
POSIX Lexing with Derivatives of Regular Expressions
(Proof Pearl)

Fahad Ausaf1, Roy Dyckhoff2, and Christian Urban3

1 King’s College London
fahad.ausaf@icloud.com

2 University of St Andrews
roy.dyckhoff@st-andrews.ac.uk

3 King’s College London
christian.urban@kcl.ac.uk

Abstract. Brzozowski introduced the notion of derivatives for regular expres-
sions. They can be used for a very simple regular expression matching algorithm.
Sulzmann and Lu cleverly extended this algorithm in order to deal with POSIX
matching, which is the underlying disambiguation strategy for regular expres-
sions needed in lexers. Sulzmann and Lu have made available on-line what they
call a “rigorous proof” of the correctness of their algorithm w.r.t. their specifica-
tion; regrettably, it appears to us to have unfillable gaps. In the first part of this
paper we give our inductive definition of what a POSIX value is and show (i) that
such a value is unique (for given regular expression and string being matched) and
(ii) that Sulzmann and Lu’s algorithm always generates such a value (provided
that the regular expression matches the string). We also prove the correctness of
an optimised version of the POSIX matching algorithm. Our definitions and proof
are much simpler than those by Sulzmann and Lu and can be easily formalised in
Isabelle/HOL. In the second part we analyse the correctness argument by Sulz-
mann and Lu and explain why it seems hard to turn it into a proof rigorous enough
to be accepted by a system such as Isabelle/HOL.

Keywords: POSIX matching, Derivatives of Regular Expressions, Isabelle/HOL

1 Introduction

Brzozowski [1] introduced the notion of the derivative r\c of a regular expression r
w.r.t. a character c, and showed that it gave a simple solution to the problem of matching
a string s with a regular expression r: if the derivative of r w.r.t. (in succession) all the
characters of the string matches the empty string, then r matches s (and vice versa).
The derivative has the property (which may be regarded as its specification) that, for
every string s and regular expression r and character c, one has cs ∈ L(r) if and only if
s ∈ L(r\c). The beauty of Brzozowski’s derivatives is that they are neatly expressible in
any functional language, and easily definable and reasoned about in theorem provers—
the definitions just consist of inductive datatypes and simple recursive functions. A

2 Fahad Ausaf, Roy Dyckhoff, and Christian Urban

completely formalised correctness proof of this matcher in for example HOL4 has been
mentioned in [5]. Another one in Isabelle/HOL is in [3].

One limitation of Brzozowski’s matcher is that it only generates a YES/NO answer
for whether a string is being matched by a regular expression. Sulzmann and Lu [6]
extended this matcher to allow generation not just of a YES/NO answer but of an actual
matching, called a [lexical] value. They give a simple algorithm to calculate a value
that appears to be the value associated with POSIX matching [4,7]. The challenge then
is to specify that value, in an algorithm-independent fashion, and to show that Sulza-
mann and Lu’s derivative-based algorithm does indeed calculate a value that is correct
according to the specification.

The answer given by Sulzmann and Lu [6] is to define a relation (called an “Order
Relation”) on the set of values of r, and to show that (once a string to be matched is
chosen) there is a maximum element and that it is computed by their derivative-based
algorithm. This proof idea is inspired by work of Frisch and Cardelli [2] on a GREEDY
regular expression matching algorithm. Beginning with our observations that, without
evidence that it is transitive, it cannot be called an “order relation”, and that the relation
is called a “total order” despite being evidently not total4, we identify problems with
this approach (of which some of the proofs are not published in [6]); perhaps more
importantly, we give a simple inductive (and algorithm-independent) definition of what
we call being a POSIX value for a regular expression r and a string s; we show that the
algorithm computes such a value and that such a value is unique. Proofs are both done
by hand and checked in Isabelle/HOL. The experience of doing our proofs has been
that this mechanical checking was absolutely essential: this subject area has hidden
snares. This was also noted by Kuklewitz [4] who found that nearly all POSIX matching
implementations are “buggy” [6, Page 203].

