
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 26, 1563-1582 (2010) 

1563  

Two-phase Pattern Matching for Regular Expressions  
in Intrusion Detection Systems 

 
CHANG-CHING YANG, CHEN-MOU CHENG AND SHENG-DE WANG 

Department of Electrical Engineering 
National Taiwan University 

Taipei, 106 Taiwan 

 
Regular expressions are used to describe security threats’ signatures in network in-

trusion detection (NID) systems. To identify suspicious packets using regular expression 
matching, many NID systems use memory-based deterministic finite-state automata 
(DFA) with one-pass-scanning model, which is fast and allows dynamic updates. How-
ever, a number of practical signature patterns commonly found in a variety of NID sys-
tems, e.g., “.*A.{N}B”, can cause a state-explosion problem in such a model. In this 
paper, we propose a two-phase pattern matching engine (TPME) to solve this problem. 
In our proposed approach, the state storage cost is reduced to linearly dependent on the 
number of repetitions N in the patterns. With the new approach, we are now able to han-
dle those practical patterns that would have caused the state-explosion problem in mem-
ory-based DFA. We report our implementation of TPME on a field programmable gate 
array (FPGA). With our prototype implementation, we can achieve a throughput of more 
than 1.86 gigabits per second for pattern matching in a practical NID system.   
 
Keywords: network intrusion detection, pattern matching, regular expressions, determi-
nistic finite-state automata, two-phase matching engine   
 
 

1. INTRODUCTION 
 

In recent years, several types of approaches are proposed and applied to detect at-
tacks against network systems. Their aim is to monitor and filter data traffic arriving in a 
network to avoid exposing host computers to security threats, in which a third party may, 
e.g., try to connect to a host and take advantage of the weaknesses in the operating sys-
tems or applications.  

For detecting malicious attacks, signature matching is the most well-known method 
in state-of-the-art network intrusion detection (NID) systems. A simpler form is a screen-
ing firewall, which can look up header fields of a packet and filter the packet according 
to a set of rules consisting of Internet Protocol (IP) addresses for source and destination, 
source and destination port numbers, as well as protocol number.  

For deep packet scanning, NID systems not only focus on the header fields but also 
have to check signatures in the data payload portion of a packet. These signatures are 
usually a set of strings described by regular expressions. The most widely used NID sys-
tems like Snort [1, 2] and Bro [3, 4] use regular expressions to describe attack signatures 
in their rule sets. 

Because of the large traffic volume and complexity of the process, signature match-
ing can easily become the performance bottleneck in deep packet inspection NID sys-
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tems. It has been shown that in a typical NID system, 40-70% of the total processing 
time and 60-85% of the operations are spent in string pattern matching [5].  

Many NID systems are purely software-based, which are flexible but can not keep 
up with the traffic of heavily loaded high-speed networks. It is possible to distribute the 
work to the host computers in a network to offload the computation, but this approach 
will impose extra load on the host computers, not to mention that the installation and 
maintenance of software is difficult to manage. For this reason, it is often preferable to 
have a set of dedicated NID systems with hardware accelerators to achieve high through-
put.  

In a typical NID system, the most performance-critical part is the pattern matching 
process. There are two kinds of mechanisms to accelerate this process: circuit-based and 
memory-based. In the former approach, the rules are translated into a set of comparators, 
and the input is processed by each comparator in parallel. The advantage is the high- 
speed parallel comparison, but the circuit-based approach has a fatal drawback, namely, 
the comparator circuit is fixed and can not be changed easily. In other words, if we want 
to change the rule sets dynamically, we would have to redesign the comparators. Mem-
ory-based approaches, on the other hand, employ a controller to process the input data 
with high-speed memory look-ups, allowing rule sets to be updated at run time. 

Due to the blooming variations of security threats, being able to update the rule sets 
on line is of crucial importance to commercial NID systems. In this paper, we will pre-
sent a low storage-cost solution to memory-based pattern matching engine with on-line 
update capability. We will also report our implementation and performance analysis of 
the proposed approach on a field programmable gate array (FPGA) evaluation board. 

The rest of this paper is organized as follows. In section 2, we will first review nec-
essary background information and present the problems that may be encountered by a 
regular-expression recognizer for deep packet inspection. In section 3, we will review 
relevant works in the literature. In sections 4 and 5, we will discuss our proposed algo-
rithms, accelerator architecture, and implementation details. We then present the result of 
our prototype implementation in section 6 and conclude this paper in section 7. 

