
POSIX Lexing with Derivatives of Regular Expressions

Fahad Ausaf1, Roy Dyckhoff2, and Christian Urban3

1 King’s College London
fahad.ausaf@icloud.com

2 University of St Andrews
roy.dyckhoff@st-andrews.ac.uk

3 King’s College London
christian.urban@kcl.ac.uk

Abstract. Brzozowski introduced the notion of derivatives for regular expres-
sions. They can be used for a very simple regular expression matching algorithm.
Sulzmann and Lu cleverly extended this algorithm in order to deal with POSIX
matching, which is the underlying disambiguation strategy for regular expres-
sions needed in lexers. Their algorithm generates POSIX values which encode
the information of how a regular expression matches a string—that is, which part
of the string is matched by which part of the regular expression. In this paper we
give our inductive definition of what a POSIX value is and show (i) that such a
value is unique (for given regular expression and string being matched) and (ii)
that Sulzmann and Lu’s algorithm always generates such a value (provided that
the regular expression matches the string). We show that (iii) our inductive def-
inition of a POSIX value is equivalent to an alternative definition by Okui and
Suzuki which identifies POSIX values as least elements according to an ordering
of values. We also prove the correctness of Sulzmann’s bitcoded version of the
POSIX matching algorithm and extend the results to additional constructors for
regular expressions.

Keywords: POSIX matching, Derivatives of Regular Expressions, Isabelle/HOL

1 Introduction

Brzozowski [4] introduced the notion of the derivative r\c of a regular expression r
w.r.t. a character c, and showed that it gave a simple solution to the problem of matching

? This paper is a revised and expanded version of [3]. Compared with that paper we give a second
definition for POSIX values introduced by Okui Suzuki [12,13] and prove that it is equivalent
to our original one. This second definition is based on an ordering of values and very similar
to, but not equivalent with, the definition given by Sulzmann and Lu [16]. The advantage of
the definition based on the ordering is that it implements more directly the informal rules from
the POSIX standard. We also prove Sulzmann & Lu’s conjecture that their bitcoded version of
the POSIX algorithm is correct. Furthermore we extend our results to additional constructors
of regular expressions.

2 Fahad Ausaf, Roy Dyckhoff, and Christian Urban

a string s with a regular expression r: if the derivative of r w.r.t. (in succession) all the
characters of the string matches the empty string, then r matches s (and vice versa). The
derivative has the property (which may almost be regarded as its specification) that, for
every string s and regular expression r and character c, one has cs ∈ L(r) if and only if
s ∈ L(r\c). The beauty of Brzozowski’s derivatives is that they are neatly expressible in
any functional language, and easily definable and reasoned about in theorem provers—
the definitions just consist of inductive datatypes and simple recursive functions. A
mechanised correctness proof of Brzozowski’s matcher in for example HOL4 has been
mentioned by Owens and Slind [14]. Another one in Isabelle/HOL is part of the work
by Krauss and Nipkow [9]. And another one in Coq is given by Coquand and Siles [5].

If a regular expression matches a string, then in general there is more than one way
of how the string is matched. There are two commonly used disambiguation strategies to
generate a unique answer: one is called GREEDY matching [6] and the other is POSIX
matching [1,10,12,16,17]. For example consider the string xy and the regular expression
(x + y + xy)?. Either the string can be matched in two ‘iterations’ by the single letter-
regular expressions x and y, or directly in one iteration by xy. The first case corresponds
to GREEDY matching, which first matches with the left-most symbol and only matches
the next symbol in case of a mismatch (this is greedy in the sense of preferring instant
gratification to delayed repletion). The second case is POSIX matching, which prefers
the longest match.

In the context of lexing, where an input string needs to be split up into a sequence of
tokens, POSIX is the more natural disambiguation strategy for what programmers con-
sider basic syntactic building blocks in their programs. These building blocks are often
specified by some regular expressions, say rkey and rid for recognising keywords and
identifiers, respectively. There are a few underlying (informal) rules behind tokenising
a string in a POSIX [1] fashion:

• The Longest Match Rule (or “Maximal Munch Rule”): The longest initial substring
matched by any regular expression is taken as next token.

• Priority Rule: For a particular longest initial substring, the first (leftmost) regular
expression that can match determines the token.

• Star Rule: A subexpression repeated by ? shall not match an empty string unless
this is the only match for the repetition.

• Empty String Rule: An empty string shall be considered to be longer than no match
at all.

Consider for example a regular expression rkey for recognising keywords such as if, then
and so on; and rid recognising identifiers (say, a single character followed by characters
or numbers). Then we can form the regular expression (rkey + rid)

? and use POSIX
matching to tokenise strings, say iffoo and if. For iffoo we obtain by the Longest Match
Rule a single identifier token, not a keyword followed by an identifier. For if we ob-
tain by the Priority Rule a keyword token, not an identifier token—even if rid matches
also. By the Star Rule we know (rkey + rid)

? matches iffoo, respectively if, in exactly
one ‘iteration’ of the star. The Empty String Rule is for cases where, for example, the
regular expression (a?)? matches against the string bc. Then the longest initial matched

POSIX Lexing with Derivatives of Regular Expressions 3

substring is the empty string, which is matched by both the whole regular expression
and the parenthesised subexpression.

One limitation of Brzozowski’s matcher is that it only generates a YES/NO answer
for whether a string is being matched by a regular expression. Sulzmann and Lu [16]
extended this matcher to allow generation not just of a YES/NO answer but of an actual
matching, called a [lexical] value. Assuming a regular expression matches a string,
values encode the information of how the string is matched by the regular expression—
that is, which part of the string is matched by which part of the regular expression. For
this consider again the string xy and the regular expression (x + (y + xy))? (this time
fully parenthesised). We can view this regular expression as tree and if the string xy is
matched by two Star ‘iterations’, then the x is matched by the left-most alternative in
this tree and the y by the right-left alternative. This suggests to record this matching as

Stars [Left (Char x), Right (Left (Char y))]

where Stars, Left, Right and Char are constructors for values. Stars records how many
iterations were used; Left, respectively Right, which alternative is used. This ‘tree view’
leads naturally to the idea that regular expressions act as types and values as inhabiting
those types (see, for example, [8]). The value for matching xy in a single ‘iteration’,
i.e. the POSIX value, would look as follows

Stars [Seq (Char x) (Char y)]

where Stars has only a single-element list for the single iteration and Seq indicates that
xy is matched by a sequence regular expression.

Sulzmann and Lu give a simple algorithm to calculate a value that appears to be the
value associated with POSIX matching. The challenge then is to specify that value, in an
algorithm-independent fashion, and to show that Sulzmann and Lu’s derivative-based
algorithm does indeed calculate a value that is correct according to the specification.
The answer given by Sulzmann and Lu [16] is to define a relation (called an “order re-
lation”) on the set of values of r, and to show that (once a string to be matched is chosen)
there is a maximum element and that it is computed by their derivative-based algorithm.
This proof idea is inspired by work of Frisch and Cardelli [6] on a GREEDY regular
expression matching algorithm. However, we were not able to establish transitivity and
totality for the “order relation” by Sulzmann and Lu. There are some inherent problems
with their approach (of which some of the proofs are not published in [16]); perhaps
more importantly, we give in this paper a simple inductive (and algorithm-independent)
definition of what we call being a POSIX value for a regular expression r and a string s;
we show that the algorithm by Sulzmann and Lu computes such a value and that such
a value is unique. Our proofs are both done by hand and checked in Isabelle/HOL. The
experience of doing our proofs has been that this mechanical checking was absolutely
essential: this subject area has hidden snares. This was also noted by Kuklewicz [10]
who found that nearly all POSIX matching implementations are “buggy” [16, Page 203]
and by Grathwohl et al [7, Page 36] who wrote:

“The POSIX strategy is more complicated than the greedy because of the de-
pendence on information about the length of matched strings in the various
subexpressions.”