If a regular expression matches a string, then in general there is more than one way
of how the string is matched. There are two commonly used disambiguation strategies
to generate a unique answer: one is called GREEDY matching [2] and the other is
POSIX matching [4,6,7]. For example consider the string xy and the regular expression
(x + y + xy)⋆. Either the string can be matched in two ‘iterations’ by the single letter-
regular expressions x and y, or directly in one iteration by xy. The first case corresponds
to GREEDY matching, which first matches with the left-most symbol and only matches
the next symbol in case of a mismatch (this is greedy in the sense of preferring instant
gratification to delayed repletion). The second case is POSIX matching, which prefers
the longest match.

In the context of lexing, where an input string needs to be split up into a sequence of
tokens, POSIX is the more natural disambiguation strategy for what programmers con-
sider basic syntactic building blocks in their programs. These building blocks are often
specified by some regular expressions, say rkey and rid for recognising keywords and

4 The relation ≥r defined in [6] is a relation on the values for the regular expression r; but it only
holds between v and v ′ in cases where v and v ′ have the same flattening (underlying string).
So a counterexample to totality is given by taking two values v and v ′ for r that have different
flattenings (see Section 3). A different relation ≥r,s on the set of values for r with flattening s
is definable by the same approach, and is indeed total; but that is not what Proposition 1 of [6]
does.

POSIX Lexing with Derivatives of Regular Expressions 3

identifiers, respectively. There are two underlying (informal) rules behind tokenising a
string in a POSIX fashion:

• The Longest Match Rule (or “maximal munch rule”):
The longest initial substring matched by any regular expression is taken as next
token.

• Rule Priority:
For a particular longest initial substring, the first regular expression that can match
determines the token.

Consider for example rkey recognising keywords such as if, then and so on; and rid
recognising identifiers (say, a single character followed by characters or numbers). Then
we can form the regular expression (rkey + rid)

⋆ and use POSIX matching to tokenise
strings, say iffoo and if. In the first case we obtain by the longest match rule a single
identifier token, not a keyword followed by an identifier. In the second case we obtain
by rule priority a keyword token, not an identifier token—even if rid matches also.

Contributions: (NOT DONE YET) We have implemented in Isabelle/HOL the derivative-
based regular expression matching algorithm as described by Sulzmann and Lu [6]. We
have proved the correctness of this algorithm according to our specification of what a
POSIX value is. The informal correctness proof given in [6] is in final form5 and to
us contains unfillable gaps. Our specification of a POSIX value consists of a simple
inductive definition that given a string and a regular expression uniquely determines
this value. Derivatives as calculated by Brzozowski’s method are usually more complex
regular expressions than the initial one; various optimisations are possible, such as the
simplifications of 0 + r, r + 0, 1 · r and r · 1 to r. One of the advantages of having a
simple specification and correctness proof is that the latter can be refined to allow for
such optimisations and simple correctness proof.

An extended version of [6] is available at the website of its first author; this includes
some “proofs”, claimed in [6] to be “rigorous”. Since these are evidently not in final
form, we make no comment thereon, preferring to give general reasons for our belief
that the approach of [6] is problematic rather than to discuss details of unpublished
work.

2 Preliminaries

Strings in Isabelle/HOL are lists of characters with the empty string being represented
by the empty list, written [], and list-cons being written as :: . Often we use the usual
bracket notation for lists also for strings; for example a string consisting of just a single
character c is written [c]. By using the type char for characters we have a supply of
finitely many characters roughly corresponding to the ASCII character set. Regular
expressions are defined as usual as the elements of the following inductive datatype:

r := 0 | 1 | c | r1 + r2 | r1 · r2 | r⋆

5

4 Fahad Ausaf, Roy Dyckhoff, and Christian Urban

where 0 stands for the regular expression that does not match any string, 1 for the
regular expression that matches only the empty string and c for matching a character
literal. The language of a regular expression is also defined as usual by the recursive
function L with the clauses:

L(0) def
= ∅

L(1) def
= {[]}

L(c) def
= {[c]}

L(r1 · r2)
def
= L(r1) @ L(r2)

L(r1 + r2)
def
= L(r1) ∪ L(r2)

L(r⋆) def
= (L(r))⋆

In the fourth clause we use the operation @ for the concatenation of two languages
(it is also list-append for strings). We use the star-notation for regular expressions and
languages (in the last clause above). The star on languages is defined inductively by
two clauses: (i) for the empty string being in the star of a language and (ii) if s1 is in
a language and s2 in the star of this language, then also s1 @ s2 is in the star of this
language. It will also be convenient to use the following notion of a semantic derivative
(or left quotient) of a language, say A, defined as:

Der c A def
= {s | c :: s ∈ A}

For semantic derivatives we have the following equations (for example mechanically
proved in [3]):

Der c ∅ def
= ∅

Der c {[]} def
= ∅

Der c {[d]} def
= if c = d then {[]} else ∅

Der c (A ∪ B) def
= Der c A ∪ Der c B

Der c (A @ B) def
= (Der c A @ B) ∪ (if [] ∈ A then Der c B else ∅)

Der c (A⋆) def
= Der c A @ A⋆

(1)

Brzozowski’s derivatives of regular expressions [1] can be easily defined by two recur-
sive functions: the first is from regular expressions to booleans (implementing a test
when a regular expression can match the empty string), and the second takes a regular
expression and a character to a (derivative) regular expression:

POSIX Lexing with Derivatives of Regular Expressions 5

nullable (0) def
= False

nullable (1) def
= True

nullable (c) def
= False

nullable (r1 + r2)
def
= nullable r1 ∨ nullable r2

nullable (r1 · r2)
def
= nullable r1 ∧ nullable r2

nullable (r⋆) def
= True

(0)\c def
= 0

(1)\c def
= 0

d\c def
= if c = d then 1 else 0

(r1 + r2)\c def
= (r1\c) + (r2\c)

(r1 · r2)\c def
= if nullable r1 then (r1\c) · r2 + (r2\c) else (r1\c) · r2

(r⋆)\c def
= (r\c) · r⋆

We may extend this definition to give derivatives w.r.t. strings:

r\[] def
= r

r\(c :: s) def
= (r\c)\s

Given the equations in (1), it is a relatively easy exercise in mechanical reasoning to
establish that

Proposition 1.
(1) nullable r if and only if [] ∈ L(r), and
(2) L(r\c) = Der c (L(r)).

With this in place it is also very routine to prove that the regular expression matcher
defined as

match r s
def
= nullable (r\s)

gives a positive answer if and only if s ∈ L(r). Consequently, this regular expression
matching algorithm satisfies the usual specification. While the matcher above calculates
a provably correct a YES/NO answer for whether a regular expression matches a string,
the novel idea of Sulzmann and Lu [6] is to append another phase to this algorithm in
order to calculate a [lexical] value. We will explain the details next.

3 POSIX Regular Expression Matching

The clever idea in [6] is to introduce values for encoding how a regular expression
matches a string and then define a function on values that mirrors (but inverts) the
construction of the derivative on regular expressions. Values are defined as the inductive
datatype

6 Fahad Ausaf, Roy Dyckhoff, and Christian Urban

v := () | Char c | Left v | Right v | Seq v1 v2 | Stars vs

where we use vs standing for a list of values. (This is similar to the approach taken by
Frisch and Cardelli for GREEDY matching [?], and Sulzmann and Lu [?] for POSIX
matching). The string underlying a value can be calculated by the flat function, written
| | and defined as:

|()| def
= []

|Char c| def
= [c]

|Left v| def
= |v|

|Right v| def
= |v|

|Seq v1 v2|
def
= |v1| @ |v2|

|Stars []| def
= []

|Stars (v :: vs)| def
= |v| @ |Stars vs|

Sulzmann and Lu also define inductively an inhabitation relation that associates values
to regular expressions:

▷ () : 1 ▷ Char c : c

▷ v1 : r1
▷ Left v1 : r1 + r2

▷ v2 : r1
▷ Right v2 : r2 + r1

▷ v1 : r1 ▷ v2 : r2
▷ Seq v1 v2 : r1 · r2

▷ Stars [] : r⋆
▷ v : r ▷ Stars vs : r⋆

▷ Stars (v :: vs) : r⋆

Note that no values are associated with the regular expression 0, and that the only value
associated with the regular expression 1 is (), pronounced (if one must) as “Void”. It
is routine to stablish how values “inhabiting” a regular expression correspond to the
language of a regular expression, namely

Proposition 2. L(r) = {|v| | ▷ v : r}

In general there are more than one value associated with a regular expression. In
case of POSIX matching the problem is to calculate the unique value that satisfies the
(informal) POSIX constraints from the Introduction. Graphically the regular expression
matching algorithm by Sulzmann and Lu can be illustrated by the picture in Figure 1
where the path from the left to the right involving der/nullable is the first phase of
the algorithm (calculating successive Brzozowski’s derivatives) and mkeps/inj, the path
from right to left, the second phase. This picture shows the steps required when a reg-
ular expression, say r1, matches the string [a, b, c]. We first build the three derivatives

POSIX Lexing with Derivatives of Regular Expressions 7

r1 r2
\a

r3
\b

r4
\c

nullable

v4v3
inj r3 c

v2
inj r2 b

v1
inj r1 a

mkeps

Fig. 1. The two phases of the algorithm by Sulzmann & Lu [6] matching the string [a,
b, c]. The first phase (the arrows from left to right) is Brzozowski’s matcher building
succesive derivatives. If at the last regular expression is nullable, then functions of the
second phase are called: first mkeps calculates a value witnessing how the empty string
has been recognised by r4. After that the function inj ‘injects back’ the characters of the
string into the values (the arrows from right to left).

(according to a, b and c). We then use nullable to find out whether the resulting deriva-
tive regular expression r4 can match the empty string. If yes, we call the function mkeps
that produces a value v4 for how r4 can match the empty string (taking into account
the POSIX constraints in case there are several ways). This functions is defined by the
clauses:

mkeps (1) def
= ()

mkeps (r1 · r2)
def
= Seq (mkeps r1) (mkeps r2)

mkeps (r1 + r2)
def
= if nullable r1 then Left (mkeps r1) else Right (mkeps r2)

mkeps (r⋆) def
= Stars []

Note that this function needs only to be partially defined, namely only for regular ex-
pressions that are nullable. In case nullable fails, the string [a, b, c] cannot be matched
by r1 and an error is raised. Note also how this function makes some subtle choices lead-
ing to a POSIX value: for example if the alternative, say r1 + r2, can match the empty
string and furthermore r1 can match the empty string, then we return a val.Left-value.
The val.Right-value will only be returned if r1 is not nullable.

The most interesting novelty from Sulzmann and Lu [6] is the construction value
for how r1 can match the string [a, b, c] from the value how the last derivative, r4 in
Fig 1, can match the empty string. Sulzmann and Lu acchieve this by stepwise “injecting
back” the characters into the values thus inverting the operation of building derivatives
on the level of values. The corresponding function, called inj, takes three arguments, a
regular expression, a character and a value. For example in the first inj-step in Fig 1 the
regular expression r3, the character c from the last derivative step and v4, which is the
value corresponding to the derivative regular expression r4. The result is the new value
v3. The final result of the algorithm is the value v1 corresponding to the input regular
expression. The inj function is by recursion on the regular expression and by analysing
the shape of values.