2. BACKGROUND AND PROBLEM STATEMENT 

2.1 Regular Expressions 
 
A regular expression consists of constants and operators denoting the sets of strings 

and the operations over these sets, respectively. Given a finite alphabet set Σ and subsets 
R, S of Σ, the following three basic operations are defined.  

 
• Concatenation: RS denoting the set {αβ⎪α ∈ R, β ∈ S}. 
• Alternation: R⎪S denoting the set union of R and S. 
• Kleene star: R* denoting the smallest superset of R that contains the empty string and 

is closed under string concatenation. This is the set of all strings that can be made by 
concatenating zero or more strings in R. 

 
There is a straightforward mapping between regular expressions and finite-state 
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automata that recognize whether the input data match certain regular expressions [6]. We 
can build finite-state automata to identify the patterns described using regular expres-
sions. Finite-state automata are 5-tuples: M = (Q, Σ, q0, F, δ(q, i)), in which Q is a finite 
set of non-terminals or states, Σ is a finite set of terminals, q0 is the start state, F is the set 
formed by final states, and δ(q, i) is the transition function given the current state q and 
the input i, which is often expressed as a transition table. 

There are two kinds of finite-state automata: the Deterministic Finite-state Auto-
mata (DFA), for which there is only one next state given the current state and input, and 
the Non-deterministic Finite-state Automata (NFA), for which there can be more than 
one possible next state given the current state and input.  

In both DFA and NFA, the matching process using finite-state automata can be il-
lustrated by the example shown in Fig. 1. If arriving at an accepted state, portrayed as the 
double circle in Fig. 1, we say that the string in the input tape is accepted by the finite- 
state automata. That is, this string matches some regular expression patterns which are 
equivalent to this finite-state automaton. 

 
Fig. 1. An example of matching a pattern using FSA. 

 

Characters in an alphabet Σ play two roles: one is literals, and the other meta-char- 
acters, i.e., characters representing extra operations to combine regular expressions in 
various ways. We will use the POSIX extended regular expression syntax with the GNU 
flex [7] extension, in which a backslash is used to suppress the meaning of meta-charac- 
ters, as shown in Table 1. 

We note that there are other regular expression flavors, such as the Perl Compatible 
Regular Expressions (PCRE) [8], which wedo not consider in this paper. 

We typically build FSA as the language recognizer to check if a fixed-length string 
belongs to the language defined by the regular expressions to recognize. When the string 
is matched from start to end by an FSA corresponding to the regular expressions, we say 
this string is in the language, or simply a match. But there could be other scenarios in 
which we never know what the start or end position is, e.g., when we want to check 
whether there is any sub-string of the input string that belongs to the language. In this 
situation, we could separate FSA into two types according to the execution model: one- 
pass-scan matching and repeated-scan matching [9]. 

In the former type, we could find all sub-strings starting from any position when the 
input is scanned from start to end. In order to achieve this goal, we should prepend a 
regular expression “.*” to each pattern without “^”. The advantage of this approach is 
that the computation cost is constant, independent of the length of the input string. How- 
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Table 1. List of literals and meta-characters in GNU flex regular expressions. 

 
 
ever, it could invoke an exponentially-sized state transition table.  

In the latter type, we apply the recognizing process to any start position to find all 
possible matches. In other words, if we find all matches and reach the end of the input 
from start position Pi, we need to start the next recognizing process from the next char-
acter position in input Pi+1. This approach is commonly used in language parser but is not 
suitable for packet payload scanning because of the inefficiency and low matching prob-
ability. 
 
2.2 A Motivating Example and its Analysis 
 

We have the following regular expression from the rule set in Bro for detecting IMAP 
login buffer-overflow attempt: “.*LOGIN[^\x0a]{100}”. This matches packet pay-
load that starts with LOGIN, followed by 100 non-newline characters from any position. 
The recognizing process is shown in Fig. 2. 