4 Fahad Ausaf, Roy Dyckhoff, and Christian Urban

Contributions: We have implemented in Isabelle/HOL the derivative-based regular ex-
pression matching algorithm of Sulzmann and Lu [16]. We have proved the correctness
of this algorithm according to our specification of what a POSIX value is (inspired by
work of Vansummeren [17]). Sulzmann and Lu sketch in [16] an informal correctness
proof: but to us it contains unfillable gaps.4 Our specification of a POSIX value consists
of a simple inductive definition that given a string and a regular expression uniquely
determines this value. We also show that our definition is equivalent to an ordering of
values based on positions by Okui and Suzuki [12].

We extend our results to ??? Bitcoded version??

2 Preliminaries

Strings in Isabelle/HOL are lists of characters with the empty string being represented
by the empty list, written [], and list-cons being written as :: . Often we use the usual
bracket notation for lists also for strings; for example a string consisting of just a single
character c is written [c]. We use the usual definitions for prefixes and strict prefixes
of strings. By using the type char for characters we have a supply of finitely many
characters roughly corresponding to the ASCII character set. Regular expressions are
defined as usual as the elements of the following inductive datatype:

r := 0 | 1 | c | r1 + r2 | r1 · r2 | r?

where 0 stands for the regular expression that does not match any string, 1 for the
regular expression that matches only the empty string and c for matching a character
literal. The language of a regular expression is also defined as usual by the recursive
function L with the six clauses:

(1) L(0) def
= ∅

(2) L(1) def
= {[]}

(3) L(c) def
= {[c]}

(4) L(r1 · r2)
def
= L(r1) @ L(r2)

(5) L(r1 + r2)
def
= L(r1) ∪ L(r2)

(6) L(r?) def
= (L(r))?

In clause (4) we use the operation @ for the concatenation of two languages (it
is also list-append for strings). We use the star-notation for regular expressions and for
languages (in the last clause above). The star for languages is defined inductively by two
clauses: (i) the empty string being in the star of a language and (ii) if s1 is in a language
and s2 in the star of this language, then also s1 @ s2 is in the star of this language. It will
also be convenient to use the following notion of a semantic derivative (or left quotient)
of a language defined as

4 An extended version of [16] is available at the website of its first author; this extended version
already includes remarks in the appendix that their informal proof contains gaps, and possible
fixes are not fully worked out.

POSIX Lexing with Derivatives of Regular Expressions 5

Der c A
def
= {s | c :: s ∈ A} .

For semantic derivatives we have the following equations (for example mechanically
proved in [9]):

Der c ∅ def
= ∅

Der c {[]} def
= ∅

Der c {[d]} def
= if c = d then {[]} else ∅

Der c (A ∪ B) def
= Der c A ∪ Der c B

Der c (A @ B) def
= (Der c A @ B) ∪ (if [] ∈ A then Der c B else ∅)

Der c (A?) def
= Der c A @ A?

(1)

Brzozowski’s derivatives of regular expressions [4] can be easily defined by two recur-
sive functions: the first is from regular expressions to booleans (implementing a test
when a regular expression can match the empty string), and the second takes a regular
expression and a character to a (derivative) regular expression:

nullable (0) def
= False

nullable (1) def
= True

nullable (c) def
= False

nullable (r1 + r2)
def
= nullable r1 ∨ nullable r2

nullable (r1 · r2)
def
= nullable r1 ∧ nullable r2

nullable (r?) def
= True

0\c def
= 0

1\c def
= 0

d\c def
= if c = d then 1 else 0

(r1 + r2)\c
def
= (r1\c) + (r2\c)

(r1 · r2)\c
def
= if nullable r1 then (r1\c) · r2 + (r2\c) else (r1\c) · r2

(r?)\c def
= (r\c) · r?

We may extend this definition to give derivatives w.r.t. strings:

r\[] def
= r

r\(c :: s) def
= (r\c)\s

Given the equations in (1), it is a relatively easy exercise in mechanical reasoning to
establish that

Proposition 1.
(1) nullable r if and only if [] ∈ L(r), and
(2) L(r\c) = Der c (L(r)).

With this in place it is also very routine to prove that the regular expression matcher
defined as

6 Fahad Ausaf, Roy Dyckhoff, and Christian Urban

match r s
def
= nullable (r\s)

gives a positive answer if and only if s ∈ L(r). Consequently, this regular expression
matching algorithm satisfies the usual specification for regular expression matching.
While the matcher above calculates a provably correct YES/NO answer for whether a
regular expression matches a string or not, the novel idea of Sulzmann and Lu [16] is to
append another phase to this algorithm in order to calculate a [lexical] value. We will
explain the details next.

3 POSIX Regular Expression Matching

There have been many previous works that use values for encoding how a regular ex-
pression matches a string. The clever idea by Sulzmann and Lu [16] is to define a
function on values that mirrors (but inverts) the construction of the derivative on regular
expressions. Values are defined as the inductive datatype

v := Empty | Char c | Left v | Right v | Seq v1 v2 | Stars vs

where we use vs to stand for a list of values. (This is similar to the approach taken
by Frisch and Cardelli for GREEDY matching [6], and Sulzmann and Lu for POSIX
matching [16]). The string underlying a value can be calculated by the flat function,
written | | and defined as:

|Empty| def
= []

|Char c| def
= [c]

|Left v| def
= |v|

|Right v| def
= |v|

|Seq v1 v2|
def
= |v1| @ |v2|

|Stars []| def
= []

|Stars (v :: vs)| def
= |v| @ |Stars vs|

We will sometimes refer to the underlying string of a value as flattened value. We will
also overload our notation and use |vs| for flattening a list of values and concatenating
the resulting strings.

Sulzmann and Lu define inductively an inhabitation relation that associates values
to regular expressions. We define this relation as follows:5

Empty : 1 Char c : c

v1 : r1
Left v1 : r1 + r2

v2 : r1
Right v2 : r2 + r1

v1 : r1 v2 : r2
Seq v1 v2 : r1 · r2

∀ v∈ vs. v : r ∧ |v| 6= []

Stars vs : r?

5 Note that the rule for Stars differs from our earlier paper [3]. There we used the original
definition by Sulzmann and Lu which does not require that the values v ∈ vs flatten to a
non-empty string. The reason for introducing the more restricted version of lexical values is
convenience later on when reasoning about an ordering relation for values.

POSIX Lexing with Derivatives of Regular Expressions 7

where in the clause for Stars we use the notation v ∈ vs for indicating that v is a member
in the list vs. We require in this rule that every value in vs flattens to a non-empty string.
The idea is that Stars-values satisfy the informal Star Rule (see Introduction) where the
? does not match the empty string unless this is the only match for the repetition. Note
also that no values are associated with the regular expression 0, and that the only value
associated with the regular expression 1 is Empty. It is routine to establish how values
“inhabiting” a regular expression correspond to the language of a regular expression,
namely

Proposition 2. L(r) = {|v| | v : r}

Given a regular expression r and a string s, we define the set of all Lexical Values
inhabited by r with the underlying string being s:6

LV r s
def
= {v | v : r ∧ |v| = s}

The main property of LV r s is that it is alway finite.