8 Fahad Ausaf, Roy Dyckhoff, and Christian Urban

(1) inj d c ()
def
= Char d

(2) inj (r1 + r2) c (Left v1)
def
= Left (inj r1 c v1)

(3) inj (r1 + r2) c (Right v2)
def
= Right (inj r2 c v2)

(4) inj (r1 · r2) c (Seq v1 v2)
def
= Seq (inj r1 c v1) v2

(5) inj (r1 · r2) c (Left (Seq v1 v2))
def
= Seq (inj r1 c v1) v2

(6) inj (r1 · r2) c (Right v2)
def
= Seq (mkeps r1) (inj r2 c v2)

(7) inj (r⋆) c (Seq v (Stars vs)) def
= Stars (inj r c v :: vs)

To better understand what is going on in this definition it might be instructive to look
first at the three sequence cases (clauses (4)–(6)). In each case we need to construct an
“injected value” for r1 · r2. Recall the clause of the der-function for sequence regular
expressions:

(r1 · r2)\c def
= if nullable r1 then (r1\c) · r2 + (r2\c) else (r1\c) · r2

Consider first the else-branch where the derivative is (r1\c) · r2. The corresponding
value must therefore be the form Seq v1 v2, which matches clause (4) of inj. In the
if-branch the derivative is an alternative, namely (r1\c) · r2 + (r2\c). This means we
either have to consider a Left- or Right-value. In case of the Left-value we know further
it must be a value for a sequence regular expression. Therefore the pattern we match in
the clause (5) is Left (Seq v1 v2), while in (6) it is just Right v2. One more interesting
point is in the right-hand side of clause (6): since in this case the regular expression r1
does not “contribute” in matching the string, that is only matches the empty string, we
need to call mkeps in order to construct a value how r1 can match this empty string. A
similar argument applies for why we can expect in clause (7) that the value is of the
form Seq v (Stars vs) (the derivative of a star is r · r⋆). Finally, the reason for why we
can ignore the second argument in clause (1) of inj is that it will only ever be called in
cases where c = d, but the usual linearity restrictions in pattern-matches do not allow is
to build this constraint explicitly into the pattern.

Having defined the mkeps and inj function we can extend Brzozowski’s matcher
so that a [lexical] value is constructed (assuming the regular expression matches the
string). The clauses of the lexer are

lexer r [] def
= if nullable r then Some (mkeps r) else None

lexer r (c :: s) def
= case lexer (r\c) s of

None ⇒ None
| Some v ⇒ Some (inj r c v)

NOT DONE YET
Therefore there are, for example, three cases for sequence regular expressions (for

all possible shapes of the value).
Again the virtues of this algorithm is that it can be implemented with ease in a

functional programming language and also in Isabelle/HOL.
The well-known idea of POSIX lexing is informally defined in (for example) [?];

as correctly argued in [6], this needs formal specification. The rough idea is that, in

POSIX Lexing with Derivatives of Regular Expressions 9

contrast to the so-called GREEDY algorithm, POSIX lexing chooses to match more
deeply and using left choices rather than a right choices. For example, note that to
match the string [a, b] with the regular expression (a+ ε) ◦ (b+ ab) the matching will
return (V oid,Right(ab)) rather than (Left a, Left b). [The regular expression ab is
short for (Lit a) ◦ (Lit b).] Similarly, to match “a” with (a+ a) the leftmost a will be
chosen.

We use a simple inductive definition to specify this notion, incorporating the POSIX-
specific choices into the side-conditions for the rules Rtl+2, Rtl◦ and Rtl∗ (as they are
now called). By contrast, [6] defines a relation between values and argues that there is
a maximum value, as given by the derivative-based algorithm yet to be spelt out. The
relation we define is ternary, relating strings, values and regular expressions.

