
An Isomorphism Between Substructural Proofs
and Deterministic Finite Automata∗

Henry DeYoung and Frank Pfenning

Computer Science Department, Carnegie Mellon University, Pittsburgh, PA USA
{hdeyoung,fp}@cs.cmu.edu

Abstract
Proof theory is a powerful tool for understanding computational phenomena, as most famously
exemplified by the Curry–Howard isomorphism between intuitionistic logic and the simply-typed
λ-calculus. In this paper, we identify a fragment of intuitionistic linear logic with least fixed
points and establish a Curry–Howard isomorphism between a class of proofs in this fragment
and deterministic finite automata. Proof-theoretically, closure of regular languages under com-
plementation, union, and intersection can then be understood in terms of cut elimination. We
also establish an isomorphism between a different class of proofs and subsequential string trans-
ducers. Because prior work has shown that linear proofs can be seen as session-typed processes,
a concurrent semantics of transducer composition is obtained for free.
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1 Introduction

Proof theory is a powerful tool for understanding computational phenomena, as most
famously exemplified by the Curry–Howard isomorphism between intuitionistic logic and
the simply-typed λ-calculus [12]. Under this isomorphism, propositions are types, proofs
are well-typed programs, and proof normalization is computation. Another example is
the recently discovered isomorphism [3, 4] between intuitionistic linear logic [9, 5] and the
session-typed π-calculus [10]. Here, linear propositions are session types, sequent calculus
proofs are well-typed concurrent processes, and proof reductions during cut elimination effect
interprocess communication.

Stepping outside programming calculi, deterministic finite automata (DFAs) [16, 11] are a
mathematical model of very basic computation. When a DFA is fed a finite string of symbols
as input, it changes state as it reads each symbol and, once it has finished reading, returns
a Boolean answer — either accept or reject. Given the remarkable successes in using proof
theory to understand computational phenomena, it’s quite natural to wonder if a similar
story can be told for DFAs.

More specifically, because the intuitive description of a DFA’s computational behavior
sounds a bit like a process that realizes a Boolean-valued function on finite strings, is there
a Curry–Howard isomorphism for DFAs that is somehow related to the aforementioned
isomorphism between intuitionistic linear logic and the session-typed π-calculus?

Yes, indeed there is, as this paper demonstrates. The contributions are threefold:
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Proofs as DFAs. In the fragment of intuitionistic linear logic with least fixed points described
in Section 2, we can define propositions String and Ans that characterize finite strings and
Boolean answers, respectively. Under the isomorphism with the session-typed π-calculus,
these propositions become session types of processes. Section 4.2 gives an encoding
of DFAs as processes of type String ` Ans in which DFA transitions are matched by
process reductions. By proving in Section 4.3 the converse — that every process of type
String ` Ans corresponds to a DFA — we establish an isomorphism between DFAs and
processes (which are proofs) of type String ` Ans.

Closure properties by cut elimination. As one would hope, this isomorphism allows logical
ideas to be leveraged into insight about DFAs. Section 5 demonstrates that the closure
of regular languages under complementation, intersection, and union can be understood
proof-theoretically in terms of cut elimination. In fact, cut elimination can be seen as
constructing the very same DFAs traditionally used in proving those closure properties.

Proofs as string transducers. String transducers, specifically subsequential string transduc-
ers [15, 13], generalize DFAs by producing a finite string, rather than Boolean answer,
as output. Section 6 establishes an isomorphism between subsequential transducers and
processes of type String ` String. With this isomorphism, a concurrent semantics of
transducer composition comes for free (Section 7).

2 Linear logic proofs as session-typed processes

Recently, a Curry–Howard isomorphism between intuitionistic linear logic [9, 5] and the
session-typed π-calculus [10] has been discovered [3, 4]: Propositions are session types, proofs
are well-typed processes, and cut reductions effect interprocess communication. In this
section, we present a fragment of intuitionistic linear logic and give its interpretation as
a session-typing discipline for concurrent processes. Our treatment of corecursive process
definitions will somewhat differ from previous work, but the underlying ideas are the same.

In session-based concurrency, a process provides a service along a designated channel,
perhaps also using services provided by other processes. Therefore, the basic session-typing
judgment is the linear hypothetical judgment

x1:A1, . . . , xn:An ` P :: x:A ,

meaning “Using services Ai that are assumed to be offered along channels xi, process P
provides service A along channel x.” (The channels xi and x must all be distinct and are
binding occurrences with scope over the process P .) This basic session-typing judgment can
be seen as an annotation of an intuitionistic linear sequent.

The services that a process uses and provides are described by session types A. For our
fragment, the session types are the closed propositions generated by the grammar

A ::= �`∈L{`:A`} | A1 �A2 | 1 | µX.A | X .

�`∈L{`:A`} is a labeled n-ary additive disjunction over a set L of labels; A1 �A2 and 1 are
multiplicative conjunction and its unit; µX.A is the least fixed point of the equation X = A.

To handle mutually corecursive process definitions, we introduce a signature, Θ, of
well-typed definitions X = P . We revise the session-typing judgment, indexing it by the
signature: x1:A1, . . . , xn:An `Θ Q :: x:A . The body P of a definition X may refer to X or
any other process variable defined in Θ. We require that these definitions are productive
in the sense that a definition’s body may not immediately call another process variable Y ,
thereby ruling out definitions X = Y .
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The session-typing rules for our fragment of interest are shown in Fig. 1. The judgmental
rules cut and id serve to clarify the relationship between providing and using a service,
whereas the left and right introduction rules for �, �, and 1 serve as session-typing rules
that define those service combinators.
Judgmental rules. Just as the sequent calculus cut rule composes a proof of lemma A

with its use in a proof of theorem C, the corresponding session-typing rule becomes a
typing rule for process composition: the P . Q process composes a server P with its
client Q. Dually, just as the sequent calculus id rule says that a lemma A is enough to
prove theorem A, the corresponding session-typing rule types a process that forwards
communication between two channels. The pvar rule uses a definition from the signature.

