)*d.” However, during this process, pairs of the form ^state,
position& are stacked so that as the loop on lines [20]–[26] pops the stack,
entries are made in table failed_previously for the following pairs of states
and index positions:

^q6, 13& ^q5,12& ^q4,11&

^q6,10& ^q5,9& ^q4,8&

^q6,7& ^q5,6& ^q4,5&

The loop continues until the pair ^q3, 4& is popped off of the stack. At this
point, because q3 is a final state of the DFA, the program exits the loop on
lines [20]–[26], leaving i set to 4; the first instance of abc is reported as the
first token; q is set to the initial state q0; Bottom is pushed on the
now-empty stack; and scanning is resumed (at position 4 in state q0).

In the second invocation of the scanning loop, after the characters abca at
positions 4–7 have been processed, variable i attains the value 8—two
positions beyond the end of the second abc token—whereupon (1) the
program encounters a configuration that previously failed to lead to the
identification of a longer token, namely ^q4, 8&, and (2) the program exits
the scanning loop. This time, just one iteration of the loop on lines [20]–[26]
is performed. This pops the pair ^q3, 7& off the stack, which causes the loop

Fig. 2. State-transition diagram for a finite-state automaton that recognizes the language
abc 1 (abc)*d.
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to terminate because q3 is a final state of the DFA, and leaves i set to 7.
The second instance of abc is reported as the second token.

The same pattern of action is repeated for the third instance of abc:
scanning is resumed in state q0 at position 7. Variable i attains the value
11—two positions beyond the end of the third abc token—whereupon the
program reaches a configuration that previously failed to lead to the
identification of a longer token, namely ^q4, 11&. Again, the algorithm exits
the scanning loop, performs one iteration of the loop on lines [20]–[26]—
popping off the pair ^q3, 10&—and reports the third instance of abc as the
third token.

The fourth instance of abc is identified as a token because q is in a final
state (i.e., q3) when the end of the input is reached.

In general, the same processing pattern carries over to all inputs of the
form (abc)m: after the first scanning/backtracking pass over the input
string, which results in the recognition of the first instance of abc as a
token, table failed_previously contains entries for configurations of the
form ^q4, 3j 1 2&, ^q5, 3j 1 3&, and ^q6, 3j 1 4&, for 1 # j , m. The
state-transition diagram shown in Figure 2 has the property that the state
entered after reading a string of the form “abc(abc)pa,” for p . 0 is q4, the
same as that entered after reading “abca.” Thus, all subsequent passes,
except the very last one, will attain a configuration that previously failed to
lead to the identification of a longer token: variable i will be positioned two
characters beyond the end of the next instance of abc, and the state will be
q4. That is, on pass j, for 2 # j , m, the configuration is of the form ^q4,
3j 1 2&. At this point, the algorithm exits the loop on lines [11]–[19],
performs one iteration of the loop on lines [20]–[26]—popping off the pair
^q3, 3j 1 1&—and reports the instance of abc that ends at position 3j as the
jth token.

Because a linear amount of work is done to recognize the first token, and
thereafter only a constant amount of work is done per token recognized, the
algorithm performs Q(m) (5Q(n)) steps to tokenize inputs of the form
(abc)m.

With a different DFA for the language abc 1 (abc)*d, a similar effect
would still occur: the program would switch from scanning mode to back-
tracking mode whenever it enters a previously encountered configuration
that failed to lead to the identification of a longer token; however, the point
at which a previously encountered configuration is reached could take place
some number of characters further to the right in the input string. This
number is a constant whose value depends on which DFA for the language
abc 1 (abc)*d is being used. The total cost of tokenization is still linear in
the length of the input string.

3. OPTIMIZING THE TABULATING SCANNER

A straightforward implementation of the tabulating scanner from Figure
1(b) uses a table of PQP 3 (n 1 1) bits, and V(PQP 3 (n 1 1)) time
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for initialization.6 Therefore, in this section we describe several optimiza-
tion techniques aimed at reducing storage utilization.

A second concern is that the languages used for lexical analysis in most
compilers are designed so that an unbounded amount of lookahead beyond
final states is never necessary.7 Consequently, we would like to have a
mechanism that entirely avoids the overheads of the tabulating scanner in
cases in which tabulation is not warranted. To address this concern, we
present an implementation of the tabulating scanner that imposes no
overhead in many cases that cannot produce superlinear behavior.