Our Posix relation (s, r)→ v

([], 1) → () ([c], c)→ Char c

(s, r1)→ v
(s, r1 + r2) → Left v

(s, r2) → v s /∈ L(r1)
(s, r1 + r2)→ Right v

(s1, r1)→ v1 (s2, r2)→ v2
∄ s3 s4. s3 ̸= [] ∧ s3 @ s4 = s2 ∧ s1 @ s3 ∈ L(r1) ∧ s4 ∈ L(r2)

(s1 @ s2, r1 · r2)→ Seq v1 v2

(s1, r) → v (s2, r⋆) → Stars vs
|v| ̸= [] ∄ s3 s4. s3 ̸= [] ∧ s3 @ s4 = s2 ∧ s1 @ s3 ∈ L(r) ∧ s4 ∈ L(r⋆)

(s1 @ s2, r⋆)→ Stars (v :: vs)

([], r⋆) → Stars []

4 The Argument by Sulzmmann and Lu

5 Conclusion

Nipkow lexer from 2000

Values
The mkeps function
The inj function
The inhabitation relation:

10 Fahad Ausaf, Roy Dyckhoff, and Christian Urban

▷ v1 : r1 ▷ v2 : r2
▷ Seq v1 v2 : r1 · r2

▷ v1 : r1
▷ Left v1 : r1 + r2

▷ v2 : r1
▷ Right v2 : r2 + r1

▷ () : 1 ▷ Char c : c

▷ Stars [] : r⋆
▷ v : r ▷ Stars vs : r⋆

▷ Stars (v :: vs) : r⋆

We have also introduced a slightly restricted version of this relation where the last rule
is restricted so that |v| ̸= []. This relation for non-problematic is written |= v : r.

Our version of Sulzmann’s ordering relation

v1 ≻r1 v1 ′ v1 ̸= v1 ′

(Seq v1 v2) ≻(r1 · r2) (Seq v1 ′ v2 ′)

v2 ≻r2 v2 ′

(Seq v1 v2) ≻(r1 · r2) (Seq v1 v2 ′)

len (|v1|) ≤ len (|v2|)
(Left v2) ≻(r1 + r2) (Right v1)

len (|v2|) < len (|v1|)
(Right v1) ≻(r1 + r2) (Left v2)

v2 ≻r2 v2 ′

(Right v2) ≻(r1 + r2) (Right v2 ′)

v1 ≻r1 v1 ′

(Left v1) ≻(r1 + r2) (Left v1 ′)

(()) ≻(1) (()) (Char c) ≻(c) (Char c)

|Stars (v :: vs)| = []

(Stars []) ≻(r⋆) (Stars (v :: vs))
|Stars (v :: vs)| ̸= []

(Stars (v :: vs)) ≻(r⋆) (Stars [])

v1 ≻r v2 v1 ̸= v2
(Stars (v1 :: vs1)) ≻(r⋆) (Stars (v2 :: vs2))

(Stars vs1) ≻(r⋆) (Stars vs2)
(Stars (v :: vs1)) ≻(r⋆) (Stars (v :: vs2)) (Stars []) ≻(r⋆) (Stars [])

A prefix of a string s

s1 ⊑ s2
def
= ∃ s3. s1 @ s3 = s2

Values and non-problematic values

Values r s
def
= {v | ▷ v : r ∧ (|v|) ⊑ s}

The point is that for a given s and r there are only finitely many non-problematic values.

POSIX Lexing with Derivatives of Regular Expressions 11

Some lemmas we have proved:

L(r) = {|v| | ▷ v : r}
L(r) = {|v| | |= v : r}
If nullable r then ▷ mkeps r : r.
If nullable r then |mkeps r| = [].
If ▷ v : r\c then ▷ inj r c v : r.
If ▷ v : r\c then |inj r c v| = c :: (|v|).
If nullable r then ([], r) → mkeps r.
If (s, r)→ v then |v| = s.
If (s, r)→ v then |= v : r.
If (s, r)→ v1 and (s, r)→ v2 then v1 = v2.