Additive disjunction as internal choice. With the type �`∈L{`:A`}, a server can provide
its choice of the possible services A` to the client. In the right rule (�r), the server sends
its selection, k, to the client and then continues by providing service Ak. In the matching
left rule (�l), the client must be prepared for any selection ` ∈ L; the client process
behaves like a case, waiting to receive the selection and then continuing accordingly.

Multiplicative conjunction as output. With the type A1 �A2, a server sends the client the
channel of a process that provides service A1, and then continues by providing A2 (�r
rule). The client waits to receive that channel and then continues as process Q (�l rule).

Multiplicative unit as termination. Because 1 is the nullary form of �, a server providing
1 neither sends a channel nor continues. Instead, it terminates communication (1r rule).
The client waits for the server to terminate and then continues as process Q (1l rule).

Least fixed points as inductive types. Rather than giving right and left introduction rules
for µ, we treat inductive types equi-recursively: we identify µX.A with its unfolding
[(µX.A)/X]A and allow this unfolding to occur silently at any point in a typing derivation.
Since all connectives in this fragment are covariant, inductive types satisfy strict positivity.
We also require that inductive types are contractive [8], ruling out, for example, µX.X.

Proofs, or typing derivations, are built from the rules in Fig. 1, with process variables X to
indicate circularities that make the proofs coinductive. Following Fortier and Santocanale [7],
such proofs are well-defined if, within each cycle, a left rule is applied to an inductive type.

I Example 1. A process that emits the unary representation of a natural number can be
described by the session type Nat = µX.�{$:1, s:X}, so that a natural number is a string of
ss terminated by $. For instance, the process select y s; select y $; close y emits the unary
representation of 1 by emitting s and $ along channel y and then terminating communication.

The doubling function on natural numbers can then be expressed as the process of type
x:Nat ` y:Nat given by the following corecursive definition.

y � dbl � x = y.case($⇒ waitx; select y $; close y
8 s⇒ select y s; select y s; y � dbl � x)

If this process receives label $ along x, it waits for x to terminate, emits $, and terminates.
Otherwise, if this process receives s, it emits s twice and then calls itself corecursively.

Many sequents in this paper will have zero or exactly one antecedent; we call these subsin-
gleton sequents. For proofs of subsingleton sequents, by extending Fortier and Santocanale’s
results [7] to include 1, we can eliminate cuts from proofs to construct cut-free proofs. The
principal cut reductions are shown in Fig. 1; the −→ relation also includes the standard
commutative cut reductions, which we do not display.

For subsingleton sequents, we can also use a shorthand notation that elides channels and
uses L- and R-variants of the usual process constructors. For example, we would write the
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∆ `Θ P :: x:A ∆′, x:A `Θ Q :: z:C
∆,∆′ `Θ P .x Q :: z:C

cutA
x:A `Θ z ↔ x :: z:A

idA

X ∈ dom Θ
∆ `Θ z � X � ∆ :: z:A pvar

∆ `Θ P :: x:Ak (k ∈ L)
∆ `Θ selectx k;P :: x:�`∈L{`:A`}

�r
∀` ∈ L : ∆′, x:A` `Θ Q` :: z:C

∆′, x:�`∈L{`:A`} `Θ x.case`∈L(`⇒Q`) :: z:C
�l

∆1 `Θ P1 :: y:A1 ∆2 `Θ P2 :: x:A2

∆1,∆2 `Θ sendxP1;P2 :: x:A1 �A2
�r ∆′, y:A1, x:A2 `Θ Q :: z:C

∆′, x:A1 �A2 `Θ y � recvx;Q :: z:C
�l

· `Θ closex :: x:1 1r
∆′ `Θ Q :: z:C

∆′, x:1 `Θ waitx;Q :: z:C
1l

(selectx k;P ) .x
(
x.case`∈L(`⇒Q`)

)
−→ P .x Qk

(closex) .x (waitx;Q) −→ Q

(x↔ y) .x Q −→ [y/x]Q P .x (z ↔ x) −→ [z/x]P

Figure 1 Session-typing rules and some cut reductions for a fragment of intuitionistic linear logic

type of dbl as Nat ` Nat and define dbl by

dbl = caseL($⇒ waitL; selectR $; closeR
8 s⇒ selectR s; selectR s; dbl)

3 Deterministic finite automata (DFAs)

This section reviews a standard mathematical model of deterministic finite automata. This
specific presentation is derived from Sipser’s formulation [16].

A deterministic finite automaton (DFA) M is a 5-tuple (Q,Σ, δ, q0, F ) where Q is a finite
set of states, Σ is a finite alphabet of input symbols a, δ : Q× Σ→ Q is a (total) transition
function, q0 ∈ Q is the initial state, and F ⊆ Q is a set of accepting states. The set of all
finite strings over alphabet Σ is written as Σ∗, with ε denoting the empty string.

A computation of M on the input string w = a1a2 · · · an ∈ Σ∗ is a sequence of states
q0, q1, . . . , qn such that δ(qi, ai+1) = qi+1 for each 0 ≤ i < n. The DFA M is said to accept
string w if there exists a computation on w that ends in an accepting state, qn ∈ F ; otherwise,
M is said to reject string w. The language recognized by M is the set of all strings that are
accepted by M . The regular languages are those that can be recognized by some DFA.

Alternatively, one may extend the transition function δ, which operates on symbols, to a
cumulative function δ∗ : Q× Σ∗ → Q that operates on strings.