One strategy for reducing storage utilization is based on the idea that
tabulation does not have to be carried out at every index position. Instead,
the scanner can tabulate only at every kth position, where k is some
constant. Initialization time and space fall by a factor of k. Running time
could increase by a factor of at most k2, but the overall running time is still
linear in n. In particular, if k is PQP, the space used is n11 bits—i.e., a
quantity independent of the number of states—and the running time is
O(PQP2 3 n) 5 O(n)).

Another strategy for optimization (which can be used in conjunction with
the previous one) is based on the idea of not tabulating certain states in Q
(at any index position of the input string). That is, Tokenize will only
maintain tabulation information for states that are members of some set
Tab # Q. This allows table failed_previously to be of size PTabP 3
(n11) bits and allows a nontabulating scanner to be substituted when
Tab 5 B.

Let us postpone for the moment the question of how to identify a suitable
set Tab. The version of the tabulating scanner given in Figure 3(b) makes
concrete the idea of what it means to maintain tabulation information only
for the states in Tab. In Figure 3(b), four lines are changed from Figure 1(a)
(which is repeated as Figure 3(a) for the reader’s convenience). As before,
changes in the code that appears on the right-hand side are indicated in a
contrasting typeface.

The ideas behind the changes are as follows:

(1) failed_previously needs to contain entries only for the members of Tab.
These are initialized in the loop on lines [4]–[6].

(2) failed_previously is only accessed for states that are members of Tab
(see lines [14] and [21]).

(3) The stack only ever contains entries for Bottom (line [10]), final states
(line [16]), and states that are members of Tab (line [16]).

Note that if Tab 5 B, only a single pair ever appears on the stack—i.e.,
one that is either of the form ^Bottom, position& or ^final-state, position&. In

6By using a technique described by Aho et al. [1974, Problem 2.12], we can side-step the need
to initialize failed_ previously; however, this increases the space used from PQP 3 (n11)
bits to V(PQP 3 (n11)) pointers.
7The DO statement in Fortran requires unbounded lookahead, but Fortran does not use the
maximal-munch convention.
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essence, Figure 3(b) degenerates in this case to a variant of the algorithm
that just maintains a record of the last final state and the last final-state
position during the simulation of M. When Tab 5 B, the code can be
cleaned up by (1) replacing the stack with an explicit pair of variables, (2)
eliminating array failed_previously entirely, (3) removing the dead code
that is guarded by the tests q [ Tab in lines [14] and [16], and (4)
simplifying the condition in line [16] from q [ Tab ø F to q [ F.

Our goal is now to find suitable Tab sets, in particular, ones for which
the version of Tokenize shown in Figure 3(b) will always have linear-time
behavior. Our first cut at defining Tab is Tab 5 Q 2 F: because Tokenize
never backtracks over a ^final-state, position& configuration, there is no
need to reserve space in failed_previously to tabulate final states. However,
when Tab is Q 2 F, there are no essential differences in behavior between
Figures 3(a) and 3(b).

To identify a nontrivial Tab set, it is necessary to analyze the finite-state
control of DFA M. For this purpose, it is convenient to think of M’s
transition function d as defining a labeled directed graph (or state-transi-
tion diagram) in the usual way: the nodes are the states Q; each transition
d(q, a) 5 q9 yields an edge q 3a q9, labeled with a. In addition, however,

Fig. 3. (a) the tabulating tokenization algorithm from Figure 1(b); (b) a tabulating tokeniza-
tion algorithm that only tabulates states in Tab. (Algorithm (b) is obtained by changing four
lines of algorithm (a); these modifications are indicated in Helvetica-Bold typeface.)
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we assume that the graph is augmented with an explicit failure node, qfail,
which represents a new nonfinal state, and that the graph is normalized as
follows:

(1) Nodes (states) from which there is no path to a final-state node are said
to be useless. All useless nodes are condensed to qfail. That is, if node m
is useless, edges of the form m 3a q9 and q 3b m are replaced by
edges of the form qfail 3

a q9 and q 3b qfail, respectively.
(2) The graph is made into a “total representation” of d: an edge of the form

q 3c qfail is added to the graph for each undefined transition d(q, c).
(3) qfail is made into a sink node: all edges of the form qfail 3

a qfail are
removed from the graph.

