
UNIVERSITY OF BERN

Efficient regular expressions that produce
parse trees

by

Aaron Karper

A thesis submitted in partial fulfillment for the
degree of Master of Science

in the
Philosophisch-naturwissenschaftliche Fakultät

Institute of Computer Science and Applied Mathematics

supervised by

Prof. Oscar Nierstrasz and Dr. Niko Schwarz

December 19, 2014

http://www.unibe.ch
http://www.philnat.unibe.ch/
http://www.iam.unibe.ch/en

UNIVERSITY OF BERN

Abstract
Philosophisch-naturwissenschaftliche Fakultät

Institute of Computer Science and Applied Mathematics

Master of Science

by Aaron Karper

Regular expressions naturally and intuitively define parse trees that describe the text
that they’re parsing. We describe a technique for building up the complete parse tree
resulting from matching a text against a regular expression.

In previous tagged deterministic finite-state automaton (TDFA) matching implementa-
tions, all paths through the non-deterministic finite-state automaton (NFA) are walked
simultaneously, in different co-routines, where inside each co-routine, it is fully known
when which capture group was entered or left. We extend this model to keep track of not
just the last opening and closing of capture groups, but all of them. We do this by storing
in every co-routine a history of the all groups using the flyweight pattern. Thus, we log
enough information during parsing to build up the complete parse tree after matching in
a single pass, making it possible to use our algorithm with strings exceeding the machine’s
memory. Further we construct the automata such that a simulation of backtracking like
behaviour is possible. This is achieved in worst case time Θ(mn), providing full parse
trees with only constant slowdown compared to matching.

http://www.unibe.ch
http://www.philnat.unibe.ch/
http://www.iam.unibe.ch/en

Contents

Contents 5

1 Introduction 7
1.1 More powerful than standard regular expressions 8
1.2 Motivation . 8
1.3 Regular expressions . 9

Literals . 10
Character ranges . 10
Negated character ranges . 10
Concatenation . 10
Option operator . 10
Star operator . 10
Plus operator . 10
Non-greedy operators . 10
Alternation . 10

1.3.1 Capture groups . 11
Greediness . 11

1.4 Backtracking . 11
1.5 (Non-)deterministic finite-state automata 12

2 Algorithm 15
2.1 NFA based matching . 15
2.2 DFA based matching . 15
2.3 Lazy DFA compilation . 16
2.4 Tagged finite state automata . 17

2.4.1 Simulating backtracking for regular expressions 18
2.5 Pipeline . 18
2.6 Thompson’s construction . 19
2.7 Logging capture groups in a TNFA . 21

2.7.1 Conversion to tagged DFA . 27

3 Data structures 29
3.1 Fully persistent data structures . 29
3.2 Copy-on-write array . 30
3.3 Treap . 31
3.4 Storing updates . 31

3.4.1 Linear versions . 32

5

6 CONTENTS

3.4.2 Version tree . 32
Emptying a full buffer . 33
Constant time ordering of versions 33

3.5 Order maintenance . 35
3.5.1 Relabeling . 35
3.5.2 Indirection . 36

4 Proofs 39
4.1 Correctness . 39
4.2 Execution time . 42
4.3 Lower bound for time . 43

5 Implementation 45
5.1 DFA transition table . 45
5.2 DFA execution . 46
5.3 Compactification . 46
5.4 Intertwining of the pipeline stages . 48
5.5 Parsing the regular expression syntax . 48

6 Related work 51
6.1 Revisiting backtracking . 52
6.2 Packrat parsers . 53
6.3 Automata based extraction of parse trees 54
6.4 Large scale data analysis of a stream of text 55

7 Benchmark 57

8 Conclusion 61

Appendices 63

A Minimal python implementation 65
A.1 Construction . 65
A.2 Matching . 67

Bibliography 71

List of Figures 71

List of Tables 75

List of Algorithms 77

Chapter 1

Introduction

Regular expressions give us a concise language to describe patterns in strings and can
be used for log analysis, natural language processing, and many other tasks involving
structured data in strings. Their efficiency make them useful even for large data sets.
Standard algorithms run in O(nm), where n is the length of the string to be matched
against and m is the length of the pattern [25].

A short-coming of standard regular expression engines is that they can extract only a
limited amount of information from the string. A regular expression can easily describe
that a text matches a comma separated values file, but it is unable to extract all the
values. Instead it only gives a single instance of values:

/((.∗?), (\d+);) + / might describe a dataset of ASCII names with their numeric label.
Matching the regular expression on “Tom Lehrer,1;Alan Turing,2;” confirms that the
list is well formed, but the match contains only “Tom Lehrer” for the second capture
group and “1” for the third. That is, the parse tree found by the Posix is seen in
figure 1.1.

Tom Lehrer , 1 ; Alan Turing , 2 ;

2 3

0

1

Figure 1.1: Parse tree produced by Posix-compatible matching /((.∗?), (\d+);) + /
against input “Tom Lehrer,1;Alan Turing,2;”.

With our algorithm we are able to reconstruct the full parse tree after the matching
phase is done, as seen in figure 1.2.

7

8 Chapter 1 Introduction

Tom Lehrer , 1 ; Alan Turing , 2 ;

2 3

0

1 1

32

Figure 1.2: Parse tree produced by our approach matching regular expression
/((.∗?), (\d+);) + / against input “Tom Lehrer,1;Alan Turing,2;”

The worst-case run time of our approach is Θ(nm), the same as the algorithm extracting
only single matches. It is the first algorithm to achieve this bound, while extracting parse
trees.

1.1 More powerful than standard regular expressions

It may at first seem as if all capture groups can always, equivalently, be extracted by
splitting the input, and then applying sub-regular expressions on the splits. This is, for
example, an entirely valid strategy to extract the parse tree in figure 1.2. However, this
can quickly become an exercise of writing an entire parser, using no regular expression
engine at all, even if the underlying grammar is entirely regular. The following grammar
is hard to parse using a regular expression engine, even though it is regular.

Consider a file of semicolon-terminated records, each record consisting of a comma-
separated pair of entries, and each entry can be escaped to contain semicolons, as in
the regular expression /((”.∗?”|[a− z]∗), (”.∗?”|[a− z]∗);) + /. Here, expression /.∗?/ is
a non-greedy match which will be discussed in more detail in section 2. This language
contains, for example, the string: “"h;i",there;"h;,i",Paul;”. It is easy to see that, in or-
der to extract all four capture group matches, it is insufficient to split the input at the
semicolon, as that would split the field “h;i” in half. More involved examples, where hand-
written parsers become harder to make and more inefficient, are easily constructed. In
contrast, our approach yields the entire parse tree, simply from the regular expression in
at most O(nm) time.

1.2 Motivation

A first step of processing large data sets is often to parse strings in order to obtain a
more manageable format. As an example, consider log files. As Jacobs [15] noted, “What
makes most big data big is repeated observations over time and/ or space,” and thus log

Chapter 1 Introduction 9

files grow large frequently. At the same time, they provide important insight into the
process that they are logging, so their parsing and understanding is important.

Regular expressions make for scalable and efficient lightweight parsers [16].

The parsing abilities of regular expression have provoked Meiners to declare that for
intrusion detection, “fast and scalable RE matching is now a core network security issue.”
[21]

For example, Arasu et al. [1] demonstrate how regular expressions are used in Bing to
validate data, by checking whether the names of digital cameras in their database are
valid.

Parsers that can return abstract syntax trees are more useful than ones that only give a
flat list of matches. Of course only regular grammars can be matched by our approach.

1.3 Regular expressions

Before we dive into the algorithm to match regular expressions, we should first look at
the goal – what regular expressions are and what kind of constructs need to be supported
by our algorithm.

Regular expressions have some constructs specific to them and literal character matches.
They are typically described in a string describing the pattern. They can describe any
regular language [26] if one only considers match vs non-match though they are typically
used to extract information.

Name Example Repetitions Description
literal /a/ 1

character ranges /[a− z]/ 1 any of the characters in the
range match

negated character ranges /[ˆa− z]/ 1 anything except for the
characters in the range match

? operator /a?/ 0 or 1
* operator /a ∗ / 0−∞ Prefer more matched
+ operator /a + / 1−∞
?? operator /a??/ 0 or 1
*? operator /a∗?/ 0−∞ Prefer less matched
+? operator /a+?/ 1−∞

alternation operator /a|b/ 1 match one or the other,
prefer left

capture groups /(a)/ 1 treat pattern as single
element, extract match

Table 1.1: Summary of regular expression elements

10 Chapter 1 Introduction

Literals The simplest form of regular expressions are literal characters like /a/.

Character ranges Instead of matching only a single character, a regular expression
might match any of a range of characters. This is denoted with brackets. For example
/[a− z]/ would match any lowercase ASCII letter, /[abc]/ would only match the letters
a, b, or c, and /[a− gk− t]/ would match any letter between a and g, or between k and
t. There is also the special character range /./ that matches any character.

Negated character ranges Ranges of the form /[ˆ . . .]/ negate their content, so
/[ˆa− g]/ would match anything except a through g.

Concatenation Two constructs put after each other have to match the string in order.
For example /a[bc]/ matches “a” followed by either “b” or “c”.

Option operator The option operator denoted by /?/ allows either zero or one
repetitions of the preceding element, preferring to have one repetition. This means /a?/

will match the empty string or “a”, but nothing else.

Star operator The star operator * allows for arbitrary repetition of the preceding el-
ement, including zero repetitions, preferring as many repetitions as possible. For example
/a ∗ / matches the empty string, “a”, “aa”, and so on.

Plus operator The plus operator + is similar, but requires at least one repetition.
This leads to /a + / and /aa ∗ / matching the same strings.

Non-greedy operators The option, the star, and the plus operators also have cor-
responding non-greedy operators, which are ??, /∗?/, and /+?/ respectively. These op-
erators prefer to match as few repetitions as possible. In back-tracking implementation,
guessing the right path is an important efficiency feature and for all capturing imple-
mentation the path taken influences the captured groups.

Alternation Patterns separated by the pipe symbol | can either match the left part
or the right part. This binds weaker than concatenation. Therefore /abc|xyz/ would
match “abc” or “xyz”, but not “abxyz”.

Chapter 1 Introduction 11

1.3.1 Capture groups

Patterns enclosed by parentheses are treated as a single element, thus /(ab) ∗ / cap-
tures “ab”, but not “aba”. More importantly for us is that after the match, the capture
groups can be extracted: /a(b∗)c/ when matching “abbbc” can extract “bbb” and the
empty string when matching “ac”. Note that the capture groups can be nested and the
semantics differ for Posix and tree regular expressions: In Posix the regular expression
/a((bc+)+)/ on the string “abcbccc” gives “bcbccc” for the outer capture group and bc
for the inner capture group – the leftmost occurrence of outer capture groups is kept and
within that substring, the leftmost occurrence of the inner group is kept. In tree regular
expressions, all occurrences are kept and returned in a tree structure: The outer capture
group contains “bcbccc” and both inner matches “bc” and “bccc”.

