
POSIX Lexing with Derivatives of Regular Expressions
(Proof Pearl)

Fahad Ausaf1, Roy Dyckhoff2, and Christian Urban1

1 King’s College London, United Kingdom
2 St Andrews

Abstract. Brzozowski introduced the notion of derivatives for regular expres-
sions. They can be used for a very simple regular expression matching algorithm.
Sulzmann and Lu cleverly extended this algorithm in order to deal with POSIX
matching, which is the underlying disambiguation strategy for regular expres-
sions needed in lexers. Sulzmann and Lu have made available on-line what they
call a “rigorous proof” of the correctness of their algorithm w.r.t. their specifica-
tion; regrettably, it appears to us to have unfillable gaps. In the first part of this
paper we give our inductive definition of what a POSIX value is and show (i) that
such a value is unique (for given regular expression and string being matched) and
(ii) that Sulzmann and Lu’s algorithm always generates such a value (provided
that the regular expression matches the string). We also prove the correctness of
an optimised version of the POSIX matching algorithm. Our definitions and proof
are much simpler than those by Sulzmann and Lu and can be easily formalised in
Isabelle/HOL. In the second part we analyse the correctness argument by Sulz-
mann and Lu in more detail and explain why it seems hard to turn it into a proof
rigorous enough to be accepted by a system such as Isabelle/HOL.
Keywords: POSIX matching, Derivatives of Regular Expressions, Isabelle/HOL

1 Introduction

Sulzmann and Lu [3]
there are two commonly used disambiguation strategies to create a unique matching

tree: one is called greedy matching [1] and the other is POSIX matching [2,3]. For the
latter there are two rough rules:

– The Longest Match Rule (or “maximal munch rule”):

The longest initial substring matched by any regular expression is taken as next
token.

– Rule Priority:

For a particular longest initial substring, the first regular expression that can match
determines the token.

2 Fahad Ausaf, Roy Dyckhoff, and Christian Urban

In the context of lexing, POSIX is the more interesting disambiguation strategy as it
produces longest matches, which is necessary for tokenising programs. For example
the string iffoo should not match the keyword if and the rest, but as one string iffoo,
which might be a variable name in a program. As another example consider the string
xy and the regular expression (x+ y + xy)∗. Either the input string can be matched in
two ‘iterations’ by the single letter-regular expressions x and y, or directly in one iter-
ation by xy. The first case corresponds to greedy matching, which first matches with
the left-most symbol and only matches the next symbol in case of a mismatch. The sec-
ond case is POSIX matching, which prefers the longest match. In case more than one
(longest) matches exist, only then it prefers the left-most match. While POSIX match-
ing seems natural, it turns out to be much more subtle than greedy matching in terms
of implementations and in terms of proving properties about it. If POSIX matching is
implemented using automata, then one has to follow transitions (according to the input
string) until one finds an accepting state, record this state and look for further transi-
tion which might lead to another accepting state that represents a longer input initial
substring to be matched. Only if none can be found, the last accepting state is returned.

Sulzmann and Lu’s paper [3] targets POSIX regular expression matching. They
write that it is known to be to be a non-trivial problem and nearly all POSIX matching
implementations are “buggy” [3, Page 203]. For this they cite a study by Kuklewicz
[2]. My current work is about formalising the proofs in the paper by Sulzmann and Lu.
Specifically, they propose in this paper a POSIX matching algorithm and give some
details of a correctness proof for this algorithm inside the paper and some more details
in an appendix. This correctness proof is unformalised, meaning it is just a “pencil-
and-paper” proof, not done in a theorem prover. Though, the paper and presumably the
proof have been peer-reviewed. Unfortunately their proof does not give enough details
such that it can be straightforwardly implemented in a theorem prover, say Isabelle. In
fact, the purported proof they outline does not work in central places. We discovered
this when filling in many gaps and attempting to formalise the proof in Isabelle.

Contributions:

2 Preliminaries

Strings in Isabelle/HOL are lists of characters with the empty string being represented
by the empty list, written [], and list-cons being written as :: . By using the type
char we have a supply of finitely many characters roughly corresponding to the ASCII
character set. Regular exprtessions

r := 0 | 1 | c | r1 + r2 | r1 · r2 | r?

BLA BLA 3

3 POSIX Regular Expression Matching

4 The Argument by Sulzmmann and Lu

5 Conclusion

Nipkow lexer from 2000

Values

v := Void | Char c | Left v | Right v | Seq v1 v2 | Stars vs

The language of a regular expression

L (0) def
= ∅

L (1) def
= {[]}

L (c) def
= {[c]}

L (r1 · r2)
def
= (L r1) @ (L r2)

L (r1 + r2)
def
= (L r1) ∪ (L r2)

L (r?) def
= (L r)?