Figure 4 shows the augmented version of the state-transition diagram from
Figure 2.

Because Tokenize never backtracks over a ^final-state, position& configu-
ration, Tokenize should only tabulate states that are reachable from final
states. We say that ReachableFromFinal(q) holds if and only if there is a
(possibly empty) path from a final state to q. This is a simple reachability
question: we can determine the set of q’s for which ReachableFromFinal(q)
holds either using depth-first search starting from the members of F, or,
equivalently, by finding the least solution to the following set of equations
over the nodes of M’s graph (under the ordering false u—— true):

ReachableFromFinal~q!

5 5 true

~
p 3 q

ReachableFromFinal~ p!

if q [ F

otherwise

The least solution to these equations can be obtained by iteration, starting
from an initial approximation to the solution in which, for each node q,
ReachableFromFinal(q) 5 false. Define the set ReachableFromFinal as
ReachableFromFinal 5 {qPReachableFromFinal(q) }. Thus, our sec-
ond cut at defining Tab is Tab 5 ReachableFromFinal 2 F.

Fig. 4. State-transition diagram from Figure 2, augmented with node qfail. (Arrows labeled
with several letters are a shorthand for multiple edges.)
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We are not done yet, for we can further narrow the Tab set and still have
Tokenize retain linear-time behavior. Let Bounded be the set of states such
that either q [ F, or q has the property that when Tokenize continues from
q it always either

(1) reaches a final state within a bounded number of steps or
(2) fails within a bounded number of steps.

As observed earlier, Tokenize does not need to maintain tabulation
information for final states. The reason Tokenize does not need to maintain
tabulation information for the nonfinal states in Bounded is that the total
amount of work performed by Tokenize in processing such states is bounded
by O(n). To see this, consider the scanning loop (lines [11]–[19]) of Figure
3(b). Once Tokenize reaches one of the nonfinal states in Bounded, charge
all work performed by the scanning loop, until either a final state is
reached or failure occurs, to position i 2 1, where i is the value that
appears in the pair ^q, i& at the bottom of the stack. Note that q is either
Bottom, if ^q, i& came from line [10], or a final state if ^q, i& came from line
[16] (see also line [15]). By properties (1) and (2) above, Tokenize can only
consume a bounded amount of input once it reaches one of the nonfinal
states in Bounded. Because Tokenize never backtracks over a ^final-state,
position& configuration, the above accounting scheme charges at most a
constant amount of work to each index position, and thus the total cost of
processing the nonfinal states in Bounded is O(n).

Consequently, by choosing Tab to be ReachableFromFinal 2
Bounded, we are assured that the version of Tokenize shown in Figure 3(b)
will always have linear-time behavior.

The presence of cyclic, accepting-state-free paths in M’s graph are the
only possible cause of unbounded behavior. Thus, we can recast the
definition of Bounded as follows:

q [
Bounded

iff

~q [ ~F ø $qfail%!or all accepting-state-free paths from q to

nodes in F ø $qfail% are acyclic)

One way to identify the members of Bounded is to find the least solution to
the following set of equations over the nodes of M’s graph (under the
ordering false u—— true) and let Bounded 5 {qPBounded(q)}:

Bounded~q! 5 H true
`

q 3 r
Bounded~r!

if q [ ~F ø $qfail%!

otherwise

The least solution to these equations can be obtained by iteration, starting
from an initial approximation to the solution in which, for each node q,
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Bounded(q) 5 false. (By finding the least solution, we pessimistically
assume, until proven otherwise, that there exists a cyclic, accepting-state-
free path from q to a member of F ø {qfail}.)

For instance, for the graph shown in Figure 4 we have the true-false
values shown in Table I. Thus, we need to tabulate only the states Tab 5
ReachableFromFinal 2 Bounded 5 {q4, q5, q6}.

Because the languages used for lexical analysis in most compilers are
designed so that an unbounded amount of lookahead beyond final states is
never necessary, it is evident from the discussion above that, in these cases,
the algorithm described above will set Tab to B. If a (tabulating-)scanner
generator were extended with this method, it could test each input lexical
specification to see whether Tab 5 B; when this occurs, it could supply a
scanner that just maintains a record of the last final state and the last
final-state position during the simulation of M. Thus, the common case
would be that tabulation would never come into play and would therefore
impose no overhead (except at scanner-generation time to verify that
Tab 5 B). However, if the scanner generator were ever applied in a
nonstandard situation involving a set of highly ambiguous token defini-
tions, a tabulating scanner along the lines of Figure 3(b) could be supplied
to prevent superlinear behavior from occurring. In this case, the analysis
algorithm described above serves to reduce the size of tabulation table
failed_previously from PQP 3 (n 1 1) bits to PTabP 3 (n 1 1) bits
(with a consequent reduction in initialization time, as well).