Greediness The relevance of greedy and non-greedy matches becomes apparent now:
The regular expression /a(.∗)c?/ on the string “abc” captures “bc” in the group, while
/a(.∗?)c?/ captures only “b”. This is because the parsing is ambiguous without specifying
the greediness of the match – both “b” and “bc” would be valid.

1.4 Backtracking

An intuitive and extensible algorithm for determining whether a string matches a regular
expression is backtracking. This algorithm 1 is used as is or in a more optimized form in
many languages, such as Java1, Python2, or Perl [5]. For all its advantages and ease of
implementation the main problem is that it takes Θ(2nm) time in the worst case:

If we have the pattern /(x∗) ∗ y/ matching against the string3 xn, we see that it cannot
match, but it takes exponential time doing so. In each step there are two options, either
to collect the x in /x ∗ /, or to step over it and try again. Unfortunately that means that
the algorithm branches in each character in the string and never succeeding keeps on
trying, so it takes 2n steps to end in the no match case. Backtracking is fast if it guesses
correctly, since there is not much overhead, but fails miserably if it guesses wrongly early
on.

Because backtracking is so intuitive we will use it as the definition of a correct behaviour
throughout this thesis.

1java.util.regex
2The module re
3xn means x repeated n times

12 Chapter 1 Introduction

Algorithm 1 Overview of backtracking
function match-bt(string, pattern)

if string and pattern empty then
return matches

else if string or pattern empty then
return no match

else if first element of pattern is a∗ then
. x[1:] means removing the first element of the list
if a matches first element of string then

return match-bt(string[1:], pattern)
else

return match-bt(string, pattern[1:])
end if

else if . . . then
. . .

end if
end function

1.5 (Non-)deterministic finite-state automata

As they are heavily used throughout this paper, let us recall what non-deterministic finite-
state automata (NFA) and deterministic finite-state automata (DFA) are. A DFA is a
state machine that walks over a finite transition graph, one step for every input character.
The choice of transition is limited by the transition’s character range. A transition can
only be followed if the current input character is inside transition’s character range. The
possible character ranges are assumed to be disjoint, so that in every step at most one
transition can be followed.

NFA differ from DFA in that for some input character and some state, there may be more
than one applicable transition and some transitions can be traversed without consuming
a character, called ε-transitions. If there is a transition that leads to the accepting state
eventually, an NFA finds it, by trying the alternatives in lock-step. Figure 2.2 shows an
example of an NFA’s transition graph.

An simple way to think about the process of reading input with an NFA is that of
co-routines. Co-routines are procedures that has the ability to suspend themselves and
continue later – they are similar to threads, but co-routines don’t need to be executed
in parallel and are usually manually scheduled. In order to resume their work later, they
contain some kind of memory that is specific to them.

In the context of NFAs, a co-routine contains the current state and has access to the
transition graph4. When reading a string, the NFA maintains a set of co-routines and
run them in lock-step. This means that each co-routine reads the current character
and spawns new co-routines for all possible transitions. When reading a character, a

4Later more memory will be added to store the sub-matches.

Chapter 1 Introduction 13

co-routine must consume it, but might follow ε-transitions before. We model this by
following ε-transitions in order, and whenever we encounter a transition that can consume
the current character, the state following it is added to the next scheduling cycle.

Furthermore the order in which states are expanded will become relevant: a transition
that crossed a tag and one that doesn’t cross a tag can end in the same state – depending
on the order the memory of the coroutine in the state differs. Since we still store at most
one co-routine in any NFA-state, the co-routines compete to capture a state. The winner
– that is the first co-routine to enter a state – will define the memory of all following
states. For this, the model of the NFA is expanded for allowing transitions with negative
priority. An edge with negative priority will only be expanded when there are no more
legal transitions with regular priority. The order for high and low priorities is depth first5.

5In an implementation this would imply that a newly seen state is put on a stack.

Chapter 2

Algorithm

With the basic definition of regular expression matching available, we will dive directly
into finding an algorithm to solve the problem in a less wasteful way. First we will
discuss how matching without match extraction works with finite state automata, then
we will discuss how one can add match extraction to get an automata based algorithm
equivalent to backtracking. Finally we will discuss how to generate parse trees instead
of flat matches.

2.1 NFA based matching

A faster alternative to the backtracking approach discussed in section 1.4 is to pre-process
the regular expression and convert it into an NFA by the rules in figure 2.1.

The NFA thus obtained contains O(m) states and to check if a given string matches the
regular expression, we can now simply run the NFA on it. For each character in the input
string, we follow all transitions possible from our current states and save the accessible
states as a set. In the next iteration, we consider the transitions from any of these states.
This allows us to match in O(nm) time1.

2.2 DFA based matching

Dissatisfied with the multiplicative O(m) overhead, we can construct a DFA from the
NFA before matching. This is done by the power set construction [26], which has time
complexity O(2m). The idea is to replace all states by the set reachable from it with only
ε-transitions – therefore a DFA state is a set of NFA states. The transitions simulate a

1Note that the number of branches per state is O(1)

15

16 Chapter 2 Algorithm

S2

S1

Alternation

S1|S2

S

Plus operation

S+

S

Optional

S?

S

Star operation

S*?

Figure 2.1: Thompson [28] construction of the automaton: Descend into the abstract
syntax tree of the regular expression and expand the constructs recursively.

step in the original NFA, so they point to another set of states. After the compilation is
done, matching the string is O(n) time.

This can be very useful, if the regular expression is statically known.

2.3 Lazy DFA compilation

The DFA based matching takes O(n+ 2m), which is no better than backtracking if m is
not fixed. The power set construction simulates every transition possible in the NFA, but
that is actually unnecessary: Instead we can intertwine the compilation and the matching
to only expand new DFA states that are reached when parsing the string. At most one
new DFA state is created after each character read and if necessary the whole DFA is
constructed, after which the algorithm is no different from the eager DFA. The time
complexity of the match is then O(min(nm,n+ 2m)).

This is the best known result for matching [5, 6, 7].

Note however that for many matches, nm is at least as good as n + 2m, and in those
cases, this gives no improvement over the NFA matching.

Our algorithm modifies this algorithm by adding instructions to transitions, but the core
part is the modification of the NFA construction.

Chapter 2 Algorithm 17

2.4 Tagged finite state automata

The algorithms so far did not extract capture groups, because they have no information
about where a capture group starts or ends. In order to extract this information, we need
to store it in some way, as we traverse the automaton.

Remember that NFA interpretation can be thought as competing co-routines, running
in lock-step with each step consuming exactly one character of the input string2 This
model already implies that some form of instructions are executed on a transition, so it
is possible to add other instructions that allow us to store the capture groups. This is
the idea of the tagged finite state automaton3, which attaches general tags to transitions
that modify the co-routine’s memory in some way. This way, co-routines can store the
complete information, where they matched which capture group in their own memory.

Specifically we can store the position of the start and end of each match in the memory
of the co-routine, whenever we encounter a transition that corresponds to the start or
end of a capture group.

Side effects, such as storing the current location, make co-routines using different routes
to the same state differ in meaning. Consider the regular expression /(a)|(.)/ reading the
string “a”: depending on the path chosen our capture groups will either contain “a” in
the first or second capture group. This requires us to define a unique order for expanding
co-routines on each state, so that we can avoid this ambiguity. This is avoided by giving
a negative priority4 to one of the transitions or require one to consume a character,
whenever we have an out-degree of two5.

The priorities intuitively mean that for example in /.a|../ we will try to follow the path
of /.a/ first before checking /../. Only if we fail on that track we will consider the second
path.

Closely related to priorities is greediness control: Consider again the regular expression
/((.∗?), (\d+);) + /. The question mark sets the /. ∗ / part of the regular expression
to non-greedy, which means that it matches as little as possible while still producing a
valid match, if any. Without provisioning /. ∗ / to be non-greedy, a matching against
input “TomLehrer, 1; AlanTuring, 2;” would match as much as possible into the first
capture group, including the record separator “,”. Thus, the first capture group would
suddenly contain only one entry, and it would contain more than just names, namely
“TomLehrer, 1; AlanTuring”. This is, of course, not what we expect. Non-greediness,
here, ensures that we get “TomLehrer”, then “AlanTuring” as the matches of the first
capture group.

2The empty string can be modelled as containing only the ‘\0’ character.
3First called that by Laurikari [19]
4See also Laurikari [19]
5Note that in the Thompson construction, we have an out-degree of at most two.

18 Chapter 2 Algorithm

Implementing this in a backtracking implementation is trivial, but in order to keep the
co-routines in lock-step, we need to order the NFA states in the DFA state, so that the
co-routines travelling the left path are always scheduled before the routines on the right
path.

To complicate things further, we want co-routines that travelled further to have higher
priority than the ones that stayed further behind – in backtracking this would be depth-
first-search.

Section 2.4.1 will explain how this can be simulated in TNFA interpretation, which is an
original contribution of this paper.

2.4.1 Simulating backtracking for regular expressions

In order to simulate backtracking correctly, we need that all paths reachable from the
state after the prioritized transition is processed first, even if interrupted by the need to
consume another character. This prioritization is achieved by using a buffer, that reverses
the order of high-priority runs.

Without the buffer, the routines are scheduled in the order in which the states are seen.
This gives wrong results, if the state further behind can catch up to one further down,
for example in /(a∗?)(a∗?)/, the second group should contain the match.

2.5 Pipeline

The algorithm we present is specific case of the tagged non-deterministic finite state
automaton (TNFA) matching algorithm for regular expressions with added logging of
the start and end of capture groups, as described in section 2.4. We first present the
algorithm for matching, which is O(nmu(m)), where u(m) describes the amortized cost
of logging a single opening or closing of a capture group. We then show a simple data
structure that allows us to achieve u(m) = logm and continue to present a way to
improve this to u(m) = 1 following Driscoll et al [9]. This gives us O(nm) run time for
the complete algorithm, which is the best known run time for NFA algorithms. We also
consider practical problems such as caching current results, just-in-time compilation, and
compact memory usage.

Conceptually, our approach consists of four stages:

1. Parse the regular expression string into an AST (section 5.5).

2. Transform the AST to an NFA (section 2.6).

3. Transform the NFA to a DFA (section 2.7).

Chapter 2 Algorithm 19

Algorithm 2 Tagged transition execution. See appendix A.2 for an actual implementa-
tion in Python.
. Returns a list of co-routines that consumed the character
function runtagged(coroutines, char)

. coroutines is a list of co-routines in order as returned here.

. char is a character
Put all coroutines on the low stack
Initialize empty buffer stack
Initialize empty list R . the returned list of co-routines
while the stacks aren’t both empty do

if high is not empty then
Pop c from the high stack

else
Pop c from the low stack
Flush buffer into R, thus reversing the order

end if
for all transitions that consume char from c to state s do

. We remember the state for the next turn
push s to buffer

end for
for all ε-transitions from c to state s with tag t do

if no co-routine in state s exists in coroutines then
copy the co-routine c to c′

interpret(t, c′)
end if
if transition is normal priority then

add a co-routine r in state s with memory m to the high stack
else

add a co-routine r in state s with memory m to the low stack
end if

end for
end while
return R

end function

4. Compactify the DFA (section 5.3).

In reality, things are a little more involved, since the transformation to DFA is lazy, and
the compactification only happens after no lazy compilation has occurred in a while. Also
compactification can be undone if needed. Since the essence of the algorithm is step 2
and 3, we start with them and proceed to see steps 1 and 4 as part of the implementation.