This is the main theorem that lets us prove that the algorithm is correct according to (s,
r)→ v:

If (s, r\c) → v then (c :: s, r)→ inj r c v.

Proof The proof is by induction on the definition of der. Other inductions would go
through as well. The interesting case is for r1 · r2. First we analyse the case where
nullable r1. We have by induction hypothesis

(IH1) ∀ s v. if (s, r1\c)→ v then (c :: s, r1)→ inj r1 c v
(IH2) ∀ s v. if (s, r2\c)→ v then (c :: s, r2)→ inj r2 c v

and have

(s, (r1\c) · r2 + (r2\c)) → v

There are two cases what v can be: (1) Left v ′ and (2) Right v ′.

(1) We know (s, (r1\c) · r2)→ v ′ holds, from which we can infer that there are s1, s2,
v1, v2 with

(s1, r1\c)→ v1 and (s2, r2)→ v2

and also

∄ s3 s4. s3 ̸= [] ∧ s3 @ s4 = s2 ∧ s1 @ s3 ∈ L(r1\c) ∧ s4 ∈ L(r2)

and have to prove

(c :: s1 @ s2, r1 · r2)→ Seq (inj r1 c v1) v2

The two requirements (c :: s1, r1)→ inj r1 c v1 and (s2, r2)→ v2 can be proved by
the induction hypothese (IH1) and the fact above.
This leaves to prove

∄ s3 s4. s3 ̸= [] ∧ s3 @ s4 = s2 ∧ c :: s1 @ s3 ∈ L(r1) ∧ s4 ∈ L(r2)

which holds because c :: s1 @ s3 ∈ L(r1) implies s1 @ s3 ∈ L(r1\c)

12 Fahad Ausaf, Roy Dyckhoff, and Christian Urban

(2) This case is similar.

The final case is that ¬ nullable r1 holds. This case again similar to the cases above.

References

1. J. A. Brzozowski. Derivatives of Regular Expressions. Journal of the ACM, 11(4):481–494,
1964.

2. A. Frisch and L. Cardelli. Greedy Regular Expression Matching. In Proc. of the 31st Inter-
national Conference on Automata, Languages and Programming (ICALP), volume 3142 of
LNCS, pages 618–629, 2004.

3. A. Krauss and T. Nipkow. Proof Pearl: Regular Expression Equivalence and Relation Algebra.
Journal of Automated Reasoning, 49:95–106, 2012.

4. C. Kuklewicz. Regex Posix. https://wiki.haskell.org/Regex Posix.
5. S. Owens and K. Slind. Adapting Functional Programs to Higher Order Logic. Higher-Order

and Symbolic Computation, 21(4):377–409, 2008.
6. M. Sulzmann and K. Lu. POSIX Regular Expression Parsing with Derivatives. In Proc. of

the 12th International Conference on Functional and Logic Programming (FLOPS), volume
8475 of LNCS, pages 203–220, 2014.

7. S. Vansummeren. Type Inference for Unique Pattern Matching. ACM Transactions on Pro-
gramming Languages and Systems, 28(3):389–428, 2006.

6 Roy’s Rules

V oid ◁ ϵ Char c ◁ Lit c

v1 ◁ r1

Left v1 ◁ r1 + r2

v2 ◁ r2 |v2| ̸∈ L(r1)

Right v2 ◁ r1 + r2

v1 ◁ r1 v2 ◁ r2 s ∈ L(r1\|v1|) ∧ |v2|\s ϵ L(r2) ⇒ s = []

(v1, v2) ◁ r1 · r2

v ◁ r vs ◁ r∗ |v| ̸= []

(v :: vs) ◁ r∗
[] ◁ r∗

https://wiki.haskell.org/Regex_Posix

	Introduction
	Preliminaries
	POSIX Regular Expression Matching
	The Argument by Sulzmmann and Lu
	Conclusion
	Roy's Rules