 
Fig. 2. The recognizing process for pattern “LOGIN[^\x0a]{100}”. 
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For the general case, the worst case in terms of number of states is that a regular ex-
pression of length n can be recognized by an NFA of O(n) states, constructed by the 
Thompson’s Construction Algorithm. If the NFA is converted to a DFA by Subset Con-
struction Algorithm, then the number of states will be bounded by O(Σn) [6]. On the other 
hand, the processing time for each input character is O(1) in the DFA approach, whereas 
the processing complexity of an NFA is O(n2) if all states can be activated when transfer-
ring to the next state.  

When we want to handle a group of k regular expressions, we can compile all regu-
lar expressions to one composite automaton, or we can build k individual automata. For 
DFA-based systems, the processing complexity is O(1) when compiled into a composite 
automaton but O(k) when built as k individual automata. The number of states will grow 
to O(Σkn) instead of O(kΣn) for building k individual automata. On the other hand, for 
NFA-based systems, if we compile k regular expressions into a composite NFA, we get 
the result O((kn)2) for processing and O(kn) for number of states. We can also choose to 
build k individual automata, resulting in O(kn2) for processing and O(kn) for the number 
of states. 

From the discussion above, we can see that DFA with all signature patterns com-
piled together is the best solution when considering processing cost first. A low process-
ing cost is invaluable for NID systems. However, the storage requirement may be expo-
nential on the pattern size n in the worst case. In fact, there exist patterns that make the 
number of states grow exponentially in the rule sets of practical NID systems. The com-
mon feature is that the pattern starts with “.*”, and there is a class or a wildcard meta- 
character such as “[^A]” or “.” in the middle of the pattern. Moreover, the interaction 
amongst signature patterns also leads to an exponentially-sized number of states if multi-
ple signature patterns are compiled into one composite DFA. For instance, if we compile 
two signature patterns “.*A.*B” and “.*C.*D” into one DFA, there will be a lot of 
states that do not exist in the individual DFA. In the following, we will analyze why 
these two types of DFA with exponential sizes occur.  

 
Type 0: Interactions inside a Single Signature Pattern  

The common features of these patterns are that they have length restriction to a class 
of characters that could overlap with the prefix. For example, the signature pattern 
“.*A.B” and its corresponding DFA are shown in Fig. 3.  

 
Fig. 3. The corresponding DFA for signature pattern “.*A.B”. 

 

In order to maintain the deterministic property of DFA, it has to remember all pos-
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sibilities that A combined with the subsequent characters before B. Therefore, the number 
of total states is 9, as opposed to 4: we will need to match some arbitrary characters, the 
character A, an arbitrary character, and finally the character B. Therefore, when we ex-
pand the pattern to “.*A.{N}B”, the number of states grows like O(2N + c), where c is 
the string length.  

In real-world NID systems, there are a significant number of signature patterns with 
features of type 0. A majority of them are for detecting buffer-overflow attempts. In Bro 
1.3.2, there are 105 such patterns out of 1278 regular expression signature patterns, 
whereas in Snort 2.4, there are 123 out of 385.  

Moreover, the problem becomes more serious as a result of applying the long length 
restriction to this type of patterns. The length usually ranges from 0 to 100, but some of 
them can be as large as 512 or 1024, suggesting that the number of states could be in-
credibly large, like 2512 or 21024, making them impossible to implement in practice.  

 
Type 1: Interactions among Multiple Signature Patterns  

This type of interaction exists when there is a partial match to one signature pattern, 
which also belongs to another signature pattern. Because of the deterministic property, 
we need to add extra states to record all possible transitions if we adopt the DFA ap-
proach. 

As an example, consider two patterns “.*A.B” and “.*C.D”. The sub-pattern 
“A.B” from the former matches the sub-pattern “.*” from the latter. If we want to de-
termine which pattern we have matched, we need to introduce some extra states to the 
automaton. Furthermore, if we have “.*A.{N}B” and “.*C{N}.D”, we would have 
O((k + 1)N) states when we compile k signature patterns of type 0 into one DFA. As men-
tioned previously, there are a large number of patterns of type 0. When they are compiled 
together, the type 1 interaction will occur, resulting in explosion in the number of states. 

3. RELATED WORK 

3.1 String Pattern Matching 
 
Traditionally, the signatures in NID systems have been specified as pre-defined 

strings corresponding to a set of well-known issues. Many efficient algorithms have been 
proposed, e.g., Aho-Corasick [10] and Wu-Manber [11]. They use a pre-processed struc-
ture to parse the input data. There are many enhancements based on their works. For 
example, Tuck et al. have introduced the use of bitmap and path compression to reduce 
memory requirement [12].  