2.6 Thompson’s construction

We transform the abstract syntax tree (AST) of the regular expression into a TNFA,
in a modified version of Thompson’s NFA construction. Tagged transitions mark the

20 Chapter 2 Algorithm

beginning or end of capture groups or control the prioritization. The additions are needed
for greediness control and capture groups.

1 2 3

4

6 7

8 9 11 12 1310

5

Figure 2.2: Automaton for /((.∗?), (\d+);) + / In the diagram, “−” stands for low
priority. τn ↑ is the opening tag for capture group n, likewise, τ1 ↓ is the closing tag for

capture group n.

In the NFA, we model greedy repetition or non-greedy repetition of an expression in two
steps:

1. We construct an NFA graph for the expression, without any repetition. Figure 2.2
shows how this plays out in our running example, which contains the expression
/.∗?/. An automaton for the expression /./ is constructed. The expression /./ is
modeled as just two nodes labeled 3 and 4, and a transition labeled “any” between
them.

2. We add prioritized transitions to model repetition. In our example, repeating is
achieved by adding two ε transitions: one from 4 back to 3, to match more than
one time any character, and another one from 3 to 5, to enable matching nothing at
all. Importantly, the transition from 4 back to 3 is marked as low priority (the “–”
sign) while the transition leaving the automaton, from 3 to 5, is unmarked, which
means normal priority. This means that the NFA prefers leaving the repeating
expression, rather than staying in it. If the expression were greedy, then we would
mark the transition from 3 to 5 as low-priority, and the NFA would prefer to match
any character repeatedly.

More generally, the NFA prefers to follow transitions of normal priority over those of low
priority6.

6See section 2.4.1

Chapter 2 Algorithm 21

S2

S1

-

Alternation
S1|S2

S -

Plus operation
S+

S

-

Optional
S?

S

Capture group
(S)

S

-
Non-greedy plus operation

S+?

S

-

Non-greedy star operation
S*?

S

-

Star operation
S*?

-

Figure 2.3: Modified Thompson [28] construction of the automaton: Descend into the
abstract syntax tree of the regular expression and expand the constructs recursively. In
comparison to the simple construction in figure 2.1, the forward transitions from the
top state in the star operators should be surprising, but they are necessary if S has a
prioritized path that captures the empty string: We cannot return to the start state,

because we expanded it already, but we can proceed anyway.

2.7 Logging capture groups in a TNFA

Our algorithm is directly based on algorithm 2, so this section lays out the storage
required by the co-routines and the interpretation of the tags that we introduced in the
previous section.

To model capture groups in the NFA, we add commit tags to the transition graph. The
transition into a capture group is tagged by a commit, the transition to leave a capture
group is tagged by another commit. We distinguish opening and closing commits. The
NFA keeps track of all times that a transition with an attached commit was used, thus
keeping the history of each commit. After parsing succeeds, the list of all histories can
then be used to reconstruct all matches of all capture groups.

We model histories as singly linked lists, where the payload of each node is a position.
Only the payload of the head, the first node, is mutable, the rest, all other nodes, are

22 Chapter 2 Algorithm

25

9

6 7

24

Figure 2.4: Histories are cells of singly linked lists, where only the first (here bottom-
most) cell can be edited. This is a view of the automaton in figure 2.2 after the string
“TomLehrer, 1; AlanTuring,” has been consumed. Only the cell for the closing of the

second capture group is shown.

immutable. Because the rests are immutable, they may be shared between histories.
This is an application of the flyweight pattern, which ensures that all of the following
instructions on histories can be performed in constant time. Here, the position is the
current position of the matcher.

Notation. We use the following vocabulary.

DFA states are denoted by a capital letter, e.g. Q, and contain multiple co-routines.

Q = [(q1, (([0], [12]), ([9, 1], [10, 2]), ([], []))),

(q2, (([0], []), ([1], [2]), ([1], [2])))]

for example means that the current DFA state has one co-routine in NFA state
q1 with histories (([0], [12]), ([9, 1], [10, 2])) and another co-routine in NFA state
q2 with the histories (([0], []), ([1], [2]), ([1], [2])). Note that histories can be shared
across co-routines if they have the same matches. The order of the co-routines is
relevant and a DFA state is thus a list of NFA states.

Histories are linked lists, where each node stores a position in the input text. The
head is mutable, and the rest is immutable. Therefore, histories can share any
node except their heads. We write h = [x1, . . . , xm] to describe that matches have
occurred at the positions x1, . . . , xm.

Co-routines are denoted as pairs (qi, h), where qi is some NFA state, and h = (h1, . . . , h2n)

is an array of histories, where n is the number of capture groups. Each co-routine
has an array of 2n histories. In an array of histories ((h1, h2), . . . (h2n−1, h2n)), his-
tory h1 is the history of the openings of the first capture group, and h2 is the

Chapter 2 Algorithm 23

history of the closings of the first capture group, and so on. The visual pairing of
the histories is in order to visualize which histories denote start and end of which
capture group.

Transitions are understood to be between NFA states, so q1 → q2 means a transition
from q1 to q2.

Take for example the regular expression /(..) + / matching pairs of characters, on the

input string “
0123
abcd”. The history array of the finishing co-routine is ((h1 = [0], h2 =

[3]), (h3 = [2, 0], h4 = [3, 1])). Histories h1 and h2 contain the positions of the entire
match: position 0 through 3. Histories h3 and h4 contain the positions of all the matches
of capture group 1, in reverse. That is: one match from 0 through 1, and another from 2
through 3.

Our engine executes instructions at the end of every interpretation step. There are four
kinds of instructions:

h← p Stores the current position into the head of history h.

h← p + 1 Stores the position after the current one into the head of history h.

h′ 7→ h Sets head.next of h to be head.next of h′. This effectively copies the (immutable)
rest of h to be the rest of h′, also.

c ↑ (h) Prepends history h with a new node that becomes the new head. This effectively
commits the old head, which is henceforth considered immutable. c ↑ (h) describes
the opening position of the capture group and is therefore called the opening com-
mit.

c ↓ (h) This is the same as c ↑ (h) except that it denotes a closing commit marking the
end of the capture group. This distinction is necessary, because an opening commit
stores the position after the current character and the closing commit store the
position at the current character.

With this, the algorithm is simply implementing the fitting interpret function as seen in
algorithm 2.

The states are given to the algorithm in the order visited, so that the coroutine that
got furthest is expanded first when the next character is read. The buffer variable is a
detail that ensures that the correct order of co-routines is produced. If our procedure is
consistently used, the prioritization will lead to a correct match.

Note that the ordering of co-routines inside of DFA states is relevant. In figure 2.2, after
reading only one comma as an input, state 7 can be reached from two co-routines: either

24 Chapter 2 Algorithm

Algorithm 3 Interpretation of the tags.
1: . Update the co-routine, interpreting the tag
2: function interpret(t, c)
3: . t is a tag, c is a co-routine
4: if t is open tag of group i then
5: . Don’t commit, in case we pass edge again
6: set(index+ 1, c.histories[i].left) . See section 3.1
7: end if
8: if t is close tag of group i then
9: set(index, c.histories[i].right)

10: commit c.histories[i].left and c.histories[i+ 1].right
11: end if
12: end function

from the co-routine in state 3, via 4, or from the co-routine in state 6. The two co-routines
are ‘racing’ to capture state 7. Since in the starting state, the co-routine of state 6 is
listed first, it ‘wins the race’ for state 7, and ‘captures it’. Thus, the new co-routine of
state 7 is a fork of the co-routine of state 6, not 3. This matters, since 6 and 3 may
disagree about their histories.

Example 2.1. Execution of algorithm 2 with the function interpret as above:

Consider the automaton in figure 2.2 is in the DFA state7

Q = [(q1, (([], []), ([], []), ([], [])))]

This is the case after initialization.

The algorithm uses a high and a low low stack, corresponding to the two priorities.

We pretend for clarity that instructions are executed directly after they are encountered.
The actual algorithm collects them and executes them after the run call to allow further
optimizations and the storage of the instructions.

This is the execution of run(Q, “,”):

1. Fill the low stack with the co-routine in Q. Now, low = [(q1, (([], []), ([], []), ([], [])))],
where the first element is the head of the stack. high is empty.

2. Initialize buffer as an empty stack. The buffer stack exists because while following
high priority transitions, states are discovered in an order that is reversed with
respect to the order in which we would like to output them.

3. Initialize the DFA state under construction: R = [],

4. Co-routine (q1, (([], []), ([], []), ([], []))) is popped from the high stack.
7This is the starting state.

Chapter 2 Algorithm 25

Algorithm 4 Complete transition execution as implemented by us. This is algorithm 2
with algorithm 3 inlined. See appendix A.2 for an actual implementation in Python.
function runtnfa(coroutines, char)

Put all coroutines on the low stack
Initialize empty buffer stack
Initialize empty stack R
while the stacks aren’t both empty do

if high is not empty then
Pop c from the high stack

else
Pop c from the low stack
Flush buffer into R, thus reversing the order

end if
for all transitions that consume char from c to state s do

. We remember the state for the next turn
push s to buffer

end for
for all ε-transitions from c to state s with tag t do

if no co-routine in state s exists in coroutines then
copy the co-routine c to c′

if t is open tag of group i then
set(index+ 1, c′.histories[i].left)

end if
if t is close tag of group i then

set(index, c′.histories[i].right)
commit c′.histories[i].left and c′.histories[i+ 1].right

end if
end if
if transition is normal priority then

add a co-routine r in state s with memory m to the high stack
else

add a co-routine r in state s with memory m to the low stack
end if

end for
end while
return R

end function

26 Chapter 2 Algorithm

5. We iterate all available transitions in the NFA transition graph, and find only q1 →
q2, which contains the tag τ1 ↑.

(a) We need to change the opening tag of the first capture group, so we call
set(1, histories[0].left).

(b) We push q2 with the new memory to the high stack.

6. Co-routine (q2, (([1], []), ([], []), ([], []))) is popped from the high stack.

7. We see q2 → q3, which contains the tag τ2 ↑.

(a) We need to change the opening tag of the first capture group, so we call
set(1, histories[1].left).

(b) We push q2 with the new memory to the high stack.

8. Co-routine (q3, (([1], []), ([1], []), ([], []))) is popped from the stack.

9. We see q3 → q4 with negative priority, we push q4 on the low stack.

10. We see q3 → q5 and push q5 on the high stack.

11. Co-routine (q5, (([1], []), ([1], []), ([], []))) is popped from the high stack. It contains
τ2 ↓

(a) We need to change the opening tag of the first capture group, so we call
set(0, histories[1].right).

