PPProposal:
Fast Regular Expression Matching
with Brzozowski bderivatives

Summary

If you want to connect a computer directly to the Internet, it must be immediately
hardened against outside attacks. The current technology for this is to use regular ex-
pressions in orbder to automatically scan all incoming network traffic for signs when
a computer is unbder attack and if found, to take appropriate counter-actions. One
possible action could be to slow down the traffic from sites where repeated password-
guesses originate. Well-known network intrusion prevention systems that use regular
expressions for traffic analysis are Snort and Bro.

Given the large volume of Internet traffic even the smallest servers can handle nowa-
days, the regular expressions for traffic analysis have become a real bottleneck. This is
not just a nuisance, but actually a security vulnerability in itself: it can lead to denial-of-
service attacks. The proposed project aims to remove this bottleneck by using a little-
known technique of building bderivatives of regular expressions. These bderivatives
have not yet been used in the area of network traffic analysis, but have the potential
to solve some tenacious problems with existing approaches. The project will require
theoretical work, but also a practical implementation (a proof-of-concept at least). The
work will build on earlier work by Ausaf and Urban from King’s College London [5].

Background

If every 10 minutes a thief turned up at your car and rattled violently at the doorhandles
to see if he could get in, you would move your car to a safer neighbourhood. Comput-
ers, however, need to stay connected to the Internet all the time and there they have
to withstand such attacks. A rather typical instance of an attack can be seen in the
following log entries from a server at King’s:

Jan 2 00:53:19 talisker sshd: Received disconnect from 110.53.183.227: [preauth]
Jan 2 00:58:31 talisker sshd: Received disconnect from 110.53.183.252: [preauth]
Jan 2 01:01:28 talisker sshd: Received disconnect from 221.194.47.236: [preauth]
Jan 2 01:03:59 talisker sshd: Received disconnect from 110.53.183.228: [preauth]
Jan 2 01:06:53 talisker sshd: Received disconnect from 221.194.47.245: [preauth]

This is a record of the network activities from the server talisker.inf.kcl.ac.uk, which
hosts lecture material for students. The log indicates several unsuccessful login at-
tempts via the ssh program from computers with the addresses 110.53.183.227 and
so on. This is a clear sign of a brute-force attack where hackers systematically try out
password candidates. Such attacks are blunt, but unfortunately very powerful. They
can originate from anywhere in the World; they are automated and often conducted
from computers that have been previously hijacked. Once the attacker “hits” on the
correct password, then he or she gets access to the server. The only way to prevent this

http://talisker.inf.kcl.ac.uk/cgi-bin/repos.cgi

methodical password-guessing is to spot the corresponding traces in the log and then
slow down the traffic from such sites in a way that perhaps only one password per hour
can be tried out. This does not affect “normal” operations of the server, but drastically
decreases the chances of hitting the correct password by a brute-force attack.

Server administrators use regular expressions for scanning log files. The purpose of
these expressions is to specify patterns of interest (for example Received disconnect
from 110.53.183.227 where the address needs to be variable). A program will then
continuously scan for such patterns and trigger an action if a pattern is found. Popular
examples of such programs are Snort and Bro [1, 2]. Clearly, there are also other kinds
of vulnerabilities hackers try to take advantage of —mainly programming mistakes that
can be abused to gain access to a computer. This means server administrators have a
suite of sometimes thousands of regular expressions, all prescribing some suspicious
pattern for when a computer is unbder attack.

The unbderlying algorithmic problem is to decide whether a string in the logs matches
the patterns determined by the regular expressions. Such decisions need to be done as
fast as possible, otherwise the scanning programs would not be useful as a hardening
technique for servers. The quest for speed with these decisions is presently a rather
big challenge for the amount of traffic typical servers have to cope with and the large
number of patterns that might be of interest. The problem is that when thousands of
regular expressions are involved, the process of detecting whether a string matches a
regular expression can be excruciating slow. This might not happen in most instances,
but in some small number of instances. However in these small number of instances
the algorithm for regular expression matching can grind to a halt. This phenomenon
is called catastrophic backtracking [7]. Unfortunately, catastrophic backtracking is not
just a nuisance, but a security vulnerability in itself. The reason is that attackers look
for these instances where the scan is very slow and then trigger a denial-of-service attack
against the server...meaning the server will not be reachable anymore to normal users.