Proposition 3. finite (LV r s)

This finiteness property does not hold in general if we remove the side-condition about
|v| 6= [] in the Stars-rule above. For example using Sulzmann and Lu’s less restrictive
definition, LV (1?) [] would contain infinitely many values, but according to our more
restricted definition only a single value, namely LV (1?) [] = {Stars []}.

If a regular expression r matches a string s, then generally the set LV r s is not just a
singleton set. In case of POSIX matching the problem is to calculate the unique lexical
value that satisfies the (informal) POSIX rules from the Introduction. Graphically the
POSIX value calculation algorithm by Sulzmann and Lu can be illustrated by the picture
in Figure 1 where the path from the left to the right involving derivatives/nullable is
the first phase of the algorithm (calculating successive Brzozowski’s derivatives) and
mkeps/inj, the path from right to left, the second phase. This picture shows the steps
required when a regular expression, say r1, matches the string [a, b, c]. We first build
the three derivatives (according to a, b and c). We then use nullable to find out whether
the resulting derivative regular expression r4 can match the empty string. If yes, we
call the function mkeps that produces a value v4 for how r4 can match the empty string
(taking into account the POSIX constraints in case there are several ways). This function
is defined by the clauses:

mkeps 1 def
= Empty

mkeps (r1 · r2)
def
= Seq (mkeps r1) (mkeps r2)

mkeps (r1 + r2)
def
= if nullable r1 then Left (mkeps r1) else Right (mkeps r2)

mkeps (r?) def
= Stars []

6 Okui and Suzuki refer to our lexical values as canonical values in [12]. The notion of non-
problematic values by Cardelli and Frisch [6] is related, but not identical to our lexical values.

8 Fahad Ausaf, Roy Dyckhoff, and Christian Urban

r1 r2
\a

r3
\b

r4
\c

nullable

v4v3
inj r3 c

v2
inj r2 b

v1
inj r1 a

mkeps

Fig. 1. The two phases of the algorithm by Sulzmann & Lu [16], matching the string [a,
b, c]. The first phase (the arrows from left to right) is Brzozowski’s matcher building
successive derivatives. If the last regular expression is nullable, then the functions of the
second phase are called (the top-down and right-to-left arrows): first mkeps calculates
a value v4 witnessing how the empty string has been recognised by r4. After that the
function inj “injects back” the characters of the string into the values.

Note that this function needs only to be partially defined, namely only for regular ex-
pressions that are nullable. In case nullable fails, the string [a, b, c] cannot be matched
by r1 and the null value None is returned. Note also how this function makes some sub-
tle choices leading to a POSIX value: for example if an alternative regular expression,
say r1 + r2, can match the empty string and furthermore r1 can match the empty string,
then we return a Left-value. The Right-value will only be returned if r1 cannot match
the empty string.

The most interesting idea from Sulzmann and Lu [16] is the construction of a value
for how r1 can match the string [a, b, c] from the value how the last derivative, r4 in
Fig. 1, can match the empty string. Sulzmann and Lu achieve this by stepwise “injecting
back” the characters into the values thus inverting the operation of building derivatives,
but on the level of values. The corresponding function, called inj, takes three arguments,
a regular expression, a character and a value. For example in the first (or right-most) inj-
step in Fig. 1 the regular expression r3, the character c from the last derivative step and
v4, which is the value corresponding to the derivative regular expression r4. The result
is the new value v3. The final result of the algorithm is the value v1. The inj function
is defined by recursion on regular expressions and by analysing the shape of values
(corresponding to the derivative regular expressions).

(1) inj d c (Empty) def
= Char d

(2) inj (r1 + r2) c (Left v1)
def
= Left (inj r1 c v1)

(3) inj (r1 + r2) c (Right v2)
def
= Right (inj r2 c v2)

(4) inj (r1 · r2) c (Seq v1 v2)
def
= Seq (inj r1 c v1) v2

(5) inj (r1 · r2) c (Left (Seq v1 v2))
def
= Seq (inj r1 c v1) v2

(6) inj (r1 · r2) c (Right v2)
def
= Seq (mkeps r1) (inj r2 c v2)

(7) inj (r?) c (Seq v (Stars vs)) def
= Stars (inj r c v :: vs)

To better understand what is going on in this definition it might be instructive to look
first at the three sequence cases (clauses (4) – (6)). In each case we need to construct an

POSIX Lexing with Derivatives of Regular Expressions 9

“injected value” for r1 · r2. This must be a value of the form Seq . Recall the clause
of the derivative-function for sequence regular expressions:

(r1 · r2)\c
def
= if nullable r1 then (r1\c) · r2 + (r2\c) else (r1\c) · r2

Consider first the else-branch where the derivative is (r1\c) · r2. The corresponding
value must therefore be of the form Seq v1 v2, which matches the left-hand side in
clause (4) of inj. In the if -branch the derivative is an alternative, namely (r1\c) · r2 +
(r2\c). This means we either have to consider a Left- or Right-value. In case of the Left-
value we know further it must be a value for a sequence regular expression. Therefore
the pattern we match in the clause (5) is Left (Seq v1 v2), while in (6) it is just Right v2.
One more interesting point is in the right-hand side of clause (6): since in this case the
regular expression r1 does not “contribute” to matching the string, that means it only
matches the empty string, we need to call mkeps in order to construct a value for how r1
can match this empty string. A similar argument applies for why we can expect in the
left-hand side of clause (7) that the value is of the form Seq v (Stars vs)—the derivative
of a star is (r\c) · r?. Finally, the reason for why we can ignore the second argument
in clause (1) of inj is that it will only ever be called in cases where c = d, but the usual
linearity restrictions in patterns do not allow us to build this constraint explicitly into
our function definition.7

The idea of the inj-function to “inject” a character, say c, into a value can be made
precise by the first part of the following lemma, which shows that the underlying string
of an injected value has a prepended character c; the second part shows that the under-
lying string of an mkeps-value is always the empty string (given the regular expression
is nullable since otherwise mkeps might not be defined).

Lemma 1.
(1) If v : r\c then |inj r c v| = c :: |v|.
(2) If nullable r then |mkeps r| = [].

Proof. Both properties are by routine inductions: the first one can, for example, be
proved by induction over the definition of derivatives; the second by an induction on r.
There are no interesting cases. ut

Having defined the mkeps and inj function we can extend Brzozowski’s matcher so
that a value is constructed (assuming the regular expression matches the string). The
clauses of the Sulzmann and Lu lexer are

lexer r [] def
= if nullable r then Some (mkeps r) else None

lexer r (c :: s) def
= case lexer (r\c) s of

None⇒ None
| Some v⇒ Some (inj r c v)

If the regular expression does not match the string, None is returned. If the regular
expression does match the string, then Some value is returned. One important virtue of

7 Sulzmann and Lu state this clause as inj c c (Empty) def
= Char c, but our deviation is harmless.

10 Fahad Ausaf, Roy Dyckhoff, and Christian Urban

([], 1)→ Empty
P1

([c], c)→ Char c
Pc

(s, r1)→ v

(s, r1 + r2)→ Left v
P+L

(s, r2)→ v s /∈ L(r1)

(s, r1 + r2)→ Right v
P+R

(s1, r1)→ v1 (s2, r2)→ v2
@ s3 s4.a. s3 6= [] ∧ s3 @ s4 = s2 ∧ s1 @ s3 ∈ L(r1) ∧ s4 ∈ L(r2)

(s1 @ s2, r1 · r2)→ Seq v1 v2
PS

([], r?)→ Stars []
P[]

(s1, r)→ v (s2, r?)→ Stars vs |v| 6= []
@ s3 s4.a. s3 6= [] ∧ s3 @ s4 = s2 ∧ s1 @ s3 ∈ L(r) ∧ s4 ∈ L(r?)