(b) We push q6 with the new memory to the high stack.

12. Co-routine (q6, (([1], []), ([1], [0]), ([], []))) is popped from the high stack.

13. We see q6 → q7 consuming “,”. We don’t push anything on the high or low stack,
but put (q7, (([1], []), ([1], [0]), ([], []))) in the buffer.

14. Our high stack is empty.

(a) We flush the buffer into the DFA state R: R = [(q7, (([1], []), ([1], [0]), ([], [])))],
buffer = []

15. Co-routine (q4, (([1], []), ([1], []), ([], []))) is popped from the low stack.

16. We see q4 → q3 consuming any character. We put (q3, (([1], []), ([1], []), ([], []))) on
the buffer stack.

17. No transitions remain.

(a) We flush the buffer: R = [(q7, (([1], []), ([1], [0]), ([], []))), (q3, (([1], []), ([1], []), ([], []))],
buffer = []

18. R is returned.

Chapter 2 Algorithm 27

Some of the histories contain pairs of the kind ([1], [0]), which would be a group that
starts after it began. This means that no character was matched, as can easily be checked
by comparing it to /((.∗?), (\d+)) + / on the string “,”.

The overall run time of algorithm 2 depends heavily on the forking of co-routines being
efficient: In the worst case, it takes Θ(mTfork(m)) time. A naive solution is a copy-on-
write array, for which Tfork(m) = m gives O(m2) for every character read, resulting in
O(nm2) regular expression matching, which is only acceptable if we assume m to be
fixed.

Since at most two histories are actually changed, much of the array would not be modi-
fied and could be shared across the original co-routine and the forked one. This is easily
achieved replacing the array by a persistent [9] data structure to hold the array. A persis-
tent treap, sorted by array index, has all necessary properties8 and is further elaborated
upon in section 3.1. With Tfork = O(logm), the overall runtime is O(nm logm).

2.7.1 Conversion to tagged DFA

To compile the TNFA to a TDFA we have to capture the modifications that we encounter
between reading characters. After doing so, we need to check if we’re in a DFA state that
we already encountered and that we can create a new connection to. Equality of TDFA
states can’t be the same as equality between DFA states – the equality of the contained
NFA states doesn’t care about the order in which they are visited and furthermore it
doesn’t respect that two expansions might have different executed instructions. This
has been addressed by Laurikari [19] by finding equivalent or mappable TDFA states. A
mapping is a bijection of two states that needs to be found at compilation time. For the
details, the interested reader needs to wait for the detailed description of our algorithm
in chapter 2.

The idea of adding other instructions to the co-routines in the automaton that is the
finite state machine (be it NFA or DFA) isn’t new. The first implementation using this
to the author’s knowledge is Pike [24] in his text editor sam. He used a pure tagged NFA
algorithm to find one match for each capture group quite similar to our or Laurikari’s
approach. This was only published in source code, to a great loss for the academic
community.

The correct handling of greediness (not of non-greediness) was implemented by Kuk-
lewicz [18] for the Haskell implementation9 of Laurikari’s algorithm. This too was only
published in source code, to a great loss for the academic community.

8Clojure [14] features a slightly more complex data structure under the name of ‘persistent vectors’.
Jean Niklas L’orange offers a good explanation in “Understanding Clojure’s Persistent Vectors”, http:
//hypirion.com/musings/understanding-persistent-vector-pt-1.

9Or free interpretation, since Laurikari leaves the matching strategy open.

http://hypirion.com/musings/understanding-persistent-vector-pt-1
http://hypirion.com/musings/understanding-persistent-vector-pt-1

28 Chapter 2 Algorithm

Cox calls Laurikari’s TDFA a reinvention of Pike’s algorithm, but while that is in part
true, Laurikari introduces the mapping step described in algorithm 7. This leads Lau-
rikari’s algorithm to contain fewer states and one would hope that this would lead to a
better run-time than Google’s RE210, which is based on Pike’s algorithm.

This is not confirmed by the benchmarks by Sulzmann and Lu [27], but they offer an
explanation: in their profiling, they see that all Haskell implementations spend consider-
able time decoding the input strings. In other words, the measured performance is more
of an artifact of the programming environment used.

Compared to RE2, our algorithm doesn’t provide many low-level optimizations, such
as limiting the TDFA cache size or an analysis of the pattern for common simplifica-
tions such as optimizing for one-state matches11. Further it’s algorithm to simulate the
backtracking is simpler. However our algorithm doesn’t require a separate pass for match
detection and match extraction, which opens different scenarios – the reason we can avoid
this is that we are able to collect the instructions and incorporate them into the lazy
DFA state compilation. Our algorithm adds the mapping phase from Laurikari, which
allows us to find DFA states that can be made equivalent by some additional writes.

10https://code.google.com/p/re2/
11unambiguous NFA can be interpreted as DFA and can be matched more efficiently

https://code.google.com/p/re2/

Chapter 3

Data structures

In the previous chapter, we obtained an algorithm with a run-time proportional to the
cost of storing updates in a fixed size data structure with one access and one update.
This needs to be fully persistent1 in order to allow for co-routine forking.

This chapter presents some possible data structures, that allow for this.

3.1 Fully persistent data structures

In order to allow modifications of our list of histories, it is necessary to build a data
structure that has the same interface as a copy-on-write array:

Definition 3.1. An Arraylike data structure A of length m must provide the following
interface:

Constructor A(m) must return a structure of length m.

Random access An instance of A must provide a method get(i), which gives a history
for each 0 ≤ i < m.

Setting elements An instance of A must provide a method set(i, history), which re-
turns a new version of A, so that get(i) = history. The original instance must still
return the same value for any get and set – it must be logically unmodified.

This is a definition of a fixed-size fully-persistent linear data structure.

Every version that is in a living co-routine can change and so a single version can fork
into different directions. A way to visualize the history is as a tree of versions, where
each set call forks off a new node, as seen in figure 3.1.

1This means that old versions of the data structure are still accessible and can be forked so that a
new data structure with only that change applied can be accessed.

29

30 Chapter 3 Data structures

0

1

2

4

12

13

3

7

11

8

9

10

Figure 3.1: A tree of versions. Forks in the tree mean that multiple threads were forked
from the same state in the TNFA. The labels describe the relative order of creation.

The rest of this section looks at different possible implementations and their relative
performance. Since in the worst case get as well as set are required in each step of each
co-routine, the relevant performance measure is T = O(Tget+Tset) = O(max(Tget, Tset))

measured in amortized time.

3.2 Copy-on-write array

The arguably simplest class to provide the interface is an array that copies itself before
modifications are made:

Constructor A(m) allocate an array of histories a of size m.

Random access get(i) gives the ith element of the array in O(1) time.

Setting elements set(i, history) copies a and set the ith element to be history. This
takes O(m) time.

The performance for get and set gives us T = O(1 +m) = O(m).

While the asymptotic performance is abysmal, the copy-on-write array is not to be dis-
missed apriori, since it has great memory locality properties and might outperform more
complex structures for small m.

Chapter 3 Data structures 31

3.3 Treap

The treap data structure allows copy-on-write in logm time, sharing much of the struc-
ture by using the flyweight pattern as can be seen in figure 3.2. The treap is a balanced,
left-leaning binary tree with entries in each node, equipped with the operations get and
set as follows.

Algorithm 5 Implementation of the treap methods
1: function get(treap, index)
2: if index = 0 then
3: return treap.entry
4: else if index− 1 < treap.left.size then
5: return get(treap.left, index− 1)
6: else
7: return get(treap.right, index− treap.left.size− 1)
8: end if
9: end function

10: function set(treap, index, entry)
11: if index = 0 then
12: treap′ ← copy(treap)
13: treap′.entry← entry
14: return treap’
15: else if index− 1 < treap.left.size then
16: treap′ ← copy(treap)
17: treap′.left← set(treap.left, index− 1, entry)
18: return treap′

19: else
20: treap′ ← copy(treap)
21: treap′.left← set(treap.right, index− treap.left.size− 1, entry)
22: return treap′

23: end if
24: end function

This structure gives us better asymptotic performance at the cost of following logm

pointers, because T = O(logm+ logm) = O(logm).

3.4 Storing updates

Driscoll et al [9] describe how any pointer machine data structure with a fixed number
of links to each version can be converted to a fully persistent data structure in O(1)

amortized time. This section shows the steps involved to equip an array with such an
interface.

32 Chapter 3 Data structures

1

2

3

4 5

6

7 8

9

10

11 12

13

1

20

Figure 3.2: Writing to the second entry of the treap only requires O(logm) copies
while keeping the old structure intact (persistence).

The idea behind the conversion is that instead of modifying the array directly, we instead
keep a buffer of modifications that is of fixed size, thus lazily applying the modifications.
For the purposes of this chapter, we will call this kind of data structure LazyApply.

Let’s assume for the moment, that modifications only ever happen in the most recent
version of our array.

3.4.1 Linear versions

In this part, we only modify the most recent version t? and only access the old versions
0 ≤ t ≤ t?. In order to store the modifications, we introduce the struct Set(t, i, history),
which can be stored in the modification buffer. The implementation of the simple methods
can be seen in algorithm 6.

The amortized constant time for get and set arise from the fact that while we iterate
through the changes, we only have a constant number of them.

3.4.2 Version tree

In the general case of a version tree, we lose the notion of a total order of versions and
remain with a partial order. Version t1 and version t2 can now be in three different
relations: Either t1 can happen before t2, so that the modification in t1 also needs to be
taken into account in t2, t2 can happen before t1, or they can be siblings, so that the
modifications shouldn’t influence each other.

Chapter 3 Data structures 33

Algorithm 6 Methods of the LazyApply data structure
1: function makeLazyApply(m)
2: allocate an array of m histories hs
3: allocate a buffer b of size p for modifications.
4: return {histories : hs, buffer : b}
5: end function
6: function get(lazyApply, t, index)
7: history ← lazyApply.histories[index]
8: for each Set(t′, i, history′) do
9: if t′ < t and i = index then

10: history ← history′

11: end if
12: end for
13: return history
14: end function

15: function set(lazyApply, t, index, entry)
16: if lazyApply.buffer has space left then
17: add Set(t, index, entry) to lazyApply.buffer
18: return lazyApply
19: else
20: return new LazyApply with all changes applied
21: end if
22: end function

The problem of generalizing this approach to version trees is twofold: The first problem
is that we need to determine whether a modification applies to a version in constant
time, otherwise get would become slower. The second problem is that modifying the
same version reduces to copying the array of histories if said version has a full buffer.
The latter is more easily solved and thus will be discussed first.

Emptying a full buffer Instead of applying all modifications, we can split the mod-
ification buffer into two roughly equal parts. In order to do that, we can find a subtree
v of modifications of size ≈ p

2 . Instead of applying all modifications to the array of his-
tories, we only apply the ancestors of v. Then we delete all modifications in v from the
original node. Now we would be breaking the interface, because some co-routines still
have references to the original node, but actually use a version that is in v. This can
be avoided by storing back-pointers to the threads and modify their references to the
new node if necessary. Since there are at most m threads referencing the versions of each
node, we can still update the references in amortized constant time.