Tan et al. present the bit-split algorithm to split an Aho-Corasick automaton into 
binary state machines to reduce the memory requirement [13]. Dharmapurikar et al. pro-
pose a hardware architecture based on parallel Bloom filters [14]. A Bloom filter is a 
space-efficient probabilistic data structure used to test set membership. Aldwairi et al. 
suggest a reconfigurable memory-based accelerator [15]. The accelerator is part of a con-
figurable network-processor architecture. The software running on a 2-wide multiple- 
issue VLIW processor generates a finite-state machine and creates the state tables, with 
string matching based on the Aho-Corasick algorithm. Baker et al. use a set of compara-
tors pipelined with output flip-flops to identify data bytes [16]. 
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3.2 Pattern Matching using Regular Expressions 
 

Most works about string matching can not be applied directly to regular expression 
matching because the latter allows a variable amount of repetition. Instead, people use 
automata-based approaches to develop matching engines for regular expressions. The 
NFA approach is not efficient in sequential computing, while the DFA approach gener-
ally has a high space cost.  

In recent years, researchers are interested in hardware-based architecture to acceler-
ate the matching process. When doing so, they mostly implement the finite-state auto-
mata using standard logic gates. As pioneers in the field, Floyd et al. show that an NFA 
can be efficiently implemented in programmable logic array [17]. Because a set of logic 
gates can be triggered simultaneously, the NFA could go through multiple next states at 
the same time. More recently, Sidhu et al. show that an NFA can be implemented effi-
ciently in hardware as flip-flops and comparators [18]. Clark et al. improve the system by 
replacing the comparators with a global decoder [19]. In the same time, Moscola et al. 
use a similar method to implement DFA and demonstrate the improvement in terms of 
throughput [20].  

This kind of approach is efficient in terms of logic resources and successfully deliv-
ers high processing throughput. However, they are inflexible because of the fixed inter-
connections among the logic gates and flip-flops. In other words, changing any pattern in 
the signature set will require changing the connections on the chip. The FPGA technol-
ogy is helpful, but it still requires a relatively long configuration time, and the systems 
will need to be shut down during the reconfiguration.  

Other researchers focus on memory-based hardware architectures. Yu et al. propose 
an algorithm to partition a large set of patterns into multiple groups to reduce the mem-
ory requirement dramatically [9]. The key point is to partition the set to reduce or even to 
eliminate the interactions among patterns. However, each packet may need to traverse 
more than one automaton. They also propose new algorithms for selecting patterns in 
general-purpose processor architectures to solve this problem.  

Kumar et al. introduce a new representation, called the Delayed Input DFA, which 
considerably compresses the memory usage [21]. The main idea is to replace some com-
mon transitions with a default transition while guaranteeing the same accepted situation 
at the same time. As a side effect, it will result in more memory look-ups. Kumar et al. 
propose the Content Addressed Delayed Input DFA, which mitigates the problem by 
replacing the state numbers with content labels [22].  

Brodie et al. use a novel pipelining strategy that defers state-dependent logic to the 
last stage, enabling multiple transitions in a single cycle. At the same time, a regular-ex- 
pressions compiler is used to encode contiguous strings of input characters and compress 
the transition table through the introduction of an indirection table [23].  

Unfortunately, many NID systems in the real world contain complex regular ex-
pressions that can result in an exponentially-sized DFA. Without modifying the signature 
patterns, Becchi et al. propose a hybrid automata solution, which involves a head-DFA 
and tailed-FAs [24]. They are able to successfully reduce the total number of states by 
replacing the part of DFA that may result in an exponential size by an equivalent NFA. 
But the processing speed highly depends on the memory bandwidth because it still needs 
more than one concurrent memory operations. Finally, it also possible to rewrite the rules 
to avoid these complex regular expressions altogether, as in, e.g., Yu et al. [9]. 
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4. PROPOSED APPROACHES OF MATCHING 

The basic idea of our proposed approach is to partition signature patterns into 
groups, e.g., partitioning each signature pattern of type 0 into two parts. Then, by apply-
ing hash algorithms and building the grouped DFA approach to the modified repeated- 
scan matching model, we can solve the state-explosion problem discussed in section 3. 
 