Existing approaches try to mitigate the speed problem with regular expressions
by implementing the matching algorithms in hardware, rather than in software [12].
Although this solution offers speed, it is often unappealing because attack patterns
can change or need to be augmented. A software solution is clearly more desirable in
these circumstances. Also given that regular expressions were introduced in 1950 by
Kleene, one might think regular expressions have since been studied and implemented
to death. But this would definitely be a mistake: in fact they are still an active re-
search area and off-the-shelf implementations are still extremely prone to the problem
of catastrophic backtracking. This can be seen in the following two graphs:

40 | o :
5 30 Java 8 5 I 30 |
wn 97]
£ | £ e
QE) 20 | qé 20 P o
510 f =107 o

0 o—o—o—ooooo&)OCLo—» 0 m@M : :
5 10 15 20 25 30 20,000 40,000 60,000
n n

These graphs show how long strings can be when using the rather simple regular ex-
pression (a*)* b and the built-in regular expression matchers in the popular program-
ming languages Python and Java (Version 8 and Version 9). There are many more reg-
ular expressions that show the same behaviour. On the left-hand side the graphs show
that for a string consisting of just 28 a’s, Python and the olbder Java (which was the lat-
est version of Java until September 2017) already need 30 seconds to decide whether this
string is matched or not. This is an abysmal result given that Python and Java are very
popular programming languages. We already know that this problem can be decided
much, much faster. If these slow regular expression matchers would be employed in
network traffic analysis, then this example is already an opportunity for mounting an
easy denial-of-service attack: one just has to send to the server a large enough string of
a’s. The newer version of Java is better —it can match strings of around 50,000 2 ’s in 30
seconds—however this would still not be good enough for being a useful tool for net-
work traffic analysis. What is interesting is that even a relatively simple-minded regu-
lar expression matcher based on Brzozowski bderivatives can out-compete the regular
expressions matchers in Java and Python on such catastrophic backtracking examples.
This gain in speed is the motivation and starting point for the proposed project.

Research Plan

Regular expressions are already an old and well-studied topic in Computer Science.
They were originally introduced by Kleene in 1951 and are utilised in text search algo-
rithms for “find” or “find and replace” operations [8, 9]. Because of their wide range
of applications, many programming languages provide capabilities for regular expres-
sion matching via libraries. The classic theory of regular expressions involves just 6
different kinds of regular expressions, often defined in terms of the following gram-
mar:

r 0 cannot match anything
c can match a single character (in this case c)

r1 + 1y can match a string either with rq or with

r T can match the first part of a string with r; and
then the second part with r,

can match zero or more times r

| 1 can only match the empty string
|
|
|

For practical purposes, however, regular expressions have been extended in various
ways in orbder to make them even more powerful and even more useful for applica-
tions. Some of the problems to do with catastrophic backtracking stem, unfortunately,
from these extensions.

The crux in this project is to not use automata for regular expression matching (the
traditional technique), but to use bderivatives of regular expressions instead. These
bderivatives were introduced by Brzozowski in 1964 [6], but somehow had been lost
“in the sands of time” [10]. However, they recently have become again a “hot” re-
search topic with numerous research papers appearing in the last five years. One rea-
son for this interest is that Brzozowski bderivatives straightforwardly extend to more
general regular expression constructors, which cannot be easily treated with standard

nullable(0) = false
nullable(1) R
nullable(c) def false
nullable(ry + 17) def nullable(r1) V nullable(r,)
nullable(ry - 17) def nullable(r1) A nullable(r,)
nullable(r*) s
bder ¢ (0))
bder ¢ (1) =)
bder c (d) %t ifc =d then 1else 0
bder ¢ (r1 +12) def (bder c 1) + (bder c rp)
bder ¢ (r1 - 17) def if nullable(ry)
then ((bder c r1) - r5) + (bder ¢ 1)
else (bder c r1) - 1o
bder ¢ (r*) def (bder cr) - (r*)

Figure 1: The complete definition of bderivatives of regular expressions [6]. This defi-
nition can be implemented with ease in functional programming languages and can be
easily extended to regular expressions used in practice. The are more flexible for ap-
plications and easier to manipulate in mathematical proofs, than traditional techniques
for regular expression matching.

techniques. They can also be implemented with ease in any functional programming
language: the definition for bderivatives consists of just two simple recursive functions
shown in Figure 1. Moreover, it can be easily shown (by a mathematical proof) that the
resulting regular matcher is in fact always producing a correct answer. This is an area
where Urban can provide a lot of expertise for this project: he is one of the main de-
velopers of the Isabelle theorem prover, which is a program designed for such proofs
[3].