Constant time ordering of versions In order to determine whether to apply a
modification on a read, we need to find the relation between the version that is queried
and the one that is stored. If tstored < tqueried, we apply the modification. This requires

34 Chapter 3 Data structures

us however to determine the relative positions of tstored and tqueried in the version tree,
where the naive implementation would take logm time. This is the order maintenance
problem and fittingly can be solved using an order maintenance data structure, such as
the one proposed by Dietz and Sleator [8] which we discuss in section 3.5.

For the moment let us assume that we have a linear data structure, that

1. allows an element to be inserted next to a known element in O(1) time.

2. allows us to query the order of two elements a and b in the list in O(1) time. We’ll
call this operation query<(a, b).

With this we can flatten the tree to a list by adding a bt beginning element and an et
closing element to the list as seen in figure 3.3.

v1

v2

v3 v4

v5

(b1 (b2 (b3 e3) (b4 e4) e2) (b3 b3) e1)

Figure 3.3: A flattened version tree

Now we can find if version t2 depends on version t1, by calculating

query<(bt1 , bt2) && query<(et2 , et1)

If t1 encloses t2 completely, then t2 is part of the subtree of t1 and therefore we’d need
to apply the modification at t1 to find values at t2.

Chapter 3 Data structures 35

3.5 Order maintenance

Dietz and Sleator describe in their paper Two Algorithms for Maintaining Order in a
List [8]2, a simple one that provides amortized guarantees and a more involved one,
which could offer worst-case guarantees. For our purposes the amortized version suffices,
as noted by Driscoll et al [9, p. 108].

The data structure keeps so called tags η(e) for elements, which are integers that describe
the order. In order to query the relative position of two elements, their tags are simply
compared, which leaves us with the problem of maintaining tags for all list elements such
that η(e1) < η(e2)⇐ index(e1) < index(e2).

Compare this to the related problem of list-labeling: in order maintenance we need to be
able to compute the full label for each element in constant time, whereas in list-labeling,
the node has to contain the full label itself. This insight is key to maintaining order in
amortized constant time. For the moment however we look at the method we can use for
list-labeling.

The key to achieve this is to use a doubly linked list of tags with their corresponding
elements. If we need to insert an element after another known element e, we can insert
it, but to keep our invariant, we assign η(enew) =

⌊
η(e)+η(e.next)

2

⌋
. This is possible, unless

the new tag is actually equal to η(e) – if η(e) doesn’t have any space to η(e.next). In
this case we need to relabel the existing nodes.

3.5.1 Relabeling

The purpose of the relabeling step is to ensure that there is a gap to fit in the new
element and reduce the potential of a next reordering step. An intuitive perspective is
shown by Bender et al [3]:

The labels can be thought of a coding of paths in a complete binary tree as visualized
in figure 3.4. We can then define the overflow in a subtree, which triggers relabeling.

Definition. The overflow threshold of a subtree is 1.5i for any level3 i, starting counting
from the leaves, which are level 0.

Overflow happens, when the number of items in a subtree are bigger than the overflow
threshold.

With this definition, we can define the region that we relabel to be the first subtree that
isn’t in overflow – which means that is is filled sufficiently sparsely to reduce the potential

2And Bender et al[3] in their revision of this classical paper
3a = 1.5 is an arbitrary choice for a number 1 < a < 2.

36 Chapter 3 Data structures

0002

0

0012

1

0

0102

0

0112

1

1

0

1002

0

1012

1

0

1102

0

1112

1

1

1

Figure 3.4: Labels are binary numbers describing paths in a tree. Relabeling walks
up the tree until it finds a subtree with a density below the threshold. In this range,

the labels changed to make them equally spaced.

new relabels. In this subtree we spread the labels equally, which ensures that we will not
have to do any relabeling for another b1.5ic inserts. Note that a much bigger region might
be in overflow, but no checks are done if they are not triggered by an overflow at level
0, i.e. placing a node between two adjacent nodes.

This algorithm leaves us with the disappointment of only achieving O(logm) amortized
insert. This can be resolved using a technique known as indirection.

3.5.2 Indirection

Indirection is a method introduced by Willard [29] to eliminate annoying log factors
under certain conditions such as the one just encountered. With it we leave the realm
of list-labeling and cease to store the full label in each node. Instead we now keep a
two-level structure as shown in figure 3.5.

Figure 3.5: Indirection structure: use a compound index with the high-order bits being
the index for the upper structure and the low-order bits being the index for the lower
structure. Since the upper index is stored in the summary structure, log u items can be

relabeled in O(1) time.

We split our universe into blocks of size Θ(log u). In these blocks we keep a labeled
list as seen in the previous section. Above this, we create a summary structure, which
stores a second part of the index. This too is a labeled list, but since each element of

Chapter 3 Data structures 37

the summary structure represents Θ(log u) elements of the universe, we can effectively
do relabels faster by a log-factor. This gives us amortized O(1) updates.

It can be said that this seems to set a limit on the size of the match: Once our labels are
used up, we cannot do O(1) order queries anymore. This is true, but there is a smaller
limit already in place: We can’t store pointers to a string that doesn’t fit into memory.
If we cease to understand positions as fixed in size, we would again get a log-factor. This
is typically not considered.

Chapter 4

Proofs

In this chapter we will prove the claimed properties, first and foremost the correctness
of the algorithm.

4.1 Correctness

The correctness of the algorithm follows by induction over the construction: If the cor-
rect co-routine stops in the end state for all possible constructions of the Thompson
construction under the assumption that simpler automata do the same, it follows that
no matter how complex the automata get, the algorithm will have the correct output.

To this goal, we will use backtracking as a handy definition of correctness. We will show
that our algorithm will prefer the same paths as a backtracking implementation would.
It should be noted that the construction is exactly set up so that it matches backtracking
and in fact this can be seen as a simple derivation of our algorithm.

First we need a simple formalization of the backtracking procedure:

39

40 Chapter 4 Proofs

bt(a|b, s) = bt(a, s) | bt(b, s)

bt(r∗, s) = bt(rr ∗ |ε, s)

bt(r∗?, s) = bt(ε|rr∗, s)

bt(r?, s) = bt(r|ε, s)

bt(r??, s) = bt(ε|r, s)

bt(r+, s) = bt(rr∗, s)

bt(r+?, s) = bt(rr∗?, s)

bt(ab, s) = bt(a, s) + bt(b, rest)

bt(Group(i, r), s) = [WriteOpen(i)] + bt(r, s) + [WriteClose(i)]

Second we notice that the algorithm preserves the order of the co-routines after each
character read. This means that basically a depth first search is performed, with priorities
formalizing what option is to be taken first.

The correct parse is found if and only if after reading the whole string,

1. the co-routine in the end state consumed all characters of the string (and only
those) in order and

2. there is no co-routine that fulfills 1 that took “later” low-priority edges. This cor-
responds to the depth-first search of backtracking.

That certain paths are cut off, because the state has already been seen is equivalent to
memoization in the backtracking procedure: If a higher priority state already found a
path through this part of the parse, the following parse can be pruned.

There is the possibilities of circles, so that the depth-first solution would loop. This can
be seen for example in the regular expression /(a∗?) ∗ /, where the preferred route in
the graph is actually to capture an empty repetition of /a/. We tweak the Thompson
construction for this scenario, by giving a path to the logically next state after the
automaton with the same priority as from the start node for the star-operator, because
it is the only automaton where the start state competes with a complete run through
the pattern.

Now the parses are analogous for our procedure and bt:

Chapter 4 Proofs 41

bt(a|b, s):

1. Check a

2. Check b

1

2

b

-

a

1. Check 1→ a→ 2

2. Check 1→ b→ 2

bt(r∗, s):

1. Check r

2. Check ε

1

2

3

r

-

1. Check 1→ r → 2→ 1→ 3

2. Check 1→ 3

...
...

42 Chapter 4 Proofs

bt(ab, s):

1. Check a

2. Check b on rest

3. Concatenate the up-
dates

1

2

b

a

1. Run through a consuming some
characters

2. Run through b

3. All changes are written

bt(Group(i, r), s):

1. Write current position
to changes

2. Check r

3. Write position after
matching r to changes

1

2

a

1. Write current position to changes

2. Run through r

3. Write the changed position to
changes

4.2 Execution time

The main structure of any NFA based matching algorithm is the nesting of two loops:
The outer loop iterating over the n characters of the string, and the inner expanding
at most m states. The expansion makes O(1) updates per state expanded, as the con-
struction described in section 2.1 gives a constant out-degree for each state. As described

Chapter 4 Proofs 43

in chapter 3 the update cost of every co-routine is O(1). This gives a total run time of
O(nm).

4.3 Lower bound for time

There is no known tight1 lower bound to regular expression matching.

Theorem 1. No algorithm can correctly match regular expressions faster than Θ(n min(m, |Σ|)),
where n is the length of the string, m is the length of the pattern, and |Σ| is the size of
the alphabet.

Proof. Let S = anxi and R = [ax1] ∗ |[ax2] ∗ | . . . |[axm]∗. Note that |S| = Θn and |R| =
Θ(min(m, |Σ|)). Let further match be a valid regular expression matching algorithm, then

match(S,R) is equivalent to finding anxi
?
∈ {anx1, . . . , anxm}. There is no particular

order to {anx1, . . . , anxm}, so the lower bound for finding this is Θ(|S| |R|).

1A lower bound l is tight, if it is the asymptotically largest lower bound

Chapter 5

Implementation

While repeatedly calling algorithm 2 would be sufficient to reach the theoretical time
bound we claimed, practical performance can be dramatically improved by avoiding to
construct new states. Instead, we build a transition table that maps from old DFA states
and an input range to a new DFA state, and the instructions to execute when using the
transition. We build the transition table, including instructions, as we go. This is what
we mean when we say that the DFA is lazily compiled.

5.1 DFA transition table

The DFA transition table is different from the NFA transition table, in that the NFA
transition table contains ε transitions and may have more than one transition from one
state to another, for the same input range. DFA transition tables allow no ambiguity.

Our transition tables, both for NFAs and DFAs, assume a transition to map a consecu-
tive range of characters. If, instead, we used individual characters, the table size would
quickly become unwieldy. However, input ranges can quickly become confusing if they
are allowed to intersect. To avoid this, and simplify the code dramatically, while keeping
the transition table small, we use the following trick. When the regular expression is
parsed, we keep track of all input ranges that occur in it. Then, we split them until no
two input ranges intersect. After this step, input ranges are never created again. Doing
this step early in the pipeline yields the following invariant: it is impossible to ever come
across intersecting input ranges.

To give us a chance to ever be in a state that is already in the transition table, we check,
after executing algorithm 2, run, whether there is a known DFA state that is mappable
to the output of run. If run produced a DFA state Q, and there is a DFA state Q′ that
contains the same NFA states, in the same order then Q and Q′ may be mappable. If they
are, then there is a set of instructions that move the histories from Q into Q′ such that,

45

46 Chapter 5 Implementation

afterwards, Q′ behaves precisely as Q would have. Algorithm 7 shows how we can find
a mappable state, and the needed instructions. The run time of Algorithm 7 is O(m),
where m is the size of the input NFA.

