A lemma which might be true, but can also be false, is as follows:

If (1)
$$v_1 \succ_{der c r} v_2$$
,
(2) $\vdash v_1 : der c r$, and
(3) $\vdash v_2 : der c r$ holds,
then $inj \ r \ c \ v_1 \succ_r inj \ r \ c \ v_2$ also holds.

It essentially states that if one value v_1 is bigger than v_2 then this ordering is preserved under injections. This is proved by induction (on the definition of *der*...this is very similar to an induction on r).

The case that is still unproved is the sequence case where we assume $r = r_1 \cdot r_2$ and also r_1 being nullable. The derivative der c r is then

$$der \ c \ r = ((der \ c \ r_1) \cdot r_2) + (der \ c \ r_2)$$

or without the parentheses

$$der \ c \ r = (der \ c \ r_1) \cdot r_2 + der \ c \ r_2$$

In this case the assumptions are

- (a) $v_1 \succ_{(der \ c \ r_1) \cdot r_2 + der \ c \ r_2} v_2$ (b) $\vdash v_1 : (der \ c \ r_1) \cdot r_2 + der \ c \ r_2$ (c) $\vdash v_2 : (der \ c \ r_1) \cdot r_2 + der \ c \ r_2$
- (d) $nullable(r_1)$

The induction hypotheses are

$$\begin{array}{ll} \text{(IH1)} & \forall v_1 v_2. \; v_1 \succ_{der \; c \; r_1} \; v_2 \land \vdash v_1 : der \; c \; r_1 \land \vdash v_2 : der \; c \; r_1 \\ & \longrightarrow inj \; r_1 \; c \; v_1 \succ r_1 \; inj \; r_1 \; c \; v_2 \\ \text{(IH2)} & \forall v_1 v_2. \; v_1 \succ_{der \; c \; r_2} \; v_2 \land \vdash v_2 : der \; c \; r_2 \land \vdash v_2 : der \; c \; r_2 \\ & \longrightarrow inj \; r_2 \; c \; v_1 \succ r_2 \; inj \; r_2 \; c \; v_2 \end{array}$$

The goal is

$$(goal) \qquad inj \ (r_1 \cdot r_2) \ c \ v_1 \succ_{r_1 \cdot r_2} inj \ (r_1 \cdot r_2) \ c \ v_2$$

If we analyse how (a) could have arisen (that is make a case distinction), then we will find four cases:

 $\begin{array}{lll} \text{LL} & v_1 = Left(w_1), \, v_2 = Left(w_2) \\ \text{LR} & v_1 = Left(w_1), \, v_2 = Right(w_2) \\ \text{RL} & v_1 = Right(w_1), \, v_2 = Left(w_2) \\ \text{RR} & v_1 = Right(w_1), \, v_2 = Right(w_2) \end{array}$

We have to establish our goal in all four cases.

Case LR

The corresponding rule (instantiated) is:

$$len |w_1| \ge len |w_2|$$

Left(w_1) $\succ_{(der \ c \ r_1) \cdot r_2 + der \ c \ r_2} Right(w_2)$

This means we can also assume in this case

(e)
$$len |w_1| \ge len |w_2|$$

which is the premise of the rule above. Instantiating v_1 and v_2 in the assumptions (b) and (c) gives us

$$\begin{array}{ll} (\mathbf{b}^*) & \vdash Left(w_1) : (der \ c \ r_1) \cdot r_2 + der \ c \ r_2 \\ (\mathbf{c}^*) & \vdash Right(w_2) : (der \ c \ r_1) \cdot r_2 + der \ c \ r_2 \end{array}$$

Since these are assumptions, we can further analyse how they could have arisen according to the rules of $\vdash _:_$. This gives us two new assumptions

$$\begin{array}{ll} (\mathbf{b}^{**}) & \vdash w_1 : (der \ c \ r_1) \cdot r_2 \\ (\mathbf{c}^{**}) & \vdash w_2 : der \ c \ r_2 \end{array}$$

Looking at (b^{**}) we can further analyse how this judgement could have arisen. This tells us that w_1 must have been a sequence, say $u_1 \cdot u_2$, with

$$(b^{***}) \vdash u_1 : der \ c \ r_1 \\ \vdash u_2 : r_2$$

Instantiating the goal means we need to prove

$$inj (r_1 \cdot r_2) c (Left(u_1 \cdot u_2)) \succ_{r_1 \cdot r_2} inj (r_1 \cdot r_2) c (Right(w_2))$$

We can simplify this according to the rules of *inj*:

$$(inj r_1 c u_1) \cdot u_2 \succ_{r_1 \cdot r_2} (mkeps r_1) \cdot (inj r_2 c w_2)$$

This is what we need to prove.

Case RL

The corresponding rule (instantiated) is:

$$\frac{len |w_1| > len |w_2|}{Right(w_1) \succ_{(der \ c \ r_1) \cdot r_2 + der \ c \ r_2} Left(w_2)}$$