δ∗(q, ε) = q

δ∗(q, aw) = δ∗(δ(q, a), w)
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even odd
b

b

a a

Figure 2 A DFA for strings over the alphabet Σ = {a, b} that contain an even number of bs.

Intuitively, δ∗(q, w) is the state that the DFA reaches from state q upon reading input w.
It’s straightforward to prove, by induction on the length of the string w, that M accepts w if
and only if δ∗(q0, w) ∈ F .

I Example 2. Figure 2 shows the state diagram for a DFA that recognizes those finite
strings over the alphabet Σ = {a, b} that contain an even number of bs. The initial state,
as indicated by the unlabeled arrow, is even; it is also an accepting state, as depicted by
its doubled outline. This DFA accepts the string bab, for example, because there is a path
corresponding to bab from the initial state to an accepting state.

Although some definitions of DFAs allow δ to be a partial transition function [11], notice
that we demand that δ is total. Totality ensures that a DFA never gets stuck while reading
an input symbol, which will be crucial for the correspondence between DFA computations
and cut reductions that we give in Section 4. In demanding totality, there is no loss of
expressiveness: one can always introduce a distinguished rejecting state that acts as a sink
for any transitions that would have been left undefined under a partial transition function.

4 DFAs are isomorphic to processes of a particular type

As described in the previous section, the computational behavior of a DFA derives from its
transition function, δ : Q× Σ→ Q, which induces a cumulative function δ∗ : Q× Σ∗ → Q

that can be used to characterize the language recognized by the DFA. Specifically, the DFA
accepts string w if and only if δ∗(q0, w) is an accepting state.

By currying, we may also think of δ∗ as a finite family of functions δ∗q : Σ∗ → Q, one for
each q ∈ Q, so that δ∗q (w) is the state reached by the DFA from state q upon reading string
w. Then, composing each δ∗q with the indicator function F : Q→ 2 for the set of accepting
states, we can see that the computational essence of each individual state is a Boolean-valued
function on Σ∗ that is closely coupled to the transition function δ.

This suggests a strategy for encoding DFAs — for each state q, define a process JqK of
type StringΣ ` Ans. If StringΣ is the type of finite strings over Σ and Ans is the type of
accept/reject answers, then the process JqK is effectively a Boolean-valued function on Σ∗.

In the next three sections, we make this idea precise. Section 4.1 defines the type
StringΣ and presents an isomorphism between finite strings over Σ and processes of type
· ` StringΣ. Next, Section 4.2 presents an adequate encoding of DFA states as processes of
type StringΣ ` Ans in which DFA transitions are matched by process reductions. Finally,
Section 4.3 proves that, somewhat surprisingly, the encoding is an isomorphism.

4.1 Finite strings are isomorphic to processes of type · ` StringΣ

Strings w ∈ Σ∗ are finite lists — lists of symbols drawn from the finite alphabet Σ. In type
theory, the type of finite lists with elements of type α is usually defined as the least solution
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of the type equation Xα = (α × Xα) + 1, or, when the type α is finitely inhabited, the
isomorphic Xα = Xα + · · ·+Xα + 1.

By analogy, we will encode strings over Σ as cut-free processes of type · ` StringΣ, where
the type StringΣ is the least solution of the type equation

X = �a∈Σ∪{$}{a:Aa} where Aa =
{
X if a ∈ Σ
1 if a = $

In other words, StringΣ is the inductive type µX.�a∈Σ∪{$}{a:Aa}. With a slight abuse of
notation, in which we will indulge from here on, the type StringΣ may also be written as
µX.�a∈Σ{a:X, $:1}.

A cut-free process of type · ` StringΣ emits a finite stream, or list, of symbols from
Σ. By inversion on its typing derivation, such a process is either: selectR $; closeR, which
terminates the stream by emitting the terminal symbol, $, to its right and then terminating
communication; or selectR a;P , which continues the stream by emitting some symbol a to
its right and then behaving as a process P of type · ` StringΣ.

This suggests that we define the encoding J−K : Σ∗ → (· ` StringΣ) inductively by

JεK = selectR $; closeR

JawK = selectR a; JwK .

For example, with the alphabet Σ = {a, b}, the string ba is represented by the process
JbaK = selectR b; selectR a; selectR $; closeR, which emits b, a, and $ before terminating.

This representation of strings as processes of type · ` StringΣ is adequate:

I Theorem 3. Strings over the alphabet Σ are in bijective correspondence with cut-free
processes of type · ` StringΣ.

Proof. Define a function −[ from cut-free processes of type · ` StringΣ to strings over Σ:

(selectR $; closeR)[ = ε

(selectR a;P )[ = a(P )[ , if a 6= $ .

The function −[ is total because any cut-free process of type · ` StringΣ has, by inversion,
one of the forms on which −[ is defined. It’s also easy to show that −[ is both a left and a
right inverse of J−K, thereby establishing that J−K is a bijection. J

4.2 Representing DFAs as processes of type StringΣ ` Ans

Having now defined a type StringΣ and shown that Σ∗ is isomorphic to cut-free processes
of type · ` StringΣ, we can now turn to encoding DFAs as processes.

We first define the type Ans of accept/reject answers by Ans = �{acc:1, rej:1}. We’ll
encode each of the DFA’s states as a process of type StringΣ ` Ans that emits acc or rej
according to whether the DFA accepts or rejects the input string.