(s1 @ s2, r?)→ Stars (v :: vs)
P?

Fig. 2. Our inductive definition of POSIX values.

this algorithm is that it can be implemented with ease in any functional programming
language and also in Isabelle/HOL. In the remaining part of this section we prove that
this algorithm is correct.

The well-known idea of POSIX matching is informally defined by some rules such
as the Longest Match and Priority Rules (see Introduction); as correctly argued in [16],
this needs formal specification. Sulzmann and Lu define an “ordering relation” between
values and argue that there is a maximum value, as given by the derivative-based algo-
rithm. In contrast, we shall introduce a simple inductive definition that specifies di-
rectly what a POSIX value is, incorporating the POSIX-specific choices into the side-
conditions of our rules. Our definition is inspired by the matching relation given by
Vansummeren [17]. The relation we define is ternary and written as (s, r)→ v, relating
strings, regular expressions and values; the inductive rules are given in Figure 2. We
can prove that given a string s and regular expression r, the POSIX value v is uniquely
determined by (s, r)→ v.

Theorem 1.
(1) If (s, r)→ v then s ∈ L(r) and |v| = s.
(2) If (s, r)→ v and (s, r)→ v ′ then v = v ′.

Proof. Both by induction on the definition of (s, r)→ v. The second parts follows by a
case analysis of (s, r)→ v ′ and the first part. ut

We claim that our (s, r)→ v relation captures the idea behind the four informal POSIX
rules shown in the Introduction: Consider for example the rules P+L and P+R where
the POSIX value for a string and an alternative regular expression, that is (s, r1 + r2),
is specified—it is always a Left-value, except when the string to be matched is not in the
language of r1; only then it is a Right-value (see the side-condition in P+R). Interesting
is also the rule for sequence regular expressions (PS). The first two premises state that
v1 and v2 are the POSIX values for (s1, r1) and (s2, r2) respectively. Consider now

POSIX Lexing with Derivatives of Regular Expressions 11

the third premise and note that the POSIX value of this rule should match the string
s1 @ s2. According to the Longest Match Rule, we want that the s1 is the longest initial
split of s1 @ s2 such that s2 is still recognised by r2. Let us assume, contrary to the third
premise, that there exist an s3 and s4 such that s2 can be split up into a non-empty string
s3 and a possibly empty string s4. Moreover the longer string s1 @ s3 can be matched by
r1 and the shorter s4 can still be matched by r2. In this case s1 would not be the longest
initial split of s1 @ s2 and therefore Seq v1 v2 cannot be a POSIX value for (s1 @ s2,
r1 · r2). The main point is that our side-condition ensures the Longest Match Rule is
satisfied.

A similar condition is imposed on the POSIX value in the P?-rule. Also there we
want that s1 is the longest initial split of s1 @ s2 and furthermore the corresponding
value v cannot be flattened to the empty string. In effect, we require that in each “iter-
ation” of the star, some non-empty substring needs to be “chipped” away; only in case
of the empty string we accept Stars [] as the POSIX value. Indeed we can show that our
POSIX values are lexical values which exclude those Stars that contain subvalues that
flatten to the empty string.

Lemma 2. If (s, r)→ v then v ∈ LV r s.

Proof. By routine induction on (s, r)→ v. ut

Next is the lemma that shows the function mkeps calculates the POSIX value for the
empty string and a nullable regular expression.

Lemma 3. If nullable r then ([], r)→ mkeps r.

Proof. By routine induction on r. ut

The central lemma for our POSIX relation is that the inj-function preserves POSIX
values.

Lemma 4. If (s, r\c)→ v then (c :: s, r)→ inj r c v.

Proof. By induction on r. We explain two cases.

• Case r = r1 + r2. There are two subcases, namely (a) v = Left v ′ and (s, r1\c)→
v ′; and (b) v = Right v ′, s /∈ L(r1\c) and (s, r2\c)→ v ′. In (a) we know (s, r1\c)
→ v ′, from which we can infer (c :: s, r1)→ inj r1 c v ′ by induction hypothesis and
hence (c :: s, r1 + r2)→ inj (r1 + r2) c (Left v ′) as needed. Similarly in subcase
(b) where, however, in addition we have to use Proposition 1(2) in order to infer
c :: s /∈ L(r1) from s /∈ L(r1\c).
• Case r = r1 · r2. There are three subcases:

(a) v = Left (Seq v1 v2) and nullable r1
(b) v = Right v1 and nullable r1
(c) v = Seq v1 v2 and ¬ nullable r1

For (a) we know (s1, r1\c)→ v1 and (s2, r2)→ v2 as well as

@ s3 s4.a. s3 6= [] ∧ s3 @ s4 = s2 ∧ s1 @ s3 ∈ L(r1\c) ∧ s4 ∈ L(r2)

12 Fahad Ausaf, Roy Dyckhoff, and Christian Urban

From the latter we can infer by Proposition 1(2):

@ s3 s4.a. s3 6= [] ∧ s3 @ s4 = s2 ∧ c :: s1 @ s3 ∈ L(r1) ∧ s4 ∈ L(r2)

We can use the induction hypothesis for r1 to obtain (c :: s1, r1) → inj r1 c v1.
Putting this all together allows us to infer (c :: s1 @ s2, r1 · r2)→ Seq (inj r1 c v1)
v2. The case (c) is similar.
For (b) we know (s, r2\c)→ v1 and s1 @ s2 /∈ L((r1\c) · r2). From the former we
have (c :: s, r2)→ inj r2 c v1 by induction hypothesis for r2. From the latter we can
infer

@ s3 s4.a. s3 6= [] ∧ s3 @ s4 = c :: s ∧ s3 ∈ L(r1) ∧ s4 ∈ L(r2)

By Lemma 3 we know ([], r1)→ mkeps r1 holds. Putting this all together, we can
conclude with (c :: s, r1 · r2)→ Seq (mkeps r1) (inj r2 c v1), as required.
Finally suppose r = r1?. This case is very similar to the sequence case, except that
we need to also ensure that |inj r1 c v1| 6= []. This follows from (c :: s1, r1)→ inj r1
c v1 (which in turn follows from (s1, r1\c)→ v1 and the induction hypothesis). ut

With Lemma 4 in place, it is completely routine to establish that the Sulzmann and Lu
lexer satisfies our specification (returning the null value None iff the string is not in the
language of the regular expression, and returning a unique POSIX value iff the string is
in the language):

Theorem 2.
(1) s /∈ L(r) if and only if lexer r s = None
(2) s ∈ L(r) if and only if ∃ v. lexer r s = Some v ∧ (s, r)→ v

Proof. By induction on s using Lemma 3 and 4. ut

In (2) we further know by Theorem 1 that the value returned by the lexer must be
unique. A simple corollary of our two theorems is:

Corollary 1.
(1) lexer r s = None if and only if @ v.a. (s, r)→ v
(2) lexer r s = Some v if and only if (s, r)→ v

This concludes our correctness proof. Note that we have not changed the algorithm of
Sulzmann and Lu,8 but introduced our own specification for what a correct result—a
POSIX value—should be. In the next section we show that our specification coincides
with another one given by Okui and Suzuki using a different technique.