Algorithm 7 findMapping(Q): Finding a state that Q is mappable to in order to
keep the number of states created bound by the length of the regular expression.
Require: Q = [(qi, hi)]i=1...n is a DFA state.
Ensure: A state Q′ that Q is mappable to.
1: The ordered instructions m that reorder the memory locations of Q to Q′ and don’t

interfere with each other.
2: for Q′ that contains the same NFA states as Q, in the same order do
3: . Invariant: For each history H there is at most one H ′

4: so that H ← H ′ is part of the mapping.
5: Initialize empty bimap m . A bimap is a bijective map.
6: for qi = q′i with histories H and H ′ respectively do
7: for i = 0 . . . length(H)− 1 do
8: if H(i) is in m as a key already and does not map to H ′(i) then
9: Fail

10: else
11: . Hypothesize that this is part of a valid map
12: Add H(i) 7→ H ′(i) to m
13: end if
14: end for
15: end for
16: end for
17: . The mapping was found and is in m.
18: sort m in reverse topological order so that no values are overwritten.

return Q′ and m

5.2 DFA execution

With these ingredients in place, the entire matching algorithm is straightforward. In
a nutshell, we see if the current input appears in the transition table. Otherwise, we
run run. If the resulting state is mappable, we map. More formally, we can see this in
algorithm 8. Here, algorithm 8 assumes that algorithm 2 does not immediately execute
its instructions, but returns them back to the interpreter, both for execution and to feed
into the transition table.

5.3 Compactification

The most important implementation detail, which brought a factor 10 improvement in
performance, was the use of a compactified representation of DFA transition tables when-
ever possible. Compactified, here, means to store the transition table as a struct of arrays,

Chapter 5 Implementation 47

Algorithm 8 interpret(input): Interpretation and lazy compilation of the NFA. See
appendix A.2 for an implementation in Python
Require: input is a sequence of characters.
Ensure: A tree of matching capture groups.
1: . Lazily compiles a DFA while matching.
2: Set Q to startState.
3: . A co-routine is an NFA state, with an array of histories.
4: Let Q be all co-routines that are reachable in the NFA transition graph by following
ε transitions only.

5: Execute instructions described in algorithm run, when walking ε transitions.
6: . Create the transition map of the DFA.
7: Set T to an empty map from state and input to new state and instructions.
8: . Consume string
9: for position pos in input do

10: Let a be the character at position pos in input.
11: if T has an entry for Q and a then
12: . Let the DFA handle a
13: Read the instructions and new state Q′ out of T
14: execute the instructions
15: Q← Q′

16: jump back to start of for loop.
17: else
18: . lazily compile another DFA state.
19: Run run(Q, a) to find new state Q′ and instructions
20: Run findMapping(Q′, T) to see if Q’ can be mapped to an existing state Q′′

21: if Q′′ was found then
22: Append the mapping instructions from findMapping to the instructions

found by run
23: Execute the instructions.
24: Add an entry to T , from current state Q and a, to new state Q′′ and

instructions.
25: Set Q to Q′′

26: else
27: Execute the instructions found by run.
28: Add an entry to T , from current state Q and a, to new state Q′ and

instructions.
29: Set Q to Q′.
30: end if
31: end if
32: end for

48 Chapter 5 Implementation

rather than as an array of structs, as recommended by the Intel optimization handbook
[4, section 6.5.1]. The transition table is a map from source state and input range to
target state and instructions. Following Intel’s recommendation, we store it as an ob-
ject of five arrays: int[] oldStates, char[] froms, char[] tos, Instruction[][]

instructions, int[] newStates, all of the same length, such that the ith entry in the
table maps from oldStates[i], for a character greater than from[i], but smaller than to[i],
to newStates[i], by executing instructions[i]. To read a character, the engine now searches
in the transition table, using binary search, for the current state and the current input
character, executes the instructions it finds, and transitions to the new state.

However, the above structure isn’t a great fit with lazy compilation, as new transitions
might have to be added into the middle of the table at any time. Another problem is that,
above, the state is represented as an integer. However, as described in the algorithm, a
DFA state is really a list of co-routines. If we need to lazily compile another DFA state,
all of the co-routines need to be examined.

The compromise we found is the following: The canonical representation of the transition
table is a red-black tree of transitions, each transition containing source and target DFA
state (both as the full list of their NFA states, and histories), an input range, and a
list of instructions. This structure allows for quick insertion of new DFA states once
they are lazily compiled. At the same time, lookups in a red-black tree are logarithmic.
Then, whenever we read a fixed number of input characters without lazily compiling,
we transform the transition table to the struct of arrays described above, and switch to
using it as our new transition table. If, however, we read a character for which there is no
transition, we need to de-optimize, throw away the compactified representation, generate
the missing DFA state, and add it to the red-black tree.

The above algorithm chimes well with the observation that usually, regular expression
matching needs only a handful of DFA states, and thus, compactification can be done
early, and only seldom need to be undone.

5.4 Intertwining of the pipeline stages

The lazy compilation of the DFA when matching a string enables us to avoid compiling
states of it that might never be needed. This allows us to avoid the full power set
construction [26], which has time complexity of O(2m), where m is the size of the NFA.

5.5 Parsing the regular expression syntax

Parsing the regular expression into an abstract syntax tree is a detail that can easily be
missed. Since the algorithm for matching is already very fast, preliminary experiments

Chapter 5 Implementation 49

abcd
ab|cd

a*b?|c*?d*?

(a+ (a?b(c*?)))

(.*?(.*?\.)*
([A

-Z] [a
-zA-Z]*))* .*?

10
2

10
3

10
4

10
5

10
6

10
7

p
a

rs
e

 t
im

e
 i

n
 n

s
parsec

new

Figure 5.1: Comparison of two ways of parsing the regular expression syntax. Since the
measurements are very noisy, the median with the MAD (median absolute deviation)

are plotted.

showed that the parsing of the regular expression, even in simple regular expressions,
can take up a major part (25% in our experiment) of the time for running the complete
match.

The memory model to parse a regular expression is a stack, since capture groups can be
nested. The grammar can be formulated as right recursive and with this formulation it
can be implemented with a simple recursive descent parser as opposed to the previous
Parsec parser. The resulting parser eliminated the parsing of the regular expression as a
bottleneck, as can be seen in figure figure 5.1 (note the log plot).

Chapter 6

Related work

While there is no shortage of books discussing the usage of regular expressions, the
implementation side of regular expression has not been so lucky. Cox is spot-on when
he argues that innovations have repeatedly been ignored and later reinvented [5, 6, 7],
in part, not least because the publication medium of source code without accompanying
article was chosen.

Regular expressions are by no means new and originated with Kleene in the 1950 [26].
This chapter first introduces some standard procedures for regular expression matching
(without extracting any information), such as Backtracking in section 1.4 and various
automata based approaches in sections 2.1, 2.2, and 2.3. In section 2.4 we discuss an
addition to the automata based approaches called tags that allows for the extraction of
sub-matches. We show that backtracking based approaches are not the straw man that
one could believe them to be in section 6.1. Even though we first believed ourselves to
be, we are actually not the first to produce parse trees in competitive time, as seen in
section 6.3.

A problematic aspect of the literature is that many authors perceive regular expression
parsing to be a linear problem – linear in the length of the string with a constant for
the pattern size. This limits the applications, because this means that an algorithm that
takes O(2m+n) time seems very competitive for a small and fixed m, but is prohibitively
expensive for large m. The argument that the pattern is typically small seems circular
to the author, because would the implementation focus on allowing large patterns, new
applications using large patterns would arise1.

In this paper, we will consider the best known algorithms to be quadratic. It is not
known if there is any algorithm that beats the O(nm) matching, but in section 4.3, a
lower bound of Θ(n min(m, |Σ|)) is proven.

1To check if a document contains features f1, f2, . . . , fn, we would match the document against regular
expression /(f1)|(f2)| . . . |(fn)/.

51

52 Chapter 6 Related work

6.1 Revisiting backtracking

As seen earlier, backtracking makes for easy implementations, but exponential run-time
in the worst case for many patterns. Norvig [23] showed that this can be avoided by using
memoization for context free grammars. This allows for O(n3m) time parsing. While this
is significantly higher than the O(nm) of the automata based approaches, it is also more
general, because more than just regular grammars can be parsed with this approach.
This approach is taken by combinatoric parsers such as the Parsec library2. It should be
noted however that while this approach has been known for some time now and promises
exponential speed-up, it is by no means a standard optimization for backtracking based
regular expression implementations.

First let us recapitulate what memoization means: For a function f we can create a
memoized function f̂ such that

Initialize hash map cache
function f̂(*args)

if args not in cache then
val← f(∗args)
cache[args] = val

end if
return cache[args]

end function

This means that repeatedly calling the same function with the same inputs only costs
lookup time after the function has been evaluated once.

The parser presented by Norvig inherently produces parse trees, because it tries to reduce
the list of tokens into all possible expansions of the base symbol. For example /a ∗ a ∗ /
would be converted to a grammar

A → a

ASTAR → A ASTAR
ASTAR → ε

FULL → ASTAR ASTAR

Now we can memoize the result for a non-terminal symbol and the remainder of the
string, which avoids exponentially many trial and error parses.

The same arguments that make this efficient for context-free grammars however also
make the memoization approach applicable to the backtracking algorithm for regular
expressions.

2The memoization stems from the common subexpression optimization of Haskell

Chapter 6 Related work 53

To see the advantage, let’s revise the example that produced exponential runtime for
regular backtracking: /(x∗) ∗ y/ on the string xn. Now consider

b̂t(xn, /(x∗) ∗ y/) = b̂t(xn, /(x∗)(x∗) ∗ y/)︸ ︷︷ ︸
1 repetition

|| b̂t(xn, /y/)

= b̂t(xn−1, /(x∗)(x∗) ∗ y/) || b̂t(xn, /(x∗) ∗ y/) || b̂t(xn, /y/)

= . . .

= b̂t(x0, /(x∗)(x∗) ∗ y/) || b̂t(x1, /(x∗) ∗ y/) || . . .

|| b̂t(xn, /(x∗) ∗ y/) || b̂t(xn, /y/)

= b̂t(x1, /(x∗) ∗ y/) || . . . || b̂t(xn, /(x∗) ∗ y/) || b̂t(xn, /y/)

= b̂t(x1, /y/) || b̂t(x1, /(x∗)(x∗) ∗ y/)︸ ︷︷ ︸
memoized

|| . . .

|| b̂t(xn, /(x∗) ∗ y/) || b̂t(xn, /y/)

= . . .

= b̂t(xn, /y/)

= no match

Nearly all backtracking can be avoided, because the branch has been evaluated before.