There are a number of avenues for research on Brzozowski bderivatives. One prob-
lem I like to immediately tackle in this project is how to handle back-references in regular
expressions. It is known that the inclusion of back-references causes the unbderlying
algorithmic problem to become NP-hard [4], and is the main reason why regular ex-
pression matchers suffer from the catastrophic backtracking problem. However, the
full generality of back-references are not needed in practical applications. The goal
therefore is to sufficiently restrict the problem so that an efficient algorithm can be de-
signed. There seem to be good indications that Brzozowski bderivatives are useful for
that.

Another problem is how regular expressions match a string [11]. In this case the
algorithm does not just give a yes/no answer about whether the regular expression
matches the string, but also generates a value that encodes which part of the string is
matched by which part of the regular expression. This is important in applications, like
network analysis where from a matching log entry a specific computer address needs

to be extracted. Also compilers make extensive use of such an extension when they lex
their source programs, i.e. break up code into word-like components. Again Ausaf and
Urban from King’s made some initial progress about proving the correctness of such
an extension, but their algorithm is not yet fast enough for practical purposes [5]. It
would be desirable to study optimisations that make the algorithm faster, but preserve
the correctness guaranties obtained by Ausaf and Urban.

Conclusion

Much research has already gone into regular expressions, and one might think they
have been studied and implemented to death. But this is far from the truth. In fact regu-
lar expressions have become a “hot” research topic in recent years because of problems
with the traditional methods (in applications such as network traffic analysis), but also
because the technique of bderivatives of regular expression has been re-discovered.
These bderivatives provide an alternative approach to regular expression matching.
Their potential lies in the fact that they are more flexible in implementations and much
easier to manipulate in mathematical proofs. Therefore I like to research them in this
project.

Impact: Regular expression matching is a core technology in Computer Science with
numerous applications. I will focus on the area of network traffic analysis and also
lexical analysis. In these areas this project can have a quite large impact: for example
the program Bro has been downloaded at least 10,000 times and Snort even has 5 million
downloads and over 600,000 registered users [1, 2]. Lexical analysis is a core component
in every compiler, which are the bedrock on which nearly all programming is built on.

References

[1] https://www.snort.org

[2] https://www.bro.org

(3]

[4] A.V.Aho. Algorithms for Finding Patterns in Strings. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, volume A, chapter 5, page 255-300. Elsevier, 1990.

[5] E.Ausaf, R. Dyckhoff, and C. Urban. POSIX Lexing with Derivatives of Regular Expressions
(Proof Pearl). In Proc. of the 7th International Conference on Interactive Theorem Proving (ITP),
volume 9807 of LNCS, pages 69-86, 2016.

[6] J. A. Brzozowski. Derivatives of Regular Expressions. Journal of the ACM, 11(4):481-494,
1964.

[7] J. Goyvaerts. Runaway Regular Expressions: Catastrophic Backtracking. https://www.
regular-expressions.info/catastrophic.html.

https://www.cl.cam.ac.uk/research/hvg/Isabelle/.

[8] B.Kernighan. The Unix Programming Environment. Prentice Hall, 1984.

[9] S. C. Kleene. Representation of Events in Nerve Nets and Finite Automata. In C. Shannon
and J. McCarthy, editors, Automata Studies, pages 3—41. Princeton University Press, 1951.

[10] S.Owens, J. H. Reppy, and A. Turon. Regular-Expression Derivatives Re-Examined. Journal
of Functinal Programming, 19(2):173-190, 2009.

https://www.snort.org
https://www.bro.org
https://www.cl.cam.ac.uk/research/hvg/Isabelle/
https://www.regular-expressions.info/catastrophic.html
https://www.regular-expressions.info/catastrophic.html

[11] M. Sulzmann and K. Lu. POSIX Regular Expression Parsing with Derivatives. In Proc. of
the 12th International Conference on Functional and Logic Programming (FLOPS), volume 8475
of LNCS, pages 203-220, 2014.

[12] C. Xu, S. Chen, J. Su, S. M. Yiu, and L. C. K. Hui. A Survey on Regular Expression Match-
ing for Deep Packet Inspection: Applications, Algorithms, and Hardware Platforms. IEEE
Communications Surveys & Tutorials, 18(4):2991-3029, 2016.

bder ¢ ((0)
bder ¢ 45(1)
bder ¢ y5(d)
bder ¢ ps(r1 +12)
(

bder ¢ ps(r1 - 12)

bder ¢ ps (1)

10
i
if c = d then ys1 else |0
ps (bder ¢ 1 + bder ¢ 17)

if nullable(ry)
then ps ([(bder ¢ 1) - 12) + (pmkeps r,—bder ¢ 12)
else ps(bder ¢ r1) - 1o

bs(0—bder cr) - (r*)