4. CONCLUDING REMARKS

After presenting the quadratic-time backtracking algorithm for the tokeni-
zation problem, Waite and Goos advance the following conjecture:

We have tacitly assumed that the initial state of the automaton is indepen-
dent of the final state reached by the previous invocation of next_token [i.e.,
the tokenizer]. If this assumption is relaxed, permitting the state to be
retained from the last invocation, then it is sometimes possible to avoid
even the limited backtracking discussed above. . .Whether this technique
solves all problems is still an open question [Waite and Goos 1983, pp.
138–139].

Table I.

State ReachableFromFinal Bounded

q0 false true
q1 false true
q2 false true
q3 true true
q4 true false
q5 true false
q6 true false
q7 true true
qfail true true
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The solutions given in the present article are based on a different principle;
rather than “permitting the state to be retained from the last invocation,”
they rely on tabulation to avoid repeating work. However, there is a sense
in which Waite and Goos are nearly on the mark: if the notion of “state” is
broadened to include the memoization table (i.e., the table failed_previ-
ously) in addition to the initial state of the automaton, it is correct to say
that the solution to the problem does involve the retention of state from the
last invocation of the tokenizer.

The author was motivated to develop the algorithms presented in this
article after observing that a certain result in automata theory, due to
Mogensen [1994] (which extends an earlier result by Cook [Aho et al. 1974;
Cook 1972]) implied that maximal-munch tokenization could be performed
in linear time. Mogensen showed that a certain variant of a two-way
deterministic pushdown automaton (a so-called “WORM-2DPDA”) can be
simulated in linear time on a RAM computer (even though the WORM-
2DPDA itself may perform an exponential number of steps). Mogensen’s
technique exploits the fact that no matter how many steps the WORM-
2DPDA performs, there are only a linear number of possible “stack config-
urations” that the WORM-2DPDA can be in. The RAM program uses
dynamic programming to tabulate information about sequences of transi-
tions between these configurations: whereas the WORM-2DPDA might
repeat certain computation sequences many times, the information ob-
tained via dynamic programming allows the RAM program to take “short-
cuts” that, in essence, allow it to skip the second and successive repetitions
of these computation sequences and proceed directly to a configuration
further along in the computation.

Given a DFA M that recognizes the tokens of a language, it is easy to
construct a WORM-2DPDA M9 that identifies maximal-munch tokens (see
Reps [1997]). Once the proper insights had been obtained (i.e., by consider-
ing the way in which tabulation is used in the Cook and Mogensen
constructions) it was relatively easy to write a linear-time algorithm for the
maximal-munch tokenization problem directly: the effect produced by the
five lines added in Figure 1(b) is very similar to the effect produced by
Mogensen’s simulation technique on the WORM-2DPDA that identifies
maximal-munch tokens. This process illustrates an interesting algorithm-
design methodology:

Design a WORM-2DPDA for a language recognition problem that is a near
relative of the problem of interest; study where the Mogensen construction
is able to introduce shortcuts by using previously tabulated information;
and use these insights to obtain a linear-time algorithm for the problem of
interest.

The well-known algorithm of Knuth, Morris, and Pratt for linear-time
pattern matching in strings is another example of an algorithm that was
developed in a similar fashion [Aho 1990; Aho et al. 1974; Knuth et al.
1977]. (A lengthier discussion of these ideas can be found in Reps [1997].)

Although most programming languages do have the property that there
is a token class for which some of the tokens are prefixes of tokens in
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another token class (e.g., integer and floating-point constants), the poten-
tial quadratic behavior of lexical analyzers is almost certainly not a
problem in practice. However, lexical-analysis tools such as Lex are often
used for tasks outside the domain of compilation. For example, Aho and
Ullman mention the use of Lex to recognize imperfections in printed
circuits [Aho and Ullman 1977]. Some of these nonstandard applications
may represent situations in which the algorithms presented in this article
could be of importance.
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