4.1 Motivation of Hybrid Matching 
 

As we have mentioned in section 3, if we choose the one-pass-scan matching as our 
search model, the meta-character “.*” should be prepended to the original pattern. Then, 
if there are sub-patterns with a wildcard character and a repetition constraint to this wild-
card character in any rule, the exponentially-sized DFA corresponding to the type 0 regu-
lar expression is generated.  

Hence, the question of concern is: what problems the other search model “repeated- 
scan matching” has on the search process? The consensus is that this kind of model is in- 
efficient to packet payload scanning processes because the chance of the packet payload 
matching a particular pattern is considerably low [9]. In other words, if the matching 
probability is low, then most state transitions are in vain, resulting in a low throughput. If 
we were to try a hybrid system, the repeated-scan matching model would not be able to 
keep up with the throughput of the one-pass-scan matching model. 

However, if we can apply the “repeated-scan matching” model to these DFA that 
correspond to the regular expressions of type 0, then we would be able to avoid prepend-
ing the meta-character “.*” and break the structure of type 0. As a result, we can avoid 
having a large amount of extra states and reduce the memory requirement directly. 
 
4.2 Multi-staged Partition 
 

We observe that these exponentially-sized DFA corresponding to the regular ex-
pressions always contain one character string, which we shall call the prefix string, be-
fore the sub-pattern with a wildcard character and its repetition constraint, e.g., the char-
acter ‘A’ in the prototype of the exponentially-sized DFA with type 0, “.*A.{N}B”. It 
is a key observation that if there is a string sub-pattern in the original pattern, we can 
partition it into two parts and match the two parts sequentially. Furthermore, if the first 
string matching fails, we can skip the second string matching. Because the probability 
that a packet matches a particular pattern is low, most of the work will be in the first part.  

The analysis above gives us a hint to modify the repeated-scan matching model that 
would allow us to apply existing algorithms to the string matching process. The tradi-
tional repeated-scan matching model processes one character and transit the DFA to the 
next state each cycle. When transiting the DFA to a failed state, the DFA will return to 
the position next to the starting position. However, our modified repeated-scan-matching 
processes a string from the starting position and jumps to a position next to the starting 
position or starts the following DFA matching process, depending on whether the string 
matching process fails or succeeds.  

This modification gives a chance to the repeated-scan matching model. If we guar-
antee that we can process one character in the input packet each cycle, then we can meet 
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the processing throughput of the DFA using the one-pass-scan matching model.  
We choose a hash function to achieve this goal. Applying a hash function to this 

problem, we can calculate the digest of the string and use it to address the entry in the 
memory. If the entry is empty, then there is no associated string in the pattern set. 

In the case of collisions, we can use the standard methods of resolution, e.g., linear 
probing or chaining [25]. In any case, collisions are not fatal in string-matching problem 
because in the face of a false positive, the following input data still need to match the 
remaining part of the rule, resulting in a much lower probability of misidentification. In 
the extreme case, we can build an extra DFA to check the result in the string hash process 
if we need to completely eliminate false positives. This DFA traversal could be executed 
in parallel to the second stage.  

To summarize, we propose to partition the type 0 regular expressions into two parts 
and apply a hash process to the first string matching process as a filter. Only when the 
result of this filter is matched, we trigger the remaining DFA matching process. 
 
4.3 Grouping 
 

When applying multi-staged structure to the matching process, only one DFA 
should be triggered in the second stage (or two in the situation where there are two pat-
terns with the same prefix). It is because every complete match should pass the first stage, 
and the number of entry points of the second stage DFA corresponding to the partial 
match in the first stage is less than two mostly. So we do not have to run the DFA k times. 
The process is shown in Fig. 4. 

 
Fig. 4. An example of separate DFA built from multi-staged partitioning. 

 
On the other hand, after analyzing the rule sets of a few popular NID systems [1, 3], 

we have found that some signature patterns corresponding to type 0 have the same kind 
of sub-patterns in the remaining part. We view this situation as having the same suffix. In 
the normal DFA construction, we could not share these suffixes, because DFA have to 
maintain all the state information to distinguish different signature patterns. In our pro-
posed multi-staged partition, on the other hand, we could separate the signature patterns 
with the same suffix part into the same group and then construct one DFA for each group. 
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For instance, if there are two patterns, namely, “ABC.{10}T”, where T means the trail-
ing sub-pattern, and “DEFG.{10}T”, then we could let the remaining part “.{10}T” 
use the same DFA as the recognizer.  