The nullable function

nullable (0) def
= False

nullable (1) def
= True

nullable (c) def
= False

nullable (r1 + r2)
def
= nullable r1 ∨ nullable r2

nullable (r1 · r2)
def
= nullable r1 ∧ nullable r2

nullable (r?) def
= True

The derivative function for characters and strings

der c (0) def
= 0

der c (1) def
= 0

der c (c ′) def
= if c = c ′ then 1 else 0

der c (r1 + r2)
def
= (der c r1) + (der c r2)

der c (r1 · r2)
def
= if nullable r1 then ((der c r1) · r2) + (der c r2) else

(der c r1) · r2
der c (r?) def

= (der c r) · (r?)

ders [] r def
= r

ders (c :: s) r def
= ders s (der c r)

The flat function for values

4 Fahad Ausaf, Roy Dyckhoff, and Christian Urban

|Void| def
= []

|Char c| def
= [c]

|Left v| def
= |v|

|Right v| def
= |v|

|Seq v1 v2|
def
= |v1| @ |v2|

|Stars []| def
= []

|Stars (v :: vs)| def
= |v| @ |Stars vs|

The mkeps function

mkeps (1) def
= Void

mkeps (r1 · r2)
def
= Seq (mkeps r1) (mkeps r2)

mkeps (r1 + r2)
def
= if nullable r1 then Left (mkeps r1) else Right (mkeps r2)

mkeps (r?) def
= Stars []

The inj function

inj (d) c Void def
= Char d

inj (r1 + r2) c (Left v1)
def
= Left (inj r1 c v1)

inj (r1 + r2) c (Right v2)
def
= Right (inj r2 c v2)

inj (r1 · r2) c (Seq v1 v2)
def
= Seq (inj r1 c v1) v2

inj (r1 · r2) c (Left (Seq v1 v2))
def
= Seq (inj r1 c v1) v2

inj (r1 · r2) c (Right v2)
def
= Seq (mkeps r1) (inj r2 c v2)

inj (r?) c (Seq v (Stars vs)) def
= Stars ((inj r c v) :: vs)

The inhabitation relation:

` v1 : r1 ` v2 : r2
` Seq v1 v2 : (r1 · r2)

` v1 : r1
` (Left v1) : (r1 + r2)

` v2 : r1
` (Right v2) : (r2 + r1)

` Void : (1) ` (Char c) : (c)

` Stars [] : (r?)
` v : r ` Stars vs : (r?)
` Stars (v :: vs) : (r?)

We have also introduced a slightly restricted version of this relation where the last rule
is restricted so that |v| 6= []. This relation for non-problematic is written |= v : r.

Our Posix relation s ∈ r→ v

BLA BLA 5

[] ∈ (1)→ Void [c] ∈ (c)→ (Char c)

s ∈ r1→ v
s ∈ (r1 + r2)→ (Left v)

s ∈ r2→ v s /∈ (L r1)
s ∈ (r1 + r2)→ (Right v)

s1 ∈ r1→ v1 s2 ∈ r2→ v2
@ s3 s4. s3 6= [] ∧ s3 @ s4 = s2 ∧ s1 @ s3 ∈ (L r1) ∧ s4 ∈ (L r2)

(s1 @ s2) ∈ (r1 · r2)→ Seq v1 v2

s1 ∈ r→ v s2 ∈ (r?)→ Stars vs
|v| 6= [] @ s3 s4. s3 6= [] ∧ s3 @ s4 = s2 ∧ s1 @ s3 ∈ (L r) ∧ s4 ∈ (L (r?))

(s1 @ s2) ∈ (r?)→ Stars (v :: vs)

[] ∈ (r?)→ Stars []

Our version of Sulzmann’s ordering relation

v1 �r1 v1 ′ v1 6= v1 ′

Seq v1 v2 �(r1 · r2) Seq v1 ′ v2 ′
v2 �r2 v2 ′

Seq v1 v2 �(r1 · r2) Seq v1 v2 ′

len (|v1|) ≤ len (|v2|)
(Left v2) �(r1 + r2) (Right v1)

len (|v2|) < len (|v1|)
(Right v1) �(r1 + r2) (Left v2)

v2 �r2 v2 ′

(Right v2) �(r1 + r2) (Right v2 ′)
v1 �r1 v1 ′

(Left v1) �(r1 + r2) (Left v1 ′)