I Example 4. The DFA of Example 2 that recognizes strings over Σ = {a, b} with an even
number of bs would be encoded as a mutually corecursive pair of process definitions, one of
type StringΣ ` Ans for each state:

even = caseL(a⇒ even 8 b⇒ odd

8 $⇒ waitL; selectR acc; closeR)

odd = caseL(a⇒ odd 8 b⇒ even

8 $⇒ waitL; selectR rej; closeR)
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Under its definition, even is a process that waits to receive a label from its left and then
case-analyzes it. If the label is a or b, then a corecursive call to the process even or odd is
made, respectively. These calls serve to transition the DFA to the appropriate next state.
Otherwise, if the label is the terminal symbol $, then the process waits for its input to
terminate communication, emits acc to indicate that the input is accepted, and finally
terminates. This describes even as an accepting state. The odd process can be read similarly.

Our encoding of DFAs follows the intuition behind the previous example. Let M =
(Q,Σ, δ, q0, F ) be an arbitrary DFA. For each state q ∈ Q, we define a process named JqKM
of type StringΣ ` Ans by

JqKM = caseLa∈Σ(a⇒ Jδ(q, a)KM
8 $⇒ waitL; selectR JF (q)K; closeR)

where JF (q)K is defined as the label acc if q ∈ F (i.e., if q is an accepting state) and as the
label rej otherwise. (The notation J−K is used for the encodings of both strings and DFA
states, but the intended meaning is always clear from the context.)

When the process JqKM receives a symbol a ∈ Σ, it makes a corecursive call to the process,
Jδ(q, a)KM , that corresponds to the appropriate next state. Otherwise, when the process
JqKM receives $, it emits either acc or rej according to whether q is an accepting state.

This encoding of DFAs is adequate at a quite fine-grained level: every DFA transition is
matched by a process reduction in the encoding.

I Theorem 5. Let M = (Q,Σ, δ, q0, F ) be a DFA. Both of the following hold for all q ∈ Q.
JawK . JqK −→ JwK . Jδ(q, a)K for all a ∈ Σ and w ∈ Σ∗.
JεK . JqK −→2 selectR JF (q)K; closeR.

Proof. Both parts follow by straightforward calculation. Taking the first part as an example,
let w ∈ Σ∗ be an arbitrary string. By expanding definitions, the process JawK . JqK is

(selectR a; JwK) . (caseLa∈Σ(a⇒ Jδ(q, a)K
8 $⇒ waitL; selectR JF (q)K; closeR))

which, thanks to the principal cut reduction that matches selectR with caseL, reduces to
JwK . Jδ(q, a)K. The proof of the second claim is similar. J

This can be easily lifted, by induction, to full DFA computations; we elide the details.

4.3 Completing the isomorphism: From processes to DFAs
Although the encoding of DFAs as processes from the previous section is perhaps unsurprising,
what is surprising is that the converse — that every process of type StringΣ `Θ Ans
corresponds to a DFA — is provable, as we now show.

Say that a signature of process definitions of type StringΣ `Θ Ans is in normal form if
each definition has the form

X = caseLa∈Σ(a⇒Xa 8 $⇒ waitL; selectR `X ; closeR) ,

where `X is an acc/rej label. It’s easy to read off a DFA from this signature, as the following
theorem shows.

I Theorem 6. Let Σ be a finite alphabet and Θ be a signature of process definitions of
type StringΣ `Θ Ans that are in normal form. For every X0 ∈ dom Θ, there exists a DFA
M = (Q,Σ, δ, q0, F ) such that X0 = Jq0KM .
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Proof. The DFA can be directly read off of the signature Θ. Choose Q = dom Θ as the
set of states. Because signature Θ is in normal form, each process definition has the form
X = caseLa∈Σ(a⇒Xa 8 $⇒ waitL; selectR `X ; closeR) where `X is an acc/rej label. We
read off the transition function δ by defining δ(X, a) = Xa for each X and a ∈ Σ. Similarly,
include X in the set F of final states if and only if `X = acc.

Finally, choose an arbitrary X0 ∈ dom Θ and set q0 = X0 as the initial state. Thus,
M = (Q,Σ, δ, q0, F ) is a DFA. By the definition of J−KM , it’s immediate thatX0 = Jq0KM . J

Had we chosen polarized linear logic as our session-typing discipline [14], then focused
proofs [1] of type StringΣ `Θ Ans would necessarily be the normal form processes used in
this theorem, making it the end of the story. However, we choose not to introduce polarization
and focusing to keep the technical overhead lower. Thus, the following lemmas and theorem
for normalizing a signature are necessary. (In this and subsequent proofs, we use ≡ to denote
equivalence up to standard commuting conversions and unfolding and folding of definitions;
= is reserved for syntactic equality.)

I Lemma 7. Let Σ be a finite alphabet and Θ be a signature of cut-free process definitions of
type StringΣ `Θ 1. Given the definition Y0 = caseLa∈Σ(a⇒ Y0 8 $⇒ waitL; closeR), we
have Y ≡ Y0 for all Y ∈ dom Θ.

Proof. First, repeatedly apply the following rewriting rule, introducing a new definition
Y = P as part of the rewriting. The rule applies only if P is not a process variable.

caseLb∈Σ−{a}(a⇒ P

8 b⇒Qb 8 $⇒R)
 caseLb∈Σ−{a}(a⇒ Y

8 b⇒Qb 8 $⇒ waitL; closeR)

Rewriting terminates because the rule decreases the number of rewriting sites. Upon
termination, each definition has the form Y = caseLa∈Σ(a⇒ Ya 8 $⇒ waitL; closeR). By
coinduction, each Y satisfies Y ≡ Y0. Since rewriting adheres to ≡, the lemma is proved. J

I Lemma 8. Let Σ be a finite alphabet and Θ be a signature of cut-free process definitions of
type StringΣ `Θ Ans and StringΣ `Θ 1. There exists a signature Θ′ in normal form such
that, for every X ∈ dom Θ, there exists an X ′ ∈ dom Θ′ such that X ≡ X ′.