4 Ordering of Values according to Okui and Suzuki

While in the previous section we have defined POSIX values directly in terms of a
ternary relation (see inference rules in Figure 2), Sulzmann and Lu took a different
approach in [16]: they introduced an ordering for values and identified POSIX values

8 All deviations we introduced are harmless.

POSIX Lexing with Derivatives of Regular Expressions 13

as the maximal elements. An extended version of [16] is available at the website of its
first author; this includes more details of their proofs, but which are evidently not in
final form yet. Unfortunately, we were not able to verify claims that their ordering has
properties such as being transitive or having maximal elements.

Okui and Suzuki [12,13] described another ordering of values, which they use to
establish the correctness of their automata-based algorithm for POSIX matching. Their
ordering resembles some aspects of the one given by Sulzmann and Lu, but overall
is quite different. To begin with, Okui and Suzuki identify POSIX values as minimal,
rather than maximal, elements in their ordering. A more substantial difference is that the
ordering by Okui and Suzuki uses positions in order to identify and compare subvalues.
Positions are lists of natural numbers. This allows them to quite naturally formalise
the Longest Match and Priority rules of the informal POSIX standard. Consider for
example the value v

v
def
= Stars [Seq (Char x) (Char y), Char z]

At position [0,1] of this value is the subvalue Char y and at position [1] the subvalue
Char z. At the ‘root’ position, or empty list [], is the whole value v. Positions such as
[0,1,0] or [2] are outside of v. If it exists, the subvalue of v at a position p, written v�p,
can be recursively defined by

v�[]
def
= v

Left v�0::ps
def
= v�ps

Right v�1::ps
def
= v�ps

Seq v1 v2�0::ps
def
= v1�ps

Seq v1 v2�1::ps
def
= v2�ps

Stars vs�n::ps
def
= vs[n]�ps

In the last clause we use Isabelle’s notation vs[n] for the nth element in a list. The set of
positions inside a value v, written Pos v, is given by

Pos (Empty)
def
= {[]}

Pos (Char c)
def
= {[]}

Pos (Left v)
def
= {[]} ∪ {0 :: ps | ps ∈ Pos v}

Pos (Right v)
def
= {[]} ∪ {1 :: ps | ps ∈ Pos v}

Pos (Seq v1 v2)
def
= {[]} ∪ {0 :: ps | ps ∈ Pos v1} ∪ {1 :: ps | ps ∈ Pos v2}

Pos (Stars vs)
def
= {[]} ∪ (

⋃
n < len vs {n :: ps | ps ∈ Pos vs[n]})

whereby len in the last clause stands for the length of a list. Clearly for every position
inside a value there exists a subvalue at that position.

To help understanding the ordering of Okui and Suzuki, consider again the earlier
value v and compare it with the following w:

14 Fahad Ausaf, Roy Dyckhoff, and Christian Urban

v
def
= Stars [Seq (Char x) (Char y), Char z]

w
def
= Stars [Char x, Char y, Char z]

Both values match the string xyz, that means if we flatten these values at their respective
root position, we obtain xyz. However, at position [0], v matches xy whereas w matches
only the shorter x. So according to the Longest Match Rule, we should prefer v, rather
than w as POSIX value for string xyz (and corresponding regular expression). In order
to formalise this idea, Okui and Suzuki introduce a measure for subvalues at position p,
called the norm of v at position p. We can define this measure in Isabelle as an integer
as follows

‖v‖p
def
= if p ∈ Pos v then len |v�p| else − 1

where we take the length of the flattened value at position p, provided the position is
inside v; if not, then the norm is −1. The default for outside positions is crucial for the
POSIX requirement of preferring a Left-value over a Right-value (if they can match the
same string—see the Priority Rule from the Introduction). For this consider

v
def
= Left (Char x) and w

def
= Right (Char x)

Both values match x. At position [0] the norm of v is 1 (the subvalue matches x), but
the norm of w is −1 (the position is outside w according to how we defined the ‘in-
side’ positions of Left- and Right-values). Of course at position [1], the norms ‖v‖[1]
and ‖w‖[1] are reversed, but the point is that subvalues will be analysed according to
lexicographically ordered positions. According to this ordering, the position [0] takes
precedence over [1] and thus also v will be preferred over w. The lexicographic ordering
of positions, written ≺lex , can be conveniently formalised by three inference rules

[] ≺lex p :: ps
p1 < p2

p1 :: ps1 ≺lex p2 :: ps2

ps1 ≺lex ps2
p :: ps1 ≺lex p :: ps2

With the norm and lexicographic order in place, we can state the key definition of
Okui and Suzuki [12]: a value v1 is smaller at position p than v2, written v1 ≺p v2,
if and only if (i) the norm at position p is greater in v1 (that is the string |v1�p| is
longer than |v2�p|) and (ii) all subvalues at positions that are inside v1 or v2 and that
are lexicographically smaller than p, we have the same norm, namely

v1 ≺p v2
def
=

{
(i) ‖v2‖p < ‖v1‖p and

(ii) ∀ q∈Pos v1 ∪ Pos v2. q ≺lex p −→ ‖v1‖q = ‖v2‖q

The position p in this definition acts as the first distinct position of v1 and v2, where
both values match strings of different length [12]. Since at p the values v1 and v2 match
different strings, the ordering is irreflexive. Derived from the definition above are the
following two orderings:

v1 ≺ v2
def
= ∃ p. v1 ≺p v2

v1 4 v2
def
= v1 ≺ v2 ∨ v1 = v2

POSIX Lexing with Derivatives of Regular Expressions 15

While we encountered a number of obstacles for establishing properties like tran-
sitivity for the ordering of Sulzmann and Lu (and which we failed to overcome), it is
relatively straightforward to establish this property for the orderings ≺ and 4
by Okui and Suzuki.

Lemma 5 (Transitivity). If v1 ≺ v2 and v2 ≺ v3 then v1 ≺ v3.

Proof. From the assumption we obtain two positions p and q, where the values v1 and v2
(respectively v2 and v3) are ‘distinct’. Since ≺lex is trichotomous, we need to consider
three cases, namely p = q, p ≺lex q and q ≺lex p. Let us look at the first case. Clearly
‖v2‖p < ‖v1‖p and ‖v3‖p < ‖v2‖p imply ‖v3‖p < ‖v1‖p. It remains to show that for a
p ′ ∈ Pos v1 ∪ Pos v3 with p ′≺lex p that ‖v1‖p ′ = ‖v3‖p ′ holds. Suppose p ′ ∈ Pos v1,
then we can infer from the first assumption that ‖v1‖p ′ = ‖v2‖p ′. But this means that
p ′ must be in Pos v2 too (the norm cannot be −1 given p ′ ∈ Pos v1). Hence we can use
the second assumption and infer ‖v2‖p ′ = ‖v3‖p ′, which concludes this case with v1 ≺
v3. The reasoning in the other cases is similar. ut

The proof for 4 is similar and omitted. It is also straightforward to show that ≺ and
4 are partial orders. Okui and Suzuki furthermore show that they are linear orderings
for lexical values [12] of a given regular expression and given string, but we have not
formalised this in Isabelle. It is not essential for our results. What we are going to show
below is that for a given r and s, the orderings have a unique minimal element on the
set LV r s, which is the POSIX value we defined in the previous section. We start with
two properties that show how the length of a flattened value relates to the ≺-ordering.