Void �(1) Void (Char c) �(c) (Char c)

|Stars (v :: vs)| = []

Stars [] �(r?) Stars (v :: vs)
|Stars (v :: vs)| 6= []

Stars (v :: vs) �(r?) Stars []

v1 �r v2 v1 6= v2
Stars (v1 :: vs1) �(r?) Stars (v2 :: vs2)

Stars vs1 �(r?) Stars vs2
Stars (v :: vs1) �(r?) Stars (v :: vs2) Stars [] �(r?) Stars []

A prefix of a string s

s1 v s2
def
= ∃ s3. s1 @ s3 = s2

Values and non-problematic values

Values r s
def
= {v | ` v : r ∧ (|v|) v s}

6 Fahad Ausaf, Roy Dyckhoff, and Christian Urban

The point is that for a given s and r there are only finitely many non-problematic values.

Some lemmas we have proved:

(L r) = {|v| | ` v : r}
(L r) = {|v| | |= v : r}
If nullable r then ` mkeps r : r.
If nullable r then |mkeps r| = [].
If ` v : der c r then ` (inj r c v) : r.
If ` v : der c r then |inj r c v| = c :: (|v|).
If nullable r then [] ∈ r→ mkeps r.
If s ∈ r→ v then |v| = s.
If s ∈ r→ v then |= v : r.
If s ∈ r→ v1 and s ∈ r→ v2 then v1 = v2.

This is the main theorem that lets us prove that the algorithm is correct according to s
∈ r→ v:

If s ∈ der c r→ v then (c :: s) ∈ r→ (inj r c v).

Proof The proof is by induction on the definition of der. Other inductions would go
through as well. The interesting case is for r1 · r2. First we analyse the case where
nullable r1. We have by induction hypothesis

(IH1) ∀ s v. if s ∈ der c r1→ v then (c :: s) ∈ r1→ (inj r1 c v)
(IH2) ∀ s v. if s ∈ der c r2→ v then (c :: s) ∈ r2→ (inj r2 c v)

and have

s ∈ (((der c r1) · r2) + (der c r2))→ v

There are two cases what v can be: (1) Left v ′ and (2) Right v ′.

(1) We know s ∈ ((der c r1) · r2)→ v ′ holds, from which we can infer that there are
s1, s2, v1, v2 with

s1 ∈ der c r1→ v1 and s2 ∈ r2→ v2
and also

@ s3 s4. s3 6= [] ∧ s3 @ s4 = s2 ∧ s1 @ s3 ∈ (L (der c r1)) ∧ s4 ∈ (L r2)

and have to prove

(c :: s1 @ s2) ∈ (r1 · r2)→ Seq (inj r1 c v1) v2
The two requirements (c :: s1) ∈ r1→ (inj r1 c v1) and s2 ∈ r2→ v2 can be proved
by the induction hypothese (IH1) and the fact above.
This leaves to prove

@ s3 s4. s3 6= [] ∧ s3 @ s4 = s2 ∧ c :: s1 @ s3 ∈ (L r1) ∧ s4 ∈ (L r2)

which holds because c :: s1 @ s3 ∈ (L r1) implies s1 @ s3 ∈ (L (der c r1))

BLA BLA 7

(2) This case is similar.

The final case is that ¬ nullable r1 holds. This case again similar to the cases above.

References

1. A. Frisch and L. Cardelli. Greedy Regular Expression Matching. In Proc. of the 31st Inter-
national Conference on Automata, Languages and Programming (ICALP), volume 3142 of
LNCS, pages 618–629, 2004.

2. C. Kuklewicz. Regex Posix. https://wiki.haskell.org/Regex Posix.
3. M. Sulzmann and K. Lu. POSIX Regular Expression Parsing with Derivatives. In Proc. of

the 12th International Conference on Functional and Logic Programming (FLOPS), volume
8475 of LNCS, pages 203–220, 2014.

6 Roy’s Rules

V oid / ε Char c / Lit c

v1 / r1

Left v1 / r1 + r2

v2 / r2 |v2| 6∈ L(r1)

Right v2 / r1 + r2

v1 / r1 v2 / r2 s ∈ L(r1\|v1|) ∧ |v2|\s ε L(r2) ⇒ s = []

(v1, v2) / r1 · r2

v / r vs / r∗ |v| 6= []

(v :: vs) / r∗
[] / r∗

https://wiki.haskell.org/Regex_Posix

	Introduction
	Preliminaries
	POSIX Regular Expression Matching
	The Argument by Sulzmmann and Lu
	Conclusion
	Roy's Rules