Proof. First, repeatedly apply the following rewriting rules. Each rule applies only if P is
not a process variable, and each rule introduces a new definition X = P to the signature.

caseLb∈Σ−{a}(a⇒ P 8 b⇒Qb 8 $⇒R)  caseLb∈Σ−{a}(a⇒X 8 b⇒Qb 8 $⇒R)
selectR `;P  selectR `;X

Rewriting terminates because it decreases the number of rewriting sites. Upon termina-
tion, all definitions of type StringΣ `Θ Ans have the forms X = selectR `;Y or X =
caseLa∈Σ(a⇒Xa 8 $⇒ waitL; selectR `X ; closeR), and definitions of type StringΣ `Θ 1
have the form Y = caseLa∈Σ(a⇒ Ya 8 $⇒ waitL; closeR).

Consider each definition X = selectR `X ;Y . By Lemma 7, X ≡ selectR `X ;Y0. Ex-
panding the definition of Y0 and applying some commuting conversions, we have that X ≡
caseLa∈Σ(a⇒ selectR `X ;Y0 8 $⇒ waitL; selectR `X ; closeR). We revise X’s definition
to X = caseLa∈Σ(a⇒X 8 $⇒ waitL; selectR `X ; closeR), since X ≡ selectR `X ;Y0. J

I Theorem 9. Let Σ be a finite alphabet and Θ be a signature of process definitions of type
StringΣ `Θ Ans and StringΣ `Θ 1. For every process P of type StringΣ `Θ Ans, there
exists a DFA M = (Q,Σ, δ, q0, F ) such that P ≡ Jq0KM .
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Proof. Introduce the definition X0 = P to signature Θ and then, after eliminating cuts
(Section 2), appeal to Lemma 8 to normalize Θ to a signature Θ′ such that there exists a
X ′0 ∈ dom Θ′ for which X0 ≡ X ′0. By appealing to Theorem 6, we construct a DFA M such
that P = X0 ≡ X ′0 = Jq0KM . J

This completes the proof that our process encoding of DFAs is an isomorphism.

5 Some closure properties of regular languages by cut elimination

The class of regular languages enjoys many closure properties, including closure under
complementation, union, intersection, concatenation, and Kleene star. Traditionally, these
properties are established by DFA constructions (sometimes using a nondeterministic finite
automaton as an intermediate). Having seen that DFAs are isomorphic to processes of
type StringΣ ` Ans, it’s natural to wonder how such constructions fit into this pleasing
proof-theoretic picture.

The next two sections show that, perhaps surprisingly, closure of regular languages under
complementation, union, and intersection can indeed be explained proof-theoretically in
terms of cut elimination. Unfortunately, closure under concatenation and Kleene star are
not as readily explainable proof-theoretically, primarily because the standard constructions
rely heavily on nondeterminism; we leave their proof-theoretic investigation to future work.

5.1 Closure under complementation
Let L be an arbitrary regular language over the alphabet Σ. Because L is a regular language,
there is a DFA M = (Q,Σ, δ, q0, F ) that recognizes L. Using this DFA, there is a simple
procedure for recognizing the language’s complement, L = Σ∗ − L: simply run the input
string through M and negate its answer. An input string is thus accepted if and only if M
rejects that string.

As a process, this procedure can be expressed as Jq0KM . not, which composes the process,
Jq0KM , that represents M ’s initial state with a process, not, that negates answers. We define
not, of type Ans ` Ans, as follows; it case-analyzes an answer and then produces its negation.

not = caseL(acc⇒ waitL; selectR rej; closeR
8 rej⇒ waitL; selectR acc; closeR)

Thus, the process Jq0KM . not recognizes the complement language, L. If recognizing L
is all that we are interested in, then just using this process directly is certainly adequate.
However, notice that Jq0KM . not has type StringΣ ` Ans. If only this process were cut-free,
then we could also apply Theorem 6 to extract a DFA that recognizes L and thereby prove
closure of regular languages under complementation. The process Jq0KM . not is not cut-free
(because of .), but, as the following theorem shows, the cut can be eliminated.

I Theorem 10. Let M = (Q,Σ, δ, q0, F ) be a DFA and let M = (Q,Σ, δ, q0, Q− F ). For all
states q ∈ Q, there is an infinite reduction sequence JqKM . not −→ω JqKM .

Proof. For each state q ∈ Q, we can reduce

JqKM . not

−→+ caseLa∈Σ(a⇒ Jδ(q, a)KM . not

8 $⇒ waitL; selectR J(Q− F )(q)K; closeR)
−→ω caseLa∈Σ(a⇒ Jδ(q, a)KM

8 $⇒ waitL; selectR J(Q− F )(q)K; closeR)
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which, by definition of J−KM , is JqKM . The first step is justified by expanding definitions
and carrying out a few reductions. The second step follows by appealing to the coinductive
hypothesis, which gives an infinite reduction sequence Jδ(q, a)KM . not −→ω Jδ(q, a)KM . J

In other words, cut elimination from Jq0KM . not converges to a process, and that process
happens to be one which represents the DFA M that, by exchanging the accepting and
rejecting states of M , is traditionally used to recognize the complement language.

Alternatively, we could shortcut the infinite reduction sequence that is used to eliminate
the cut from Jq0KM . not. Since there are finitely many cuts JqKM . not with q ∈ Q, rather
than appealing to a coinductive hypothesis after the first few reductions, we could instead
introduce, at that point, a definition of type StringΣ ` Ans in normal form for each state q:

Xq = caseLa∈Σ(a⇒Xδ(q,a) 8 $⇒ waitL; selectR J(Q− F )(q)K; closeR) .

The DFA that Theorem 6 extracts from this signature is exactly M = (Q,Σ, δ, q0, Q−F ). So
— not only does cut reduction converge (Theorem 10) — cut reduction, in fact, constructs
the DFA M that is traditionally used to recognize the complement language!