In this way, we can further reduce the memory cost and keep the same ability to 
recognize signature patterns in rule sets. Finally, the matching process and the possible 
memory look-up method are illustrated in Fig. 5. 

 
Fig. 5. The proposed two-phase matching process. 

5. IMPLEMENTATION 

We describe our TPME implementation that works side by side with a traditional 
DFA recognizer. Our implementation uses software-based contents pre-processing with 
hardware-based run-time matching circuit. The maximum throughput could be up to 8h 
characters per cycle, where h is the number of hash engines. This result can easily keep 
up with the performance of the state-of-the-art DFA matching engines.  
 
5.1 Choice of Hash Function 

 
We consider three classes of hash algorithms that can be easily implemented in 

hardware: (1) addition-multiplication-based methods, (2) bitwise operation-based meth-
ods, and (3) cyclic redundancy check (CRC) code-based methods.  

Some hash algorithms discard position information, whereas CRC algorithms, 
which are widely used in error detecting and correcting context, preserves position in-
formation as a hash function [26].  

We experimentally compare a few commonly used hash algorithms for string hash-
ing. The first basic-hash algorithm uses character-wise addition and multiplication op-
erations. The second lh-strhash algorithm is from the openSSL library, which uses ex-
clusive or (XOR) and shift operations. The third 32bit-FNV algorithm uses XORs and 
multiplications modulo a special prime number 16777619. The last one is CRC-CCITT 
algorithm with polynomial X16 + X12 + X5 + 1. 

The comparison will focus on the collision rate, which is defined as the probability 
that more than one string map to the same entry of the hash table. Our simulation gener-
ates a large number of different strings composed of common characters with the ASCII 
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code ranging from 0x30 to 0x7E, i.e., 0..9:;<=>?..Z[\]`a..z{|}, and then cal-
culate hash values. The simulation result is shown in Fig. 6.  

Fig. 6 shows that the difference in collision rates for these four algorithms is almost 
negligible across a wide variety of different scenarios, compared with say table size. 
When we enlarge the table, the collision rate decreases.  

 
Fig. 6. Collision rates of four hash algorithms under consideration. 

Table 2. Hardware utilization of the four hash algorithms under consideration. 

 
 

We also take resource utilization into account. We implement these four algorithms 
in the same environment and synthesize them using Xilinx’s development tool ISE 9.2i. 
Table 2 compares the hardware utilization of the four hash functions under consideration.  

Based on Table 2, we can say that “CRC-CCITT” and “lh-strhash” are good candi-
dates as our first-stage hash function because they can be implemented by simple XOR 
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operations, resulting in lower hardware cost and shorter delay on the critical path. The 
FNV algorithm could also be a decent choice if hardware cost is not a concern. 

 
5.2 Pre-processing 
 

Since our proposed approach is memory-based, we have to prepare the contents 
stored in the memory before we can run our algorithm. We do not include this cost in this 
paper because it does not contribute significantly to the total run-time cost. 
 
5.2.1 The format of memory contents 
 

We need two tables: one for hash algorithm look-up and the other for recording the 
state transitions. The format of these two tables is shown in Fig. 7. The layout of the 
first-stage is 24-bit wide, including 8 bits for recording the pattern information and 16 
bits for storing the address of the corresponding entry in the state transition table. Note 
that the entry address could be the same as any other rules when they have the same 
starting state in the state transition table.  

 
Fig. 7. The memory content layout. 

 
Meanwhile, the content format of the second stage is 16-bit wide for each entry. 

Every state has a “state property” for recording state-related information, e.g., that this 
state is an accepted state or an intermediary state. Followed the state property field, there 
are 128 or 256 records to store the “next state” information. The size of the records 
should be determined by the character encoding, e.g., 128 for 7-bit ASCII code and 256 
for 8-bit ASCII code.  