Proposition 4.
(1) If v1 ≺ v2 then len |v2| ≤ len |v1|.
(2) If len |v2| < len |v1| then v1 ≺ v2.

Both properties follow from the definition of the ordering. Note that (2) entails that a
value, say v2, whose underlying string is a strict prefix of another flattened value, say
v1, then v1 must be smaller than v2. For our proofs it will be useful to have the following
properties—in each case the underlying strings of the compared values are the same:

Proposition 5.
(1) If |v1| = |v2| then Left v1 ≺ Right v2.
(2) If |v1| = |v2| then Left v1 ≺ Left v2 iff v1 ≺ v2
(3) If |v1| = |v2| then Right v1 ≺ Right v2 iff v1 ≺ v2
(4) If |v2| = |w2| then Seq v v2 ≺ Seq v w2 iff v2 ≺ w2

(5) If |v1| @ |v2| = |w1| @ |w2| and v1 ≺ w1 then Seq v1 v2 ≺ Seq w1 w2

(6) If |vs1| = |vs2| then Stars (vs @ vs1) ≺ Stars (vs @ vs2) iff Stars vs1 ≺ Stars vs2
(7) If |v1 :: vs1| = |v2 :: vs2| and v1 ≺ v2 then Stars (v1 :: vs1) ≺ Stars (v2 :: vs2)

One might prefer that statements (4) and (5) (respectively (6) and (7)) are combined into
a single iff -statement (like the ones for Left and Right). Unfortunately this cannot be
done easily: such a single statement would require an additional assumption about the
two values Seq v1 v2 and Seq w1 w2 being inhabited by the same regular expression. The

16 Fahad Ausaf, Roy Dyckhoff, and Christian Urban

complexity of the proofs involved seems to not justify such a ‘cleaner’ single statement.
The statements given are just the properties that allow us to establish our theorems
without any difficulty. The proofs for Proposition 5 are routine.

Next we establish how Okui and Suzuki’s orderings relate to our definition of
POSIX values. Given a POSIX value v1 for r and s, then any other lexical value v2
in LV r s is greater or equal than v1, namely:

Theorem 3. If (s, r)→ v1 and v2 ∈ LV r s then v1 4 v2.

Proof. By induction on our POSIX rules. By Theorem 1 and the definition of LV, it
is clear that v1 and v2 have the same underlying string s. The three base cases are
straightforward: for example for v1 = Empty, we have that v2 ∈ LV 1 [] must also be
of the form v2 = Empty. Therefore we have v1 4 v2. The inductive cases for r being of
the form r1 + r2 and r1 · r2 are as follows:

• Case P+L with (s, r1 + r2) → Left w1: In this case the value v2 is either of the
form Left w2 or Right w2. In the latter case we can immediately conclude with
v1 4 v2 since a Left-value with the same underlying string s is always smaller than
a Right-value by Proposition 5(1). In the former case we have w2 ∈ LV r1 s and can
use the induction hypothesis to infer w1 4 w2. Because w1 and w2 have the same
underlying string s, we can conclude with Left w1 4 Left w2 using Proposition 5(2).

• Case P+R with (s, r1 + r2) → Right w1: This case similar to the previous case,
except that we additionally know s /∈ L(r1). This is needed when v2 is of the
form Left w2. Since |v2| = |w2| = s and w2 : r1, we can derive a contradiction for
s /∈ L(r1) using Proposition 2. So also in this case v1 4 v2.

• Case PS with (s1 @ s2, r1 · r2) → Seq w1 w2: We can assume v2 = Seq u1 u2
with u1 : r1 and u2 : r2. We have s1 @ s2 = |u1| @ |u2|. By the side-condition of
the PS-rule we know that either s1 = |u1| or that |u1| is a strict prefix of s1. In
the latter case we can infer w1 ≺ u1 by Proposition 4(2) and from this v1 4 v2 by
Proposition 5(5) (as noted above v1 and v2 must have the same underlying string).
In the former case we know u1 ∈ LV r1 s1 and u2 ∈ LV r2 s2. With this we can
use the induction hypotheses to infer w1 4 u1 and w2 4 u2. By Proposition 5(4,5)
we can again infer v1 4 v2.

The case for P? is similar to the PS-case and omitted. ut

This theorem shows that our POSIX value for a regular expression r and string s is
in fact a minimal element of the values in LV r s. By Proposition 4(2) we also know
that any value in LV s ′ r, with s ′ being a strict prefix, cannot be smaller than v1. The
next theorem shows the opposite—namely any minimal element in LV r s must be a
POSIX value. This can be established by induction on r, but the proof can be drastically
simplified by using the fact from the previous section about the existence of a POSIX
value whenever a string s ∈ L(r).

Theorem 4. If v1 ∈ LV r s and ∀ v2 ∈LV r s. v2 6≺ v1 then (s, r)→ v1.

Proof. If v1 ∈ LV r s then s ∈ L(r) by Proposition 2. Hence by Theorem 2(2) there
exists a POSIX value vP with (s, r)→ vP and by Lemma 2 we also have vP ∈ LV r s.

POSIX Lexing with Derivatives of Regular Expressions 17

By Theorem 3 we therefore have vP 4 v1. If vP = v1 then we are done. Otherwise we
have vP ≺ v1, which however contradicts the second assumption about v1 being the
smallest element in LV r s. So we are done in this case too. ut

From this we can also show that if LV r s is non-empty (or equivalently s ∈ L(r)) then
it has a unique minimal element:

Corollary 2. If LV r s 6= ∅ then ∃ !vmin. vmin ∈ LV r s ∧ (∀ v∈LV r s. vmin 4 v).

To sum up, we have shown that the (unique) minimal elements of the ordering by Okui
and Suzuki are exactly the POSIX values we defined inductively in Section 3. This
provides an independent confirmation that our ternary relation formalise the informal
POSIX rules.

5 Bitcoded Lexing

Incremental calculation of the value. To simplify the proof we first define the function
flex which calculates the “iterated” injection function. With this we can rewrite the lexer
as

lexer r s = (if nullable (r\s) then Some (flex r id s (mkeps (r\s))) else None)

code (Empty) def
= []

code (Char c) def
= []

code (Left v) def
= Z :: code v

code (Right v) def
= S :: code v

code (Seq v1 v2)
def
= code v1 @ code v2

code (Stars []) def
= [S]

code (Stars (v :: vs)) def
= Z :: code v @ code (Stars vs)

areg ::= AZERO
| AONE bs
| ACHAR bs c
| AALT bs r1 r2
| ASEQ bs r1 r2
| ASTAR bs r

(0)↑ def
= AZERO

(1)↑ def
= AONE []

(c)↑ def
= ACHAR [] c

(r1 + r2)↑
def
= AALT [] (fuse [Z] (r1↑)) (fuse [S] (r2↑))

(r1 · r2)↑
def
= ASEQ [] (r1↑) (r2↑)

(r?)↑ def
= ASTAR [] (r↑)

18 Fahad Ausaf, Roy Dyckhoff, and Christian Urban

AZERO↓ def
= 0

(AONE bs)↓ def
= 1

(ACHAR bs c)↓ def
= c

(AALT bs r1 r2)↓
def
= (r1↓) + (r2↓)

(ASEQ bs r1 r2)↓
def
= (r1↓) · (r2↓)

(ASTAR bs r)↓ def
= (r↓)?