5.2 Closure under intersection and union
The same basic idea can be used to show that closure of regular languages under intersection
and union can also be understood proof-theoretically in terms of cut elimination.

Let M1 = (Q1,Σ, δ1, q1, F1) and M2 = (Q2,Σ, δ2, q2, F2) be arbitrary DFAs over al-
phabet Σ. To recognize the intersection of the languages recognized by M1 and M2, we
might use the process (z1 � Jq1KM1 � x) .z1 (z2 � Jq2KM2 � x) .z2 (z � and � z1, z2), where
z1:Ans, z2:Ans ` and :: z:Ans, defined in the obvious way, computes conjunction of Booleans.

Unfortunately, this process is not well-typed because the linear channel x along which the
input arrives is used by both Jq1KM1 and Jq2KM2 , violating linearity. To maintain linearity,
we need to define the following process x:StringΣ ` dup :: y:StringΣ � (StringΣ � 1) that
duplicates the input by taking advantage of multiplicative conjunction. Then, using dup, a
process isectq1,q2 of type StringΣ ` Ans that recognizes the intersection

y � dup � x =
x.casea∈Σ(a⇒ (y′ � dup � x) .y′

y′1 � recv y′; y′2 � recv y′; wait y′;
send y (select y1 a; y1 ↔ y′1);
send y (select y2 a; y2 ↔ y′2);
close y

8 $⇒ waitx;
send y (select y1 $; close y1);
send y (select y2 $; close y2);
close y)

z � isectq1,q2 � x =
(y � dup � x) .y
y1 � recv y; y2 � recv y; wait y;
(z1 � Jq1KM1 � y1) .z1

(z2 � Jq2KM2 � y2) .z2

z � and � z1, z2

Once again, if recognizing the intersection is all that we are interested in, then simply using
this process directly is certainly adequate.

I Theorem 11. Let M1 = (Q1,Σ, δ1, q1, F1) and M2 = (Q2,Σ, δ2, q2, F2) be DFAs and let
M = (Q1×Q2,Σ, δ, (q1, q2), F1×F2) be their product, where δ((q, q′), a) = (δ1(q, a), δ2(q′, a))
for all (q, q′) ∈ Q1 ×Q2. For all (q, q′) ∈ Q1 ×Q2, there is an infinite reduction sequence
(z � isectq,q′ � x) −→ω (z � J(q, q′)KM � x).

Proof. By coinduction. The proof is similar to that of complementation (Theorem 10). J
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As with complementation, we can alternatively shortcut the infinite reduction sequence
by introducing definitions, one for the partially reduced form of each of the finitely many
z � isectq,q′ � x. In this way, cut reduction can be seen as constructing the very same
product DFAM that is typically used to prove closure of regular languages under intersection.

By a similar argument using a process z1:Ans, z2:Ans ` or :: z:Ans that computes the
disjunction of two answers, it’s possible to show that closure of regular languages under
union follows from cut reduction. We omit the details because of space constraints.

6 An isomorphism between subsequential transducers and processes

Subsequential transducers [13, 15] are a generalization of DFAs which produce a full string —
rather than a single accept/reject bit — as output. Having proved in Section 4 that DFAs
are isomorphic to processes of type StringΣ ` Ans, it’s natural to wonder if subsequential
transducers are also isomorphic to processes of a particular type.

After reviewing the mathematical definition of subsequential transducers in Section 6.1, we
present, in Section 6.2, an adequate encoding of transducers as processes of type StringΣ `
StringΓ. This encoding is very closely related to the encoding of DFAs from Section 4.2.
Section 6.3 proves that this encoding is indeed an isomorphism.

6.1 Subsequential transducers
This presentation of subsequential transducers derives from a formulation by Mohri [13].

A (deterministic) subsequential transducer T is a 7-tuple (Q,Σ,Γ, δ, σ, ρ, q0) where Q is a
finite set of states, Σ is a finite alphabet of input symbols, Γ is a finite alphabet of output
symbols, δ : Q × Σ → Q is a transition function, σ : Q × Σ → Γ∗ is an output function,
ρ : Q→ Γ∗ is a terminal output function, and q0 ∈ Q is the initial state. (The functions δ, σ,
and ρ must be total functions.)

Once again, one may extend the transition function δ and the output function σ, which
operate on input symbols, to cumulative functions δ∗ : Q× Σ∗ → Q and σ∗ : Q× Σ∗ → Γ∗
that operate on input strings. The function δ∗ is defined as for DFAs, but is repeated here
for convenience.

δ∗(q, ε) = q σ∗(q, ε) = ε

δ∗(q, aw) = δ∗(δ(q, a), w) σ∗(q, aw) = σ(q, a) σ∗(δ(q, a), w)

The subsequential transducer T is said to transduce the input string w ∈ Σ∗ to the output
string σ∗(q, w) ρ(δ∗(q, w)) ∈ Γ∗.

Notice that, unlike some definitions, this definition does not include a set F of accepting
states, nor corresponding notions of acceptance or rejection of input strings. This is because
we are interested in transducers that induce a total transduction function, since such
transductions turn out to compose more naturally in our proof-theoretic setting.

I Example 12. Let Σ = Γ = {a, b} be an alphabet used for both input and output. The
state diagram shown in Fig. 3 depicts a subsequential transducer that compresses each run
of bs into a single b; the string abbaabbb is transduced to abaab, for example.