6.2 Packrat parsers

The memoization approach can be extended further to so-called packrat parsing [20]
based on Parsing Expression Grammars (PEG), to obtain O(nm), but the memoization
gives a space overhead that is O(n), with a big constant [11] – or to put it in another
way: The original string is stored several times over. This makes them flexible and fast
parsers for small input, but they cannot be used for big data sets. To understand how
they work, let’s first look at PEG:

Parsing Expression Grammars are grammars similar to context-free grammars with the
difference that they allow no left-recursion and no ambiguity each expression has exactly
one correct parse tree and consumes at least one character. In this they are similar to
regular expressions, but capture more than just regular languages. Such an expression can
contain literals, recursive subexpressions, ordered choice, repetitions and non-consuming
predicates:

recursive subexpressions allow for recursive repetition of a pattern, for example

S→ ′(′ S ′)′ /ε

54 Chapter 6 Related work

or
S→ ′if′ P ′{′ S ′}′

ordered choice gives two options, but the left path will be checked first and if it
matches already, the right path will not even be considered.

repetitions The operators *, +, and ? with their meaning identical to their usage in
regular expressions.

non-consuming predicates The operator & will only match and return the left-hand
side, if the right-hand side would also match. The right-hand side doesn’t consume
any characters however. Similarly the operator ! only matches the left-hand side,
if the right-hand side does not match (without consuming any characters for the
right-hand side).

The implementation of these grammars as recursive descent/backtracking parsers is quite
simple. The corresponding Packrat parser is the straight forward memoization of this.
This is in principle nothing new, the memoization approach to context-free grammars uses
the same approach, but the restriction to PEG simplify the problem: without ambiguity
fewer references need to be stored to possible parses and since parsers consume at least
a character, each character in the input string has at most m possible interpretations.

The downside to this is that Packrat parsers have a large space overhead that make them
infeasible for large inputs [2]3.

6.3 Automata based extraction of parse trees

Memoization is a powerful tool to achieve fast parsers, but they have a space-overhead
in order of the input instead of the parse tree size. The other approach to parsing – finite
state automata – offers a remedy. These approaches, one of which will be presented in
this paper, use tagged finite state automata that store the parse tree in some manner, the
main differences being the format of the stored tree and the type of automaton running
the parse.

The rivaling memory layouts are lists of changes and an array with a cell for each group.
The former makes it hard to compile the TNFA to a TDFA with aggressive reuse of
states via mapping (as described in algorithm 7), but has lower space consumption. The
mapping in terms of cells for each group is easy, but costs a factor m space overhead.

3

“The Java parser generated by Pappy requires up to 400 bytes of memory for every byte
of input.”

Chapter 6 Related work 55

Author Stores Automaton Parse time Space overhead
Kearns [17] Path choices NFA O(nm) O(nm)

Dubé, Feeley [10] Capture groups
in linked list NFA O(nm) O(nm2)

Nielsen, Henglein [13] Bit-coded trees of
capture groups O(nm log(m))

Grathwohl [12]

Laurikari [19] Capture group in
array DFA O(n+ 2m) O(dm)

This paper
Capture group in
array of linked

lists
lazy DFA O(nm) O(nd+m)

Table 6.1: Comparison of automata based approaches to regular expression parsing.
n is the length of the string, m is the length of the regular expression, and d is the

number of subexpressions. Note that Laurikari [19] does not produce parse trees.

Another problem is that of greediness. Kearns, Dubé, and Nielsen can’t guarantee the
greediness of the winning parse. Grathwohl’s contribution allows Dubé’s algorithm to
run with greedy parses. Our priorities allow for arbitrary mixes of greedy and non-greedy
operators.

Finally when dealing with large n, one might be interested in passing over the string
as few times as possible. Kearns, Dubé, and Nielsen do this in three passes to find the
beginning and ending of capture groups, whereas Grathwohl only uses two passes. Our
algorithm captures the positions of the capture groups in a single pass. This might seem
like a negligible improvement, but certain scenarios only open up with this, such as
the possibility to efficiently parse a string larger than a single machine, as described in
section 6.4.

In addition, since this is not a purely theoretical analysis, our algorithm adds practical
optimizations such as compactifications, lazy compilation, and character ranges.

6.4 Large scale data analysis of a stream of text

Due to its improvements in requiring only a single pass over the input and its memory
allocation pattern, our algorithm is especially fitted for a scenario where the input string
is of unknown size or of size too big to fit on a single machine.

Consider the task of finding a parse tree of a regular grammar for a text that is stored
on machines M1, . . . ,Mn. Now in order to parse the string, we set aside a machine P ,
that will do the parsing. We only need the NFA of the pattern to fit on P and can then
receive each of the shards from M1 to Mn in turn and discard them afterwards. Even
if the parse tree (containing the indices of the beginning and end of the groups) is too

56 Chapter 6 Related work

large to fit on the machine, we can send the cells to other machines. Because the cells
are not touched anymore, there will never be a need for P to retrieve old cells.

Chapter 7

Benchmark

All benchmarks were obtained using Google’s caliper1, which takes care of the most obvi-
ous benchmarking blunders. It runs a warm-up before measuring, runs all experiments in
separate VMs, helps circumvent dead-code detection by accepting the output of dummy
variables as input, and fails if compilation occurs during experiment evaluation. The
source code of all benchmarks is available, together with the sources of the project, on
Github. We ran all benchmarks on a 2.3 GHz, i7 Macbook Pro.

As we saw in section 6, there is a surprising dearth of regular expression engines that
can extract nested capture groups – never mind extracting entire parse trees – that do
not backtrack. Back-tracking implementations are exponential in their run-time, and
so we see in figure 7.1 (note the log plot) how the run-time of “java.util.regex” quickly
explodes exponentially, even for tiny input, for a pathological regular expression, while
our approach slows down only linearly. The raw data is seen in table 7.1.

n 13 14 15 16 17 18 19 20

java.util.regex 241 484 1003 1874 3555 7381 14561 30116
Our implementation 225 252 273 32 327 352 400 421

Table 7.1: Matching times, in microseconds, for matching a?nan against input an.

In the opposite case, in the case of a regular expression that’s crafted to prevent any
back-tracking, java.util.regex outperforms our approach by more than factor 2, as seen
in table 7.2 – but bear in mind that java.util.regex does not extract parse trees, but only
the last match of all capture groups. A backtracking implementation that actually does
produce complete parse trees is JParsec2, which, as also seen in table 7.2, performs on
par with our approach.

1https://code.google.com/p/caliper/
2http://jparsec.codehaus.org

57

https://code.google.com/p/caliper/
http://jparsec.codehaus.org

58 Chapter 7 Benchmark

time

n

Figure 7.1: Time in nanoseconds for matching a?nan against input an. Bottom (pur-
ple) line is our approach, top (blue) line is java.util.regex.

Note that because java.util.regex achieves its back-tracking through recursion, we had
to set the JVM’s stack size to one Gigabyte for it to parse the input. Since default stack
size is only a few megabytes, this makes using java.util.regex a security risk, even for
unproblematic regular expressions that cannot cause backtracking, since an attacker can
potentially force the VM to run out of stack space.

Tool Time

JParsec 4,498
java.util.regex 1,992

Ours 5,332

Table 7.2: Matching regular expression /((a + b) + c) + / against input (a200bc)2000,
where a200 denotes 200 times character ‘a’. Time in microseconds.

Finally, a more realistic example, neither chosen to favor back-tracking nor to avoid it,
extracts all class names, with their package names, from the project sources itself. As
seen in table 7.3, our approach outperforms java.util.regex by 40%, even though our
approach constructs the entire parse tree, and thus all class names, while java.util.regex
outputs only the last matched class name. JParsec was not included in this experiment,
since it does not allow non-greedy matches. Even though it is possible to build a parser
that produces the same AST, it would necessarily look very different (using negation)
from the regular expression.

Chapter 7 Benchmark 59

Tool Time

java.util.regex 11,319
Ours 8,047

Table 7.3: Runtimes, in microseconds, for finding all java class names
in all .java files in the project itself. The regular expression used is

/(.∗?([a− z] + \.) ∗ ([A− Z][a− zA− Z]∗)) ∗ .∗?/. Runtime in microseconds

Chapter 8

Conclusion

Regular expressions make for lightweight parsers and there are many cases where data
is extracted this way. If such data is structured instead of flat, a parser that produces
trees is superior to a standard regular expression parser. We provide such an algorithm
with modern optimizations applied using results from persistent data-structures to avoid
unnecessary memory consumption and the slow-down that this would produce. This algo-
rithm is able to provide the same semantics as backtracking, but without an exponential
worst case.

Our approach can produce entire parse trees from matching regular expressions in a
single pass over the string and do so asymptotically no slower than regular expression
matching without any extraction. The practical performance is on par with traditional
back-tracking solutions if no backtracking ever happens, exponentially outperforms back-
tracking approaches for pathological input, and in a realistic scenario outperforms back-
tracking by 40%, even though our approach produces the full parse tree, and the back-
tracking implementation doesn’t. All source code and all benchmarks are available under
a free license on Github [22] at https://github.com/nes1983/tree-regex.

61

https://github.com/nes1983/tree-regex

Appendices

63

Appendix A

Minimal python implementation

This chapter shows a small implementation of our TNFA interpretation algorithm written
in Python:

A.1 Construction

This doesn’t include the parsing of the regular expression grammar, but instead con-
structs the automaton from an S-expression.

from itertools import count

def add_eps(table , start , goal , tag=None):
table.setdefault(start , {}). setdefault(None , []). append ((goal , tag))
assert (len(list(u for u, x in table[start][None] if x != ’-’))

in (0,1)), (
"Too many non -prioritized edges in %s: %s\n\n%s" %

(start , table[start][None], table))

def construct(expression , table , start , end , counter ,
outer=False):

if not expression:
return table , start , end

(op , args) = expression
if op == ’seq’:

iter_start = start
iter_end = next(counter)
for x in args:

construct(x, table , iter_start , iter_end , counter)
iter_start = iter_end
iter_end = next(counter)

add_eps(table , iter_start , end)
if op == ’lit’:

iter_start = start
iter_end = next(counter)
for l in args:

table.setdefault(iter_start , {})[l] = iter_end
iter_start = iter_end

65

66 Appendix A Minimal python implementation

iter_end = next(counter)
add_eps(table , iter_start , end)

if op == ’*’:
up = next(counter)
done = next(counter)
construct(args[0], table , up , done , counter)
add_eps(table , start , up)
add_eps(table , done , start)
add_eps(table , start , end , ’-’)
add_eps(table , done , end , ’-’)

if op == ’*?’:
up = next(counter)
construct(args[0], table , up , start , counter)
add_eps(table , start , up, ’-’)
add_eps(table , start , end)

if op == ’?’:
middle = next(counter)
construct(args[0], table , middle , end , counter)
add_eps(table , start , end , ’-’)
add_eps(table , start , middle)

if op == ’??’:
middle = next(counter)
construct(args[0], table , middle , end , counter)
add_eps(table , start , middle , ’-’)
add_eps(table , start , end)

if op == ’group’:
sstart = next(counter)
eend = next(counter)
group , exp = args
construct(exp , table , sstart , eend , counter)
add_eps(table , start , sstart , (group , ’l’))
add_eps(table , eend , end , (group , ’r’))

if outer:
end_of_string = next(counter)
table.setdefault(end , {})[’\0’] = end_of_string
end = end_of_string

return table , start , end

def seq(*e):
return (’seq’, e)

def group(i, e):
return (’group’, [i, e])

def star(e):
return (’*’, [e])

def nstar(e):
return (’*?’, [e])

def lit(e):
return (’lit’, e)

def opt(e):
return (’?’, [e])

def nopt(e):