This layout is bounded by at most 256 prefix strings and up to 65536 states in the 
transition table. Currently these bounds appear to be sufficient but can be adjusted ac-
cordingly as the rule sets change in the future. 
 
5.2.2 Translator 
 

After determining the format of the memory content, we now turn to the content it-



TWO-PHASE PATTERN MATCHING FOR REGULAR EXPRESSIONS 

 

1575 

 

self. Here we develop a translator that records regular expression patterns into the two 
tables. Then, we check the match by looking up in the tables at run time. We list the 
processing steps in Algorithm 1.  

 
 
First of all, we should partition the signature patterns of type 0 into groups accord-

ing to the suffixes of the patterns. For example, there are 82 signature patterns in the 
Snort 2.4 rule set (out of 385 distinguished regular expression patterns) with the same 
suffix “[ \n]{N}” and 10 rule patterns with suffix “[ \n\t]{N}”.  

After partitioning signature patterns into groups, we need to partition each pattern in 
the same group into two parts: prefix string and the remaining part. We developed a 
regular expression parser to parse the input regular expressions into a string with a length 
of less than eight characters and the remaining part. The bounds of the length are from 
analyzing the signature patterns in real-world rule sets, from which we have found that 
the sizes of these prefix strings are less than eight in general. For long prefix strings, we 
should cut it and merge the extra characters into the remaining part. We call these char-
acters as extra characters. Note that all the remaining parts have the common suffix se-
quence, so we could construct one DFA with multiple entries that accept states to recog-
nize them.  

Next, we calculate the hash digests from the set of prefix strings and fill in the hash 
table with the number of the corresponding patterns. At the same time, we build the state 
transition table using the GNU flex. We then insert the extra characters to the original 
state transition table and add the entry state to each entry in the hash table. We collect the 
extra characters using breadth-first search.  

We then push all the extra characters into a temporary queue so that we can pop 
them up and insert them in front of the transition table easily. The detail of the insertion 
process is shown in Algorithm 2. Note that some of the steps in this algorithm are limited 
for the state transition tables generated by GNU flex.  
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5.3 Run-time Matcher 
 

After preparing the memory contents, we now need to build a run-time matching 
circuit. We use Xilinx’s ML405 FPGA evaluation board and map the two required mem-
ory blocks to an on-chip block RAM and an off-chip SRAM. There is a hardcore 
PowerPC 405 processor on this FPGA chip. We run test applications on this processor 
and get the required information on the host PC via RS-232 port.  

We note that our goal is to verify our proposed approach and maximize the through- 
put of the matching process. The complete system architecture is illustrated in Fig. 8. The 
dotted fields in Fig. 8 are not necessary for verifying our approach, so they are not in-
cluded in our prototype implementation.  

 
Fig. 8. Complete system architecture.
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There are five modules in our implementation: main, data fetch, hash engine, FA 
engine, and register queue. When the hash engine obtains a matched hash value, it pushes 
the prerequisite data for the FA engine to the register queue and then continues the first 
stage matching without halting. The prerequisite data consist of the rule information and 
the matched position. When there are data in the register queue, the FA engine will be trig- 
gered to read the required information and then start the state traversal. At the same time, 
the first-stage hash process could continue processing data in parallel to the FA engine.  

To further improve the throughput of the hash engine, we implement a four-stage 
pipeline: calculating the hash value, fetching the hash table, checking the table content, 
and pushing the information into the register queue. The result is that we can process one 
payload data in the packet buffer memory each cycle, resulting in a throughput of eight 
bits per cycle.  

We also separate the data-fetch module aside, which is responsible for fetching the 
next data for both hash and FA engines. This module has two internal buffers for hash 
and FA engines, respectively, since the two engines run in parallel. The data-fetch mod-
ule is responsible for feeding the two engines while keeping the two internal buffers from 
being depleted. The design could also minimize the probability that the data-fetch mod-
ule has to fetch the payload data twice in a single cycle, as the requests from the hash and 
FA engines are forced to be separated.  

 
Fig. 9. The TPME architecture. 

 
Our design also allows for multiple hash engines, as depicted in Fig. 9. Note that all 

hash engines can run in parallel. When any of them gets a hash match, it will push the 
related information into the register queue and continue the processing. However, be-
cause of the duplicated engines, we can consume more than one character in one clock 
cycle, resulting in a throughput of 8hf bits per second, where h is the number of hash 
engines, and f is the maximum frequency at which the circuit can operate.  