Some simple facts about erase

Lemma 6.
(ra)↓ = (r↓)\a
(r↑)↓ = r

nullableb AZERO def
= False

nullableb (AONE bs) def
= True

nullableb (ACHAR bs c) def
= False

nullableb (AALT bs r1 r2)
def
= nullableb r1 ∨ nullableb r2

nullableb (ASEQ bs r1 r2)
def
= nullableb r1 ∧ nullableb r2

nullableb (ASTAR bs r) def
= True

AZEROc def
= AZERO

AONE bsc def
= AZERO

ACHAR bs dc def
= if c = d then AONE bs else AZERO

AALT r1 r2 r2.0bs def
= AALT r1 (r2bs) (r2.0bs)

ASEQ r1 r2 r2.0bs def
= if nullableb r2 then AALT r1 (ASEQ [] (r2bs) r2.0) (fuse (mkepsb r2) (r2.0bs)) else ASEQ r1 (r2bs) r2.0

ASTAR bs rc def
= ASEQ bs (fuse [Z] (rc)) (ASTAR [] r)

mkepsb (AONE bs) def
= bs

mkepsb (ASEQ bs r1 r2)
def
= bs @ mkepsb r1 @ mkepsb r2

mkepsb (AALT bs r1 r2)
def
= if nullableb r1 then bs @ mkepsb r1 else bs @ mkepsb r2

mkepsb (ASTAR bs r) def
= bs @ [S]

If v : (r↓)\c then retrieve (rc) v = retrieve r (inj (r↓) c v).
By induction on r

Theorem 5 (Main Lemma).
If v : r\s then Some (flex r id s v) = decode (retrieve (r↑s) v) r.

Definition of the bitcoded lexer
lexerb r s

def
= if nullableb (r↑s) then decode (mkepsb (r↑s)) r else None

Theorem 6. lexerb r s = lexer r s

POSIX Lexing with Derivatives of Regular Expressions 19

6 Optimisations

Derivatives as calculated by Brzozowski’s method are usually more complex regular
expressions than the initial one; the result is that the derivative-based matching and lex-
ing algorithms are often abysmally slow. However, various optimisations are possible,
such as the simplifications of 0 + r, r + 0, 1 · r and r · 1 to r. These simplifications can
speed up the algorithms considerably, as noted in [16]. One of the advantages of having
a simple specification and correctness proof is that the latter can be refined to prove the
correctness of such simplification steps. While the simplification of regular expressions
according to rules like

0 + r⇒ r r + 0⇒ r 1 · r⇒ r r · 1⇒ r (2)

is well understood, there is an obstacle with the POSIX value calculation algorithm by
Sulzmann and Lu: if we build a derivative regular expression and then simplify it, we
will calculate a POSIX value for this simplified derivative regular expression, not for the
original (unsimplified) derivative regular expression. Sulzmann and Lu [16] overcome
this obstacle by not just calculating a simplified regular expression, but also calculating
a rectification function that “repairs” the incorrect value.

The rectification functions can be (slightly clumsily) implemented in Isabelle/HOL
as follows using some auxiliary functions:

FRight f v def
= Right (f v)

FLeft f v def
= Left (f v)

FAlt f 1 f 2 (Right v) def
= Right (f 2 v)

FAlt f 1 f 2 (Left v) def
= Left (f 1 v)

FSeq1 f 1 f 2 v def
= Seq (f 1 ()) (f 2 v)

FSeq2 f 1 f 2 v def
= Seq (f 1 v) (f 2 ())

FSeq f 1 f 2 (Seq v1 v2)
def
= Seq (f 1 v1) (f 2 v2)

simpAlt (0,) (r2, f 2)
def
= (r2, FRight f 2)

simpAlt (r1, f 1) (0,)
def
= (r1, FLeft f 1)

simpAlt (r1, f 1) (r2, f 2)
def
= (r1 + r2, FAlt f 1 f 2)

simpSeq (1, f 1) (r2, f 2)
def
= (r2, FSeq1 f 1 f 2)

simpSeq (r1, f 1) (1, f 2)
def
= (r1, FSeq2 f 1 f 2)

simpSeq (r1, f 1) (r2, f 2)
def
= (r1 · r2, FSeq f 1 f 2)

The functions simpAlt and simpSeq encode the simplification rules in (2) and compose
the rectification functions (simplifications can occur deep inside the regular expression).
The main simplification function is then

simp (r1 + r2)
def
= simpAlt (simp r1) (simp r2)

simp (r1 · r2)
def
= simpSeq (simp r1) (simp r2)

simp r def
= (r, id)

20 Fahad Ausaf, Roy Dyckhoff, and Christian Urban

where id stands for the identity function. The function simp returns a simplified regular
expression and a corresponding rectification function. Note that we do not simplify un-
der stars: this seems to slow down the algorithm, rather than speed it up. The optimised
lexer is then given by the clauses:

lexer+ r [] def
= if nullable r then Some (mkeps r) else None

lexer+ r (c :: s) def
= let (rs, f r) = simp (r\c) in

case lexer+ rs s of
None⇒ None
| Some v⇒ Some (inj r c (f r v))

In the second clause we first calculate the derivative r\c and then simplify the result.
This gives us a simplified derivative rs and a rectification function f r. The lexer is then
recursively called with the simplified derivative, but before we inject the character c
into the value v, we need to rectify v (that is construct f r v). Before we can establish
the correctness of lexer+, we need to show that simplification preserves the language
and simplification preserves our POSIX relation once the value is rectified (recall simp
generates a (regular expression, rectification function) pair):

Lemma 7.
(1) L(fst (simp r)) = L(r)
(2) If (s, fst (simp r))→ v then (s, r)→ snd (simp r) v.

Proof. Both are by induction on r. There is no interesting case for the first statement.
For the second statement, of interest are the r = r1 + r2 and r = r1 · r2 cases. In each
case we have to analyse four subcases whether fst (simp r1) and fst (simp r2) equals 0
(respectively 1). For example for r = r1 + r2, consider the subcase fst (simp r1) = 0
and fst (simp r2) 6= 0. By assumption we know (s, fst (simp (r1 + r2)))→ v. From this
we can infer (s, fst (simp r2))→ v and by IH also (*) (s, r2)→ snd (simp r2) v. Given
fst (simp r1) = 0 we know L(fst (simp r1)) = ∅. By the first statement L(r1) is the
empty set, meaning (**) s /∈ L(r1). Taking (*) and (**) together gives by the P+R-rule
(s, r1 + r2)→ Right (snd (simp r2) v). In turn this gives (s, r1 + r2)→ snd (simp (r1
+ r2)) v as we need to show. The other cases are similar. ut

We can now prove relatively straightforwardly that the optimised lexer produces the
expected result:

Theorem 7. lexer+ r s = lexer r s

Proof. By induction on s generalising over r. The case [] is trivial. For the cons-case
suppose the string is of the form c :: s. By induction hypothesis we know lexer+ r s =
lexer r s holds for all r (in particular for r being the derivative r\c). Let rs be the sim-
plified derivative regular expression, that is fst (simp (r\c)), and f r be the rectification
function, that is snd (simp (r\c)). We distinguish the cases whether (*) s ∈ L(r\c) or
not. In the first case we have by Theorem 2(2) a value v so that lexer (r\c) s = Some
v and (s, r\c) → v hold. By Lemma 7(1) we can also infer from (*) that s ∈ L(rs)
holds. Hence we know by Theorem 2(2) that there exists a v ′ with lexer rs s = Some v ′

POSIX Lexing with Derivatives of Regular Expressions 21

and (s, rs)→ v ′. From the latter we know by Lemma 7(2) that (s, r\c)→ f r v ′ holds.
By the uniqueness of the POSIX relation (Theorem 1) we can infer that v is equal to f r
v ′—that is the rectification function applied to v ′ produces the original v. Now the case
follows by the definitions of lexer and lexer+.