Appendix A Minimal python implementation 67

return (’??’, [e])

A.2 Matching

import copy

def consume(tnfa , start , c, i):
low = list(reversed(start))
high = []
R = []
seen = set()
buffer = []
while low or high:

if not high:
e = low.pop()
high.append(e)
R.extend(buffer)
buffer = []
continue

state , mem = high.pop()
if state in seen:

continue
seen.add(state)
transitions = tnfa.get(state , {})
consuming = transitions.get(c)
if consuming:

R.append ((cons , mem))
epsilon = transitions.get(None)
if not epsilon: continue
for (s, tag) in epsilon:

if tag == ’-’:
low.append ((s, mem))
continue

if tag:
n, side = tag
mem = copy.deepcopy(mem)
mem.setdefault(n, ([], []))[0 if side == ’l’ else 1]. append(

i if side == ’r’ else i+1)
high.append ((s, mem))

R.extend(buffer)
return R

def match(regex , string):
counter = count ()

tnfa , start , end = construct(
regex , {}, next(counter), next(counter), counter , outer=True)

ran = [(start , {})]
for i, c in enumerate(string + ’\0’):

ran = consume(tnfa , ran , c, i)

return dict(ran).get(end)

Bibliography

[1] Arvind Arasu, Surajit Chaudhuri, Zhimin Chen, Kris Ganjam, Raghav Kaushik,
and Vivek R. Narasayya. Experiences with using data cleaning technology for bing
services. IEEE Data Eng. Bull., 35(2):14–23, 2012.

[2] Ralph Becket and Zoltan Somogyi. DCGs + Memoing = Packrat parsing, but is it
worth it? In Practical Aspects of Declarative Languages, volume LNCS 4902, pages
182–196. Springer, January 2008.

[3] Michael A Bender, Richard Cole, Erik D Demaine, Martin Farach-Colton, and Jack
Zito. Two simplified algorithms for maintaining order in a list. In Algorithms—ESA
2002, pages 152–164. Springer, 2002.

[4] Intel Coorporation. Intel 64 and ia-32 architectures optimization reference manual,
2013.

[5] R. Cox. Regular expression matching can be simple and fast (but is slow in java,
perl, php, python, ruby,...). URL: http://swtch.com/˜rsc/regexp/regexp1.html, 2007.

[6] R. Cox. Regular expression matching: the virtual machine approach. URL:
http://swtch.com/˜rsc/regexp/regexp2.html, 2009.

[7] R. Cox. Regular expression matching in the wild. URL:
http://swtch.com/˜rsc/regexp/regexp3.html, 2010.

[8] Paul Dietz and Daniel Sleator. Two algorithms for maintaining order in a list.
In Proceedings of the nineteenth annual ACM symposium on Theory of computing,
pages 365–372. ACM, 1987.

[9] James R. Driscoll, Neil Sarnak, Daniel D. Sleator, and Robert E. Tarjan. Making
data structures persistent. Journal of Computer and System Sciences, 38(1):86–124,
February 1989.

[10] Danny Dubé and Marc Feeley. Efficiently building a parse tree from a regular
expression. Acta Informatica, 37(2):121–144, 2000.

[11] Bryan Ford. Packrat parsing: simple, powerful, lazy, linear time, functional pearl.
In ICFP 02: Proceedings of the seventh ACM SIGPLAN international conference
on Functional programming, volume 37/9, pages 36–47, New York, NY, USA, 2002.
ACM.

69

70 BIBLIOGRAPHY

[12] Niels Bjørn Bugge Grathwohl, Fritz Henglein, Lasse Nielsen, and Ulrik Terp Ras-
mussen. Two-pass greedy regular expression parsing. In Implementation and Appli-
cation of Automata, pages 60–71. Springer, 2013.

[13] Fritz Henglein and Lasse Nielsen. Regular expression containment: coinductive ax-
iomatization and computational interpretation. In ACM SIGPLAN Notices, vol-
ume 46, pages 385–398. ACM, 2011.

[14] Rich Hickey. The Clojure programming language. In DLS ’08: Proceedings of the
2008 symposium on Dynamic languages, pages 1–1, New York, NY, USA, 2008.
ACM.

[15] Adam Jacobs. The pathologies of big data. Commun. ACM, 52(8):36–44, August
2009.

[16] L. Karttunen, J. P. Chanod, G. Grefenstette, A. Schiller, and Received February.
Regular expressions for language engineering. In Natural Language Engineering,
pages 305–328, 1996.

[17] Steven M Kearns. Extending regular expressions with context operators and parse
extraction. Software: Practice and Experience, 21(8):787–804, 1991.

[18] Chris Kuklewicz. Regular expressions/bounded space proposal, February 2007.

[19] V. Laurikari. Nfas with tagged transitions, their conversion to deterministic au-
tomata and application to regular expressions. In String Processing and Informa-
tion Retrieval, 2000. SPIRE 2000. Proceedings. Seventh International Symposium
on, pages 181–187. IEEE, 2000.

[20] Sérgio Medeiros, Fabio Mascarenhas, and Roberto Ierusalimschy. From regexes to
parsing expression grammars. Science of Computer Programming, 2012.

[21] Chad R. Meiners, Jignesh Patel, Eric Norige, Eric Torng, and Alex X. Liu. Fast
regular expression matching using small TCAMs for network intrusion detection
and prevention systems. In Proceedings of the 19th USENIX conference on Security,
USENIX Security’10, page 8, Berkeley, CA, USA, 2010. USENIX Association.

[22] Aaron Karper Niko Schwarz. O(n m) regular expression parsing library that pro-
duces parse trees, 2014.

[23] Peter Norvig. Techniques for automatic memoization with applications to context-
free parsing. Computational Linguistics, 17(1):91–98, 1991.

[24] R. Pike. The text editor sam. Software: Practice and Experience, 17(11):813–845,
1987.

[25] Robert Sedgewick. Algorithms in C (paperback). Addison-Wesley Professional, 1
edition, January 1990.

[26] Michael Sipser. Introduction to the Theory of Computation. Course Technology, 2
edition, February 2005.

BIBLIOGRAPHY 71

[27] M. Sulzmann and K.Z.M. Lu. Regular expression sub-matching using partial deriva-
tives. In Proceedings of the 14th symposium on Principles and practice of declarative
programming, pages 79–90. ACM, 2012.

[28] Ken Thompson. Programming techniques: Regular expression search algorithm.
Commun. ACM, 11(6):419–422, June 1968.

[29] Dan E Willard. Maintaining dense sequential files in a dynamic environment. In
Proceedings of the fourteenth annual ACM symposium on Theory of computing, pages
114–121. ACM, 1982.

List of Figures

1.1 Posix parse tree . 7
1.2 Full parse tree . 8

2.1 Thompson construction . 16
2.2 NFA for /((.∗?), (\d+);) + / . 20
2.3 Modified Thompson construction . 21
2.4 Histories are cells of singly linked lists, where only the first (here bottom-

most) cell can be edited. This is a view of the automaton in figure 2.2 after
the string “TomLehrer, 1; AlanTuring,” has been consumed. Only the cell
for the closing of the second capture group is shown. 22

3.1 A tree of versions. Forks in the tree mean that multiple threads were forked
from the same state in the TNFA. The labels describe the relative order
of creation. 30

3.2 Treap for history storage . 32
3.3 A flattened version tree . 34
3.4 Tree for relabeling order . 36
3.5 Indirection structure: use a compound index with the high-order bits being

the index for the upper structure and the low-order bits being the index
for the lower structure. Since the upper index is stored in the summary
structure, log u items can be relabeled in O(1) time. 36

5.1 Regular expression grammar parse time 49

7.1 Pathological regular expression parse time 58

73

List of Tables

1.1 Summary of regular expression elements 9

6.1 Comparison of automata based approaches to regular expression parsing.
n is the length of the string, m is the length of the regular expression,
and d is the number of subexpressions. Note that Laurikari [19] does not
produce parse trees. 55

7.1 Matching times a?nan against input an. 57
7.2 Matching times regular expression /((a + b) + c) + / against input (a200bc)2000 58
7.3 Matching times for finding all Java class names 59

75

List of Algorithms

1 Overview of backtracking . 12
2 Tagged transition execution. See appendix A.2 for an actual implementa-

tion in Python. 19
3 Interpretation of the tags. 24
4 Complete transition execution as implemented by us. This is algorithm 2

with algorithm 3 inlined. See appendix A.2 for an actual implementation
in Python. 25

5 Implementation of the treap methods . 31
6 Methods of the LazyApply data structure 33
7 findMapping(Q) . 46
8 interpret(input): Interpretation and lazy compilation of the NFA. See ap-

pendix A.2 for an implementation in Python 47

77

	Contents
	1 Introduction
	1.1 More powerful than standard regular expressions
	1.2 Motivation
	1.3 Regular expressions
	Literals
	Character ranges
	Negated character ranges
	Concatenation
	Option operator
	Star operator
	Plus operator
	Non-greedy operators
	Alternation

	1.3.1 Capture groups
	Greediness

	1.4 Backtracking
	1.5 (Non-)deterministic finite-state automata

	2 Algorithm
	2.1 NFA based matching
	2.2 DFA based matching
	2.3 Lazy DFA compilation
	2.4 Tagged finite state automata
	2.4.1 Simulating backtracking for regular expressions

	2.5 Pipeline
	2.6 Thompson's construction
	2.7 Logging capture groups in a TNFA
	2.7.1 Conversion to tagged DFA

	3 Data structures
	3.1 Fully persistent data structures
	3.2 Copy-on-write array
	3.3 Treap
	3.4 Storing updates
	3.4.1 Linear versions
	3.4.2 Version tree
	Emptying a full buffer
	Constant time ordering of versions

	3.5 Order maintenance
	3.5.1 Relabeling
	3.5.2 Indirection

	4 Proofs
	4.1 Correctness
	4.2 Execution time
	4.3 Lower bound for time

	5 Implementation
	5.1 DFA transition table
	5.2 DFA execution
	5.3 Compactification
	5.4 Intertwining of the pipeline stages
	5.5 Parsing the regular expression syntax

	6 Related work
	6.1 Revisiting backtracking
	6.2 Packrat parsers
	6.3 Automata based extraction of parse trees
	6.4 Large scale data analysis of a stream of text

	7 Benchmark
	8 Conclusion
	Appendices
	A Minimal python implementation
	A.1 Construction
	A.2 Matching

	Bibliography
	List of Figures
	List of Tables
	List of Algorithms