There are two states, q0 and q1, with the unlabeled arrow indicating q0 as the initial state.
The outgoing arrows labeled ε and b indicate the value of the terminal output function, ρ,
for their respective states. The remaining edges are labeled to indicate an input symbol and
the corresponding output string for that state and input symbol. For example, the edge
from q1 to q0 that is labeled a|ba indicates that δ(q1, a) = q0 and σ(q1, a) = ba. The output
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q0

ε

q1

b

b|ε
b|ε

a|ba

a|a Jq0K = caseLa∈Σ(a⇒ selectR a; Jq0K
8 b⇒ Jq1K
8 $⇒ waitL; selectR $; closeR)

Jq1K = caseLa∈Σ(a⇒ selectR b; selectR a; Jq0K
8 b⇒ Jq1K
8 $⇒ waitL; selectR b; selectR $; closeR)

Figure 3 The state diagram and process encoding (see Section 6.2) of a subsequential transducer
over the alphabet Σ = Γ = {a, b} that compresses each run of bs into a single b.

transduced from a given input can be obtained by concatenating the output labels along the
path corresponding to the input.

6.2 Representing transducers as processes of type StringΣ ` StringΓ

Just as the computational essence of a DFA state is a Boolean-valued function on finite strings,
we can see from the previous discussion that the computational essence of a transducer state
q is a function σ∗q : Σ∗ → Γ∗ from finite input strings to finite output strings. Thus, the
strategy for encoding transducers is similar to the encoding of DFAs given in Section 4 —
for each transducer state q, we will define a process JqKT of type StringΣ ` StringΓ.

Before doing so, we need to slightly generalize the encoding of finite strings that was
given in Section 4.1: we define a function [−;−] : Σ∗ × (∆ ` StringΣ) → (∆ ` StringΣ)
that emits a string as a finite stream of symbols and then, unlike J−K : Σ∗ → (· ` StringΣ),
continues as the given process rather than always terminating. The function [−;−] is defined
inductively by

[ε;P ] = P

[aw;P ] = selectR a; [w;P ] .

It’s straightforward to prove that [w1; Jw2K] = Jw1w2K, for all w1, w2 ∈ Σ∗, by induction on
the length of w1. In particular, [w; (selectR $; closeR)] = JwK for all w ∈ Σ∗.

With this generalization in hand, we are now ready to give a process encoding of
transducers. Let T = (Q,Σ,Γ, δ, σ, ρ, q0) be an arbitrary subsequential transducer. Define a
mutually corecursive family of process definitions JqKT , one of type StringΣ ` StringΓ for
each state q ∈ Q:

JqKT = caseLa∈Σ(a⇒ [σ(q, a); Jδ(q, a)KT ]
8 $⇒ waitL; Jρ(q)K)

Under its definition, the process named JqKT waits to receive a label from its left and then
case-analyzes it. If the label is some a ∈ Σ, then the process emits the output string σ(q, a)
as a finite stream of symbols and then makes a corecursive call to the process Jδ(q, a)KT .
Otherwise, if the label is the terminal symbol $, then the process waits for its input to
terminate communication and then emits the terminal output string ρ(q).

I Example 13. The transducer of Fig. 3 that compresses runs of bs can be encoded as a pair
of process definitions of type StringΣ ` StringΓ, one for each state. The process definitions
are shown in the second part of Fig. 3.
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Like the encoding of DFAs, this encoding of transducers as processes of type StringΣ `
StringΓ is adequate. Its adequacy is fine-grained: once again, each transducer transition is
matched by a process reduction.

I Theorem 14. Let T = (Q,Σ,Γ, δ, σ, ρ, q0) be a subsequential transducer. For all q ∈ Q:
If ∆ ` P : StringΣ, then (selectR a;P ) . JqK −→ P . [σ(q, a); Jδ(q, a)K] for all a ∈ Σ.
JεK . JqK −→2 Jρ(q)K.

Proof. By straightforward calculation, similar to the proof of Theorem 5 for DFAs. J

I Corollary 15. Let T = (Q,Σ,Γ, δ, σ, ρ, q0) be a subsequential transducer. Then, for all
q ∈ Q and w ∈ Σ∗, there is a finite reduction sequence JwK . JqK −→+ Jσ∗(q, w) ρ(δ∗(q, w))K.

Proof. By induction on the length of w, appealing to Theorem 14. J

6.3 Completing the isomorphism: From processes to transducers
In this section, we prove the converse — that a subsequential transducer can be extracted
from a proof of type StringΣ ` StringΓ. The general approach follows that of Section 4.3.

Say that a signature of process definitions of type StringΣ `Θ StringΓ is in normal form
if each definition has the form

X = caseLa∈Σ(a⇒ [ua;Xa] 8 $⇒ waitL; JvK)

for some strings ua ∈ Γ∗ and v ∈ Γ∗. As with DFAs, it’s easy to read off a transducer.

I Theorem 16. Let Σ and Γ be finite alphabets and Θ be a signature of process definitions
of type StringΣ `Θ StringΓ that are in normal form. For every X0 ∈ dom Θ, there exists a
subsequential transducer T = (Q,Σ,Γ, δ, σ, ρ, q0) such that X0 = Jq0KT .

Proof. Choose Q = dom Θ as the set of states. Because signature Θ is in normal form,
each process definition has the form X = caseLa∈Σ(a⇒ [ua;Xa] 8 $⇒ waitL; JvK) for some
strings ua ∈ Γ∗ and v ∈ Γ∗. We read off the functions δ, σ, and ρ by defining δ(X, a) = Xa

and σ(X, a) = ua and ρ(X) = v for each X and a ∈ Σ. Finally, choose an arbitrary
X0 ∈ dom Θ and set q0 = X0 as the initial state. Thus, T = (Q,Σ,Γ, δ, σ, ρ, q0) is a
subsequential transducer. By the definition of J−KT , it’s immediate that X0 = Jq0KT . J

Once again, with polarized linear logic as the session-typing discipline [14] and focusing [1],
this would be the end of the story since only normal signatures would be allowed. Without
those technical devices, we can use the following lemma that normalizes a signature.