In the second case where s /∈ L(r\c) we have that lexer (r\c) s = None by Theo-
rem 2(1). We also know by Lemma 7(1) that s /∈ L(rs). Hence lexer rs s = None by
Theorem 2(1) and by IH then also lexer+ rs s = None. With this we can conclude in
this case too. ut

7 Conclusion

We have implemented the POSIX value calculation algorithm introduced by Sulzmann
and Lu [16]. Our implementation is nearly identical to the original and all modifica-
tions we introduced are harmless (like our char-clause for inj). We have proved this
algorithm to be correct, but correct according to our own specification of what POSIX
values are. Our specification (inspired from work by Vansummeren [17]) appears to be
much simpler than in [16] and our proofs are nearly always straightforward. We have
attempted to formalise the original proof by Sulzmann and Lu [16], but we believe it
contains unfillable gaps. In the online version of [16], the authors already acknowledge
some small problems, but our experience suggests that there are more serious problems.

Having proved the correctness of the POSIX lexing algorithm in [16], which lessons
have we learned? Well, this is a perfect example for the importance of the right defi-
nitions. We have (on and off) explored mechanisations as soon as first versions of [16]
appeared, but have made little progress with turning the relatively detailed proof sketch
in [16] into a formalisable proof. Having seen [17] and adapted the POSIX definition
given there for the algorithm by Sulzmann and Lu made all the difference: the proofs, as
said, are nearly straightforward. The question remains whether the original proof idea
of [16], potentially using our result as a stepping stone, can be made to work? Alas, we
really do not know despite considerable effort.

Closely related to our work is an automata-based lexer formalised by Nipkow [11].
This lexer also splits up strings into longest initial substrings, but Nipkow’s algorithm
is not completely computational. The algorithm by Sulzmann and Lu, in contrast, can
be implemented with ease in any functional language. A bespoke lexer for the Imp-
language is formalised in Coq as part of the Software Foundations book by Pierce et
al [15]. The disadvantage of such bespoke lexers is that they do not generalise easily
to more advanced features. Our formalisation is available from the Archive of Formal
Proofs [2] under http://www.isa-afp.org/entries/Posix-Lexing.shtml.

Acknowledgements: We are very grateful to Martin Sulzmann for his comments on our
work and moreover for patiently explaining to us the details in [16]. We also received
very helpful comments from James Cheney and anonymous referees.

http://www.isa-afp.org/entries/Posix-Lexing.shtml

22 Fahad Ausaf, Roy Dyckhoff, and Christian Urban

References

1. The Open Group Base Specification Issue 6 IEEE Std 1003.1 2004 Edition, 2004. http:
//pubs.opengroup.org/onlinepubs/009695399/basedefs/xbd chap09.html.

2. F. Ausaf, R. Dyckhoff, and C. Urban. POSIX Lexing with Derivatives of Regular Expres-
sions. Archive of Formal Proofs, 2016. http://www.isa-afp.org/entries/Posix-Lexing.shtml,
Formal proof development.

3. F. Ausaf, R. Dyckhoff, and C. Urban. POSIX Lexing with Derivatives of Regular Expres-
sions (Proof Pearl). In Proc. of the 7th International Conference on Interactive Theorem
Proving (ITP), volume 9807 of LNCS, pages 69–86, 2016.

4. J. A. Brzozowski. Derivatives of Regular Expressions. Journal of the ACM, 11(4):481–494,
1964.

5. T. Coquand and V. Siles. A Decision Procedure for Regular Expression Equivalence in
Type Theory. In Proc. of the 1st International Conference on Certified Programs and Proofs
(CPP), volume 7086 of LNCS, pages 119–134, 2011.

6. A. Frisch and L. Cardelli. Greedy Regular Expression Matching. In Proc. of the 31st Inter-
national Conference on Automata, Languages and Programming (ICALP), volume 3142 of
LNCS, pages 618–629, 2004.

7. N. B. B. Grathwohl, F. Henglein, and U. T. Rasmussen. A Crash-Course in Regular Expres-
sion Parsing and Regular Expressions as Types. Technical report, University of Copenhagen,
2014.

8. H. Hosoya, J. Vouillon, and B. C. Pierce. Regular Expression Types for XML. ACM Trans-
actions on Programming Languages and Systems (TOPLAS), 27(1):46–90, 2005.

9. A. Krauss and T. Nipkow. Proof Pearl: Regular Expression Equivalence and Relation Alge-
bra. Journal of Automated Reasoning, 49:95–106, 2012.

10. C. Kuklewicz. Regex Posix. https://wiki.haskell.org/Regex Posix.
11. T. Nipkow. Verified Lexical Analysis. In Proc. of the 11th International Conference on

Theorem Proving in Higher Order Logics (TPHOLs), volume 1479 of LNCS, pages 1–15,
1998.

12. S. Okui and T. Suzuki. Disambiguation in Regular Expression Matching via Position Au-
tomata with Augmented Transitions. In Proc. of the 15th International Conference on Im-
plementation and Application of Automata (CIAA), volume 6482 of LNCS, pages 231–240,
2010.

13. S. Okui and T. Suzuki. Disambiguation in Regular Expression Matching via Position Au-
tomata with Augmented Transitions. Technical report, University of Aizu, 2013.

14. S. Owens and K. Slind. Adapting Functional Programs to Higher Order Logic. Higher-Order
and Symbolic Computation, 21(4):377–409, 2008.

15. B. C. Pierce, C. Casinghino, M. Gaboardi, M. Greenberg, C. Hriţcu, V. Sjöberg, and
B. Yorgey. Software Foundations. Electronic textbook, 2015. http://www.cis.upenn.edu/
∼bcpierce/sf.

16. M. Sulzmann and K. Lu. POSIX Regular Expression Parsing with Derivatives. In Proc. of
the 12th International Conference on Functional and Logic Programming (FLOPS), volume
8475 of LNCS, pages 203–220, 2014.

17. S. Vansummeren. Type Inference for Unique Pattern Matching. ACM Transactions on Pro-
gramming Languages and Systems, 28(3):389–428, 2006.

http://pubs.opengroup.org/onlinepubs/009695399/basedefs/xbd_chap09.html
http://pubs.opengroup.org/onlinepubs/009695399/basedefs/xbd_chap09.html
http://www.isa-afp.org/entries/Posix-Lexing.shtml
https://wiki.haskell.org/Regex_Posix
http://www.cis.upenn.edu/~bcpierce/sf
http://www.cis.upenn.edu/~bcpierce/sf

	Introduction
	Preliminaries
	POSIX Regular Expression Matching
	Ordering of Values according to Okui and Suzuki
	Bitcoded Lexing
	Optimisations
	Conclusion