If there are extra memory resources, we can have multiple FA engines in a similar 
way. If the processing bottleneck is the second stage, duplicating the FA engines can 
relax the size of the register queue and decrease the queuing time of the partial matches 
from the first stage. 
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6. EXPERIMENT RESULTS 

6.1 Storage-cost Comparison 
 

As mentioned in section 3, the complexity of the number of states of the traditional 
DFA approach is O((k + 1)N) when processing type 0 regular expressions. Here we 
choose four signature patterns in the Bro and Snort NID systems as the benchmark. They 
are “.*SSH-[ \t\n][^\n]{200}”, “.*rename][^\x0a]{1024}”, 
“.*http:\\[ \t\n][^\n]{400} ”, and “.*apop[^\x0a]{256} ”.  

Because of the limitation in GNU flex, we have to shorten the repetition constraint 
of signature patterns so that GNU flex can generate the corresponding state transition 
tables. We list the results of various repetition constraints in Table 3. 

Table 3. Comparison of number of states for four benchmark patterns. 

 

Table 4. Comparison of number of states for eight benchmark patterns. 

 

On other hand, when we increase the number of signature patterns by adding four 
extra signature patterns: “.*HELO\s[^\n]{500}”, “.*PUT[^\n]{432}”, “.*file 
\x3a\x2f\x2f[^\n]{400}”, “.*User-Agent\x3a[^\n]{216}”, the tradi-
tional DFA approach will suffer the state-explosion problem. The result of the eight sig-
nature patterns is shown in Table 4. 

We observe that our proposed approach can reduce the number of required states for 
signature patterns. As Fig. 10 shows, the storage cost of our approach is linear to the 
repetition constraint. Furthermore, the storage cost will increase slightly when adding 
extra patterns with the same suffix. This shows that our proposed grouping has taken 
effect, so we can share the suffix between the different signature patterns.  
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Fig. 10. Storage costs of traditional DFA and TPME for 4 and 8 signature patterns. 

6.2 Throughput 
 

We use Xilinx’s ISE 9.2i and EDK 9.2i development tools to synthesize our RTL 
implementation with hash table size of 4096 entries and hash algorithm “lh-strhash”.  

In the implementation, we introduce the pipelined architecture and a bitmap register 
array to reduce the look-up latency when visiting the block RAM so that the TPME unit 
can process one character in each cycle, as predicted in section 5. At the same time, we 
also compare the implementations with different hash table sizes in Table 5. We find that 
the required resource is reasonable in most cases, but the required block RAM will be-
come a barrier when we increase the hash table size. For instance, when we increase the 
size to 65536 entries, the required block RAM will exceed what is available on ML405.  

The post synthesis frequency of the TPME unit could reach 233 MHz on ML405. 
This translates to a throughput of 1.864 gigabits per second.  

Table 5. Resource utilization comparison between different hash table sizes. 
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7. CONCLUDING REMARKS 

We have considered a class of signature patterns that could cause the state-explo- 
sion problem using DFAs to match regular expressions. For these signature patterns, we 
have shown that they all have a common pattern “.*A.{N}B”. When using the tradi-
tional DFA solution, we might intend to use the one-pass-scan matching model for high- 
speed matching processes. But for signature patterns belonging to this common type, this 
model could have an exponentially growing memory cost. We have proposed a partition 
method to cut a pattern into two matching stages to prevent state explosion from hap-
pening. By adopting the partition method, we could use the modified repeated-scan 
matching model to scan the prefix string repeatedly. Based on the low matching prob-
ability, the remaining part matching process would not be triggered frequently. At the 
same time, by adopting the partition method, we can also share the common suffix from 
different signature patterns by grouping them appropriately. Finally, we construct DFA 
with multiple entry points in order to retain the information about the partial matches 
from the first stage. Our implementation result shows that we can achieve a throughput 
of 1.864 gigabits per second by choosing the appropriate hash functions to match the 
prefix string in the first stage. In additions, previous works on compressing the DFA 
transition tables and speeding up the table look-ups can be applied to the second stage 
directly. All in all, using TPME as a co-processing unit with the traditional DFA engine 
could be a sound solution to implement a regular expression matching engine. 
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