I Lemma 17. Let Σ and Γ be finite alphabets and Θ be a signature of cut-free process
definitions of type StringΣ `Θ StringΓ and StringΣ `Θ 1. There exists a signature Θ′ in
normal form such that, for every X ∈ dom Θ, there exists an X ′ ∈ dom Θ′ such that X ≡ X ′.

Proof. First, repeatedly apply the following rewriting rules. Unlike DFAs, each rule applies
only if P is a case. Each rule introduces a new definition X = P to the signature.

caseLb∈Σ−{a}(a⇒ P 8 b⇒Qb 8 $⇒R)  caseLb∈Σ−{a}(a⇒X 8 b⇒Qb 8 $⇒R)
selectR `;P  selectR `;X

Also contract definitions X1 = [v1;X2] and X2 = [v2;X3] to X1 = [v1v2;X3]. This procedure
terminates because there are finitely many definitions and rewriting decreases the number
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of rewriting sites. Upon termination, all definitions of type StringΣ `Θ StringΓ have the
forms X = [v; (selectR $;Y )] or X = caseLa∈Σ(a⇒ [ua;Xa] 8 $⇒ waitL; JvK), and those
of type StringΣ `Θ 1 have the form Y = caseLa∈Σ(a⇒ Ya 8 $⇒ waitL; closeR).

Consider each definition X = [v; (selectR $;Y )]. By Lemma 7, X ≡ [v; (selectR $;Y0)].
Expanding the definition of Y0 and applying some commuting conversions, we have that
X ≡ caseLa∈Σ(a⇒ [v;Y0] 8 $⇒ waitL; [v; selectR $; closeR]). Thus, we form a new sig-
nature Θ′ by revising X’s definition to X = caseLa∈Σ(a⇒X 8 $⇒ waitL; JvK), since
X ≡ [v; (selectR $;Y0)]. J

Using this lemma and the previous theorem, it’s possible to complete the proof that the
process representation of transducers is an isomorphism with the following theorem. We
omit the easy details due to space constraints.

I Theorem 18. Let Σ be a finite alphabet and Θ be a signature of process definitions of type
StringΣ `Θ StringΓ and StringΣ `Θ 1. For every process P of type StringΣ `Θ StringΓ,
there exists a transducer T = (Q,Σ,Γ, δ, σ, ρ, q0) such that P ≡ Jq0KT .

7 Comments on transducer compositions

Composing transducers. Composing two transducers T1 = (Q1,Σ,Γ, δ1, σ1, ρ1, q1) and
T2 = (Q2,Γ,Ω, δ2, σ2, ρ2, q2) is simple: just compose their process representations. Because
Jq1KT1 and Jq2KT2 have types StringΣ ` StringΓ and StringΓ ` StringΩ, respectively, the
composition Jq1KT1 . Jq2KT2 is well-typed.

By composing transducers via their process representation, a concurrent semantics of
transducer composition comes for free from the concurrent semantics of processes. As one
example, in the transducer chain JwK . Jq1KT1 . Jq2KT2 . Jq3KT3 . · · · . JqnKTn

, the transducer
process for T1 can react to the next symbol of input while T2, having read T1’s first round of
output, can supply output to T3. Using an asynchronous concurrent semantics for session-
typed processes based in proof theory [6], even more concurrency can be had: for example,
the transducer process for T1 can then react to the next symbol of input while T2 is still
absorbing T1’s first round of output.

If this kind of pipelined computation is one’s only interest, then simply composing the
transducers’ process representations is suitable and very natural. Because subsequential
functions are closed under composition, however, it’s also possible to construct a subsequential
transducer for the composition by eliminating the cut from Jq1KT1 . Jq2KT2 . As with closure
of regular languages under complementation, intersection, and union, cut elimination yields
the very transducer that is traditionally used (see [13]) to realize the composition. We omit
the details due to space constraints.

Composing a transducer and a DFA. It’s also possible to compose a transducer T =
(S,Σ,Γ, δT , σ, ρ, s0) and a DFA M = (Q,Γ, δM , q0, F ) by composing their process representa-
tions: Js0KT . Jq0KM is a well-typed process for their composition.

Incidentally, this kind of transducer–DFA composition can be used to prove closure of
regular languages under inverse string homomorphism. For each string homomorphism
ϕ : Σ→ Γ∗, we can construct a transducer Tϕ with a single state s0 that realizes ϕ. If M is
a DFA with initial state q0 that recognizes some language L, then Js0KTϕ

. Jq0KM recognizes
the language ϕ−1(L). As we did for closure under complementation, intersection, and union,
we can again use cut reduction on Js0KTϕ

. Jq0KM to construct the DFA that is traditionally
used to prove closure under inverse string homomorphism, thereby showing that closure is
again, proof-theoretically, cut elimination. We omit the details due to space constraints.
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8 Conclusion

In this paper, we have established an isomorphism between DFAs and proofs of StringΣ ` Ans
in which DFA transitions correspond to cut reductions (Section 4). We’ve also established a
related isomorphism between subsequential transducers and proofs of StringΣ ` StringΓ
(Section 6). Under these isomorphisms, closure of regular languages under complementation,
intersection, union, and inverse homomorphism and closure of subsequential functions under
composition can all be understood proof-theoretically in terms of cut elimination (Sections 5
and 7). Regular expression derivatives [2] may possibly be useful in similarly explaining
closure under concatenation and Kleene star, but we leave that to future work. Another
avenue for future work is to conduct a proof-theoretic investigation of deterministic pushdown
automata and transducers; our preliminary results in this area appear promising.
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